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Abstract. Group communication denotes a set of membership, com-
munication, and coordination services that support the development of
distributed applications based on process groups. These services are ty-
pically provided by a protocol stack, which includes layers such as failure
detectors, reliable multicast, view-synchrony, total order, among others.
The performance of these protocols is highly dependent on the oper-
ational envelope, including network latency, link error rates, load pro-
file, etc. Therefore, multiple implementations of each layer have been
proposed, each excelling in a different scenario. This report studies the
techniques that allow the construction of an adaptive group communica-
tion stack, which is able to reconfigure itself dynamically in response to
changes in the operational envelope, in order to optimize its performance
under variable conditions.

1 Introduction

Group communication denotes a set of membership, communication, and coordi-
nation services that support the development of distributed applications based
on process groups [4]. It has been widely used to build multi-participant ap-
plications, such as collaborative applications [41], and fault-tolerant replicated
services, for instance, database replication systems [35].

The services provided by group communication include failure detection,
membership, and reliable multicast communication with different ordering prop-
erties (including FIFO order, causal order, and total order) [37]. These services
are typically provided by a protocol stack, where each service is implemented
by one or multiple layers. Systems that use this kind of protocol stacks are
Horus [40], Ensemble [5], Cactus [9], Appia [32], among others.

The performance of these protocols is highly dependent on the operational
envelope, including network latency, link error rates, workload, etc. Therefore,
multiple implementations of each service have been proposed. As an example,
consider the case of total order multicast, also known as atomic multicast. A
survey of existing alternatives to implement this service identified about sixty
protocols [13]. None of these protocols outperforms the others in all scenarios.
Instead, each implementation offers better results on a specific network setting
and/or in face of a particular workload.

Given that it is often very difficult, or even impossible, to estimate, when the
system is deployed, what will be the workload and the operational conditions, it
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is quite hard to select offline the best protocol stack configuration. Furthermore,
some aspects of the operational envelope are dynamic, and change during its
operation. For instance, the network load varies significantly depending on the
time of the day. This motivates the need to develop adaptive group communica-
tion services, that are able to change configuration parameters on the fly, or even
replace a service implementation by a more suitable alternative, in response to
observed changes in the execution context.

This report addresses the problem of building such adaptive group commu-
nication services. It departs from a brief overview of group communication and
then provides several examples of why adaptation may help in improving the per-
formance of these systems. In order to be able to perform dynamic adaptation it
is required that the communication protocols are implemented in a protocol com-
position and execution framework that facilitates the runtime reconfiguration.
The report also surveys such frameworks.

Finally, the report discusses how an existing group communication stack can
be augmented to support dynamic adaptation. More precisely, it addresses how
the group communication stack of the Appia [32] system can be migrated to
RAppia [43], a version of the same framework with explicit support for dynamic
adaptation, and identifies a number of services that can be used to illustrate the
benefits of dynamic adaptation in this context.

The rest of this report is organized as follows. Section 2 identifies the goals of
this work. Section 3 describes the related work relevant to adaptive group com-
munication. Section 4 proposes an architecture for an adaptive group communi-
cation system, and Section 5 states how the resulting system will be evaluated.
Finally, Section 6 includes a schedule of future work and Section 7 concludes the
report.

2 Goals

This work addresses the problem of building an adaptive group communication
service. More precisely:

Goals: This work aims at analyzing, implementing, and evaluating an
adaptive version of the Appia group communication system.

To achieve this goal, we will start by porting the current Appia group com-
munication stack to the RAppia framework. Subsequently, we will develop re-
configurable versions of some of the existing layers and define the policies that
control the adaptation of these layers.

Expected results: This work will provide: (i) a prototype implementation
of an adaptable group communication stack for the RAppia system; and
(ii) provide an evaluation of this stack in face of dynamic workloads and
network conditions, using the ModelNet1 framework.

1 https://modelnet.sysnet.ucsd.edu/
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3 Related Work

This section provides an overview of the related work relevant to the project.
It starts by describing the fundamental concepts behind group communication,
the services typically provided by group communication systems, and the main
applications of this technology. Then, the need for adaptive communication sys-
tems is motivated. Subsequently, the architectures and runtime support that
permit the construction these systems is addressed, with particular emphasis on
RAppia, a protocol composition and execution framework designed specifically
to support dynamic adaptation.

3.1 Group Communication Concepts

Group communication is a designation that is used to refer to a set of commu-
nication and coordination services that aim at supporting the development of
distributed applications where a group of processes need to exchange information
and coordinate to perform a common task. For example, a group can be a set
of users communicating using a chat system or playing an online game [41]. A
group of processes can also be formed to replicate a given component for fault-
tolerance: each group member is a replica, and all members process the same
set of requests from clients [35]. Finally, processes may coordinate to distribute
tasks among them [28].

There are two primary services provided by a group communication sys-
tem [12]: membership and multicast communication.

3.1.1 Membership Service

The purpose of the membership service is to provide to each participant up-
to-date information about current members of the group [24]. Such information
is usually called a group view, or simply a view. The interface of this service
allows processes to join a group and to voluntarily leave the group. Processes
may also abandon a group involuntarily as a result of a fault.

