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Tiago José Pinto Taveira
Departamento de Engenharia Informática
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Abstract—Group communication denotes a set of member-
ship, communication, and coordination services that support
the development of distributed applications based on process
groups. These services are typically provided by a protocol
stack, which includes layers such as failure detectors, reliable
multicast, view-synchrony, total order, among others. The
performance of these protocols is highly dependent on the
operational envelope, including network latency, link error
rates, load profile, etc. Therefore, multiple implementations of
each layer have been proposed, each excelling in a different sce-
nario. This work addresses the architectures and mechanisms
required to build adaptive protocol composition frameworks,
namely those supporting group communication, such that they
can cope with a wide range of varying requirements.

I. INTRODUCTION

Group communication denotes a set of membership,
communication, and coordination services that support the
development of distributed applications based on process
groups [1]. It has been widely used to build multi-participant
applications, such as collaborative applications [2], and fault-
tolerant replicated services, for instance, database replication
systems [3].

The services provided by group communication include
failure detection, membership, and reliable multicast com-
munication with different ordering properties (including
FIFO order, causal order, and total order) [4]. These services
are typically provided by a protocol stack, where each ser-
vice is implemented by one or multiple layers. Systems that
use this kind of protocol stacks are Horus [5], Ensemble [6],
Cactus [7], Appia [8], among others.

Since there is a large number of protocols implementing
group communication services, each with its own advantages
and disadvantages, it makes sense to provide program-
mers with the tools to better adapt the system to their
specific needs. This work addresses the architectures and
mechanisms required to build adaptive protocol composition
frameworks, namely those supporting group communication,
such that they can cope with a wide range of varying
requirements.

II. RELATED WORK

A. Group Communication

Group communication is a designation that is used to refer
to a set of communication and coordination services that

aim at supporting the development of distributed applications
where a group of processes need to exchange information
and coordinate to perform a common task. For example, a
group can be a set of users communicating using a chat
system or playing an online game [2]. A group of processes
can also be formed to replicate a given component for fault-
tolerance: each group member is a replica, and all members
process the same set of requests from clients [3]. Finally,
processes may coordinate to distribute tasks among them [9].

There are two primary services provided by a group
communication system [10]: membership and multicast com-
munication.

The purpose of the membership service is to provide
to each participant up-to-date information about current
members of the group [11]. Such information is usually
called a group view, or simply a view. The interface of this
service allows processes to join a group and to voluntarily
leave the group. Processes may also abandon a group
involuntarily as a result of a fault. Whenever a change in
the group membership occurs, a new view is delivered to
the application. In this case we state that a view change has
occurred.

The other main service of a group communication system
is the multicast service. This service allows to send messages
to all group members, typically using the group identifier as
a multicast address (i.e., the sender is not required to list
each individual recipient explicitly).

Most group communication services support reliable mul-
ticast. Informally, the guarantees of reliable multicast are
the following [12]: (i) all correct processes deliver the
same set of messages, (ii) all messages multicast by correct
processes are delivered, and (iii) no spurious messages are
ever delivered.

Different ordering policies may be enforced on the mes-
sage exchange among group members. The most relevant
are FIFO (First-In First-Out), Causal Order, and Total Or-
der [10]. FIFO ordering implies that messages are delivered
in the same order they were sent. This kind of ordering is
often used as a basic building block to other guarantees.
Causal order is stronger than FIFO; it ensures that messages
are delivered according to the happened-before notion first
defined by Lamport [13]. Finally, total order multicast,
sometimes also referred to as atomic multicast, ensures that
all the messages sent in the system are delivered by all
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processes in the same order.
Group communication has been widely studied and many

group communication systems have been implemented, in-
cluding ISIS [14], Transis [15], Horus [5], Totem [16],
Spread [17], Ensemble [18], Cactus [19], Phoenix [20],
JGroups1, Appia [8], among others.

The ISIS toolkit was the first to implement view syn-
chronous communication. It was a monolithic implemen-
tation, that included most of the services listed above.
The system had a commercial version used in several
important deployments, such as in the NY stock exchange.
Horus, and later Ensemble, were modular and improved
versions of the ISIS system. Transis, Totem, and Spread
added novel protocols, including protocols specialized for
some network topologies, such as local area network or
wide-area communication. Cactus is a highly modular and
adaptive implementation of group communication. JGroups
and Appia are open source group communication systems
implemented in the Java language (and heavily inspired in
the Horus/Ensemble systems).

