
Dynamic Reconfiguration of the Data Aggregation Topology
at the Edge

Tiago Miguel Calhanas Gonçalves

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Luı́s Eduardo Teixeira Rodrigues

Examination Committee

Chairperson: Prof. David Manuel Martins de Matos
Supervisor: Prof. Luı́s Eduardo Teixeira Rodrigues

Member of the Committee: Prof. José Manuel da Silva Cecı́lio

January 2021

Acknowledgments

I would like to thank my parents and Catarina for their friendship, encouragement and caring over all

these years, for always being there for me through thick and thin and without whom this project would

not be possible. I would also like to thank my siblings and grandparents for their understanding and

support throughout all these years.

I would also like to acknowledge Prof. Luı́s Rodrigues and Nivia Quental for their insight, support

and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

This work was partially supported by the FCT via project COSMOS (via the OE with ref. PTDC/EEI-

COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua componente FEDER”

with ref. Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/ 2020.

Abstract

Edge computing is a paradigm where computation and storage services are offered by nodes that are

placed close to devices that constitute the Internet of Things (IoT), as opposed to a pure cloud computing

model where these services are provided by large central datacenters. The main advantages of edge

computing are twofold: it allows to offer services to the IoT devices with low latency and it reduces the

amount of data that needs to be sent to the central datacenters by means of data aggregation, providing

significant bandwidth savings. These services are provided by edge nodes, often called fog nodes or

cloudlets, that are placed in different geographical locations, close to the users. To ensure low latency

the number of these servers will be necessarily high and need to be organized in a structured infras-

tructure that allows to take advantage of the localization of edge nodes. For the successful operation of

edge computing it is crucial to have an infrastructure that is able to adapt to multiple environments and

reconfigure itself to a more favorable topology. This thesis presents FlexRegMon, a system that allows

to have dynamic reconfiguration of the data aggregation topology, by using a distributed component that

manages the hierarchical topology of the system.

Keywords

Edge computing, Monitoring, Data Aggregation, Aggregation Topology, Dynamic Reconfiguration.

Resumo

Computação na periferia da rede é um paradigma onde os serviços de computação e de armazena-

mento são oferecidos por nós que estão perto de dispostivos que constituem a Internet das Coisas

(IdC), ao contrário do modelo puro de computação na nuvem, onde os serviços são oferecidos por

grandes centros de dados centralizados. As principais vantagens da computação na perfieria da rede

são das seguintes: por um lado, permite oferecer serviços com baixa latência aos dispositivos de IdC e,

por outro, permite reduzir a quantidade de dados que é necessário enviar directamente para os centros

de dados, recorrendo a métodos de agregação de dados, que permitem reduzir a largura de banda us-

ada no processo de recolha de dados. Estes serviços são fornecidos por nós da periferia, muitas vezes

chamadas de nós neblina ou cúmulos, que são colocados em diferentes áreas geográficas, mais perto

dos utilizadores. Para garantir a baixa latência dos utilizadores aos serviços será preciso um elevado

número de servidores, que necessitam de estar dispostos numa estrutura organizada que permita tirar

vantagem dos nós da periferia. De forma a garantir este bom funcionamento da computação na periferia

é crucial que a infraestrutura seja capaz de se adaptar a múltiplos ambientes e seja capaz de se re-

configurar. Esta dissertação apresenta o sistema FlexRegMon, um sistema que permite a configuração

dinâmica da topologia da rede dos agregadores de dados, através de uma componente distribuı́da, que

gere a topologia hierárquica do sistema.

Palavras Chave

Computação na Periferia da Rede, Monitorização, Agregação de Dados, Topologia de Agregação,

Reconfiguração Dinâmica.

iv

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Research History . 4

1.5 Organization of the Document . 4

2 Background 6

2.1 Observation Function - Data Collection . 7

2.2 Data Processing Function . 8

2.2.1 Aggregation . 9

2.3 Data Exposition Function . 9

2.4 Fog/Edge Multi-layer Monitoring Structure . 10

2.5 Fog/Edge Monitoring Properties . 10

2.6 Monitoring Service Specification on Edge/Fog . 11

2.6.1 Functional Requirements . 11

2.6.2 Non-functional Requirements . 12

2.7 Existing Monitoring Solutions . 13

2.7.1 Astrolabe . 14

2.7.2 FMonE . 15

2.7.3 Ganglia . 16

2.7.4 MonALISA . 17

2.7.5 Monasca . 18

2.7.6 SDIMS . 19

2.7.7 Limits of existing systems in a Edge environment 20

3 Design 22

3.1 Goals . 23

3.2 Design . 24

v

3.3 Data Collection and Processing . 25

3.3.1 Orchestrator . 26

3.3.1.A Orchestrator-Replicas . 28

3.3.2 Aggregators . 28

3.3.3 Producers . 28

3.3.4 Node Bootstrap . 28

3.3.5 Service Discovery and Failures . 29

3.4 Data Model . 29

3.4.1 Hierarchical Structure . 29

3.4.2 Routing Information . 30

3.4.3 Data Sets . 31

3.5 Protocols . 31

3.5.1 Topology Re-Configurations . 32

3.5.1.A Steps to Add or Remove a Region . 33

3.5.1.B Adding or Removing Hierarchical Levels 35

3.5.2 Aggregator Removal . 39

3.5.3 Orchestrator-Replica Failure . 41

4 Implementation 44

4.1 Zookeeper . 45

4.1.1 Zookeeper Notification System . 46

4.2 FLEXREGMON Internal Zookeeper Structure . 46

4.3 FLEXREGMON Discovery Service . 47

4.4 Notification System . 48

4.5 Orchestrator . 49

4.5.1 Orchestrator-Replicas . 49

4.6 Aggregators . 50

4.7 Deployment . 50

4.7.1 Docker . 51

4.7.2 Kollaps . 52

5 Evaluation 55

5.1 Evaluation Goals . 56

5.2 Experimental Setup . 56

5.3 FLEXREGMON vs. Zookeeper - Propagating Modifications on the Edge 57

5.3.1 Adding and Removing Aggregators . 59

5.4 Notification System . 61

vi

5.5 FLEXREGMON Overhead . 64

5.6 Benefits of the Flexible Topology . 64

5.7 Discussion . 67

6 Conclusions and Future Work 68

vii

List of Figures

3.1 FlexRegMon general structure . 24

3.2 Hierarchical Tree after new level addition . 27

3.3 Partial Topology with Portugal and its sub-regions (left) and aggregators available for each

region (right) . 31

3.4 Sequence diagram for adding a region . 34

3.5 Sequence diagram for removing a region . 35

3.6 Sequence Diagram for adding a new hierarchical level . 37

3.7 Sequence Diagram for propagating hierarchical level removal 39

3.8 Sequence Diagram for aggregator removal in a controlled scenario (System Control kills

aggregator) . 40

3.9 Sequence Diagram for aggregator removal in a uncontrolled scenario (aggregator crash) 41

3.10 Example of procedure for Replica crash or network partition between Orchestrator-Replica

and Orchestrator . 42

3.11 Network partition between Replica and aggregators . 42

4.1 Example of FLEXREGMON Zookeeper Server Hierarchical Structure 46

4.2 Zookeeper Structure example to store Routing Table information 48

4.3 Docker file declaration . 52

5.1 FLEXREGMON vs Zookeeper: propagating topology changes on the Edge 58

5.2 Adding and removing aggregators . 60

5.3 Notification System: performance while varying number of nodes 61

5.4 Notification System: performance while varying the latency 62

5.5 FLEXREGMON vs Zookeeper in centralized environment 63

5.6 Benefits of flexible topology: Dynamic vs Static . 65

viii

List of Tables

3.1 Data Sets: Lisboa and Setúbal aggregator . 26

3.2 Example of a data-sets table for the Portugal Region . 26

3.3 Example of a partial Hierarchical table for the Portugal Region 30

3.4 Example of a Routing table for the Orchestrator-Replica responsible for Portugal 31

3.5 Example of data set stored in an aggregator . 31

List of Algorithms

1 Central Orchestrator Code - Add region . 33

2 Orchestrator-Replicas Code - Add region . 33

3 Central Orchestrator Code - Remove region . 34

4 Orchestrator-Replicas Code - Remove region . 35

5 Central Orchestrator Code - Add Hierarchical Level . 36

6 Orchestrator-Replica Code - Add Hierarchical Level . 36

7 Aggregator Code - Add New Hierarchical Level . 37

8 Central Orchestrator Code - Remove Hierarchical Level 38

9 Orchestrator-Replica Code - Remove Hierarchical Level 38

10 Aggregator Code - Remove Hierarchical Level . 39

ix

Listings

4.1 Example of FLEXREGMON Kollaps topology file. 53

1

1
Introduction

Contents
1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Research History . 4

1.5 Organization of the Document . 4

2

1.1 Motivation

The number of devices that are connected to the Internet is very large and keeps growing at fast pace.

The nature of these devices is very heterogeneous, from powerful laptops and smartphones to small

sensors, a plethora of devices have the ability to provide services to end users and to collect and

produce data: media servers, smart TVs, consumer appliances, smart watches, smart home sensors

and actuators, etc. This reality is known as the Internet of Things (IoT). Edge computing is a paradigm

where computation and storage services are offered by nodes that are placed close to devices that

constitute the IoT, as opposed to a pure cloud computing model where these services are provided

by large central datacenters. The main advantages of edge computing are twofold: it allows to offer

services to the IoT devices with low latency and it reduces the amount of data that needs to be sent to

the central datacenters, providing significant bandwidth savings.

Edge computing typically relies on a multi-layer architecture [1] [2] [3] with the following components:

(i) A centralized cloud computing layer, which includes cloud datacenters. It can be used for long-term

storage and big-data analysis and not for time-sensitive data processing; (ii) A fog/edge layer, that has

the ability to pre-process raw data before it is shipped to the cloud, for example, aggregating and filtering

it. It allows processing data closer to the location of capture which leads to better latency and response

times. This layer can have multiple levels, where they can be either closer to cloud or to the edge where

end-users are; (iii) the edge layer, composed by sensors/devices that generate the data and execute

applications.

The architecture above allows also improves application performance as data is processed closer to

the end-user which allows to reduce latency. It provides new approaches to load balancing by introducing

new functionalities of service migration such as moving a running service from the cloud layer to the

edge computing layer. It also provides awareness of location, network and context information. The

edge layer also makes easier to track end-user information and adapt the environment to their needs

and preferences. Finally, it also minimizes energy consumption for the end-user devices, as it allows

battery-constrained devices to offload heavy tasks to edge nodes which are not as far away as the

centralized nodes.

In this work we are mainly concerned with the operation of nodes in the edge/fog layers. These nodes

can assume different structures, known as micro-datacenters [4], cloudlets [5], or fog computing [6]. To

ensure that they can provide services with low latency to devices in the edge layer, these nodes need to

be placed in locations that are physically close to the end-devices. For the successful operation of edge

computing it is crucial to have an infrastructure that is able to monitor the status and usage patterns of

edge nodes, not only to perform maintenance and repair, but also to re-configure the applications based

on the observed usage patterns.

3

1.2 Contributions

This thesis, implements and evaluates strategies to enforce easy topology manipulation of a running

system, in order to allow optimization of load and latency throughout the whole system. The resulting

contributions are the following:

• The design of a new system that permits easy and fast topology manipulation

• A new notification system for Zookeeper, which works better in networks with high latency, that

allows to use daisy-chained Zookeeper Clusters to maintain information accessible in a distributed

environment with low latency response times.

1.3 Results

This thesis produced the following results:

• An implementation of a monitoring system that eases the modification of data aggregation topology

in an Edge environment.

• Distribution of management of hierarchical regions that allows reduce latency overhead of opera-

tions to fog and edge nodes.

1.4 Research History

This work was developed in the context of the Cosmos research project, that aims at finding techniques

to offer causal consistent storage for edge computing scenarios. Techniques to monitor the operation of

the edge system are a key component of the Cosmos architecture.

This work was partially supported by the FCT via project COSMOS (via the OE with ref. PTDC/EEI-

COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua componente FEDER”

with ref. Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/ 2020.

1.5 Organization of the Document

This thesis is organized as follows. Chapter 2 presents the characteristics necessary for a monitor-

ing systems, its requirements, structure and a number of existing systems. Chapter 3 and Chapter 4

describe the design of FlexRegMon and the implementation of the its prototype as well as other compo-

nents that were required for deployment. Chapter 5 reveals the results of the evaluation and makes some

4

statements about the differences among the systems. Chapter 6 concludes this thesis by resuming its

advancements and possible directions for some future work.

5

2
Background

Contents
2.1 Observation Function - Data Collection . 7

2.2 Data Processing Function . 8

2.3 Data Exposition Function . 9

2.4 Fog/Edge Multi-layer Monitoring Structure . 10

2.5 Fog/Edge Monitoring Properties . 10

2.6 Monitoring Service Specification on Edge/Fog . 11

2.7 Existing Monitoring Solutions . 13

6

Cloud services can be requested on-demand and are provided by elastic and scalable resources.

Some of the main characteristics offered by cloud services are [7]: availability, concurrency, dynamic

load balancing, independence of running applications, security, and intensiveness. These characteristics

are attained by using datacenters with hundreds of high performing servers.

In order to be able to efficiently manage this type of systems with increasing complexity, there is

a necessity of an accurate and fine-grained monitoring solution capable of capturing different types of

information regarding the operation of the system, its components, and subsystems.

The ability to monitor the system is essential for both Cloud providers and consumers/users. For

providers it helps to have a monitoring system that can gather information to ease control and man-

agements of the infrastructures. While for consumers and users a monitoring service can provide key

information about the applications that they are running on the infrastructures.

In order to operate in an infrastructure of this scale and complexity, a monitoring system needs to

fulfill different functions [8]: observation of monitored resources, data processing and data exposition.

These functions can also be further divided into sub-operations such as aggregation, transformation of

measurements into events, and event processing.

2.1 Observation Function - Data Collection

The observation function is responsible for tracking remote resources and gathering data for processing.

This function can be implemented in various ways. It can be entirely implemented by the monitoring

system, or be distributed throughout all the remote resources. There are two strategies approaches to

collect data from remote resources [9]:

• Pull or polling solutions are usually used in centralized solutions. This type of solution requires

a pre-registration of the monitored resources on the system in order to be able to be localized.

After registration, the system can request/query the monitored resource for information or actively

perform checks on the system, like testing if the node is alive by making ping tests.

The system needs to be aware of the location of all the nodes and contacts each one individually,

which makes it hard to scale.

Furthermore, in an architecture with a lot of volatility, like the Edge, where we have high number of

joins and exits of nodes, we may have a unfeasible number of registration processes, or the system

may try to query nodes that already left the system but were not acknowledge as such as there

is no way of detecting unless the remote resource de-registers itself. This is hard to guarantee in

highly elastic and mobile environments where nodes do not know when they will leave the system.