Whenever a change in the group membership occurs, a new view is delivered
to the application. In this case we state that a view change has occurred. Typi-
cally, each view has an unique identifier and these identifiers are assigned such
that delivered views have monotonically increasing identifiers. When an applica-
tion receives and processes a new view, it is common to say that the application
installs that view.

It may happen that concurrent changes to the group membership are detected
at different instants, and even in different orders, at each process. However, to
simplify the coordination at the application level, group communication services
execute agreement protocols before delivering views, to ensure that all partici-
pants obtain a consistent perception of the system evolution [6].

It is possible to devise different membership services, that ensure different
properties of the delivered views in face of events such as concurrent joins and
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leaves, faults or network partitions. For a network partition, which happens
when a group of nodes can no longer communicate with the rest as a result of
a broken link, it is important to distinguish primary partition membership and
partitionable membership services.

With primary partition membership, one of the resulting partitions in the
network is denoted as the primary partition, and only nodes that belong to it are
allowed to deliver messages and views. In a partitionable membership service,
no restrictions are imposed for message and view delivery, and concurrent views
may exist. When a network partition is healed, these concurrent views may
be merged in a single view. Systems that use a primary partition membership
service include ISIS [3] and Phoenix [31]. Partitionable membership was first
introduced as part of Transis [15], and is also present in Totem [34], Horus [40],
and Appia [32], among others.

As previously mentioned, a view change can be triggered by a member un-
predictably leaving the group due to a fault. This sort of event is detected by
a component of the group communication system called a failure detector. In a
synchronous environment, it is possible to implement a perfect failure detector,
which is guaranteed to eventually detect a faulty process and never incorrectly
detects a correct process as failed. On the other hand, in an asynchronous envi-
ronment one can make no assumptions regarding the time it takes for a process
to complete an execution step or a message transmission. Because of this, it is
only possible to implement unreliable failure detectors, which can make mistakes.
More precisely, a failure detector can be characterized by two properties [8], com-
pleteness and accuracy:

– Completeness. There is a time after which every process that crashes is
permanently suspected by some correct process (which corresponds to the
actual ability to detect failures).

– Accuracy. There is a time after which some correct process is never suspected
by any correct process (which defines the kind of mistakes that can be made).

Based only on these two properties, one can define failure detectors that
provide different Qualities of Service (QoS). Namely, we can measure how fast
can a fault be detected, and on what degree are we willing to trade speed for
a correct detection. The work by Chen, Toueg and Aguilera [10] provides an
insight about this, including three main metrics for the QoS specification of a
failure detector:

– Detection Time (TP ), is the time that elapses from p’s crash to the time
when another process q starts suspecting p permanently.

– Mistake recurrence time (TMR), represents the time between two consecutive
mistakes.

– Mistake duration (TM ), measures the time it takes the failure detector to
correct a mistake.

The first, detection time, measures the speed of a failure detector, which
relates to the completeness property stated above. Mistake recurrence time and
mistake duration are both accuracy metrics.
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3.1.2 Reliable Multicast Service

The other main service of a group communication system is the multicast
service. This service allows to send messages to all group members, typically
using the group identifier as a multicast address (i.e., the sender is not required
to list each individual recipient explicitly).

Most group communication services support reliable multicast. Informally,
the guarantees of reliable multicast are the following [8]: (i) all correct processes
deliver the same set of messages, (ii) all messages multicast by correct processes
are delivered, and (iii) no spurious messages are ever delivered.

In a system where the group membership is dynamic, reliability needs to
be defined in relation to a given group view. Therefore, a message is sent to all
members of the last installed view and should be delivered to all correct members
of that view. This semantics is known as view-synchronous reliable multicast, and
is characterized more precisely by the following properties [6]:

– Same-view-delivery. If a process Pi sends a message m in some view V and
a process Pj delivers m in view V’, then V = V’.

– (Regular) View-synchronous delivery. If two processes Pi and Pj both install
a new view V in the same previous view V’, then any message delivered by
Pi was also delivered by Pj in V’.

– Integrity. Every process delivers at most one copy of message m, and only if
m was previously multicast by the associated sender.

It is also important to establish the distinction between regular and uniform
reliable multicast. Regular reliable multicast means that if a message is delivered
to a correct process, then all correct processes deliver the message. Uniform
reliable multicast states that if a process (even if faulty) delivers a message,
then all correct processes deliver it too. More precisely:

– (Uniform) View-synchronous delivery. If a process Pj installs a new view
V in view V’, then any message delivered by a process Pi in V’ was also
delivered by Pj in V’.

Different ordering policies may be enforced on the message exchange among
group members. The most relevant are FIFO (First-In First-Out), Causal Order,
and Total Order [12]. FIFO ordering implies that messages are delivered in the
same order they were sent. This kind of ordering is often used as a basic building
block to other guarantees. Causal order is stronger than FIFO; it ensures that
messages are delivered according to the happened-before notion first defined by
Lamport [29]. Finally, total order multicast, sometimes also referred to as atomic
multicast, ensures that all the messages sent in the system are delivered by all
processes in the same order.

Given that this is an important service of any group communication system,
we include here a more precise definition of this service. Total order is defined
by two basic primitives, TO-broadcast(m) and TO-deliver(m), where m is some
message. The service has the following properties [13]:
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– Validity. If a correct process TO-broadcasts a message m, then it eventually
TO-delivers m.

– Uniform Agreement. If a process TO-delivers a message m, then all correct
processes eventually TO-deliver m.