B. Adaptation in Group Communication

The performance of the protocols that implement group
communication services, as many other protocols for dis-
tributed systems, are highly dependent of operational con-
ditions such as observed load, network latency, available
bandwidth, CPU and memory constraints, etc. It is therefore
no surprise that many different protocols have been proposed
for each of these services. Just to implement total order,
about sixty protocols have been identified [21]. Some per-
form better when all nodes transmit at the same pace, others
perform better when the traffic is sporadic, some have been
optimized for broadcast networks, others for networks with
high latency, and so forth.

In the next paragraphs, we give two examples that il-
lustrate the importance of supporting runtime adaptation of
group communication services.

1) Adaptive Failure Detectors: Failure detectors are a
fundamental building block of any group communication
system. Typically, failure detection relies on some form of
periodic heartbeat mechanisms, i.e., nodes need to period-
ically exchange information with each other to mutually
check that they have not crashed. If no heartbeat is received
after some defined timeout value, the node is considered to
have failed. There are two aspects of the failure detection
that may require adaptation: the value of the timeout, that
needs to be adjusted to the observed network latency, and the
communication pattern, i.e., how nodes exchange heartbeats.

Regarding the timeout values, this is a configuration
parameter that has been recognized to need adaptation, even
for point-to-point communication. The TCP protocol [22]
embodies an algorithm to adjust the timeout value in run-
time, and that work has been extended to the multi-point
scenario by various other works [23], [24].

1http://www.jgroups.org/

Regarding the pattern of communication, a simple pattern
is to use all-to-all communication. For instance, each node
periodically sends a heartbeat to every other node in the
system. This requires the exchange of n2 control messages
in each detection cycle. Other, more effective, communica-
tion patterns include: hierarchic failure detectors, in which
processes are grouped in monitoring subnets in an attempt
to reduce message explosion [25] and gossip-style failure
detection [26]. However, there is often a tradeoff between
the amount of communication and the latency of the failure
detection. Therefore, the most appropriate communication
pattern must be chosen in function of the size of the group
and of the desired responsiveness of the failure detector. A
summary on scalable failure detection services can be found
in [27].

2) Adaptive Total Order: One of the simplest ways of
implementing total order is to elect a single sequencer, that
is in charge of assigning a sequence number to each message
transmitted in the group; then messages are delivered in
the order specified by the sequencer. This algorithm is very
effective when the following conditions hold: the network
latency is small (given that messages sent by a node other
than the sequencer are delayed by at least a roundtrip time)
and the system load is low enough not to overload the
sequencer. When these conditions are not met, it may be
preferable to use other strategies to enforce total order, and
therefore other protocols. This could be done by completely
switching total order implementations, or by having a total
order protocol that is able to adapt itself in a single,
monolithic implementation.

C. Protocol Composition Frameworks
An important tool for providing services tailored for the

execution environment is a protocol composition framework.
A protocol composition and execution framework is a soft-
ware package that supports the composition and execution
of communication protocols. In terms of protocol design,
the framework provides the tools that allow the application
designer to compose stacks of protocols according to the
application needs. In runtime, the framework supports the
exchange of data and control information between layers
and provides a number of auxiliary services such as timer
management or memory management for message buffers.
Several frameworks of this kind have been proposed, includ-
ing the influential x-kernel [28] (which inspired much of the
subsequent work on this subject), Horus [5], Ensemble [18],
Cactus [29], and Appia [8]. Typically, in these systems,
protocols communicate by the exchange of events.

D. Adaptive Protocol Composition Frameworks
Most of the early protocol composition frameworks were

concerned with providing the right tools to simplify the
construction of configurable protocol stacks, i.e., by reduc-
ing the coupling among different protocols, such that the
protocols could be configured in different ways, and the
most appropriate stack could be used for each application
scenario. Most recently, systems are also concerned with
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providing support for dynamic adaptation. We reproduce
here a set of requirements, extracted from [30], that protocol
composition frameworks need to satisfy to provide support
for dynamic adaptation:

• the composition framework should support a program-
ming model that makes easier for sources of context
information to make it easily accessible.