• Push model favors decentralized and highly elastic environments. It does not require resources to

7

register themselves on the system. Monitored resources are the ones responsible for transmitting

the data to the monitoring system according to some time interval or event condition. Further-

more, due to the characteristics of this communication model, an unidirectional channel is created

where communication only flows in one way, from monitored resource to the monitoring system.

This makes it easier to address security concerns and being capable to communicate with ev-

ery resource, even if when these are behind middleware boxes and firewalls that, due to security

reasons, might block incoming traffic.

The characteristics of the push model make it the more adequate for an Edge environment, due to

the volatility of the nodes and the scale of the number of nodes. Using a pull-based solution would

be troublesome, as we would have to deal with a high number of registration processes, due to edge

nodes being mobile which results in a high chance of leaving the system. Also, while using a pull-based

communication, the monitoring tool is not able to immediately recognize the loss of resources, and is

going to keep trying to pull data from it, wasting time and resources.

2.2 Data Processing Function

In order to be able to use the data generated by the monitoring resources, there is a need to process

and interpret it. This is necessary to evaluate, and provide necessary insight about the system, and

its components. This analysis can be used to perform optimizations and adaptations on the system to

increase performance.

Data processing operations have different requirements for different objectives [10]. In environments

where we answer requests as fast as possible, it is beneficial to use techniques that help us obtaining

the relevant data as quickly as possible. For instance, if a request does not require a global view of the

system we can consider data from only a subset of all the information on the system. This allows getting

the necessary data quicker (in perfect conditions it would only use local data), and in consequence

process it quicker. In other scenarios, we may need to have a global view of the system. To achieve that,

it may be necessary to process the data from the whole system. The latter type of operations needs to

support longer response times, as the volume of data that needs to be processed is much higher and

localization can be more sparse.

The data processing/analysis can also be used to create historical data to be later interpreted. For

instance, data mining can find patterns and match certain events with problems on the infrastructure,

which may reveal that when a specific zone is having issues the whole system performance will go down.

This knowledge can then be used to adjust the system.

8

2.2.1 Aggregation

Aggregation is a type of computation function that can be applied to data sets. It takes multiple sources

of data of the same type and resumes their values into a single output. The combined output gives an

insight regarding the inputs while avoiding all the individual contributions to be re-processed whenever

their values are needed. Aggregation of data provides context around different data points. Typically it

occurs at centralized location and provides powerful insight into the behavior of an application or zone

of the system.

• System Aggregation of data reveals the overall health and state of the system. This type of

aggregation is designed to give various views and insight into the system state. In addition, we

calculate different aggregates with distinct sets of metrics, in order to predict different scenarios,

or to play “what-if” situations, where we can explore potential side effects of changes that might

modify or introduce faulty behaviors in the system.

• Local Aggregation is an optimization that aims at keeping the data near the nodes that generated

it. Many metrics and events can be computed “on the go” locally, instead of requiring data to be

sent to another location for analysis. Unfortunately, local aggregation is not always possible, either

because the edge nodes do not have enough processing power, or because it would add an

unacceptable latency (due to the need to gather the data from other nodes) to the query response.

2.3 Data Exposition Function

This function is responsible to export the output of the monitoring system to the users, allowing them to

visualize the information captured and processed. There are two primary types of outputs:

• Notifications: Consist on communicating to a user or to another system that an event has oc-

curred. It can also be used to integrate two systems that depend on each other. For example,

consider a situation where system A needs system B to be in a certain state and the monitoring

system could be programmed to notify system A when system B is in that specific state.

• Visualization: Can be shown in the form of tables, charts, or graphs, that allow users to analyse

and reason about the state and performance of the system. Users should be able to check for

different zones of the system and, in case of historical data, change the granularity and period of

the data being shown.

9

2.4 Fog/Edge Multi-layer Monitoring Structure

Edge computing follows a different structure from cloud computing in the sense that it is divided by

layers [3]. At its core, has three layers: the cloud computing layer, which is similar to the classic cloud

computing paradigm where we have big datacenters with a lot of high performance servers; the fog layer,

that consists on having high performance nodes or even small datacenters called cloudlets, deployed

in different sites closer to the users; and the edge layer, which is populated by the end-users and end-

devices, these devices have low performance, power constraints, and are responsible for generating

most of the data of these type of systems.

Due to the differences between this structure and the one from classic cloud computing, a monitoring

service for the edge needs to be structured differently from a monitoring system for the cloud. The most

common structure, proposed in the literature [1, 3, 8], follows a multi-layer structure similar to the edge

infrastructure:

• Centralized cloud computing layer: Includes cloud datacenters that can be used as long-term

storage. Datacenters can execute application-level data processing and exposition functions that

do not have short latency requirements. Big data analysis of the whole infrastructure can be

performed on this layer.

• Fog layer: In this layer, smaller cloud resources are deployed in order to be closer to end-users

and end-devices. It allows for a more localized processing and exposition of the data and also

allows edge nodes to offload some of its computation to it. This layer hosts the entry points to the

monitoring system, for the edge nodes. It also hosts data collection services that are able to act

on the captured data, for example, by aggregating, filtering or encrypting local data.

• Edge computing layer: This layer contains the devices, users, and applications that will imple-

ment part of the observation function of the monitoring system. Most of the system data origins in

this layer.

2.5 Fog/Edge Monitoring Properties

The multi-layer structure makes fog/edge environments very different from the traditional cloud com-

puting environments. Its specific characteristics fundamentally change the strategies that can be used

when monitoring the system [1,8]:

• Large and massively distributed: Fog/edge based systems are deployed across a different num-

ber of sites that can be widely spread. The distance separating these sites can reach hundreds

of kilometers. They can be connected through different types of links, each one with its reliability

10

and speed. Both factors, distance and nature of the link, affect latency and bandwidth between

resources, a fact that should be taken into account when designing a monitoring system.

• Heterogeneity: The infrastructure is composed by different types of devices, such as servers

with high computing power, storage servers, routers, gateways, middleware appliances, and users

devices. All these resources have different characteristics in terms of capacity, reliability, and

usage. On top of it, virtualization which is widely used in the cloud environment also adds another

level of heterogeneity, due to the possibility of the resources being either virtual or physical.

• Highly volatile: Nodes at the edge level may join and leave the system at any time, given that

many edge devices are mobile.

With these new properties in mind, we need to provide a set of improvements over the classic cloud

paradigm for monitoring systems.

2.6 Monitoring Service Specification on Edge/Fog

The new infrastructure and specific characteristics imposes a new a set of requirements, that need to

be taken into account in a monitoring system for a fog/edge environment [1,2,8]:

2.6.1 Functional Requirements

• Reduce the amount of network traffic: Nodes at the fog computing layer should be able to

filter unnecessary data and aggregate information that needs to be streamed to other nodes. By

filtering and aggregating the data before sending, it is possible to decrease the amount of data that

is being transmitted. This helps dealing with the big volume of information generated by the large

and massively distributed number of edge nodes.

• Tweak monitoring intervals: The system should be tunable and trigger data collection or pro-

cessing based on custom intervals or event conditions. By customizing time intervals, we can

prevent the network from being congested with too many messages, something that could happen

if all nodes would transmit at the same time. Using notifications to trigger monitoring, we can pro-

vide immediate response to abnormal circumstances, avoid having to wait for the next time interval

and preventing loss of control of the system.

• Long-term storage: The monitoring solution should be able store the data in an optimized way

that allows for future retrieval of the data. In this way, monitoring data can be used to inform future

adaptation strategies.

11

• Service migration: The system should be able to adapt to reallocation of services, something

that is common with distributed systems.

• Independent from underlying cloud infrastructure provider: The system should be able of

inter-operable monitoring and to share information among heterogeneous frameworks.

• Quickly react to dynamic resource changes: The monitoring solution should rapidly detect and

collect information about the changing environment. Edge computing requires an agile monitoring

system, especially at the Edge layer, due to the highly elastic environment where end-devices may

frequently join and leave the system.

• Operating system and hardware independence: An Edge monitoring solution has to deal with

heterogeneous resources and in order to achieve it, needs to interact and capture data indepen-

dently of the resource operating system, if it is virtualized or not, and of which hardware it is running

on.

• Improve the application performance: Users and applications at the edge level might need a

quick response to a request. The system should be able to provide those fast responses. There-

fore, it should not rely exclusively on the cloud computing layer or other centralized components to

process localized data. Instead, it should support local data processing on fog nodes, which are

closer to the edge. Localized processing reduces the latency and reduces response time (as long

as it only uses local data), which results in better application performance.

• Location and network context awareness: Edge devices and fog nodes are distributed in a

wide geographic area. This is used to track end-users information, such as their location, mobility,

network condition, behavior, and environment in order to efficiently provide customized services.

This allows to provide context for the captured data and extra attributes to categorize information

which will allow to make localized adjustments to the system [11] or end-users’ preferences.

• Minimize energy consumption: Some edge devices have limited resources and should be able

to offload [12,13] tasks to fog nodes that are preferably close (otherwise the power used to transmit

the data could be higher than processing the data itself). When applied properly, this technique

helps in reducing the energy consumption of edge devices.

2.6.2 Non-functional Requirements

• Scalability: The system needs to scale and be able to monitor a large number of resources. It

should be able to handle a sudden growth of monitored resources as well as a sudden high load

of requests, while maintaining performance across the whole system.

12

• Non-intrusiveness: Edge computing makes use of small devices that need to be efficient due

to their energy constraints. This creates an environment where special attention need to be pro-

vided to resource usage, by adopting a strategies that use minimal processing, minimal memory

usage, and reduced communication. The observation function of the monitoring system should

also gather metrics from edge devices using a non-intrusive and lightweight implementation.

• Locality: The monitoring service should ensure adequate response delay, regardless of the lo-

cation of the monitored resource. It should allow to deploy the monitoring service on multiple

locations and near its users, in order to be able to guarantee low response times.

• Modularity: The heterogeneous resources of the fog/edge infrastructure range from high per-

formance servers to low power devices. To offer monitor services more choices its deployment

should be made possible in any type of these resources, regardless of their capacities, OS, or

other hardware characteristics.

• Robustness:

– Resilience to server additions/removals: The monitoring system cannot prevent the failure

of the servers hosting it. It should be able to adapt if any of its resources is removed or if

there is a need for a system migration of any of its modules, an event that is common in a

virtualized environment like cloud and fog environments.

– Resilience to network changes/failures: Due to the distributed nature of the fog/edge

based architecture, the network is highly vulnerable to network failures. In particular, at the

edge level, we have many small mobile devices that can enter and exit the system with ease,

and the system should be able to adapt to these changes. Furthermore, monitoring remote

resources relies heavily on the network to transmit data. The system should also be able to

cope with networks failures, using mechanisms to guarantee deliver of data and alternative

routes to reach the system.

2.7 Existing Monitoring Solutions

We searched and read about existing monitoring solution to get a grasp of the techniques used to gather

data, aggregate, and to assert if those systems were capable of adapting to the different conditions and

the changes that we might find in the edge.

13

2.7.1 Astrolabe

Astrolabe [14] is a hierarchical monitoring system. It organizes the monitoring nodes into a hierarchy

of domains, which are called zones. A zone is recursively defined to be either a set of hosts or a set

of non-overlapping zones. Astrolabe continuously computes summaries of system data using on-the-fly

aggregation.

The hierarchical distribution of the zones can be viewed as a tree of nodes, where leaves represent

the physical hosts and middle/top nodes are virtual nodes hosted on physical hosts. Each zone has

a local zone identifier, a string name unique within their parent zone. A zone is identified by its zone

name, which represents the name path of zone identifiers from the root of the tree to the node itself.

Representatives from the set of hosts within the zone are elected to take responsibility for running the

gossip protocol that maintains the internal zones. If they fail, the zone will automatically elect another

node to take the place of the failing node.

Astrolabe propagates information using an epidemic peer-to-peer protocol known as gossip [15].

Each node in the system runs an Astrolabe agent and every agent runs the gossip protocol with other

agents. It will periodically choose another node at random and exchange information with it. If both

nodes are within the same zone, the state exchanged is related to information of that same zone. The

use of gossip allows the state of the Astrolabe nodes to converge, as data ages and nodes communicate

with each other.

Each zone stores information in an attribute list, a form of Management Information Base or MIB,

which borrows its terminology from SNMP [16]. Astrolabe attributes, unlike SNMP, are not directly

writable, but generated by aggregation functions. Each zone has a set of functions that calculates

the attributes of that zone. An aggregation function for a zone is defined as a SQL program. It takes a

list of the zone’s children attributes and produces a summary. The only attributes that are writable are in

the leaf zones. Higher level attributes are created from these writable attributes.

Each agent keeps a local copy of only a subset of all the attributes. The subset includes all the zones

on the path to the root node, as well as sibling zones of each of those. In particular, each zone has a

local copy of the root MIB, and the MIBs of each child of the root.

There are no centralized servers associated with internal zones and all the data is replicated on all

agents within the zones it belongs to. Due to the structure of the hierarchy tree and the fact that every

node has a subset of the tree’s information, it is possible to answer queries and requests for certain

zones using only local information.

Astrolabe is also capable of dealing with membership management problems such as failure detec-

tion and integration of new nodes. Each MIB has a representative attribute that contains the name of the

agent that generated that MIB, and an issued attribute that contains the time at which the agent last up-

dated that MIB. Each agent keeps track, for each zone and for each representative agent, the last MIBs

14

from each agents. When an agent has not seen an update for a zone from a particular representative

agent for that zone for some time Tfail, it removes its corresponding MIB. When the last MIB of a zone

is removed, the zone itself is removed from the agent’s list of zones.

In order to recover from crashes or add new machines, Astrolabe treats node integration as merging

two Astrolabe trees. It relies on IP multicast to set up the first contact between the trees. After the initial

setup, each tree multicasts a gossip message at a fixed rate leading to an eventually merged state of

the two trees and starts using the normal gossip protocol.

2.7.2 FMonE

FMonE [17] is a fog monitoring solution aimed at addressing fog-based architecture requirements with

its focus on heterogeneity. It relies on a container orchestration system to build monitoring workflows

that adapt to the different environments that can be found on a fog architecture.

FMonE main module is a centralized framework that coordinates the monitoring process across the

whole fog infrastructure. It is designed to work with container technologies. It uses an orchestrator to

coordinate and maintain monitoring agents (responsible for the observation and processing functions)

and the back-ends (used to store metrics). The orchestrator is replicated on multiple instances. In case

of failure these replicas can replace the instance and keep the system running.

FMonE organizes groups of nodes into regions. A region is composed internally by FMonE agents

which are responsible for gathering the metrics, process them and send to a back-end. FMonE uses

a concept called Pipeline to match agents and back-ends to its regions. The Pipeline also defines the

workflow of the agents and how they should behave for each function by defining three set of rules

InPlugin, MidPlugin and OutPlugin:

• Inplugin: defines how frequently the agent and which data is extracted from a component of the

system.

• MidPlugin: defines custom functions that are able to filter and aggregate the set of metrics ex-

tracted by the agents (applied before the metrics are published).