– Uniform Integrity. For any message m, every process TO-delivers m at most
once, and only if m was previously TO-broadcast by the sender of message
m.

– Uniform Total Order. If processes p and q both TO-deliver messages m and
m’, then p TO-delivers m before m’, if and only if q TO-delivers m before
m’.

As with view-synchronous communication, it is possible to define non-uniform
variants of the primitive, respectively:

– Regular Agreement. If a correct process TO-delivers a message m, then all
correct processes eventually TO-deliver m.

– Regular Total Order. If two correct processes p and q both TO-deliver mes-
sages m and m’, then p TO-delivers m before m’, if and only if q TO-delivers
m before m’.

In some settings, it is possible to implement the regular version of the service
with more efficient algorithms, namely algorithms that exhibit lower latency [13].
Given that not all applications require the more expensive uniform version, both
variants have been implemented in existing systems (such as Horus or Appia).

3.1.3 Examples of Group Communication Systems

Group communication has been widely studied and many group communica-
tion systems have been implemented, including ISIS [3], Transis [15], Horus [40],
Totem [34], Spread [1], Ensemble [7], Cactus [23], Phoenix [31], JGroups2, Ap-
pia [32], among others.

The ISIS toolkit was the first to implement view synchronous communica-
tion. It was a monolithic implementation, that included most of the services
listed above. The system had a commercial version used in several important
deployments, such as in the NY stock exchange. Horus, and later Ensemble,
were modular and improved versions of the ISIS system. Transis, Totem, and
Spread added novel protocols, including protocols specialized for some network
topologies, such as local area network or wide-area communication. Cactus is a
highly modular and adaptive implementation of group communication. JGroups
and Appia are open source group communication systems implemented in the
Java language (and heavily inspired in the Horus/Ensemble systems).

2 http://www.jgroups.org/
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3.1.4 The Appia Group Communication Stack

Appia is a Java-based protocol composition framework that offers a base
protocol stack that implements view synchrony. This stack is composed by the
following protocols (top to bottom):

– VSync. Ensures that a view change respects the view-synchrony property.
It counts the number of delivered messages from each of the other group
members, and when they match in all of the active members the view can
be updated. The final view is announced by the view coordinator.

– Leave. Allows for a member to leave the group orderly by producing the
LeaveEvent. This intention is announced to the view coordinator.

– Stable. This protocol is responsible for retransmitting messages that were
received only by some members of the group. In order to do this, it determines
which messages have not been received, and requests them to a member that
possesses them (received messages are stored).

– Heal. Detects the existence of concurrent views in the same group, mainly
by receiving messages that contain a different view than the one installed.

– Inter. Unifies the existing (concurrent) views from the same group, and ex-
ecutes a consensus algorithm to decide the new view. This process is done
only by view coordinators.

– Intra. The Intra protocol acts as a view change manager, which is initiated
either by a fault or by request. The change is handled by the view coordinator
and in three main steps: VSync makes sure the change is correct, the new
members in the view are determined by Inter and Leave, and the new view
is delivered by the View event.

– Suspect. Implements a failure detector. A fault is announced with the Fail
event which contains the current view’s suspected peers.

– Bottom. Translates network to group identifications. Also filters events which
do not belong to the current view.

Based on these protocols, other higher level properties and services can be
provided. Appia includes three implementations of total order multicast: fixed se-
quencer [13], token based (part of the privilege-based class of algorithms [13]) and
a statistically estimated total order (SETO) [46]. The failure detector currently
has two implementations, the ϕ accrual failure detector [22] and a heartbeat
failure detector.

3.2 Adaptive Group Communication Systems

The performance of the protocols that implement group communication services,
as many other protocols for distributed systems, are highly dependent of oper-
ational conditions such as observed load, network latency, available bandwidth,
CPU and memory constraints, etc. It is therefore no surprise that many different
protocols have been proposed for each of these services. Just to implement total
order, about sixty protocols have been identified [13]. Some perform better when
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all nodes transmit at the same pace, others perform better when the traffic is
sporadic, some have been optimized for broadcast networks, others for networks
with high latency, and so forth.

In the following sections we describe some key aspects in dealing with this
kind of dynamic conditions.

3.2.1 Configurable vs Adaptive Systems

A group communication system is configurable if the most appropriate im-
plementation may be selected at load time, when the service is instantiated.
Examples of configurable group communication systems are Horus, Ensemble,
Cactus, JGroups and Appia. A configurable group communication system allows
the use of the protocol implementation that is most suitable for an expected set
of operational conditions.

However, in many scenarios it is impossible to accurately estimate in advance
the operational conditions. Furthermore, in many settings, the operational con-
ditions change significantly with time. For instance, in many networks, the ob-
served latency depends on the time of the day. Also, the level of risk in a network
may change (for instance, if unusual behaviour is detected), which may require
the use of protocols with stricter security features. Therefore, it is interesting
to support the runtime reconfiguration of protocols. Also, if runtime reconfigu-
ration is supported, existing protocols can be upgraded to new, better versions
without requiring the application to stop [30].

In the next paragraphs, we give two examples that illustrate the importance
of supporting runtime adaptation of group communication services.