• the composition framework should provide the mech-
anisms to support the capture of context information,
both continuously or on-demand, as well as a mech-
anism to handle notifications generated by context
sources.

• the composition framework should include, or be aug-
mented with, services that are able to analyze the
context information and report relevant changes.

• the composition framework has to provide support
for dynamic reconfiguration, including mechanisms to
perform parameter configuration, and mechanisms to
perform the addition, removal, and exchange of services
to a given composition.

• the composition framework should provide, either em-
bedded in its kernel or as a set of additional services,
a comprehensive set of mechanisms to support the
coordination among nodes, to transfer service state in-
formation between services, and to enforce a quiescent
state of a service.

• the composition framework should provide mechanisms
to reason or obtain information on the system.

None of the frameworks we have cited previously fully
satisfies this set of requirements [30], although all of them
with the exception of x-kernel provide some mechanisms
that favour dynamic adaptation. Ensemble, for example,
uses virtual synchrony to support the installation of a new
protocol configuration when a new view is installed [6]. Cac-
tus [29] employs an architecture of adaptive layers, which
are constructed as a collection of adaptive components (ACs)
which have both a component adaptor module (CAM) and
alternative adaptation-aware algorithm modules (AAMs).
The switch itself is handled by micro-protocols defined in
these components.

E. Switching protocols

In order to switch protocols implementations, switching
protocols are usually used in adaptation frameworks. Two
examples are a generic switching protocol that has been
described in [31] and a switching protocol specific to total
order multicast [32].

The generic switcher assumes there is a manager process
which initiates the switch to the new protocol. To start the
transition, this manager sends a PREPARE message to the
other members. Upon reception of the PREPARE message, a
member returns an OK message that includes the number of
messages it has sent in the old protocol. From this moment
on, new messages will be sent using the new protocol, and
when received, they will be buffered instead of delivered.
The manager then multicasts a SWITCH message informing

Figure 1. RAppia’s System Model

all other nodes how many messages they should still receive
in the old protocol. When all in transit messages have
been received and delivered, members are free to switch to
the new protocol entirely. The switching protocol does not
deliver messages sent using the new configuration until all
messages sent in the old configuration are delivered. Due to
this, there may be a significant delay in the service during
the transition.

The second example of a total order switcher has the
advantage that the message flow is not stopped during the
transition. The algorithm works as follows. First, a control
message is sent to all processes indicating the transition.
When this message is received, the node starts broadcasting
messages using both total order protocols, and the first
message sent using the new protocol is marked. When nodes
begin receiving messages in both protocols, messages from
the old one are normally delivered, and from the new one are
buffered in order. As soon as a marked message is received
from all members, a “sanity” procedure takes place. First, all
messages received under the new protocol that have not yet
been delivered by the old one are delivered in order. After
that, received messages under the old protocol are simply
discarded, and all messages start being delivered under the
new protocol.

III. RAPPIA 2.0

RAppia’s architecture was originally proposed through a
number of extensions to the Appia protocol composition
framework, and later in [33], where the framework is ex-
tended with a set of pluggable components that provide
runtime support for dynamic adaptation.

This initial work provided the basis to support dynamic
adaptation of protocol compositions through a policy-driven
approach, according to the system model represented in
Figure 1. The main components of this architecture are: a
context sensor, which is present at each of the system’s
nodes and captures local context information; a context
monitor, which gathers this context information from the
sensors; the adaptation manager, which uses the obtained
information and selects the most appropriate protocol com-
position to be used; and finally the reconfiguration agent,
which performs the actual adaptations.
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A. Previous RAppia implementations
The work described in this thesis builds upon two previous

implementations of the RAppia system. The first was was a
proof-of-concept implementation of the RAppia’s architec-
ture, and the later an attempt to expand and complete the first
implementation with more robust and flexible mechanisms.

Both frameworks had limitations though. The first im-
plementation, RAppia 0.5, only supported the buffering of
events between the application and remaining stack, and not
in any session. This was due to the buffering layer being in
a fixed position. Also, the Sensor component did not have
specific operations to obtain the services present in a given
channel, or the concrete implementation of a given service
type. It also had the event scheduler of the original Appia
implementation, which was not designed with reconfigura-
tion of services in mind. Furthermore, RAppia 0.5 was never
applied to adaptations in the group communication stack.