• OutPlugin: defines the time condition to push data and the location to where it will be sent. An

agent can dump its data in a back-end to be stored or in a message-queue to be used by another

agent.

The customization of these sets of rules allow for extra flexibility on the agent’s behavior. It is possible

to change the configuration according to each region conditions which allows the system to be used with

different types of devices. The collection of the data by the agents is based on a push approach. It starts

by extracting the data from the device to the agent memory using InPlugin rule set, then it applies all the

15

filtering/aggregation function declared by MidPlugin, and finally pushes the processed data to locations

given by OutPlugin.

For new nodes to join the system the new nodes simply need to match the pipeline rules of the region

that it wants to join. The orchestrator will initiate the agent and the node will join and it will start collecting

pushing the metrics.

The use of regions along with pipelines to define the workflow of the agents makes the system take

a hierarchical architectural approach. While it does not create a strict structure based on trees like

Astrolabe [14] and SDIMS [18], it allows the system’s regions to take a hierarchical behavior, where they

can use aggregated values from other regions instead of taking all the individual values from all devices.

2.7.3 Ganglia

Ganglia [19] is a monitoring system for high performance systems such as Clusters and Grids. It is also

based on a hierarchical architecture, with machines divided into federations of clusters.

Each cluster has a representative node. Ganglia creates a tree of point-to-point connections with

cluster’s representatives nodes in order to aggregate their state and create hierarchical relations be-

tween the clusters. This structure needs to be manually configured by the administrator of the system.

In each node in the cluster representatives tree exists a pull-based service called gmetad. It peri-

odically polls the child data sources and aggregates them into a single value. The data sources can

be other representative nodes (gmetad instances) that represent a single or multiple clusters, or at the

lower levels of the tree could be the physical machines that compose the clusters.

Every node in a cluster collects and maintains monitoring information for all the other cluster nodes

by listening to a well-known multicast address. To collect metrics within each federation, Ganglia uses

another service called gmond that runs on every node. It monitors the node’s local resources and sends

multicast packets containing the monitoring data to the cluster-wide multicast address.

The multicast-based listen/announce protocol allows for a swift re-election of cluster’s representatives

in case of failure of the current one, as all nodes know all the values of the whole cluster. It also makes

joining the system easier, as nodes only need to start listening/announcing in order to join the federation.

In order to not flood the network with messages, the broadcast of metrics inside a cluster only occurs

when there are significant updates to those values. Ganglia also uses time thresholds to specify an

upper bound on the interval of when metrics are sent. Every time a node reaches the threshold, it will

multicast its data to refresh the time value, even if there are no new values.

To deal with faulty nodes the system uses heartbeat messages with time thresholds. Each heartbeat

contains a timestamp representing the startup time of its gmond instance. These values are stored

on every node on the cluster like metric data collection. Anytime a gmond instance has an altered

timestamp (compared with the local value stored in each node) it is immediately recognized by its peers

16

as having been restarted. A gmond which has not responded over some number of time thresholds is

assumed to be down.

Although the system has a hierarchical architecture like Astrolabe [14], it cannot provide local scope

queries. This happens because federations are not associated with a name space, which makes it

impossible to target them. Information is simply collected and sent up the tree to upper gmetad nodes.

The manual configuration of the tree structure can be a problem at a bigger scale, as it is not possible

to manual configure thousands of nodes that we might find in bigger environments.

2.7.4 MonALISA

MonALISA [20] innovates by not focusing on monitoring a single site and instead focusing on monitoring

at a global scale. MonALISA uses a service-oriented architecture and is designed to serve large physics

collaborations that are spread over multiple data grids composed of hundreds of sites on different loca-

tions, with thousands of computing and storage elements.

In order to scale and work robustly while managing global, and resource-constrained Grid systems,

MonALISA follows a peer-to-peer approach. Uses a set of Station Servers, deployed one per facility or

site. All the monitoring functions, much like Astrolabe [14], take place in a single monolithic element.

The system architecture is sub-divided into four logical layers:

• The first layer contains the regional or high-level services (that use the data from other services),

data repositories and clients. These are the consumers of information gathered by MonALISA and

are able to store data.

• The second layer is composed by proxies. They allow for secure and reliable communications,

dynamic load balancing, scalability and replication. Clients contact the proxies instead of com-

municating directly with the services. It allows the proxy service to perform operations over the

requests. For example, allowing a service to only send the data once and then the proxy multi-

plexes it for the all the clients that subscribe to that information.

• The third layer is where services are located. The services make use of a multi-thread execution

engine to perform the data collection and processing tasks. The multi-threaded execution allows

the system to monitor a large number of entities, filter and aggregate the monitoring data, store

monitoring information for shorter periods of time, manage web services for direct data access,

provide triggers, alerts and actions based on monitoring data and control the system using dedi-

cated modules.

It also allows to perform independent data collection tasks in parallel. The monitoring modules are

dynamically loaded and executed on independent tasks which allows to run concurrently a large

17

number of modules. Due to the use of independent threads, the failure of a monitoring task (due

to node failure or delay) will not delay the other tasks.

• The fourth and last layer hosts the lookup services (LUS). Consists of a network of services that

provide dynamic registration and discovery for all the components described above. MonALISA

services are able to communicate and access each other at the global scale by registering them-

selves with LUS as part of one or more groups along with some attributes that describe them-

selves. In this way any interested application, service or client can request services based on a

set of matching attributes.

The registration uses a lease mechanism. If a service fails to renew its lease, it is removed from

the LUS and a notification is sent to all services or other applications that subscribed to such events.

The scalability of the system comes from the use of the multi-threaded execution engine to host the

loosely coupled services, and the use of the lookup service to register and discover services from the

proxies that allow the servers to only send information once and then the proxy will multiplex it to all the

interested parties.

2.7.5 Monasca

Monasca [21] is a centralized and highly modular monitoring solution. Its functions are isolated from each

other and divided into different modules. It follows a micro-services architecture with several services

split and responsible for a single function. Each module is designed to provide a discrete service in the

overall monitoring solution and can be deployed or omitted according to the operators/customers need.

Instead of using gossip or a hierarchical tree like the other systems, Monasca’s communication be-

tween processing functions is ensured by topics according to the publish/subscribe paradigm. The

central module uses a Message Queue, like Apache Kafka [22], to provide temporary storage for the

messages. The message queue has two type of users. Producers that create messages and deliver

them, and consumers that connect to the queue and get the messages to be processed. Messages stay

on the queue until they are retrieved by a consumer. This type of systems provide an asynchronous

communications protocol between modules. Publishers do not need an immediate response to continue

working, which decouples the different modules from each other as they do not need to interact directly.

Data collection is done using agents that execute the observation function on the remote resources.

These agents capture the metrics from the remote resources and push them to the central Monasca

Module, called Monasca API. Later, the API publishes the pushed metrics in the message queue under

the topic “Metrics” so that they can be used by any other Monasca Modules.

Aggregation is done by the module “Transform Engine”. It consumes the data from the “Metrics”

topic and transforms it by applying an aggregation or mathematical function to obtain a new value. After

18

transforming the data it publishes the new values on the same topic “Metrics” so it can be used by the

other modules. In order to store the data permanently Monasca has a module called “Persister” that

takes the metrics from the Message Queue and puts them in a persistent database.

Monasca also has another modules that are responsible for the creation of alarms, events and noti-

fication that consume metrics from the Message Queue.

Due to fact that Monasca uses a centralized architecture and does not have an internal organization

of its remote resources, the system is not capable of providing locality nor resilience against failures.

2.7.6 SDIMS

SDIMS [18] is a generic monitoring system that aggregates information about large-scale networked

systems.

It implements the same hierarchical architecture as Astrolabe but instead of exposing all information

to all the nodes of a subtree, it allows nodes to only access detailed views of nearby information and

summary views of distant and global information.

It uses a modified Distributed Hash Table (DHT) algorithm extended from the Pastry’s protocol [23] to

construct a tree spanning across all nodes in the system. Each physical node is a leaf and each subtree

represents a logical group of nodes. These logical groups can correspond to administrative domains or

groups of nodes within a domain (both equivalent to zones on Astrolabe).

An internal non-leaf node or virtual node is simulated by one or more physical nodes at the leaves

of the subtree for which the virtual node is the root. The zones on the tree are created by exploiting the

fact that each key in Plaxton-based DHT (which Pastry is based on) identifies a tree consisting of the

routes from each other node to the root node for that key. The algorithm was modified to have a leaf set

for each administrative domain, rather than a single set for the whole tree.

The authors adapted the Pastry’s protocol by changing its routing algorithm. Instead of using a

single routing table based on network jumps, they changed the algorithm to have two different proximity

metrics when creating the routing tables for the DHT. They use hierarchical domain proximity as its

primary metric, which means that domains need to be declared before the tree is formed, and use

network distance as a secondary metric.

Each physical node stores its metrics locally. The system associates an aggregation function with

each attribute, and for each level-(n+ 1) subtree in the tree it calculates the aggregated value using the

values from level-n aggregated values.

Data collection uses a pull method. Values are directly gathered from the source nodes when the

system wants to calculate the aggregate of those values.

The aggregated values can be propagated along the tree when calculated in order to provide some

degree of locality.

19

While previous systems, like Astrolabe [14], provided a single static strategy for computing and prop-

agating values, SDIMS provides flexible computation and propagation strategies by letting applications

customize their propagation patterns to their needs.

This strategy allows the system to provide a wide range of strategies for data propagation in order to

match the read-write-ratio of different applications.

SDIMS is able to provide this flexibility by having three operations that manipulate the system config-

uration:

• Install(): installs an aggregation function that defines an operation on an attribute and specifies

the update strategy that it will use. It uses two parameters up and down that define how much the

value should be propagated on the tree. The up value defines at which levels above the node that

the aggregated value should be stored and the down parameter determines how much levels it

should propagate down to its descendants.

• Update(): updates or adds a new value to a leaf node, allowing it to trigger a new aggregation.

• Probe(): returns the value of an attribute. An application can specify the level of the tree at which

the answer is required for an attribute. It can also specify up and down parameters in order to ask

for re-aggregation of the values taking into account those parameters.

Beyond the strategies already used in Pastry’s [23], two more strategies are provided in order to deal

with the problem of nodes leaving the system: On-demand re-aggregation and replication in space.

On-demand re-aggregation is done by using the up and down attributes of the Probe API application

to force a re-aggregation. If an application detects that the aggregated values are stale it can re-issue

the probe by increasing the up and down values, forcing the refresh of those values.

Replication in space is attained by using the up and down knobs in the Install API. With bigger values

on each parameter, aggregates at the intermediate virtual nodes are propagated to more nodes in the

system. It reduces the number of nodes that have to be accessed to answer a probe, which lowers the

probability of incorrect results due to the failure of nodes that do not contribute to the aggregate.

2.7.7 Limits of existing systems in a Edge environment

Existing systems have dealt with the different characteristics for their intended environments. All of them

perform some type of data aggregation, but due to their architecture and the fact that most of these tools

were designed to work in centralized sites they either use a static topology to perform the aggregation

and do not have the capabilities of modifying it without having to deal with complex mechanisms, manual

re-configurations (like in Ganglia) or even restarts of the whole system. Or they are flexible but do not of-

fer a hierarchical structure that can provide a good overview of the aggregation process (MonALISA and

20

Monasca). And in systems like SDIMS where regions are closely tied to the structure of the DHT it would

prove even harder to re-configure a topology. This means that although they do have re-configuration

processes they are mostly used to mitigate failures and not re-configure the data aggregation topology.

And even FMonE with a design oriented to the fog/edge architecture and has the flexibility of attributing

different Pipelines does not provide a mechanism to easily apply or modify those different rules.

Data aggregation can affect the performance of the system by reducing by a considerable amount

the size of the transmitted data on the system if the topology is well adapted to the scenario. With a

system that is deployed on the edge, the number of devices increases, when compared to the classic

paradigms, and the load and distribution of nodes is constantly changing. It could prove beneficial to

be able to re-configure the topology to adapt to the load that the system is being put under in order

to optimize performance. With this, it feels natural that the next step is to create a monitoring system

capable of functioning at the edge level, and that is able to adapt to different ongoing conditions by

modifying its aggregation topology without overheads that could overshadow the benefits of making said

change.

Summary

This chapter introduced the necessary function for a fully working monitoring system. It was also in-

troduced the existent differences between edge and cloud services and a specification that defines the

characteristics and necessary requirements for an Edge monitoring system. Several systems were an-

alyzed to get a grasp of the used techniques and to understand how the aggregation structures work in

monitoring systems. In the next chapter, it is proposed a system that focus on satisfying some of these

requirements, specifically dynamically define the data aggregation topology, and increase performance

on the edge.

21

3
Design

Contents
3.1 Goals . 23

3.2 Design . 24

3.3 Data Collection and Processing . 25

3.4 Data Model . 29

3.5 Protocols . 31

22

This chapter introduces the design of FlexRegMon, a system architecture that aims at supporting

the reconfiguration of the aggregation topology with low latency. The architecture aims at simplifying

the task of adding new level in the hierarchy and also the task of adding new regions to a given level.

The architecture relies on a logically centralized component, the Central Orchestrator (that oversees the

whole topology), whose role is to coordinate the remaining components. The operation of the Central

Orchestrator is supported by multiple partial replicas, located in different geographic locations. Each

partial replica only keeps part of the state owned by the Central Orchestrator: the part that is relevant to

manage the components that execute on the local region. When changes to the topology are performed,

the Central Orchestrator delegates the task of coordinating the affected components to its own replicas,

such that the coordination activities are performed by the replicas that is closer to the affected compo-

nents, with the aim of speeding up the reconfiguration. Section 3.1 expresses the goals that we want the

system to fulfill. Section 3.2 gives an overview of the system design, its components and how they are

connected. Section 3.3 describes how data collection and processing works in the system. Section 3.4

refers to how the data is maintained throughout the system. And finally, Section 3.5 details the different

protocols and algorithms for operations that can be performed in the system.

3.1 Goals

In many edge applications, the load on a given region is variable, and depends on the number of users

that are located on that region at a given point in time. In some cases, some regions may be subject to

temporary spikes in demand. Consider, for instance, scenarios where users can physically can gather

in large numbers for short periods (i.e., a musical festival in a city). If the existing servers are statically

assigned to geographical regions, it may be hard to ensure that the right amount of resources is allocated

to each region. The system may be over-provisioned for normal operation or under-provisioned when an

special event makes many users to gather in a given location. When the workload exceeds the capacity

of the system, users may experience delays or even loss of information.

Horizontal scaling is useful to address many of the problems that arise from overloaded computing

resources [24]. By allocating more resources to a region it is possible to increase the computational

power needed to process a higher number of requests. In addition, data aggregation, a technique

effectively used in wireless sensor networks [25], can be used to mitigate the stress on the network.

This technique allows the information to be divided and summarized into smaller portions, which makes

the transmission much faster.