3.2.2 Adaptive Failure Detectors

Failure detectors are a fundamental building block of any group communica-
tion system. Typically, failure detection relies on some form of periodic heartbeat
mechanisms, i.e., nodes need to periodically exchange information with each
other to mutually check that they have not crashed. If no heartbeat is received
after some defined timeout value, the node is considered to have failed. There
are two aspects of the failure detection that may require adaptation: the value
of the timeout, that needs to be adjusted to the observed network latency, and
the communication pattern, i.e., how nodes exchange heartbeats.

Regarding the timeout values, this is a configuration parameter that has been
recognized to need adaptation, even for point-to-point communication. The TCP
protocol [27] embodies an algorithm to adjust the timeout value in runtime,
and that work has been extended to the multi-point scenario by various other
works [2, 22].

Regarding the pattern of communication, a simple pattern is to use all-to-
all communication. For instance, each node periodically sends a heartbeat to
every other node in the system. This requires the exchange of n2 control mes-
sages in each detection cycle. Other, more effective, communication patterns

8



include: hierarchic failure detectors, in which processes are grouped in moni-
toring subnets in an attempt to reduce message explosion [17] and gossip-style
failure detection [39]. However, there is often a tradeoff between the amount
of communication and the latency of the failure detection. Therefore, the most
appropriate communication pattern must be chosen in function of the size of the
group and of the desired responsiveness of the failure detector. A summary on
scalable failure detection services can be found in [21].

3.2.3 Adaptive Total Order

One of the simplest ways of implementing total order is to elect a single
sequencer, that is in charge of assigning a sequence number to each message
transmitted in the group; then messages are delivered in the order specified by
the sequencer. This algorithm is very effective when the following conditions
hold: the network latency is small (given that messages sent by a node other
than the sequencer are delayed by at least a roundtrip time) and the system
load is low enough not to overload the sequencer. When these conditions are not
met, it may be preferable to use other strategies to enforce total order. We will
return to this topic later in the report.

3.2.4 Monolithic Solutions vs Modular Protocol Switching

As we have seen, there are several scenarios where one may want to change
in runtime the behavior of a protocol. There are two main ways to achieve this
goal.

One is to have a monolithic implementation of a protocol that implements
all behaviors. In this case, the protocol must be able to adjust itself, commuting
from one behavior to another. There are many examples of such protocols. For
instance, the ϕ accrual failure detector [22] (which has the particularity of using
as output a suspicion level), and an adaptable heartbeat failure detector [2].
Both algorithms adjust timeout values in runtime in an attempt to provide a
better service. For total order, Rodrigues et al. [42] and Chockler et al. [11] also
developed an adaptive protocol which is able to change the delivery order of
messages in response to changes in transmission rates. However, using just one
protocol to handle several conditions has some drawbacks. To start with, this
approach is clearly not scalable, as the number of possible behaviors grows the
protocol implementation becomes simply too large and complex. Also, it is very
hard to add new behaviors without fully understanding the original code, and
may require its restructuring.

The alternative to the monolithic approach is to have several individual im-
plementations ready, and a switching protocol to switch among them. The modu-
larity gained and the easy addition of new protocols is an important advantage
of this approach. However, it requires switching protocols to be implemented.
Both generic switching protocols (i.e., switching protocols that work for many
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services [30]) and specialized switching protocols (for instance, a switching pro-
tocol that only works for switching among total order protocols [33]) have been
implemented. A cost analysis of these alternatives can be found in [20].

3.3 Protocol Composition Frameworks

A protocol composition and execution framework is a software package that
supports the composition and execution of communication protocols. In terms
of protocol design, the framework provides the tools that allow the application
designer to compose stacks of protocols according to the application needs. In
runtime, the framework supports the exchange of data and control information
between layers and provides a number of auxiliary services such as timer mana-
gement or memory management for message buffers. Several frameworks of this
kind have been proposed, including the influential x-kernel [26] (which inspired
much of the subsequent work on this subject), Horus [40], Ensemble [7], Cac-
tus [25], and Appia [32]. Typically, in these systems, protocols communicate by
the exchange of events.

3.3.1 Requirements for Dynamic Adaptation

Most of the early protocol composition frameworks were concerned with pro-
viding the right tools to simplify the construction of configurable protocol stacks,
i.e., by reducing the coupling among different protocols, such that the protocols
could be configured in different ways, and the most appropriate stack could be
used for each application scenario. Most recently, systems are also concerned
with providing support for dynamic adaptation. We reproduce here a set of re-
quirements, extracted from [43], that protocol composition frameworks need to
satisfy to provide support for dynamic adaptation:

Requirement 1 the composition framework should support a programming
model that makes easier for sources of context information to make it easily
accessible.

Requirement 2 the composition framework should provide the mechanisms to
support the capture of context information, both continuously or on-demand,
as well as a mechanism to handle notifications generated by context sources.

Requirement 3 the composition framework should include, or be augmented
with, services that are able to analyze the context information and report
relevant changes.

Requirement 4 the composition framework has to provide support for dy-
namic reconfiguration, including mechanisms to perform parameter configu-
ration, and mechanisms to perform the addition, removal, and exchange of
services to a given composition.

Requirement 5 the composition framework should provide, either embedded
in its kernel or as a set of additional services, a comprehensive set of mech-
anisms to support the coordination among nodes, to transfer service state
information between services, and to enforce a quiescent state of a service.
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Requirement 6 the composition framework should provide mechanisms to rea-
son or obtain information on the system.