RAppia 1.0, the second implementation, was under devel-
opment when the work reported in this thesis was initiated.
It was an ongoing effort to add some missing features to
RAppia 0.5. The work on RAppia 1.0 was being performed
by volunteer students on a best-effort basis. As a result, it
was incomplete and not well tested. For example, regarding
reconfiguration actions, it only supported the modification
of service parameters, such as updating a timeout field to a
new value. The runtime adaptation of protocol stacks was
not implemented, and no support for placing sessions in a
quiescent state existed. As for context information, it did
not have generic support for obtaining context information,
such as the value of a service parameter or the inspection
of a stack composition.

The limitations identified then led to the creation of a new
implementation, RAppia 2.0.

B. Architecture Overview
The RAppia 2.0 system has two main elements focusing

on dynamic adaptation: the Adaptation Manager and the
Reconfiguration Agent; and two key core components, the
Interpreter, and a new Event Scheduler.

The Adaptation Manager is a central component respon-
sible of tracking the context information obtained from each
of the nodes it controls, and reason on this information.
If needed, and according to the policies defined by the
programmer, it issues reconfiguration events to each of the
system’s nodes.

The Reconfiguration Agent is present on each system node
and interprets the reconfiguration events received, as well it
answers context query events, for example requesting the
value of a given service’s parameter.

Finally, the Interpreter and Event Scheduler are two key
core components regarding reconfiguration. The Interpreter
focuses on applying the specific reconfiguration actions
received, such as making changes to the channel. The
new Event Scheduler, designed from scratch, has several
characteristics that make possible the reconfiguration of
protocol stacks, in particular, its organization of channels
and a specific event processing order.

C. Supported Stack Operations

We now provide a description of each of the reconfigura-
tion actions supported.

• Add service the addition of a new service involves
the instantiation of a layer and the corresponding ses-
sion. If the session requires some of its parameters
to be initialized, they should be obtained either from
a session of the same type, or by implementing the
start(Channel) method, which is executed on every new
session introduced at runtime. For example, a total
order service usually requires the current installed view,
which can be transferred from an existing protocol in
the channel. Upon the addition, the channel is updated,
as well as its event routes.

• Remove service the removal of a service also implies a
channel and route update. In this scenario, new events
will be delivered to sessions according to the new
generated route. Existing events that have the removed
service in their route are discarded. Therefore, the
programmer has to enforce that events still circulating
in the channel can actually be dropped, or make sure
that no such events exist by using other reconfiguration
actions.

• Replace service at this time, replaced services should
be compatible with the new service added, that is, share
the same service type. This is necessary to guarantee
that the state is correctly transferred between the two
instances. Upon the replacement, the channel composi-
tion is updated, as well as its event routes.

• Become quiescent quiescience is applied to a chan-
nel. The procedure is as follows. A BecomeQuiescent
action is received by the Interpreter, specifying the
affected channel. The Interpreter sends a BecomeQuies-
cent event down the channel. Each service establishes
a quiescent state by coordinating with other nodes.
After quiescience is reached, the service sends the event
down. When all sessions are quiescent, the BecomeQui-
escent event is handled by the channel’s bottom which
notifies the Interpreter that the process is complete.

• Create channel in order to create a new channel, the
programmer has to specify its identifier and initial QoS,
in the form of a service list. There are two ways to
indicate each service: i) specify a service class and an
indication that it should be a new instance; ii) specify a
service class and indicate that it should be an existing
instance, by also identifying the channel the instance
is present in. The new channel is then registered in the
RAppia and started. Note that the confirmation that the
channel was created is only sent after all services have
been initialized for the new channel.

• Remove channel removing a channel implies that all
its pending events will be lost. New events that are
set to circulate in this channel will be discarded by the
event scheduler. The programmer should make sure that
no events are circulating in the removed channel (for
example by making is quiescent first).
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• Set value given a channel identifier, a concrete service,
a parameter name, and a new value, the set value action
simply consists of updating the parameter with the new
value using reflection mechanisms.