To deal with dynamic workloads we aim at supporting a re-configurable hierarchical composition of

the nodes used to process and aggregate incoming data. These nodes, named the aggregators, are

organized in a logical tree. The number of leaf nodes associated with any given geographical region may

23

be re-assigned in run-time. Also, the depth of the tree can also changed dynamically, to add intermediate

aggregation points when needed. The idea of using hierarchical networks of data aggregators is not new,

and has been widely used in monitoring systems [14, 18]. Our work focus on techniques that allow to

re-configure this hierarchy in run-time.

3.2 Design

Central

Orchestrator

Orchestrator

Replica

Orchestrator

Replica

Orchestrator

Replica

Aggregator

Orchestrator

Replica

Producer Producer

Producer
Producer

Producer Producer
Producer

Producer Producer

Topology
Maintenance

Data Gathering/
Collection

Regions

Aggregator

Producer

Producer

Producer

Producer

Producer

Producer

Producer Producer

Aggregator

Producer

Aggregator

Aggregator Aggregator

Hierarchical Relation Maintenance Relation

Figure 3.1: FlexRegMon general structure

Figure 3.1 depicts the main architecture of FlexRegMon. We incorporate FlexRegMon nodes into the

classic edge architecture, by designing it within the following structure: a central layer, in which we

allocate a centralized orchestrator, where we maintain the whole hierarchical topology, and other system

maintenance information; an edge/fog layer with wide-spread fog nodes or cloudlets where we are able

to allocate the remaining services for the system:

• Orchestrator-Replicas - partial replicas of the central orchestrator.

24

• Aggregators - nodes that store, process, aggregate, and forward the information generated by the

producers.

• Producers - nodes that produce data and feed it to their attributed aggregator.

All of these services can be deployed on multiple nodes per region to allow the system to scale. The

Central Orchestrator component keeps record of the whole topology, it is responsible for propagating

any changes to its own partial replicas, and acts as the initial point of contact for topology changes to be

made by the Control System. Each region is composed by at least one Orchestrator-Replica and one

aggregator. Due to the nature of the architecture of the system it is possible to deploy the different types

of node on different kinds of devices, as described in Section 2.4:

• Cloud Devices, servers located in big datacenters built in specific areas of the globe. Due to their

fixed location the communication conditions with the system’s nodes might vary depending on the

location of said node. Internally the servers have big can act as Orchestrator, its replicas, and

aggregators nodes;

• Fog Devices, located in smaller sized datacenters, called cloudlets, distributed across the globe,

can act as aggregators for a sub-region or as an Orchestrator-Replica

• Edge Devices, mobile devices with low computation power. Can host the data producers which

generate the data sets that are sent to the system.

3.3 Data Collection and Processing

As previously described in Section 2.4, in an edge system the number of nodes increases as we ap-

proach the outer layers. Because most of the data in these type of systems is produced in these dense

regions, we decided to take the approach of submitting data with a Push based technique. Here the pro-

ducers are actively responsible for sending the data to the monitoring system (please refer to Section 2.1

for more details on data collection approaches).

Producers connect to the corresponding aggregators and submit their data sets following the scheme

described on Section 3.4. The aggregators keep those data sets and are responsible to relay the infor-

mation to the upper levels of the hierarchical tree. They achieve this by contacting the upper hierarchical

level aggregators, just like a producer, and submit the data sets to those nodes.

Due to the nature of the edge network, the connections between different aggregators have limited

bandwidth. Problems such as link congestion, and message loss, can be amplified in environments

where large amounts of data are transferred through the network, a scenario that is likely to happen in a

system like ours that has a steady flow of information coming from producers.

25

To ease the process of data propagation, and reduce overhead and possible connection problems

between hierarchical levels, we assume that the aggregators are able to use aggregation functions, such

as the ones described in Section 2.2.1. These functions help to reduce the size of the data transmitted

between levels, and consequently the overhead of sending data up on hierarchical tree. With our data

model, we aggregate the values by taking all data sets that have the same context and summarize them

into a single value. This aggregation can be performed with just one region, or with multiple regions,

the only restriction for aggregation is having the same context. The operation can be any function that

combines multiple values into a single one (such as the average).

As an example, consider the topology present in Figure 3.2 and the data storage represented on

Tables 3.1 and 3.2. On Table 3.1, we have the collected data sets for the Temperature and Humidity of

Lisboa and Setúbal regions. AvgTemp and AvgHumidity are generated from an average aggregation

function that summarizes the Temperature and Humitidy values per region. Eventually, the aggregator

relays AvgTemp and AvgHumidity to the Portugal’s region (depicted in Table 3.2). In this case, because

the aggregator is composed by multiple sub-regions, it can instead of performing an aggregation per

region, create the values for its own region by aggregating the average from both sub-regions (Lisboa

and Setúbal).

Table 3.1: Data Sets: Lisboa and Setúbal aggregator

Context Lisboa Setúbal
Temperature 22,23,24 26,27,25

Humidity 79,75,78 67,69,71
AvgTemp * 23 26

AvgHumidity * 77.3 69

Table 3.2: Example of a data-sets table for the Portugal Region

Context Lisboa Setúbal Portugal
AvgTemp 23 26 24.5 *

AvgHumidity 77.3 69 73.15 *

* - value is calculated by the aggregator from the other values

3.3.1 Orchestrator

The Orchestrator is a logically centralized component localized in the control layer. This component

maintains the record of the entire topology, which regions are replicated in each region, and other infor-

mation relevant to the maintenance of the system.

We assume the existence of an external Control System, that is capable of monitoring the workload

and status of each node of the system. It is also capable of deploying additional nodes, provide them

26

with all the necessary information to enter the system, and re-configure the aggregation tree accordingly.

After insertion into the system, all changes to node information are performed in the Central Orchestrator,

which then propagates it to its own replicas. In this thesis we do not discuss the policies that may trigger

the reconfiguration of the tree. Instead, we focus on the process of notifying the aggregators affected by

a reconfiguration of their new parents.

Concerning the topology information, the Central Orchestrator keeps track of all the different regions,

their corresponding parent region, children sub-regions, Orchestrator-Replicas nodes and it’s associated

regions. To create a new hierarchical level, the control system creates on the Central Orchestrator a new

register for the new region, sets the parent and children regions for the new region, and then attributes

a replica and an aggregator to the newly created region. If the new level is inserted in the middle of the

hierarchical tree, it is necessary to change the values of adjacent regions. It needs to remap the parent

value of all the sub-regions connected to the previously existent level, and also needs to remap the child

values of the region it takes as its parent. The process is similar when removing a level.

Figure 3.2 illustrates this process. The picture on the left shows an initial hierarchical tree with 4

levels. The one on the right shows the resulting hierarchy after adding an intermediate level (the Centro-

Sul region) between the Portugal region and Lisboa/Setúbal regions. In this case, the children of the

Portugal node should change from [Lisboa, Setúbal, Porto] to [Centro-Sul, Porto], and the parent node

of both Lisboa and Setúbal regions should be set to Centro-Sul.

root

Europe

Portugal

Setubal PortoLisboa

root

Europe

Portugal

 Setúbal

Porto

Lisboa

Centro-Sul

Figure 3.2: Hierarchical Tree after new level addition

27

3.3.1.A Orchestrator-Replicas

Each replica is assigned to a region by the external Control System and maintains a partial topology

of the hierarchical structure that corresponds to the assigned region. When a topology update occurs,

these replicas are notified and updated by the Central Orchestrator. The role of these replicas is to

interact with aggregators and producers on behalf of the Central Orchestrator. Because those types of

nodes only require a partial topology, instead of establishing a connection to the Central Orchestrator,

they can connect to replicas to avoid long-latency links, and still retain the ability to receive topology

updates, and query about the topology, and IP addresses of other nodes.

3.3.2 Aggregators

aggregators are responsible for running the services that collect and process the data-sets submitted

to the system. They receive and store data from end-users, sensors, and information producer nodes

in the system. Each aggregator is assigned to at least one region, and those regions are arranged

into a hierarchical structure, where data flow up the hierarchical tree (from one aggregator to its parent

aggregator). To perform these roles, while being able to adapt to topology changes, every aggregator

is required to connect to an Orchestrator-Replica (one per region it is associated with) in order to keep

receiving topology updates.

3.3.3 Producers

The producers is generally attributed to nodes located on the edge of the network, but it can be attributed

to any other device on the network. This means other services can also partake on the system as pro-

ducers. Producers join the system by receiving the command from the Control System, indicating the

region, the aggregator and the Orchestrator-Replica that they should attach to receive updates. Produc-

ers connect to aggregators to stream the data-sets following the data model explained in Section 3.4.

3.3.4 Node Bootstrap

As said before, we assume the existence of an external Control System that is able to deploy nodes

and provide them with the necessary information to integrate the system. For Orchestrator-Replicas this

means provision of the region they are representing, their partial topology and the IP address of the

Central Orchestrator to maintain the connection to receive updates. For the aggregators, it is necessary

the associated region, topology information and which Orchestrator-Replica to connect in order to re-

ceive topology updates and obtain the parent level aggregator. Producers only require their region and

replica IP address to start functioning.

28

3.3.5 Service Discovery and Failures

When a failure occurs and a node becomes unavailable, the system needs to make sure that nodes that

were connected to the point of failure are re-inserted to the system. To achieve this we make use of the

information maintained by the replicas to find a new IP Address for a service that replaces the missing

node and restores the connection with the partitioned portion of the system. The task of detecting a node

failure is assigned as follows. The Central Orchestrator monitors its replicas and each replica monitors

the aggregators in its own region. When a failure is detected, in order to not provide IP addresses of

malfunctioning nodes, we rewrite the stored IP address information on the system (see Section 3.4.2

for further details) and remove the failed node’s register. Failures that are not directly detected by the

Central Orchestrator are relayed to it by the replicas. Then it can feed the external Control System with

up to data information regarding the system status; in turn, the control system decides which corrective

actions should be pursued (i.e.: create/remove a node, region, level, etc.)

3.4 Data Model

The Central Orchestrator and its replicas keep the hierarchical topology information in a Hierarchical

Table (Section 3.4.1) that matches regions to their sub-regions and to the parent value. The Central

Orchestrator stores the entire topology while the each Orchestrator-Replica keeps only that part of the

topology associated with its own region. Replicas also keep a Routing Table (see Section 3.4.2) that

matches regions to their aggregator IP addresses. These tables are cached on each Orchestrator-

Replica and are updated by the Central Orchestrator, that ensures that when any topology modification

occurs, the affected replicas are correctly notified and updated.

3.4.1 Hierarchical Structure

As noted before, the hierarchical topology is maintained by the Orchestrator and its replicas. Each

one of these nodes keeps an Hierarchical Table (illustrated in Table 3.1), that matches regions to their

sub-regions, and parent. The information on these tables is propagated from the Central Orchestrator

to the Orchestrator-Replicas, and subsequently from the Orchestrator-Replicas to the aggregators and

producers. Aggregators and producers can receive their topology information from the replicas as these

node only require the information for their region, parent value and sub-regions. This reduces the amount

of information that each replica needs to maintain to serve a specific region. Upon a topology update

from the Control System, the Central Orchestrator sends the updates to the corresponding replicas, and

those replicas modify their tables and relay the updates to the affected nodes that are assigned to them.

As an example, consider the topology depicted in Figure 3.2. If the Control System were to remove the

29

Centro-Sul region from the Central Orchestrator, it would trigger the Central Orchestrator to notify the

affected Orchestrator-Replicas. After updating each replica would notify their affected aggregators.

In this specific case, because Centro-Sul is a sub-region of Portugal and parent of Lisboa and

Setúbal, it would affect Portugal, Lisboa, and Setúbal regions. This means that the Central Orches-

trator would need to contact all the Orchestrator-Replicas that maintained information for those regions,

so they could change update their own tables. For Portugal region, it would change its sub-regions from

[Centro-Sul, Porto] to [Lisboa, Setúbal, Porto], and the parent value of Lisboa and Setúbal would change

from Centro-Sul to Portugal.

The query operations that are available to connected nodes provide all the information necessary to

propagate and maintain topology information throughout the system. Nodes can determine sub-regions,

parent of regions:

• Parent of region - Check parent value column of region or reverse-query sub-regions.

• Sub-regions of region - Consults sub-regions of region and returns the list of sub-regions.

Table 3.3: Example of a partial Hierarchical table for the Portugal Region

Region Sub-regions Parent
Portugal Sul, Centro, Norte Europe

Norte Porto, Braga Portugal
Sul Faro Portugal

Centro Setúbal, Lisboa Portugal

3.4.2 Routing Information

Like with hierarchical information, the Central Orchestrator and its replicas keep a registry of every node

connected that is currently serving each region. The store this information in a Routing Table (see

Table 3.4) that matches regions to the node IP addresses that serve those regions. If a node is working

and is attributed to the region, its IP address will be present in this table. While the Central Orchestrator

keeps track of all the routing information of the system, it only directly tracks the status of its replicas.

Each replica maintains the Routing Table for their own aggregators and provides that information to the

central node. Upon joining the system, each aggregator establishes a connection between itself and

their corresponding Orchestrator-Replica to have access to topology information updates. This process

creates an entry on the Orchestrator-Replica’s Routing Table entry and while the connection remains

intact the node will be kept on the table. If, for any reason, the connection is closed, the Orchestrator-

Replica removes the corresponding node from the table, making it unreachable inside the system. The

closure of the connection can come from a intentional operation or caused by a failure of the node or

network.

30

Centro-Sul SulNorte

Portugal
A

B D CE

Portugal

NorteSulCentro

Figure 3.3: Partial Topology with Portugal and its sub-regions (left) and aggregators available for each region (right)

Taking the topology and aggregator distribution depicted in Figure 3.3, and assuming a single replica

for all the represented region we would generate the following table (in this table, letters represent IP

addresses):

Table 3.4: Example of a Routing table for the Orchestrator-Replica responsible for Portugal

Region Aggregators
Portugal A

Norte B
Sul C

Centro-Sul D, E

Note: Letters represent IP addresses

3.4.3 Data Sets

As described before (see Section 3.3), data is sent to aggregators where it is stored, processed and

propagated. This data is stored under two constraints, context and region. The first one classifies the

value and what it represents (for example, temperature, CPU usage, number of nodes). And the second

one restricts the scope of the data set, which is defined by the origin of the data collection/production.

Table 3.5: Example of data set stored in an aggregator

Context Lisboa Setúbal
Temperature 22,23,24 26,27,25

Humidity 79,75,78 67,69,71

3.5 Protocols

In this section, we provide further details and descriptions of the FlexRegMon topology changes and

re-configurations protocols accompanied by their algorithms and message sequence diagrams.

31

3.5.1 Topology Re-Configurations

Because the main focus of our system is ease of topology re-configurations, we designed different

protocols to make use of the hierarchical architecture while allowing re-configurations. A topology re-

configuration requires a modification on the Central Orchestrator, which will then be propagated to the

corresponding replicas and at then relayed to the rest of the nodes.

The modification is performed by the Control System, which changes the registries on the Central

Orchestrator. Then the central node propagates the information to every affected replica. After receiving

the information, each replica alters their topology and relays the same message to the connected nodes.