None of the frameworks we have cited previously fully satisfies this set of
requirements [43], although all of them with the exception of x-kernel provide
some mechanisms that favour dynamic adaptation. Ensemble, for example, uses
virtual synchrony to support the installation of a new protocol configuration
when a new view is installed [5]. In the following paragraphs we provide some
detail on the operation of Cactus, as an example of the architecture and services
of this sort of frameworks.

Fig. 1. The structure of an Adaptive Component (AC) in Cactus. It is composed
of a component adaptor module (CAM) and alternative adaptation-aware algorithm
modules (AAMs).

3.3.2 Cactus Framework and Switching Protocol

The Cactus architecture consists of a number of system layers, which can be
adaptive or non-adaptive [9]. The adaptive layers are constructed as a collection
of adaptive components (ACs) which have both a component adaptor module
(CAM) and alternative adaptation-aware algorithm modules (AAMs) (see Fig-
ure 1). Each AAM provides a different implementation of the component, while
the CAM controls which implementation is better suited at a given moment. Cac-
tus defines a distributed adaptive component (DAC) as a collection of adaptive
components cooperating across different processes, which can provide message
ordering or total order multicast, for example. Special care was taken to maxi-
mize the independence of the modules within an AC, so that new AAMs could
be added without changes to existing code and that a CAM could control any
AAM (this is achieved by each module specifying the set of operations it provides
and details about adaptation steps).

Adaptation is performed in three phases: (i) change detection, (ii) agree-
ment, and (iii) adaptive action. The first phase aims at detecting a change in
the execution environment and asserting whether a modification to the current
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configuration is appropriate. The change detection can be done either in the
CAM or the AAM modules. When a change is detected, fitness functions are
used to determine the best implementation for the new scenario (one for each
AAM). These functions map values reflecting the system state (such as network
latency) to the suitability of the AAM, allowing the CAM to select the most
appropriate implementations. The second phase consists of an agreement step
between the various ACs (across different processes), using the system state
perceived in each one of them to decide the actual global state. Finally, the last
phase of the adaptation process consists of orchestrating the change of one AAM
to another, while maintaining the correct behaviour of the service that the DAC
implements.

Within the composition framework, ACs translate into composite protocols
that contain both AAM and CAM micro-protocols. These micro-protocols are
collections of event handlers, which are procedure-like segments of code that
get executed when the corresponding event occurs. The way these handlers are
set (issuing a bind() operation) favours the AAM transition, since new imple-
mentation modules are able to register the events they are interested in during
runtime.

The adaptive action phase of Cactus, in which the actual protocol change
happens, is an important topic by itself. One of the most important issues is
that the nodes involved in the adaptation need to be coordinated, so that the
provided service is maintained, and communication is not interrupted in a dis-
ruptive manner. Also, the adaptation should be as quick as possible, in order
to minimize the time the service is not provided. Other issues of concern are,
for example, to ensure that messages in transit from the previous configuration
should still be processed, even if the destination is on a transition phase, and
that no messages are ever dropped as a result of the adaptation.

To solve these issues Cactus proposes a multi-step graceful adaptation proto-
col. It consists of a preparation step, an outgoing switchover step, and an incom-
ing switchover step. The first consists of preparing an adaptive component to
receive either messages in the new protocol, or adaptation-related messages in
the old one. Outgoing switchover switches the processing of outgoing messages
to the new protocol. Finally, incoming switchover switches the delivery of incom-
ing messages to the new protocol. Therefore, the old protocol stops processing
outgoing messages in the second step, and stops processing and delivering in-
coming messages in the third. It is important to note that all components should
complete the preparation step before the outgoing switchover, since they need
to be prepared to interpret messages under the new protocol.

3.3.3 Other Switching Protocols

Another generic switching protocol has been described in [30]. It assumes
there is a manager process which initiates the switch to the new protocol. To start
the transition, this manager sends a PREPARE message to the other members.
Upon reception of the PREPARE message, a member returns an OK message
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that includes the number of messages it has sent in the old protocol. From
this moment on, new messages will be sent using the new protocol, and when
received, they will be buffered instead of delivered. The manager then multicasts
a SWITCH message informing all other nodes how many messages they should
still receive in the old protocol. When all in transit messages have been received
and delivered, members are free to switch to the new protocol entirely. The
switching protocol does not deliver messages sent using the new configuration
until all messages sent in the old configuration are delivered. Due to this, there
may be a significant delay in the service during the transition.

Two adaptations of this generic protocol have also been proposed: one for
switching causal ordering implementations and another for FIFO implementa-
tions [20]. For causal ordering, the new protocol is also used for new messages
as soon as the transition starts. However, it is important to guarantee that the
causal relation of messages is still maintained during the switch. To do this, a
vector clock [38] is added to new messages. This allows that messages in the old
protocol are delivered without restrictions, and messages in the new protocol
are delivered according to their vector clock. Note that the transition is initi-
ated when a message to do so is received, or when a message under the new
protocol is received. This transition ends as soon as all members are using the
new protocol. For FIFO ordering the key is to preserve the order between the
last message of the old protocol, and the first of the new one. The proposed
implementation consists in marking the last message sent under the old protocol
when the transition is initiated. Recipients just buffer all messages of the new
protocol until the marked message is received. At that point, all new messages
can be delivered.