• Start/stop buffering the programmer indicates a chan-
nel identifier, a concrete service, and a location, which
can be either ABOVE or BELOW. Since services have
both an up and a down queue for the events being pro-
cessed, this action consists of blocking the correspond-
ing queue and not allowing its events to be processed
until a stop buffering action is received. These actions
are performed by the event scheduler, since it is the
component that is responsible for delivering events to
sessions.

• Switch channel the switch channel action is performed
on only one service, the total order switching service,
and consists of starting the switching procedure by
specifying the old and the new channels. This switch-
ing service corresponds to the algorithm described in
Section II-E.

• Pending reconfiguration this type of action signals a
given service that it should expect a reconfiguration
activation to a new channel. This type of action should
precede an activate reconfiguration action.

• Activate reconfiguration this reconfiguration signals
a given service to set its active channel to the one
specified. This means that all new events should be
forwarded to the new channel. This type of action is
used in services present in multiple channels.

D. Event Scheduler
We now give a few more details on RAppia’s event

scheduler, and the main differences from Appia’s original
implementation.

First of all, the services present in the scheduler are
represented with up and down queues. These queues con-
tain the events processed by their respective service. For
example, if a service creates or forwards an event with a
down direction, the event is placed on the service’s down
queue. This feature allows better control of events and their
delivery to sessions, such as blocking up and down queues
individually. A service representation in the scheduler is also
unique for each service instance. If a service is present in
multiple channels, the up and down queues are shared. In
particular, when the scheduler controls multiple channels
with shared sessions this is called a channel composition,
which contains an ordered list of all the services.

Regarding event routes, Appia has an optimization that
makes events bypass sessions that do not accept it. Now,
events pass through all sessions present in their channel, in
order to allow better control during adaptation. Although this
results in a performance hit, it has an important advantage.
Consider the following situation. Consider a channel with
services A, B, C, D, and E (top to bottom). The up queue
of service A is blocked, and there are events e1, e2, e3 and
e4 present in the up queue of service E. Since events need to
be processed in order, e1 will be the first. If the next service

that handles e1 is service A, events e2, e3, and e4 will have
to wait until the queue is unblocked. If events go through
all services, events e2, e3, and e4 have the chance of being
handled by intermediate services in the channel, allowing
them to move up while service A is blocked.

Another important aspect of this new implementation is
that channel compositions are totally ordered. That is, if
channel c1 has services A, B, C, and channel c2 has services
A, D, C, the scheduler will represent the composition either
A, B, D, C or A, D, B, C. This happens in order to guarantee
the causality in event processing when multiple channels
are present. For example, consider the channels c1(A, C)
and c2(A, B, C), and events e1 (on channel c2) and e2

(on channel c1) on the up queue of service C. e1 will
be processed first, since it is on the head of the queue,
and be placed on the up queue of service B after being
handled. When the scheduler proceeds to process event e2,
it will be handled by service A and placed on its up queue.
Therefore, event e1 will processed after e2, which results in
an order switch. Making events go through all services in
the composition avoids this issue.

For establishing a totally ordered composition from all
the channels, we used a topological sort algorithm, by
representing each channel as a directed graph. For example
channel C1(A, B, C) is represented as a graph with vertexes
A, B, C and edges (A,B) and (B,C). This algorithm must
be executed whenever there is a change in the composition,
such as the addition of a new service or channel.

With these aspects in mind, event processing consists of
going through the channel composition and finding pending
events. When processing the up direction, the composition
is inspected top to bottom, and the first session that has up
events is the one processed. Inversely, when processing the
down direction, the composition is inspected bottom to top,
and the first session that has down events is processed. This,
along with composition order, guarantees that event causality
is preserved.

IV. EVALUATION

Appia supports two very limited forms of runtime adapta-
tion: i) switching between two individual protocol stacks (for
example containing different total order implementations),
with the use a special switching service, and ii) the adapta-
tion of service parameters with the use of Java Management
Extensions (JMX).