Every re-configuration executes the following sequence of steps:

1. Control System changes the Central Orchestractor’s registries

2. Central Orchestrator sends the updates to the affected Orchestrator-Replicas.

3. Orchestrator-Replicas receive re-configuration and update their registries.

4. Orchestrator-Replicas send updates to connected nodes (aggregators).

By following this relay strategy, it allows us to send information as quickly and reliably as possible

by using lower latency connections that the replicas have to their aggregators, in contrast of using the

long-distance connection between aggregators and the central node. This is beneficial to our system

as the number of aggregators is much bigger than the number of Orchestrator-Replicas, which would

translate in a big overhead due to the number of long distance messages sent by the Orchestrator. With

our protocol, this problem is mitigated as the Central Orchestrator only needs to propagate the initial

notifications to the Orchestrator-Replicas and let them relay it to other nodes.

With this, our topology change notification system allows us to several operations that we can use

to add, remove regions and perform hierarchical re-configurations, with insertions in the middle of the

hierarchical tree. This will provide better adaptability of the system to the different situations that it could

encounter in different scenarios.

In our system we can have two situations when performing a re-configuration. One where we add or

remove region to the end of a hierarchical branch. This scenarios is less disruptive to the hierarchical

structure as there is no need reconnect the hierarchical structure. The other situation occurs when we

insert/remove regions in the middle of the topology tree. This operation causes the hierarchical structure

to break into two different trees which requires extra steps to merge. We differentiate the two situations,

by calling the first one adding and removing a region and the second one adding/removing a hierarchical

level. We describe both situations and used protocols in detail in the following sections.

32

3.5.1.A Steps to Add or Remove a Region

The steps to add a new region to the system’s topology are the following:

1. The Control System adds/removes a region to the Central Orchestrator, and changes the topology

values to reflect the operations to change the hierarchical tree in the desired place.

2. The Central Orchestrator sends updates to the affected Orchestrator-Replicas.

3. The Orchestrator-Replicas receive re-configuration, update their registries and relay information to

affected aggregators.

4. The aggregators adapt to re-configuration and, if necessary, relay necessary information to pro-

ducers.

The first step is further detailed in the Algorithms 1, 2 and 3, where the Control System invokes those

functions. The entire processes is described in the following algorithm descriptions and in Figures 3.4

and 3.5. The major difference between adding and removing a region, consists on the information that is

necessary to transmit to the sub-regions and their aggregators, in some cases it’s necessary to update

the parent value, in other the sub-regions values.

Algorithm 1 Central Orchestrator Code - Add region
1: function ADDREGION(parent region, new region, replicas)
2: hierarchical table.addEntry(new region)
3: hierarchical table[new region][parent] parent region
4: hierarchical table[new region][replicas].add(replicas)
5: hierarchical table[parent region][sub regions].add(new region)
6:
7: for orch replica 2 hierarchical table[parent region][replicas] do
8: send h add region parent region, new region i to orch replica
9: for sub region 2 hierarchical table[parent region][sub regions] do

10: for orch replica 2 sub region[replicas] do
11: send h add region parent region, new region i to orch replica

Algorithm 2 Orchestrator-Replicas Code - Add region
1: function ADDREGION(parent region, new region, replicas)
2: hierarchical table.addEntry(new region)
3: hierarchical table[new region][parent] parent region
4: hierarchical table[new region][replicas].add(replicas)
5: hierarchical table[parent region][sub regions].add(new region)
6:
7: if self is replica for parent region then
8: for aggregator 2 hierarchical table[parent region][aggregators] do
9: send h add region parent region, new region i to aggregator

33

Orchestrator Replica

par

[every Replica that contains
parent_region]

TOPOLOGY_UPDATE

Control System

addRegion(region)

Aggregator

TOPOLOGY_UPDATE

par

[every parent_region Aggregator]

Figure 3.4: Sequence diagram for adding a region

Algorithm 3 Central Orchestrator Code - Remove region
1: function REMOVEREGION(region)
2: parent region hierarchical table[region][parent]
3: hierarchical table[parent region][sub regions].remove(region)
4: replicas with region hierarchical table[parent region][replicas] + hierarchi-

cal table[region][replicas]
5:
6: for sub region 2 hierarchical table[region][sub regions] do
7: replicas with region.add(hierarchical table[sub region][replicas])
8: for replica 2 replicas with region do
9: send h remove region region, parent region i to replica

10:
11: hierarchical table.removeEntry(new region)

34

Algorithm 4 Orchestrator-Replicas Code - Remove region
1: function REMOVEREGION(region, parent region)
2:
3: hierarchical table[parent region][sub regions].remove(region)
4:
5: if self is replica for parent region then
6: for aggregator 2 hierarchical table[parent region][aggregators] do
7: send h remove sub region region i to aggregator
8: if self is replica for region then
9: for aggregator 2 hierarchical table[region][aggregators] do

10: send h remove region region, parent region i to aggregator
11: for sub region 2 hierarchical table[region][sub region] do
12: if self is replica for sub region then
13: for aggregator 2 hierarchical table[sub region][aggregators] do
14: send h change parent sub region, parent region i to aggregator
15:
16: hierarchical table.removeEntry(new region)

Orchestrator Replicas Aggregators

par
[every replica that has

region]

TOPOLOGY_UPDATE

TOPOLOGY_UPDATE

Producers

TOPOLOGY_UPDATE

[every affected producer]

par
[every affected
aggregator] par

Control System

removeRegion(region)

Figure 3.5: Sequence diagram for removing a region

3.5.1.B Adding or Removing Hierarchical Levels

The steps for adding/removing a hierarchical level are as follows:

1. The Control System adds/removes a region in the middle of the hierarchical tree on the Central

Orchestrator, and changes the topology values to put the region in the desired place in the hierar-

chical tree.

2. If necessary, the Control System either creates new nodes or sets new roles to existent nodes, in

35

order to serve the topology.

3. The Central Orchestrator sends the updates to affected replicas.

4. The Orchestrator-Replicas receive re-configuration, update their registries and relay information to

affected aggregators.

5. The aggregators adapt to re-configuration and relay necessary information to producers.

6. If necessary, nodes connect to new services.

The initial steps to add/remove a hierarchical level to the topology are much similar to the previous

example. The main difference comes from having to insert the new region between two existent regions

which creates the need to have different internal messages to be sent in the system to complete the

re-configuration. The protocol is further detailed in Algorithms 5, 6, 7 and illustrated in Figure 3.2.

Algorithm 5 Central Orchestrator Code - Add Hierarchical Level
1: function ADDHIERARCHICALLEVEL(parent region, new region, replicas)
2: hierarchical table.addEntry(new region)
3: hierarchical table[new region][parent] parent region
4: hierarchical table[new region][replicas].add(replicas)
5: hierarchical table[new region][sub regions] hierarchical table[parent region][sub regions]
6: hierarchical table[parent region][sub regions] [new region]
7:
8: for orch replica 2 hierarchical table[parent region][replicas] do
9: send h addHierarhicalLevel parent region, new region, replicas i to orch replica

10: for sub region 2 hierarchical table[new region][sub regions] do
11: hierarchical table[sub region][parent] new region
12: for orch replica 2 sub region[replicas] do
13: send h addHierarchicalLevel parent region, new region, replicas i to orch replica

Algorithm 6 Orchestrator-Replica Code - Add Hierarchical Level
1: function ADDHIERARCHICALLEVEL(parent region, new region, replica)
2: hierarchical table.addEntry(new region)
3: hierarchical table[new region][parent] parent region
4: hierarchical table[new region][replicas].add(replicas)
5: hierarchical table[new region][sub regions] hierarchical table[parent region][sub regions]
6: hierarchical table[parent region][sub regions] [new region]
7:
8: if self is replica for parent region then
9: for aggregator 2 hierarchical table[parent region][aggregators] do

10: send h addHierarhicalLevel parent region, new region i to aggregator
11: for sub region 2 hierarchical table[region][sub regions] do
12: hierarchical table[sub region][parent] new region
13: if self is replica for sub region then
14: for aggregator 2 hierarchical table[sub region][aggregators] do
15: send h addHierarhicalLevel parent region, new region, replica i to aggregator

36

Algorithm 7 Aggregator Code - Add New Hierarchical Level
1: function ADDHIERARCHICALLEVEL(parent region, new region, replica)
2: hierarchical table[new region][parent] parent region
3:
4: if self is aggregator for parent region then
5: hierarchical table[parent region][sub regions] [new region]
6:
7: if self is aggregator for sub region of new region then
8: parent replica replica
9: hierarchical[sub region][parent] new region

10: send h getAggregator parent region i to parent replica
11: when
12: receive h getAggregatorResponse aggregator i from parent replica
13: do
14: parent aggregator aggregator

Orchestrator Replica New Aggregator

par

[every affected Replica]

par

[every affected Aggregator]

TOPOLOGY_UPDATE

TOPOLOGY_UPDATE

Control System

AddHierarchicalLevel
(upperRegion,newRegion)

CreateAggregator(region, replicaIP)

 CREATE_REGISTRY

CONNECTION_OK

 Aggregator

Figure 3.6: Sequence Diagram for adding a new hierarchical level

To remove a hierarchical level, it is necessary to remove every region that belongs to that same level.

Only after removing the last region will the level be deleted. The communication pattern of removing

a region is similar with the protocol to add a new level. The Central Orchestrator sends the topology

changes to affected Orchestrator-Replicas and those relay the change to aggregators. When removing

a hierarchical level, we take its upper hierarchical level and its lower level and connect them. The sub-

regions change their parent value and the parent adds the sub-regions to its own. Like the previous

example, the process is depicted in Figure 3.7 and in the following algorithms:

37

Algorithm 8 Central Orchestrator Code - Remove Hierarchical Level
1: function REMOVEHIERARCHICALLEVEL(region)
2: parent level hierarchical table[region][parent]
3: rem sub regions hierarchical table[region][sub regions]
4:
5: for replicas 2 hierarchical table[parent level][replicas] do
6: send h newSubRegions parent level, rem sub regions i to replica .Notify parent replicas of

new sub regions
7:
8: for replica 2 hierarchical[region][replicas] do
9: send h removeHierarchicalLevel region i to replica .Notify replicas of region removal

10:
11: for sub region 2 sub regions do
12: hierarchical table[sub region][parent] parent level
13: for replica 2 routing table[sub region][replicas] do
14: send h removeHierarchicalLevel region i to replica .Notify sub regions of parent

change
15:
16: hierarchical table[parent region][sub regions].remove(region)
17: hierarchical table[parent region][sub regions].add(rem sub regions)
18: hierarchical table.remove(region)

Algorithm 9 Orchestrator-Replica Code - Remove Hierarchical Level
1: function REMOVEHIERARCHICALLEVEL(region)
2: parent level hierarchical table[region][parent]
3: rem sub regions hierarchical table[region][sub regions]
4: hierarchical table[parent region][sub regions].remove(region)
5: hierarchical table[parent region][sub regions].add(rem sub regions)
6:
7: if self is replica for parent level then
8: for aggregator 2 routing table[parent level][aggregators] do
9: send h removeHierarchicalLevel sub regions, region i to aggregator .Notify parent

aggregators
10: if self is replica for region then
11: for aggregator 2 routing table[region][aggregators] do
12: send h removeRole region i to aggregator .Removes role from region aggregators
13:
14: parent replicas routing table[parent level][replicas]
15: for sub region 2 rem sub regions do
16: if self is replica for region then
17: for aggregator 2 routing table[sub region][aggregators] do
18: send h changeParent sub region, region, parent level, parent replicas i to aggregator

.Removes region from sub regions aggregators and reconnects the them to the parent level
19: hierarchical table.remove(region)
20: routing table.remove(region)

38

Algorithm 10 Aggregator Code - Remove Hierarchical Level
1: var aggregator roles .List with all region that aggregator represents
2:
3: function CHANGEPARENT(sub region, parent level, replicas)
4: hierarchical table[sub region][parent] parent level
5:
6: send h getAggregator parent region i to parent replicas
7: when
8: receive h getAggregatorResponse aggregator i from parent replicas
9: do

10: parent aggregator aggregator
11:
12: function REMOVEROLE(region)
13: aggregator roles.remove(region)
14: for producer 2 routing table[region][producers] do
15: send h regionRemove region i to producer
16: routing table.remove(region)
17:
18: function REMOVEHIERARCHICALLEVEL(region, parent level, sub regions) .Necessary update to

perform aggregations of parent level
19: hierarchical table[parent level][sub regions].remove(region)
20: hierarchical table[parent level][sub regions].add(sub regions)

Orchestrator Replicas Aggregators

par
[every replica that has

region]

TOPOLOGY_UPDATE

TOPOLOGY_UPDATE

Producers

TOPOLOGY_UPDATE

[every affected producer]

par
[every affected
aggregator] par

Control System

removeRegion(region)

Figure 3.7: Sequence Diagram for propagating hierarchical level removal

3.5.2 Aggregator Removal

As described in Section 3.3.5, the mechanism to automatically remove an aggregator from the system

function with base on Routing Table. An aggregator is removed from region when its connection with

a Replica is closed. This can happen in two different situations: the first one occurs when the Control

39

System manually removes the aggregator from the system. This forces the aggregator to close its con-

nection with all connected nodes. The second situation can happen when uncontrolled circumstances

break the channel between aggregators and their assigned Orchestrator-Replicas, or between aggrega-

tors and producers. The channel can break due to network partitions, network failures, or node crashes.

Each of these situations can lead to a broken session, which results in the Orchestrator-Replica remov-

ing aggregator IP addresses from the Routing Table, meaning that the faulty aggregator will no longer

be reachable.

While the Orchestrator-Replicas can easily detect the aggregator failures, producers, depending

on the reason behind the broken connection, can receive the notification for the failure in two differ-

ent ways. The first one occurs if the connection is closed due to an aggregator crash/closure. In

this case, the connection between aggregator and producers is also severed. Producers are free to

contact their Orchestrator-Replica and acquire a new aggregator IP address and keep working. The

second happens when the problem comes from a network failure/partition between aggregator and the

Orchestrator-Replica, or the extreme of having a Orchestrator-Replica crash (this situation is detailed

in Subsection 3.5.3). In this case, from the points of view of the aggregator and producers there is no

apparent problem with those services. To verify this, the aggregator tries to contact the Central Orches-

trator to obtain a new IP for a new Orchestrator-Replica. If not successful it drops all connections with

its producers to allow them to connect to other aggregator. Detailed sequence diagrams with examples

for both aggregator removal scenarios are depicted in Figures 3.8 and 3.9

Aggregator Orchestrator
Replica Producer

getAggregator(region)

AGGREGATOR_IP

Control System

killNode()

removeAggregator(self)

par

[every connected Node]

removeAggregator(self)

connect

Other Aggregator

Figure 3.8: Sequence Diagram for aggregator removal in a controlled scenario (System Control kills aggregator)

40

Aggregator
of

region
Orchestrator

Replica Producer Other Aggregator

AGGREGATOR
FAILED

AGGREGATOR
FAILED

getAggregator(region)

AGGREGATOR_IP connect

Figure 3.9: Sequence Diagram for aggregator removal in a uncontrolled scenario (aggregator crash)

3.5.3 Orchestrator-Replica Failure

The process to remove a faulty Orchestrator-Replica from the system is similar to removing aggrega-

tor nodes. Just like with aggregators, failures can originate either from a node crash or from network

problems, like partitions and failures. In a node crash, every connection that the replica had is closed,

and every node instantly acknowledges the node failure and proceeds with the necessary protocols to

reconnect to the system. In the case of network partitions, it can generate multiple situations, as the

Orchestrator-Replica might be able to communicate with part of the network. If the network partition

occurs between the Orchestrator-Replica and the Central Orchestrator, the Orchestrator-Replica breaks

the connection with every node, in order to release them.