There is also a proposed solution to switch between total order multicast
implementations [33]. This protocol has the advantage that the message flow is
not stopped during the transition and works as follows. First, a control message
is sent to all processes indicating the transition. When this message is received,
the node starts broadcasting messages using both total order protocols, and the
first message sent using the new protocol is marked. When nodes begin receiving
messages in both protocols, messages from the old one are normally delivered,
and from the new one are buffered in order. As soon as a marked message is
received from all members, a “sanity” procedure takes place. First, all messages
received under the new protocol that have not yet been delivered by the old one
are delivered in order. After that, received messages under the old protocol are
simply discarded, and all messages start being delivered under the new protocol.

3.3.4 When to Adapt

Besides the issue of how to switch implementations, discussed in the previous
sections, there is also the problem of when it is time to do so, and who initiates
it.

An adaptation process is usually triggered by a change detected in the en-
vironment at a given host (as happens in Cactus, for example). Although this

13



host could simply decide by itself that a different implementation of the service
would benefit the system, the detected change might be incorrect considering
the state perceived at other members. So, using an agreement process is usually
a better option. For this agreement to happen, a system-wide policy regarding
which kinds of adaptations make sense should be in place at each member. These
policies could be as simple as the deterministic fitness functions of Cactus, or
more complex decision processes.

As opposed to a distributed approach, one can use a centralized alternative,
consisting of having the reconfiguration process handled by an adaptation man-
ager [44]. This adaptation manager holds both a system-wide adaptation policy
that should be applied, and a set of reconfiguration strategies. In order to decide
if a reconfiguration is needed at a given time, the adaptation manager collects
context information from the nodes present in the system, and proceeds to eval-
uate the policy. If a reconfiguration is required, an appropriate reconfiguration
strategy to achieve it is selected, dictating how nodes should coordinate. This
coordination is then achieved by having the adaptation manager issue commands
to the nodes.

3.4 RAppia

RAppia [43] is a concrete example of a framework that provides both extensive
configurability of protocols and services, and mechanisms to execute reconfig-
uration (in fact, its aim was exactly to address the adaptation requirements
previously stated). It is an enhanced version of the Appia protocol composition
framework. In RAppia, services are composed in a stack, aiming to provide a
given Quality of Service (QoS). Usually, services that provide basic functionality
sit at the bottom of the stack (such as point-to-point reliability), and higher level
abstractions at the top (such as publish-subscribe or distributed databases). An
instance of one of these compositions is called a service channel, and each layer
of that service channel corresponds to a service session, which maintains its own
state. These sessions interact through an event-driven model (similar to Cactus).
Thus, a service implementation corresponds to a collection of event handlers.
Events can be generated by services or come from other processes through the
network. They also have two fundamental attributes: a channel and a direction.
The first corresponds to the channel the event will flow in, and the second the
direction taken in the stack, either up or down.

The RAppia adaptation support is built on three different aspects [43]: the
service programming model, adaptation-friendly services, and kernel mecha-
nisms. The programming model employed, based on the exchange of events, al-
lows for a group of default events that favour adaptability to be defined. These in-
clude events to access context information produced by services (ContextQuery,
ContextAnswer, and ContextNotification), to place services in a quiescent/normal
state (MakeQuiescent and Resume), and to handle state transfer (GetState and
SetState), which are useful when switching service instances. An example usage
of these events for replacing a service is depicted in Figure 2. In this case, the
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Fig. 2. Service replacement with state transfer in RAppia.

MakeQuiescent event is propagated down through the stack (1), and then re-
versed until the top (2), after which all of the services are in a quiescent state.
After that, each service’s state is stored through the GetState event (3), service
B is replaced by X, and then the state is restored again through SetState (4).
There is also an event that allows service parameters to be updated, such as the
timeout value of a failure detector (SetParameter).

Other two useful properties enforced by the programming model are the use
of protocol type hierarchies and message headers. Type hierarchies provide a way
for protocols to be organized and tagged given their provided properties, and
allow, for example, to reason about alternative implementations present in the
system. By being included in the messages exchanged between peers, message
headers also allow the exchange of control information. In RAppia, these headers
are implemented as a pool from which services can retrieve or add fields.

Regarding adaptation-friendly services, RAppia includes two: a generic and
configurable context sensor and a reconfiguration monitor. The context sensor
is a service that handles the local capture of context information and allows for
its dissemination. For dissemination, two main mechanisms are provided, one to
query nodes about their state and another to send asynchronous notifications
to other nodes (periodically, for example). The reconfiguration monitor defines
a control channel through which it receives reconfiguration commands. These
are: MakeQuiescent, which instructs the monitor to place a given service in a
quiescent state; Resume, which resumes the normal activity of a service; SetState
and LoadState, that allow the current state to be transfered between two different
service implementations; and Reconfigure, which instructs the monitor to add,
remove, or replace a given service.

With respect to kernel mechanisms, RAppia has two other unique features:
the automatic buffering of events whose recipient is a service in a quiescent
state, and the automatic update of event routes. The first allows services to
handle events received in a quiescent as soon as it resumes, and it does not force
the whole service channel to be put in a quiescent state. On the other hand,
the update of event routes allows that events are only delivered to the interested

15



services, including for those added in runtime. This allows for an optimized event
flow.