The support for stack switching requires that all the
desired implementations are present in the system from
startup, that is, all the individual channels and service
instances must be decided before the adaptation actually
occurs. This structure implies that all the processing and
communication requirements of the protocols affects the
system. For example, if the system is using a sequencer-
based protocol as its current implementation, and has the
option of switching to a token-based implementation, the
token protocol functions normally albeit not processing
application messages. Therefore, the normal behaviour of
the token protocol, which implies the token rotation by
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sending group messages, is still present and has an impact
on the system and therefore the sequencer-protocol. Another
important disadvantage of this type of adaptation support
is that if the system encounters a scenario which is not
prepared to handle the adaptation is simply not possible.
For example, consider a system that has only a stack with
a sequencer-based total order protocol and a stack with a
sequencer-based total order plus a piggybacking mechanism
to aggregate messages. If the system evolves to a scenario
where the number of messages being sent increases greatly,
the system is unable to cope with these new circumstances,
since for example a token-based protocol, which supports a
much higher throughput, is not present. If on the other hand
we have a library of available protocols, and these can be
added and removed according to the system status without
being present at startup, this provides a much higher level of
flexibility, and does not impose an overhead on the protocol
stack currently being used. Furthermore, Appia does not
provide mechanisms to decide when to switch between
implementations, so any type of policies or decision-related
the programmer requires need to be defined in the protocols
themselves or in extra helper layers, created from scratch.

Regarding the Java Management Extensions, Appia allows
its use for obtaining and modifying service parameters.
This however implies extra changes to the protocols, by
implementing the appropriate JMX interfaces. Therefore, it
does not serve as a generic mechanism to gather context
information.

RAppia 2.0 provides the adaptation tools lacking in Appia,
both for dynamic addition and removal of protocols, stack
switching, policy definition and application, obtaining and
reasoning on context information, and all the other features
already described that provide enough flexibility to the
system programmer.

A. Experimental Settings

The experiments were performed with a clusted of 5
nodes, each one equipped with an 8-core Intel Xeon E5506
CPU at 2.13GHz with 8 GB of RAM, running Ubuntu
Server 10.04 with the 2.6.32-24 Linux kernel. All nodes
were connected through a Gigabit Ethernet LAN.

The total order protocols used in the adaptation tests were
a sequencer-based protocol, and a token-based protocol with
the following implementations.

• Sequencer-based total order protocol. This protocol
operates by electing a group member to play a special
role in the algorithm, the sequencer role. The idea is
that messages are multicast first by the sender and a
sequencer number is assigned to each message by the
sequencer, when it receives the message. Messages are
delivered to the application in the order of the sequencer
number.

• Token-based total order protocol. In this protocol a
token is rotated among group members. Only the node
that owns the token is allowed to send messages. The
token ensures that there are no concurrent messages

Appia 4.1.0 RAppia 2.0
48.32 µs 188.23 µs

Table I
TIME MESSAGES TAKE TO GO THROUGH ALL LAYERS IMPLEMENTING

VIEW-SYNCHRONY.

being sent and, therefore, defines a total order of mes-
sage delivery. Note that the token protocol implicitly
implements a piggyback layer, as multiple application
messages that are requested to be sent while the node
is waiting for the token can be aggregated by the node
when it gets the token.

The switching protocol used was described briefly in
Section II-E, and has a more complete description in [32].
This protocol was already present in the Appia framework,
and was ported to RAppia by implementing the appropriate
methods and supporting more than two channels.

B. Adaptation Mechanisms Performance

In this section we present a set of benchmarks performed
on both Appia and RAppia 2.0, in order to identify the over-
head the adaptation mechanisms and components impose on
the original platform.

1) Event Scheduling: The first test measured the time it
takes a message to go through all the protocols implementing
view-synchrony, with the intent of evaluating the overhead
imposed by the new event scheduler. This test was made
in a group of 5 nodes, with each node sending a fixed
60 messages per second. The times presented in Table I
correspond to the difference between the instant the message
left the application layer, and the instant the messages reach
the bottom layer (in this case, the TCP layer).

2) Adaptation Performance: In this section we compared
the time it takes to switch total order implementations in
the Appia and RAppia 2.0 platforms, for the sequencer-
based and token-based protocols. The values consider the
average time to switch between sequencer-based and token-
based configurations. This total order switching scenario was
tested with 3 and 5 nodes, with each node sending group
messages at a constant rate of 60 messages per second.
The switching algorithm was the same for both Appia and
RAppia, differing only in its concrete implementation to
match each platform’s requirements.