A more complex problems arises from network partitions between a Orchestrator-Replica and its

aggregators. As a replica can serve multiple regions, the network partition might only affect just one

region and not the other. To deal with this, when a Orchestrator-Replica notices multiple simultaneous

aggregators disconnections it will notify the Central Orchestrator, which will trigger the Control System

to assess if there is a network partition and if there is, re-adapt the system to mitigate the efects of the

failure (create a new node, reallocate roles, etc.). Both network partition situations are depicted in the

following sequence diagrams (Figures 3.10 and 3.11).

41

Orchestrator AggregatorReplica of region Other replica of
region

getReplica(region)

REPLICA_IP

REPLICA_DOWN

connect(region)

REPLICA_DOWN

Figure 3.10: Example of procedure for Replica crash or network partition between Orchestrator-Replica and Or-
chestrator

Orchestrator AggregatorReplica of region

REPLICA
DOWN

Network Partition
between Replica and
Aggregator

getReplica(region)

REPLICA_IP

POSSIBLE FAILURE

Control System

POSSIBLE
FAILURE

Re-configuration

Figure 3.11: Network partition between Replica and aggregators

42

Summary

In this chapter, it was presented the design of FLEXREGMON, it’s components and how they interact

with each other. FLEXREGMON presents a distributed management model that is able to provide faster

topology updates at the edge and reduce management operations overhead. We also describe all the

protocols and algorithms that allow to manipulate the topology and how it propagates across the system.

In the next chapter we present the specific implementation of FLEXREGMON and technologies used.

43

4
Implementation

Contents
4.1 Zookeeper . 45

4.2 FLEXREGMON Internal Zookeeper Structure . 46

4.3 FLEXREGMON Discovery Service . 47

4.4 Notification System . 48

4.5 Orchestrator . 49

4.6 Aggregators . 50

4.7 Deployment . 50

44

This chapter describes the implementation of FLEXREGMON. All components have been imple-

mented in Java (1.8). The Orchestrator and its replicas make extensive use of a Zookeeper to store their

information and use as a session manager. Each instance is linked to a Zookeeper cluster, where they

are able to store, and maintain information about the hierarchical topology and status of the connections

between nodes.

To create a realistic wide-spread network and to be able to tweak delays on demand we used Kol-

laps [26] a Decentralized Container-Based Network Emulator. It allows us to run experiments in a single

cluster while simulating a wide-spread network where we can tweak several characteristics of the net-

work to test different scenarios.

The Central Orchestrator maintains all the hierarchical and routing information on its Zookeeper

cluster. This allows us to use the central not only as a point of communication for updates but also as a

backup for the distributed replicas. If any problem arises, and there is a need to repopulate information

to a replica, the Central Orchestrator is able to provide that information.

The Central Orchestrator and its replicas are also able to act as a discovery service for other nodes

of the system (see section 3.3.5).

4.1 Zookeeper

Zookeeper [27] is a service for coordinating processes of distributed application. It incorporates el-

ements from group messaging, shared registers and distributed lock services in locks in a replicated,

centralized service. Its interface enables a high-performance service implementation with wait-free prop-

erty, per client guarantee of FIFO execution of requests and linearizability for all the requests that change

the Zookeeper state.

Zookeeper excels in heavy read scenarios. It can handle tens to hundreds of thousands of transac-

tions per second which allows it to be used extensively by client application.

Zookeeper has two types of entities: (i) Zookeeper Service, which is an ensemble of replicated

Servers (where one of them is the Leader). These servers are allowed to perform read operations, and

only the Leader is allowed to perform write operations; (ii) Clients, which can read data from any server

instance or propose a write operation. When connected clients create a session that is open as long as

the clients are connected to ZooKeeper.

Zookeeper provides a namespace which is much like a standard file system. In Zookeeper’s names-

pace, a name is a sequence of path elements separated by a slash. Every namespace is identified by

a path. Each node in a namespace can have data associated with it as well as children nodes. Data

nodes are identified with the term znode. Zookeeper also has the concept of ephemeral znodes. These

znodes cannot have children nodes and exist as long as the client session that created the znode is

45

/flex

Portugal

parent
Europe

sub-regions replicas aggregators

Europe

parent
root

sub-regions replicas aggregators

Spain

parent
Europe

sub-regions replicas aggregators

Portugal Spain

Figure 4.1: Example of FLEXREGMON Zookeeper Server Hierarchical Structure

active. When the sessions end the znode is deleted.

Zookeeper characteristics allow us to have a redundant service that allows us to use as a configura-

tion management for the whole system.

4.1.1 Zookeeper Notification System

In order for client to be aware of changes, Zookeeper implements a watcher mechanism where clients

subscribe to changes to a specific znode. When an event that was subscribed occurs, the Zookeeper

Service sends a notification to the subscribers and then those can pull the server to obtain the new

data. After a watch has been triggered it needs to be set again by the client (this is generally done when

requesting the changed data). The process of having to request the data from the server proved to be a

problem during our implementation, as we are designing the system to work on the edge (further details

in Section 4.4).

4.2 FLEXREGMON Internal Zookeeper Structure

As said before, we associate each orchestrator instance to a zookeeper server. We use the zookeeper

to maintain the topological information and connection status with clients for the specific replica.

We take advantage of the Zookeeper Hierarchical Space [27] to store our own hierarchical and

routing information. As depicted in Figure 4.1, at the root level of the Zookeeper space we create a

branch /flex, where every child znode of that branch represents a region (e.g. /flex/Portugal). In each

one of those child znodes, we create another four different znodes: (i) /flex/*/parent, where we keep

the value of the parent region; (ii) /flex/*/sub regions, where, for each subregion we create a znode

with the name of each one of those regions (e.g. flex/Portugal/sub regions/lisbon); and at last (iii)

and (iv) which have similar behavior (which is detailed in the following section) are /flex/*/replicas and

/flex/*/aggregators.

46

4.3 FLEXREGMON Discovery Service

As described in section 4.1, Zookeeper has the ability to create ephemeral nodes. These znodes remain

in the system as long as the client that created those znodes remains connected to the server and

renews the lease on the znode (mimicking the behavior of a session). When the session ends the znode

is deleted. A limit imposed on the creation of these types of nodes is that they are not allowed to have

children znodes.

Due to way these nodes work, one of the documented uses to them is the role of service discovery.

If a certain service creates an ephemeral znode with their location (IP address and port) and keeps

renewing the lease on that same node, we will be able to find the service on the Zookeeper registries.

In this way, we can always have an updated and on-demand list of the current location of machines that

are running a said service.

We make use Zookeeper’s natural hierarchical structure and ephemeral znodes as the foundation for

the implementation for our ow discovery service and Routing Table (section 3.4).

We construct the routing table by using the zookeeper hierarchical znodes. As described in the

previous section, regions are represented by permanent znodes (with the region name). Within those

znodes we create multiple branches that we can use to store the necessary information to maintain the

routing table (as can be seen by the aggregators and replicas branches in Figure 4.1).

These branches are populated by ephemeral znodes, created by the nodes that are running the cor-

responding service (either as replicas or aggregators). When the connection with the node that created

the ephemeral znode is closed, the ephemeral znode is removed and the node becomes unreachable

when searching for that service.

The replicas branches are populated when an Orchestrator-Replica connects to the central Orches-

trator and they create the ephemeral znode with their location on the corresponding region. The ag-

gregators branch is populated in a different way, depending if we are talking about a replica or the

Central Orchestrator. If populating a replica, aggregators nodes connect to those replicas and create

the ephemeral znodes to initiate their session. Then the replicas duplicate those znodes to the Central

Orchestrator.

As a practical example, take it that we want to store the IP address (let’s say 195.63.23.1) for a replica

for the Lisbon region. We would store it as a child znode of /flex/lisbon/replicas and use the location of

that znode as the entry, resulting in the following znode /flex/lisbon/replica/195.63.23.1. This example is

depicted in Figure 4.2.

Whenever a node requires to know the location of a service, it simply needs to do a simple query for

the children of those znodes (aggregators and replicas).

This said and following the same example, if any client wishes to know the location of a replica for the

Lisbon region, they just have to request to list the children of /flex/lisbon/replicas which would translate

47

/flex

Lisbon

parent
Portugal

sub-regions replicas

193.165.5.45

192.58.368.4

aggregators

191.54.356.7

Figure 4.2: Zookeeper Structure example to store Routing Table information

to the return value of [193.165.5.45, 192.58.365.4].

4.4 Notification System

As described in our design chapter (Chapter 3.2), after a topology modification is performed it is neces-

sary to propagate the changes throughout the system. This is important to enable the features that we

want our system to have in respect to adaptability to multiple topologies.

We started by using the Watcher mechanism already implemented by Zookeeper 4.1.1. This proved

to be a problem when sending topology change notifications through long-distance channels that had a

higher level of latency. Zookeeper’s watch mechanism works by having clients subscribe to changes in

a certain node, and notifying subscribers of said data changes and let the client control the operation

to perform after notification. This means that to update a single node of a topology change in a region

it is required to: (i) report the event to the subscriber (in this case report data change of x znode); (ii)

the subscriber node will receive the event and decide what to do (in this case request the new data);

(iii) send the data from the origin to the subscriber node. In a communication channel where latency is

involved, this extra number of messages that is necessary to update the topology results in an excessive

amount of overhead due to the time it takes for each message to be transmitted in a long distance chan-

nel. We solved this problem by implementing a custom protocol that sends all the necessary information

to perform the necessary modification in one single message. When a modification is performed, the

Central Orchestrator or replica look at the modified area of the Zookeeper, and send the a single mes-

sage to the affected nodes with the necessary changes. This allow us to evade the two phase update

(notification plus data pull) that is necessary when using the Zookeeper’s native watcher mechanism.

This new custom protocol reflects the algorithms and sequence diagrams depicted on section 3.5.

48

This notification system is also used to report node failures. It works in a similar way to the notification

of topology changes. When a connection between a node and its orchestrator breaks, the ephemeral

znode that represents the node session is removed. This triggers the notification to the affected nodes

(in a single message like a topology change) and perform the necessary operations.

4.5 Orchestrator

The Orchestrator works as the central registry for the hierarchical structure. Each instance is associ-

ated with a Zookeeper Cluster, where they store all the necessary data to keep the topology and other

necessary information (following the scheme we described in the previous section).

With the central Orchestrator initiated, the distributed replicas can connect to the Central Node, get

hierarchical information, and create a ephemeral znode with the replica IP to receive updated (under

the /replicas branch e.g. /Portugal/replicas/IP ADDRESS). Just like it explained in sub-sections 3.3.5

and 4.4, these ephemeral znodes allow us to monitor existing services, as the corresponding znodes

are removed when the connection are closed. If a connection is closed in a controlled way, either by the

orchestrator or by the node itself, the orchestratror deletes the ephemeral znode immediately, effectively

removing it from the hierarchical and routing table. In the case of the session being terminated in

an uncontrolled way, like network partition or node crash, the Zookeeper instance has a timeout for

every session. When a service fails to renew the lease for the ephemeral znode, the Zookeeper server

automatically removes the related znode.

4.5.1 Orchestrator-Replicas

In order for individuals Orchestrator-Replicas to take the role of localized topology information maintain-

ers and serve aggregators, we associate each replica to the Central Orchestrator.

Each replica requests the necessary information for its region to the Central-Orchestrator and pop-

ulates its registries. In order to receive topology updates, the replicas also create an ephemeral znode

in the central node with their IP for each region they represent. This node is created under the branch:

/flex/*region*/replica. This allows the central node to known which replicas to update when any of these

any modification occurs.

After configuration, aggregators connect to replicas in a similar way that Orchestrator-Replicas con-

nect to the central node. They create an ephemeral znode, under /flex/*region*/aggregator, which allows

to receive topology information, routing information and updates.

49

4.6 Aggregators

Aggregators nodes implementation can be divided into two parts: the first part consists of a client

that connects to the Orchestrator-Replicas. This connection is what enables aggregators to register

themselves for a specific region and create their sessions in replicas. The process is similar to a replica

registration on the Central Orchestrator, aggregators connect to a replica and add an ephemeral znode

to the region’s aggregators branch (e.g. flex/*region*/aggregators/*AggregatorIpAddress*).

The second part consists on the metric server. As stated in our design chapter (Chapter 3), we

use a push approach to submit data-sets to the system. The initiative to submit data comes from the

data producer. Aggregator nodes open a server on a well-known port (the default being 1099), where

producers or other aggregators can connect to submit data sets.

To submit data to the metric server nodes are required to tag the data-sets with an identifier that

contextualizes the data and allows the metric server to sort it. Aggregators store the data sets along with

their tags and origin region. Periodically, they perform a set of predefined operations that summarize

the values with a specific tag for a region into a single data value. After summarizing the data sets,

aggregators can relay the new value to the up in the hierarchical tree to another aggregator. These

processes repeats until the data reaches the root of the hierarchical tree.

As a practical example, suppose that the system is monitoring the temperature of Lisbon using thou-

sands of registered sensors. Each sensor will periodically send the measurements along with the tag

”temperature”, generating the data-set pair: (temperature, temperatureValue). Eventually, the aggre-

gator will summarize all existing temperature sets into an average value (temperature, avgTempera-

tureValue) and send it to the Portugal’s aggregator.

4.7 Deployment

In respect to the deployment of the system we took extra care with two aspects. The first one is that

to be able to run a monitoring system on top of an Edge architecture is highly recommended the ability

to deploy software in a heterogeneous environment with different types of machines and architectures

and the software should be able to run on different these architecture with various levels of resources

availability without high levels of configuration and compatibility problems. And the second problem is

that evaluating a large-scale distributed system is a hard, slow, and expensive task. This comes from

the large number of components that are involved: system dependencies, libraries, environment het-

erogeneity, network variability, and difficulty in controlling the network and its conditions to test specific

cases.

We solved the first problem by making use of Docker [28], a containerization technology that allows

us to run our software in multiple types of environment, as long as they are able to run the docker engine

50

and support virtualization technology. The second problem is solved by deploying FLEXREGMON on

top of Kollaps [26], a decentralized container based network emulator. This emulator allows us to have

full control over deployment environment. Both approaches will be described in detail in the following

subsections.