4 Proposed Architecture

In order to achieve our goals, we will use the configurable group communication
stack that has been developed for the Appia system and augment it to support
runtime adaptation. For this purpose, we will first need to port the existing
protocols to the RAppia system, as we will leverage of the adaptive mechanisms
of RAppia to implement our solutions. Furthermore, we will use a policy based
adaptation strategy. Finally, we will design, implement, and evaluate adaptive
versions of some of the services of the group communication stack. These aspects
are detailed in the following paragraphs.

4.1 Porting the Group Communication Stack to RAppia

As mentioned earlier, RAppia includes several mechanisms that support the
dynamic adaptation of a communication stack. Therefore, our solution will be
based on this framework.

The group communication stack that is currently available in Appia needs to
be ported in order to run in the RAppia framework. For instance, the protocols
need to be changed to support the insertion and removal of message headers in-
troduced by RAppia, to be augmented with handlers for reconfiguration events,
such as MakeQuiescent and Resume, and for obtaining context information, such
as ContextQuery and ContextAnswer. The first task of our work will be to per-
form and validate these changes.

4.2 Policy-Driven Adaptation

We will use a policy-driven approach to control the adaptation of the group com-
munication stack. There will be a centralized component that will be responsible
for collecting context information and feed this information to an engine. This
engine will then evaluate a policy that defines which adaptations need to be
performed. The policy should be provided during the application’s deployment,
and defined as an independent module so that it can be easily changed. This can
be achieved by implementing the policy as a separate service in the composition.
The policy engine will not be the focus of the work. Instead, results from other
members of the research group will be used [44].

The work to be performed for each adaptive protocol to be included in the
group communication stack consists of identifying: (i) the relevant context to
trigger the adaptation of the component; (ii) the relevant policies for that com-
ponent; (iii) how can the runtime adaptation be performed, in particular, what
is the required coordination among nodes involved in the adaptation, and which
switching protocols should be used (if any).
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4.3 Adaptive Protocols

In this work we plan to design and implement three different adaptive com-
ponents of the group communication stack, namely: the failure detector, the
protocols implementing reliable multicast (both regular and uniform), and total
order multicast. The goal is to establish the needed reconfiguration mechanisms
in RAppia for each of these components, in order to improve their performance
in certain scenarios. In the following sections we will describe these aspects for
each of the reconfigurable components.

4.3.1 Failure Detector

Appia includes two implementations of failure detection, the ϕ accrual failure
detector [22] and a fixed-pace heartbeat-based failure detector. The goal is to
add a third, with a different communication pattern. A possibility is to use
one with an hierarchical structure [21], or a lazy failure detector, such as the one
described in [18]. The latter attempts to aggregate control messages with regular
application messages in order to minimize traffic. The heartbeat failure detector
will also be improved to support the runtime adaptation of the heartbeat period.

When to switch One of the most relevant indicators for an implementation
switch of the failure detector is the current network latency. Given a higher
latency, the timeouts should also be adapted to higher values. Another indi-
cator is the number of messages being exchanged, as an example of network
load. If this load is higher, it makes sense to use an implementation that is
more conservative regarding the number of used control messages.

Capturing context One way to measure the latency to other members from a
given node is to periodically measure the round trip time between them. This
can be achieved by using explicit control messages, such as echo requests,
and measure the time they take. As for the network load, one can count
the number of messages being sent and received from the group, either on
the service implementations that use this indicator or as an independent
service. Since Appia already includes a TCP layer that measures the number
of messages being exchanged, this will probably be used. Both the latency
and number of exchanged messages with the group can be obtained locally
on a single peer.

How to switch Switching failure detectors will involve little or no coordination
with other group members, since multiple implementations can probably co-
exist in most cases. Furthermore, since failure detection has little interference
in the normal communication flow, it can happen without stopping other
components. Despite this, the switching should avoid the increase in the
detection latency.
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4.3.2 Reliable Multicast

Another component that we plan to re-implement to support dynamic recon-
figuration is the reliable multicast layer. In Appia, reliable (regular) multicast
is implemented by the stable protocol. In each process, this protocol maintains
information about which messages are delivered in other peers. When processes
detect that they are missing a given message, they request it to a member that
possesses that message. Similarly, the uniform multicast implementation also
maintains information about delivered messages on other peers, but in this case
to aid the decision of which messages can be delivered. This control informa-
tion is propagated either by piggybacking control data to normal application
messages, or by sending explicit control messages periodically.

This component can be optimized in two ways. One is to dynamically adjust
the timer that controls the periodic information exchange, making this exchange
happen quicker or slower. Another is to implement alternative protocols, for
example protocols that use explicit acknowledgments for each received message.

When to switch For this component, the main aspect is the tradeoff between
how many control messages are exchanged and how fast one recovers from
the loss of a data message. So, if the network load is light, one can use more
control messages and, therefore, propagate information quicker, allowing the
system to reach a stable state faster. Inversely, when the network load be-
comes higher, we should switch back to a more conservative approach.

Capturing context As seen for the failure detector, one of the ways to obtain
information about the network load is by counting the number of messages
being exchanged. In this case we can also count them explicitly, or try to
re-use the structures about delivered messages on other peers and infer load
information. This could also be done by adding more control data to the one
already present, such as message delivery timestamps (to retrieve informa-
tion such as messages per second). As previously mentioned, Appia’s TCP
layer implementation may also be a suitable option to obtain this kind of
information.