For RAppia 2.0 we measured the time each of the
adaptation steps requires, and the time spent in the whole
adaptation procedure, from sending the first adaptation event
to receiving the confirmation of the last. The adaptation time
was measured for the switch from the sequencer-based total
order to the token-based approach, and vice-versa, as well
as the average time between these two values. Results for 3
and 5 nodes and presented in Table II and Table III.

The first conclusion is that there is noticeable difference
between switching to the sequencer-based and token-based
approaches. This is mainly due to the quiescence procedure
that is performed on these protocols. Since the token-based
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3 nodes
Adaptation event Average Time

Temporary channel creation 15.54 ms
Activation of the intermediate channel 3.24 ms

Start the switching procedure 39.05 ms
Activation of the final channel 3.28 ms

Set the old total order quiescent 29.07 ms
Remove temporary channels 4.82 ms

Total 95.48 ms

Table II
TIME SPENT FOR EACH ADAPTATION EVENT IN A TOTAL ORDER SWITCH

SCENARIO, FOR 3 NODES.

5 nodes
Adaptation event Average Time

Temporary channel creation 17.85 ms
Activation of the intermediate channel 4.36 ms

Start the switching procedure 44.74 ms
Activation of the final channel 5.285 ms

Set the old total order quiescent 33.31 ms
Remove temporary channels 5.47 ms

Total 109.19 ms

Table III
TIME SPENT FOR EACH ADAPTATION EVENT IN A TOTAL ORDER SWITCH

SCENARIO, FOR 5 NODES.

protocol requires one full turn of token after the procedure
is started, this takes a longer time than the same operation
for the sequencer. This results in the switch from the token
to the sequencer taking a longer time.

Channel creation also has a relevant impact on the adap-
tation time. This is because the channel composition present
in the event scheduler needs to be updated, in order to
generate a new total order of all the protocols controlled.
This corresponds to a topological sort algorithm.

For Appia we measured the time between triggering the
adaptation in the local stack, and receiving the confirmation
that the switch is complete. Results are shown in Table IV.

3 nodes 5 nodes
Complete adaptation Complete adaptation

28 ms 34 ms

Table IV
TIME SPENT IN APPIA FOR THE ADAPTATION PROCESS IN A TOTAL

ORDER SWITCH SCENARIO, FOR 3 AND 5 NODES.

This adaptation time consists of the time the switch-
ing algorithm requires, since there is no need for chan-
nel creation or removal (the protocols are already there).
Also, there are no transmission delays for triggering the
reconfiguration, since the adaptation is triggered locally. In
particular, the adaptation process for Appia consists only of
the switchChannel step and corresponding confirmation for
the RAppia platform.

V. CONCLUSIONS

Adaptive protocol composition frameworks provide the
programmer a suitable tool to design and implement systems
that deal with dynamic environments. In order to cope with
the variability of the environment, these frameworks often
require a set of mechanisms that allow context monitoring,
policy definition and evaluation, and adaptation of the pro-
tocol compositions. This thesis addressed the problem of
building such frameworks and using them in the context of
group communication.

To this end, we introduced several relevant aspects re-
garding both group communication and dynamic adaptation.
We started by introducing the fundamental concepts behind
a group communication system, including its common ser-
vices and applications, and explained why it is suitable to
have adaptation mechanisms in this kind of systems, and
systems that deal with variable conditions in general. Next,
the thesis provided an overview over the main frameworks
that support runtime adaptation, discussing the key require-
ments addressed by each approach.

Based on the analysis of the related work, the thesis
proposes a new implementation of the RAppia protocol ex-
ecution and composition framework, that eliminates several
shortcomings of the previous RAppia releases. Furthermore,
the complete group communication stack of the Appia
system was re-factored to operate on the new framework.

Finally, we provided an evaluation of RAppia compared
to the original Appia system, focusing on the impact that the
required adaptation components impose on event scheduling,
message size for both the header pool model and adaptation
events, and the adaptation process. The main conclusion is
that although RAppia does not perform as well as Appia, the
added flexibility in scenarios where conditions are dynamic
greatly outweighs this aspect.
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