4.7.1 Docker

Docker [28] is a technology for app containerization. A container, similar to a lightweight virtual machine

(VM), works as a standard unit of software that packages up the code and all its dependencies so

that the application can run consistently on different computing environments, making the application

portable. It attains those properties by isolating the software from its environment and dependencies.

Containers and VM share similarities to VMs as both are virtualization tools. While VMs, make use

of a hypervisor that creates slices of hardware to serve each one. Containers, make available protected

portions of the operating system. This results on two containers running on the same operating system

now knowing that they are sharing resources because each one has its own abstracted networking layer,

processes and other aspects of the OS [28]. Although containers share these OS kernel resources, each

process still runs isolated in their own user space and can be launched independently from each other.

Other aspect that limits hypervisor-based virtualization is that it provides access to hardware only,

which means you still need to install an operating system for each VM that you want to run. This quickly

gobbles resources servers, such as RAM to run the multiple OS, CPU and bandwidth. On the other side

of the spectrum, containers rely on the already running OS as their host environment. As said before,

containers merely execute in spaces that are isolated from each other, and from the host OS. The gains

from this strategy are: resource usage efficiency, if a container is not executing anything, it is not using

up resources, and containers can call upon their host OS to satisfy some of their dependencies; and

container are cheap and fast to create and destroy, as there is no need to boot and shut down a whole

OS. A container just has to terminate the processes running in its isolated space. This means that

starting and stopping a container is more akin to starting and quitting an application, and equally as fast.

These characteristics give us benefits that match the requirements to running a system in the Edge

(as seen in 2.6.1), like being platform agnostic, the ease of deployment (only requirements is running

docker-engine) and the fact this technology is much lighter to run in terms of resources usage. For these

reasons, we decided to compile our code into a docker image that allow us to instantiate our system.

Our docker implementation consists on a simple single Docker file (see Figure 4.3) setup to run Java

application. We load FLEXREGMON code to the image along with its dependencies (packaged with the

.jar to facilitate). These dockers can spawn any type of FLEXREGMON node by providing different inputs

to the containers on boot.

51

FROM java:8-jdk-alpine

MAINTAINER Tiago Goncalves tiago.miguel.c.g@tecnico.ulisboa.pt

COPY Aggregator-1.0.jar Control-1.0.jar Replica-1.0.jar

Orchestrator-1.0.jar Producer-1.0.jar /

Figure 4.3: Docker file declaration

4.7.2 Kollaps

As said before, evaluating a large-scale distributed system is hard, slow, and expensive. This comes

from the large number of components that are involved: system dependencies and libraries; heterogene-

ity of the target environment, network variability and dynamics, wanting to control those same attributes

in an easy way. We deployed FLEXREGMON on top of Kollaps. Kollaps is a decentralized container

based network emulator for large-scale applications. Kollaps effectively allows us to dynamically change

link-level emulation properties like, bandwidth, delay, packet loss, and even the layout of the topology.

Kollaps takes the inputted topology and collapses it into a configuration file that setups end-to-end

connections between nodes. This allows Kollaps to scale really well with the number of nodes. The

program consists on multiple modules, that convert a topology design into a deployment configuration

and feed it into Docker Swarm (a docker cluster), which then launches all the necessary to dockers to

run the experiment. Further detail about Kollaps can be seen in detail in [26]. Looking at the tests

results in Kollaps’ paper [26], emulated experiments have very similar results when compared to the

corresponding real life situation. This aspect and the overall the Kollaps design and features makes it

a very good tool to test our Edge application in multiple simulated environments where we have fine

control over the network conditions.

We define the deployment by using Thunderstorm [29], a high-level language to define the deploy-

ment of test environments. We define services, networks bridge nodes and point-to-point links between

the nodes, where we can define bandwidth, latency. We can also define dynamic behavior during the

experiment. To do this we define, in the topology file, actions (e.g.: join and leave) attached to times-

tamps.

The topology file consists of a xml file, where we define the existing services (nodes), network topol-

ogy, with along with the dynamic component of the experiment (entrance and exit of nodes). Following

the example on Listing 4.1, we have a small topology with five FLEXREGMON nodes (dashboard and

puppetmaster exist for debug purposes).

The file is divided into three parts: the node definition, the network definition and dynamic behavior.

To declare nodes we use the services tag, where we define the associated name, and docker images

(section 4.7.1) that will launch with the node. Relatively to network we can define bridges that create a

52

network entity that acts as a network switch. And we can also configure each link individually in respect

to latency, download and upload speeds. The dynamic behavior is defined in the dynamic tag and by

using the action parameter to define behavior (e.g. join, crash, leave)

Listing 4.1: Example of FLEXREGMON Kollaps topology file.

1 <?xml version=”1.0” encoding=”UTF-8” ?>

2 <experiment boot=”kollaps:1.0”>

3 <services>

4 <service name=”dashboard” image=”kollaps/dashboard:1.0” supervisor=”true” port=”8088”/>

5 <service name=”orchestrator” .../>

6 <service name=”lk portugal0” .../>

7 <service name=”lk portugal1” .../>

8 <service name=”nodeAggregator0” .../>

9 <service name=”nodeAggregator1” .../>

10 <service name=”puppetmaster” .../>

11 </services>

12

13 <bridges>

14 <bridge name=”delayed”/>

15 <bridge name=”portugal”/>

16 </bridges>

17

18 <links>

19 <link origin=”portugal” dest=”puppetmaster” latency=”0” download=”100Mbps” upload=”100Mbps”

network=”\systemname network”/>

20 <link origin=”orchestrator” dest=”portugal” latency=”0” upload=”100Mbps” download=”100Mbps”

network=”\systemname network”/>

21

22 <link origin=”delayed” dest=”portugal” latency=”200” upload=”100Mbps” download=”1000Mbps”

network=”\systemname network”/>

23 <link origin=”delayed” dest=”puppetmaster” latency=”0” download=”100Mbps” upload=”100Mbps”

network=”\systemname network”/>

24

25 <link origin=”nodeAggregator0” dest=”delayed” latency=”0” upload=”100Mbps”

download=”1000Mbps” network=”\systemname network”/>

26 <link origin=”nodeAggregator1” dest=”delayed” latency=”0” upload=”100Mbps”

download=”1000Mbps” network=”\systemname network”/>

53

27

28 <link origin=”lk portugal0” dest=”portugal” latency=”0” upload=”100Mbps” download=”100Mbps”

network=”\systemname network”/>

29 <link origin=”lk portugal1” dest=”portugal” latency=”0” upload=”100Mbps” download=”100Mbps”

network=”\systemname network”/>

30 </links>

31

32 <dynamic>

33 <schedule name=”orchestrator” time=”0.0” action=”join” />

34 <schedule name=”lk portugal0” time=”10.0” action=”join” />

35 <schedule name=”lk portugal1” time=”10.0” action=”join” />

36 <schedule name=”nodeAggregator0” time=”20.0” action=”join” />

37 <schedule name=”nodeAggregator1” time=”20.0” action=”join” />

38 </dynamic>

39 </experiment>

Summary

In this chapter, it was presented the implementation of FLEXREGMON. We described the systems and

technologies that we used to implement each of the FLEXREGMON components. We also detailed the

deployment and how we solved the ability to deploy the system in heterogeneous and how we simulated

real edge scenarios. The next chapter addresses the evaluation of the implementation and if it brings in

comparison to a static topology solution.

54

5
Evaluation

Contents
5.1 Evaluation Goals . 56

5.2 Experimental Setup . 56

5.3 FLEXREGMON vs. Zookeeper - Propagating Modifications on the Edge 57

5.4 Notification System . 61

5.5 FLEXREGMON Overhead . 64

5.6 Benefits of the Flexible Topology . 64

5.7 Discussion . 67

55

This chapter evaluates FLEXREGMON. It starts by describing the goals of evaluation on Section 5.1;

Followed by a description of the experimental setup on Section 5.2 with all the scenarios and results

on Section 5.3, 5.4, 5.5, and 5.6 ; Lastly the chapter finishes with a brief discussion about the collected

results on Section 5.7.

5.1 Evaluation Goals

In the evaluation, we want to address the following problems:

1. How does FLEXREGMON distributed topology management compare to the centralized solution of

Zookeeper [27] in edge scenarios?

2. Does the FLEXREGMON distributed management help with operations inside regions?

3. Can FLEXREGMON provide advantages to systems that unexpected loads on specific region with

its characteristic of topology flexibility?

For this purpose it was run a performance evaluation of FLEXREGMON against a centralized Zookeeper

5.2 Experimental Setup

All experiments were run on cluster composed by two machines: the first one with a 2.20GHz Intel Xeon

Silver 4114 CPU and 128GB of RAM. And the second with a 2.00GHz Intel Xeon Gold 6138 CPU and

64GB of RAM, with all CPU cores locked at running at 50% max load. We used Kollaps [26] to create

the virtual networks necessary for the experiments and to launch the nodes instances. The experiment

was then deployed on top of a Docker Swarm cluster and inside the virtual network.

Each FLEXREGMON nodes run a custom docker image (described in 4.7.1) that contains our system

implementation running on top of Alpine Linux 3.4.6, and Java 1.8.0 111.

Depending on the experiment, we used different topology definitions to match the desired network

structure, with different point-to-point network configurations in order to simulate different network struc-

tures.

To measure latency and manage all nodes, we also created an extra overseer node, called Puppet-

master. This node is external to the Kollaps network and is able to communicate with close to 0 ms

delay with every other node on the network (which allows us to take the measurements).

To setup the evaluation environments, we have considered the reference Edge/Fog architecture

shown in Chapter 2. We envision an architecture where the system can have resources instanced

in different geographical regions, that are connected by long distance channels. These connections are

simulated by adding higher latency between areas of the network.

56

5.3 FLEXREGMON vs. Zookeeper - Propagating Modifications on

the Edge

In this section, we try to answer the first question and compare, on an Edge environment, our solution to

distribute the management of region to orchestrator replicas and compare it to the centralized solution of

a Zookeeper cluster. Upon a topology modification, FLEXREGMON relies on the central orchestrator to

send the update to a replica that serves the region, and the replica will send the update to the remainder

of the nodes. In the case of Zookeeper, the central server is responsible for sending the updates to

every node on the system.

We expect that, in scenarios where the central node is in distant geographical areas, as those that

can be found in an Edge environment and where the connections have higher latency between nodes,

the Zookeeper solution will obtain worse results than FLEXREGMON.

We created the network scenarios, depicted in Figures 5.1(a) and 5.1(b), with two geographical ar-

eas, split by a Kollaps relay with 1000Mbps of bandwidth and 200ms of latency between them. FLEXREG-

MON deployment keeps the central orchestrator in one of the geographical areas, and all the other nodes

required to run the experiment in the second area. Zookeeper keeps the central server on one of the

areas and the remainder nodes on the other.

We then measured the time it takes for a modification on the data aggregation topology of a single

region to propagate to every affected aggregator. With this, in Figure 5.1(c) we have the x axis where

we vary the number of aggregators present in the region and in the y axis the time it takes for all the

aggregators to acknowledge the new topology.

We can observe up to 3.1⇥ lower latency times to update all aggregators in FLEXREGMON when

compared to Zookeeper. FLEXREGMON makes use of the geographical proximity of the replicas to

leverage lower latency connections, contrasting the Zookeeper solution of updating each aggregator.

Another aspect that might affect these results is the use Zookeeper notification mechanism. The

Zookeeper native Watcher solution (see Section 4.1.1) in this specific scenario is not optimal. It requires

to send n number of notification messages (n being the number of nodes that were affected by the

update), plus n data request messages, and n more data answer messages through a channel with a

delay of 200ms. FLEXREGMON design is streamlined to send a single a message with the necessary

information to each node. In this case, FLEXREGMON sends a single message to the orchestrator

replica, and then that replica relays the message to all the other nodes with a much lower latency. Both

these characteristics, the distributed management (Orchestrator-Replicas) and the notification system,

allow FLEXREGMON to reduce the time to update the topology by an average of 2.8⇥ in comparison to

the classic Zookeeper system in an Edge scenario.

We analyze in a following section the impact that the notification mechanisms has in the performance

57

Central

Orchestrator
Replica

Aggregator

Kollaps Network

Relay

200 ms

1000 Mbps

Aggregator

Aggregator

...

(a) Topology for FLEXREGMON with scaling number of aggregators

Zookeeper
Server

Aggregator

Kollaps Network
Relay

200 ms
1000 Mbps

Aggregator

Aggregator

...

(b) Topology for Zookeeper with scaling number of aggregators

(c) Time to add new hierarchical level varying number of aggregators

Figure 5.1: FLEXREGMON vs Zookeeper: propagating topology changes on the Edge

58

of the system.

5.3.1 Adding and Removing Aggregators

Because FLEXREGMON attributes the management of regions to orchestrator replicas instead of man-

aging it at the central node. Aggregators and data producers only are required to talk with the replicas to

interact with the system. This allows to have lower latency operations, like joining and exiting the system

or receive topology updates. It would also be interesting to have a distributed control engine that could

give regions the ability to self-regulate, scale as necessary, and even perform topology modifications

inside their own scope (e.g. add a hierarchical level to create one more aggregation point).

With this we want to measure the effectiveness of our solution to decrease the latency of these

types of operations in edge scenarios, where the central node has a high latency connection to the

nodes located in the edge. We deploy both FLEXREGMON and Zookeeper in the topology depicted in

Figure 5.2(a), where we again have two different geographical areas with a Kollaps relay in the middle

where we vary the latency. For FLEXREGMON we keep the Central Orchestrator in one of the areas and

on the other we have a single Orchestrator-Replica that is responsible for the unique region that exists in

the system. For the Zookeeper solution we keep the server in one of the areas and the remainder nodes

on the other. Then we deploy an aggregator that will register on the system and we measure the time

it takes for it to integrate the system. We expect FLEXREGMON to have better results. Orchestrator-

Replicas reduce drastically the latency from the new node to a management node which leads to an

increase of the performance of the system, and reduction of the overhead that would occur by using a

centralized management system in an environment with high latency connection such as those found in

the edge. In Figure 5.2, it is shown the average time to add an aggregator after instantiating it. In the

x axis we have the latency between the geographical areas that we vary from 10ms to 400ms, and in

the y axis we have the time it takes for the aggregator to be available to producers. By analyzing the

results we can see that the FLEXREGMON maintains a constant value as the system uses the localized

replicas to manage the regions, which results in an average of 10ms to fully execute the operation and

for the aggregator to be available. The Zookeeper performance keeps deteriorating with the increase of

the latency between the geographical areas. The distribution of the regions’ management makes these

types of operations independent from the quality of the connection to the central node. The results show

that the FLEXREGMON architecture helps in dealing with local management operations as the necessary

nodes are closer, reducing the impact of high latency connections. It also reinforces the idea of possible

benefits that having a distributed control mechanism that enable more decision powers in each replica

over their region could be beneficial to the system, making the replicas even more independent from the

central node.