How to switch To modify the period for the exchange of control information,
there is obviously no need to change the protocol implementation; this value
can be changed using the SetParameter event. If it is necessary to change the
protocol implementation, it will be mandatory to ensure that the guarantees
of reliable delivery are preserved during the switch. This may require the
layer to be put in a quiescent state before the protocol switching occurs.

4.3.3 Total Order Multicast

For the total order layer three different protocols will be used and runtime
switching among these will be supported. The protocols will be the following:

– A sequencer-based total order protocol. This protocol has been briefly de-
scribed in Section 3.
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– A token-based total order protocol [13]. The algorithm consists in having a
token message that carries a sequence number circulating among the group
members. When a process wants to broadcast a message, it must wait for
the token to arrive. After that, he sets one sequence number for each of its
messages and sends them to the group. When finished, the token is updated
and sent to the next process.

– A symmetric total order protocol [14, 36]. In the symmetric approach, or-
dering is established by all processes in a decentralized way, using logical
clocks [29] or vector clocks [19]. Processes use these mechanisms to deliver
messages according to their partial order, and concurrent messages are to-
tally ordered using a deterministic algorithm [33].

Each protocol will be implemented by a different, independent, RAppia com-
ponent. Therefore, all group members will have to use the same protocol, which
means that switching between any two of these protocols needs to be coordi-
nated.

When to switch The sequencer approach is advantageous for when only a
single member of the group, the assigned sequencer, is sending messages.
This happens since the sequence number added to messages is generated
locally and does not involve an extra control message sent to another peer.
The token-based implementation is appropriate when there is a high debit of
messages from all group members, achieving the best throughput with both
uniform and regular guarantees (although at the cost of added latency) [16].
Finally, the symmetric protocol performs better in scenarios where every
member is sending messages at the same pace and the network latency is
large [33].

Capturing context The main context information to be captured is the rate of
messages being sent on each process (messages per second) and the network
latency. Using events like RAppia’s ContextQuery and ContextAnswer, we
can periodically request the number of messages other group members are
sending, and assert whether a reconfiguration is suitable for the current
system status.

How to switch In Section 3.3, some switching protocols that could be used
to commute between total order implementations have been already pre-
sented. Possibilities include the use of the algorithm described in [33], which
uses both the old and the new protocols simultaneously in order to reduce
the impact on the message flow; a generic switching protocol [30], which
requires messages to be buffered during reconfiguration; and a protocol re-
placement algorithm [45], which imposes a communication delay. In all these
approaches, the required coordination between nodes during the transition
is already implemented.
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5 Evaluation Methodology

The tool that will be used to evaluate the proposed system is the ModelNet
network emulator. ModelNet allows to emulate multiple network topologies and
their respective link characteristics, including bandwidth, queueing, propagation
delay, and drop rate. In particular, these properties can be adjusted dynamically,
a specially useful feature for testing adaptive systems. Another important aspect
of ModelNet is that it supports the emulation of unmodified applications, which
will simplify the system testing.

For the failure detector component, the performance baseline to be considered
is the current heartbeat protocol, since it is the simplest. The comparison metrics
relevant in this case are: (i) how are the accuracy and completeness properties
improved and (ii) the number of partitioned views due to detected faults.

Regarding reliable multicast, the baseline will also be the current imple-
mentations present in Appia. Performance improvements to this component will
consider: (i) the required time for the system to reach a stable state (either re-
garding uniformity or regular reliability), and (ii) the number of extra control
messages used (which imposes extra bandwidth requirements).

For total order, several scenarios will have to be tested, since Appia currently
includes several implementations and only one can be configured to be used at
deployment. Possibilities include comparing each of the included protocols to
the proposed reconfigurable architecture for this component. The main metric
to be considered is the overall system throughput of messages sent to the group.

Regarding policies, other good indicators of the system performance could
be: (i) the time it takes for components to recognize a change to the current
configuration is appropriate, and (ii) the time between the detection of this
change and the completion of the reconfiguration process.

Another aspect to be measured in all components is the imposed overhead of
switching between different implementations, both when this switch involves co-
ordination with other group members and when no such coordination is needed.

6 Schedule

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 29 - May 2: Perform the complete experimental evaluation of the
results.

– May 3- May 23, 2009: Write a paper describing the project.
– May 24 - June 13: Finish the writing of the dissertation.
– June 14, 2009: Deliver the MSc dissertation.
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7 Conclusions

The goal of this project is to implement and evaluate an adaptive group com-
munication protocol stack. In this report we have surveyed work on group com-
munication with emphasis on systems that already offer some form of support
for dynamic adaptation. In this context we have also addressed the problem
of providing an adequate infrastructural support to build this sort of adaptive
communication stacks.

As a result, we propose an architecture that is based on augmenting the group
communication stack of the Appia system. To support our work we leverage
on the mechanisms provided by the RAppia protocol composition framework.
Furthermore, we propose to use a policy-driven adaptation strategy. We have
identified three layers of this stack that can benefit from dynamic adaptation.
For each of them we identified when a specific implementation is appropriate,
and how the switch between different implementations can be done. Finally, we
established guidelines to evaluate the resulting system.
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