59

Central

Orchestrator
Replica

Kollaps Network

Relay

50-400ms

1000 Mbps

New

Aggregator

(a) Topology for FLEXREGMON to measure time top add aggregator

Zookeeper
Server

Kollaps Network
Relay

50-400ms
1000 Mbps

New
Aggregator

(b) Topology for Zookeeper to measure time to add aggregator

(c) Time to add aggregator depending on the latency (ms)

Figure 5.2: Adding and removing aggregators

60

Central Orchestrator/

Zookeeper

Server

Node

Kollaps Network

Relay

200 ms

1000 Mbps

Node

Node

...

(a) Topology for FLEXREGMON to measure notification system performance

(b) Time to propagate update to all nodes while varying the number of nodes

Figure 5.3: Notification System: performance while varying number of nodes

5.4 Notification System

Both FLEXREGMON and the centralized Zookeeper solution rely on a notification system to propagate

topology changes. This is a necessary step to update the topology on all necessary nodes, and needs

to take into account the condition of the connections between nodes to not hinder the update process.

Zookeeper uses the Watcher [27] mechanism. Each node subscribes to changes to a specific znode and

are later notified of said changes, having to request the changed data and resubscribe to keep receiving

updates. FLEXREGMON uses its own routing table to send the updates automatically upon a modifi-

cation. In a constrained network with higher latency, as those found between two distant geographical

zones, FLEXREGMON saves a lot of overhead due to sending a single message. Figure 5.4 shows the

results of our experiments to evaluate both notification systems. To evaluate the performance bene-

61

(a) Time to propagate update to all nodes while varying latency

Figure 5.4: Notification System: performance while varying the latency

fits of our notification solution, we integrated the Zookeeper notification mechanism into FLEXREGMON

and performed two experiments, one measuring the time for both notification mechanisms to update

the system while varying the number of Orchestrator-Replicas and maintaining the latency between re-

gions. For the second experiment we took the same measurements but varied the latency between the

geographical areas with a fixed number of replicas. The topology for the experiments can be seen on

Figure 5.1(b), where we keep the Central-Orchestrator in one of the geographical areas and all the other

replicas in the other. To alter the latency between runs we change the latency on the Kollaps relay.

In the Figure 5.3(b), the x axis varies the number of replicas that need to be updated and the y axis

shows the time it takes for all nodes to acknowledge the new topology. We kept the latency between the

two geographical regions at 200ms and vary the number of replicas that required to be updates from 1 to

50. As expected, we can see that both FLEXREGMON and Zookeeper maintain performance when vary-

ing the number of replicas that required concurrent updates, with both systems keeping stable results

throughout the experiment. This provides assurance that both notification mechanisms are adequate to

send concurrent updates to multiple nodes, with no detriment in the performance when increasing the

number of notifications.

In Figure 5.4(a), for the x axis we vary the latency between two geographical areas and again in the

y axis we have the time in ms for all replicas to receive the update. Here we fixed the number of replicas

to 25 and varied the latency between geographical regions, going from 10ms to the 400ms. Looking

at the results, it is possible to see that both FLEXREGMON and Zookeeper notification systems perfor-

mance get worse results as we increase the latency between the geographical areas, with Zookeeper

having a bigger deterioration on performance. This happens because Zookeeper solution requires more

62

Central Orchestrator/

Zookeeper

Server

Node

Kollaps Network

Relay

0 ms

1000 Mbps

Node

Node

...

(a) Centralized Topology

(b) Time to update topology on all nodes

Figure 5.5: FLEXREGMON vs Zookeeper in centralized environment

messages to perform the data update on the remote nodes, meaning that as we increase the connec-

tion latency between geographical regions, the more it will affect the update process. This translates to

FLEXREGMON having up to 2.7⇥ better results than the Zookeeper in similar conditions.

The larger performance degradation that occurs in Zookeeper comes from the fact that when using

the Watcher mechanism, nodes subscribe to be notified of changes for a specific znode (which repre-

sents a region). When a modification is performed all the subscribers receive a notification. Then the

node need to request that data and resubscribe, which leads to a total of three messages (notification,

data read, and read answer) to perform a single update. In an environment where network delay is

existent, it leads to a bigger overhead in the communication between the nodes.

63

5.5 FLEXREGMON Overhead

FLEXREGMON introduces some processing steps to each update, where it is necessary to consult the

routing table to assert which nodes need to be updated. Due to the way that FLEXREGMON propagates

the updates, it might be necessary to have multiple phases of this process. For example, when making

a topology modification that affects aggregators. First the central orchestrator sends the update to

the replicas, and only then after processing the update and looking at their routing tables the replicas

send the updates to the aggregators. In the case of using the centralized Zookeeper, the server will

deliver directly the update directly to each node. By deploying both systems in a centralized scenario

we can measure how having to re-process the updates on FLEXREGMON might affect the system. The

connection between nodes is no longer a problem and both systems can function just based on execution

time.

We create a simple topology, as depicted in Figure 5.5(a), with a single geographical area where we

allocate every necessary node to run the experiment. Every connection between nodes has no latency

added. By varying the number of nodes that need to be updated we can show how it affects each

update strategy and if the processing required by our solution affects the performance at all. We expect

FLEXREGMON extra steps to have a small impact (or even none) and to achieve similar results to the

Zookeeper.

In Figure 5.5(b), we have the x axis where we vary the number of nodes that are updated and in

the y the time it takes for every node to acknowledge the update. By looking at the results we can see

that the performance is relatively the same between both solutions. They both keep a steady time to

update all nodes and no solution is better than the other in this centralized scenarios in terms of update

latency. This shows that even with FLEXREGMON added complexity caused by having a distributed

region management, it does not cause an excessive overhead over updates in a centralized environment

while providing benefits in edge scenarios.

5.6 Benefits of the Flexible Topology

Due to the nature of the edge, it is expected to have constant changes in the load of nodes and regions.

With clients having the capability of being mobile, the possibility of big migrations might lead to the

degradation of performance in a specific region. To combat this we can re-arrange the topology of the

system in order to distribute load and use of data aggregation to reduce the saturation of connections on

the system. In the previous sections it was shown that FLEXREGMON is able to apply topology updates

in a effective way, even in edge scenarios. Now we wish to prove that the impact of performing those

updates does not overbear the benefits of the re-configuration the data aggregation tree.

To measure this we want to run an experiment that compares the performance between a static

64

(a)

(b)

Figure 5.6: Benefits of flexible topology: Dynamic vs Static

65

topology vs a dynamic approach where we re-configure the regions topology to adapt to the load. In

this experiment both solutions start with two geographical areas separated by a Kollaps relay with no

added latency but with variable throughput (from 5Mbps to 1000Mbps). All the other connections have

no latency and work with a throughput of 1000Mbps. The regions divide into two hierarchical levels.

With every level being able of resuming the data to a quarter of what it receives. During the experiment

we connect a fixed number of clients to the system that generate a total 25GB of data-sets and submit

them to the system. The system will progressively send the generated data up the hierarchical tree

through the aggregators until it reaches the root of the hierarchical tree. For this experiment we set each

aggregator to be capable of resuming the received data to a quarter.

We deploy two versions of FLEXREGMON: the first one maintains the topology static and does not

create or remove regions or hierarchical levels. The second version applies a topology modification

that adds extra two hierarchical levels to increase the number of times that data aggregation that is

performed.

In Figure 5.6(a), the x axis varies the throughput of the connections between the geographical areas,

and the y axis shows the time it takes for the inserted data (or a resume of it that represents it) to

reach the central node. By looking at the results we can see that when we have connections with low

throughput and saturate them re-configuring the topology is clearly beneficial to the performance of the

system, with much lower times than the static topology due to the reduction of the transmitted data that

comes from having the two extra hierarchical levels.

For situations with higher throughput, we need to take into account the objective of a re-configuration.

Depending on the objective it might still be effective (e.g. reduce the amount of data transmitted) even

in situations of high throughput where we worse results if we perform the re-configurations.

Because the re-configuration has a time cost and introduces extra steps between the central node

and the root (due to the increase of hierarchical levels), there are situations where re-configuring the

topology leads to worse times. By looking at Figure 5.6(b) (which is just a window adjustment of the first

graphic), we can see that the static topology has better results when the connection has a throughput of

1000Mbps. We can also see the intersection point, at around 790Mbps where, for this specific scenario, it

starts to be worth to use the dynamic approach instead of the static solution. The smaller the throughput

of a connection the worse the system will behave when transmitting the same amount of data. Thus the

re-configuration will allow to use a more aggressive aggregation of the data, and reduce the size of the

transmission improving the performance of the system.

66

5.7 Discussion

FLEXREGMON was conceived to be able easily re-configure a data aggregation topology of a system

data aggregation topology depending on the conditions of the system. Due to the fact that FLEXREGMON

is a system to be deployed on the edge also puts us in face with some challenges, like how to deal with

constant entrance and exit of nodes, problem which FLEXREGMON reduces by delegating the role of

region management to the orchestrator replicas. Another important aspect to take into account in the

evaluation process is to analyze if the benefits of re-arranging the topology are not overshadowed by the

an overhead introduced by the system.

Our experimental evaluation shows that FLEXREGMON is capable of modifying the topology of a edge

deployed system up to 3.1x faster when compared to a centralized topology management. FLEXREG-

MON also creates a massive increase in the performance of management operations like joining or

exiting a region, with results close to 0ms of latency, due to the distributed role of region management

that is present in orchestrator replicas. The notification system used by FLEXREGMON also reduces

drastically the cost of performing updates on the edge, as the reduce communications cost helps the

propagation of updates. And lastly we also validated the utility and viability of dynamically altering the

data aggregation topology to increase the performance of the system.

Summary

In this chapter, it was presented the evaluation of FLEXREGMON. The results show that FLEXREGMON is

able to reduce the time it takes to perform a modification on the data aggregation topology and propagate

said change, while not degrading the performance of the system. It was also noted the benefits of having

the management component of the system (orchestrator replicas) distributed as it allows for each region

to have lower latency management operations.

67

6
Conclusions and Future Work

68

Given that the Edge computing paradigm is spread in a much larger area when compared to the classic

Cloud computing paradigm, it is expected to have different types of loads that depending on the situation

would benefit from different topologies. In this thesis it was presented FLEXREGMON, a system that by

the means of a distributed management orchestrator allows to efficiently modify the topology of regions

for data aggregation, to allow low latency operations and increase the performance when propagating

information. It was shown that FLEXREGMON allows the system to reconfigure itself and re-arrange

its data aggregation topology to adapt to different conditions, leading to performance gains in multiple

scenarios. FLEXREGMON combines the use of a new notification system along with the distributed

orchestrator replicas to reduce the amount of communication necessary to central node to perform said

re-configurations.

As future work, it would be interesting to develop the decision motor to perform dynamic modifications

on the topology of the system, and evaluate the benefits of distributing that component. If each region

could be self-regulated and modify its topology independently it could enhance the capabilities of the

system.

69

Bibliography

[1] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Monitoring self-adaptive ap-

plications within edge computing frameworks: A state-of-the-art review,” Journal of Systems and

Software, Feb 2018.

[2] V. Prasad, M. Bhavsar, and S. Tanwar, “Influence of monitoring: Fog and edge computing,” Scalable

Computing, May 2019.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet

of Things Journal, Oct 2016.

[4] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The cost of a cloud: Research problems in data

center networks,” Computer Communication Review, Jan 2009.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in mobile

computing,” IEEE Pervasive Computing, Oct 2009.

[6] F. Bonomi and R. Milito, “Fog computing and its role in the internet of things,” Proceedings of the

MCC workshop on Mobile Cloud Computing, Aug 2012.

[7] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A survey,” Computer Net-

works, 2013.

[8] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois, and A. Lebre, “A holistic monitoring service

for fog/edge infrastructures: A foresight study,” in 2017 IEEE 5th International Conference on Future

Internet of Things and Cloud (FiCloud), Aug 2017.

[9] J.-P. Martin-Flatin, “Push vs. pull in web-based network management,” in Integrated Network Man-

agement VI. Distributed Management for the Networked Millennium. Proceedings of the Sixth

IFIP/IEEE International Symposium on Integrated Network Management., 1999.

[10] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison, and T. Lynn, “A survey of cloud monitoring tools:

Taxonomy, capabilities and objectives,” Journal of Parallel and Distributed Computing, Oct 2014.

70

[11] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi, “Improving web sites per-

formance using edge servers in fog computing architecture,” in 2013 IEEE Seventh International

Symposium on Service-Oriented System Engineering, March 2013.

[12] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic execution between

mobile device and cloud,” Jan 2011.

[13] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving portable computer battery power

through remote process execution,” Mobile Computing and Communications Review, March 1998.

[14] R. Van Renesse, K. Birman, and W. Vogels, “Astrolabe,” ACM Transactions on Computer Systems,

May 2003.

[15] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and

D. Terry, “Epidemic algorithms for replicated database maintenance,” ACM SIGOPS Operating Sys-

tems Review, 1988.

[16] C. Hare, “Simple network management protocol (snmp).” 2011.

[17] M. Pérez and A. Sanchez, “Fmone: A flexible monitoring solution at the edge,” Wireless Communi-

cations and Mobile Computing, Nov 2018.

[18] P. Yalagandula and M. Dahlin, “A scalable distributed information management system,” SIGCOMM

Comput. Commun. Rev., Aug. 2004.

[19] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring system: design,

implementation, and experience,” Parallel Computing, 2004.

[20] H. B. Newman, I. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, “Monalisa : A distributed monitoring

service architecture,” CoRR, 2003.

[21] Openstack Project, “Monasca wiki,” https://wiki.openstack.org/wiki/Monasca, accessed: 2019-12.

[22] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system for log processing,” in

Proceedings of the NetDB, 2011.

[23] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for large-

scale peer-to-peer systems,” in IFIP/ACM International Conference on Distributed Systems Plat-

forms and Open Distributed Processing, 2001.

[24] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing systems,” in 2009

Fifth International Joint Conference on INC, IMS and IDC. Ieee, 2009, pp. 44–51.

71

[25] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation in wireless sensor

networks,” in Proceedings 22nd international conference on distributed computing systems work-

shops. IEEE, 2002, pp. 575–578.

[26] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni, and M. Matos, “Kollaps:

Decentralized and dynamic topology emulation,” in Proceedings of the Fifteenth European

Conference on Computer Systems, ser. EuroSys ’20. New York, NY, USA: Association for

Computing Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3342195.3387540

[27] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination for internet-

scale systems,” in Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference, ser. USENIXATC’10. USA: USENIX Association, 2010, p. 11.

[28] D. Merkel, “Docker: Lightweight linux containers for consistent development and deployment,” Linux

J., vol. 2014, no. 239, Mar. 2014.

[29] M. Matos, “Kollaps/thunderstorm: Reproducible evaluation of distributed systems,” in Distributed

Applications and Interoperable Systems, A. Remke and V. Schiavoni, Eds. Cham: Springer Inter-

national Publishing, 2020, pp. 121–128.

72

