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Abstract

This work addresses the reconfiguration of leader-based Byzantine Fault Tolerant (BFT) consen-
sus protocols that use dissemination/aggregation trees to support the communication between the
leader and the remaining participants. We consider a stable-leader approach, where a given config-
uration is used for running multiple consecutive instances of consensus until it is suspected to be
faulty. The goal is to design a reconfiguration strategy that promotes the use of efficient topologically
aware trees. Furthermore, if the nodes suspected to be faulty are inner nodes in the tree, we aim to
perform reconfiguration at the local level on the sub-branches of the tree, to maximize the number
of nodes that are not affected by the reconfiguration.
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1 Introduction
Byzantine fault tolerant (BFT) consensus protocols allow correct processes to reach agreement even

in the presence of a fraction of malicious processes. BFT protocols have been first introduced for
synchronous systems [1] but have been subsequently extended to execute in eventually synchronous
settings [2, 3, 4]. BFT protocols require multiple rounds of message exchange among participants and are,
therefore, costly both in terms of communication and processing. For this reason, early implementations
considered a relatively small number of participants (in the order of dozens) [5]. However, with the
emergence of the blockchain abstraction and the increasing relevance of large-scale systems based on
blockchains, the need to design byzantine consensus protocols that can scale to hundreds of participants
has been an emerging topic.

PBFT [2], one of the first BFT consensus protocols designed for eventually synchronous systems,
is a leader-based protocol that uses an all-to-all communication pattern, i.e., there are coordination
rounds where participants send (and receive) messages to (from) every other participant. Due to the use
of this communication pattern, PBFT is inherently non-scalable. Several approaches have emerged to
circumvent the scalability limitations of PBFT-like protocols. One approach consists of using a star-based
communication pattern, such as HotStuff [3], where nodes only communicate directly with the leader: this
reduces the message complexity from quadratic to linear, but the leader remains a bottleneck. Another
approach is to use hierarchical strategies, such as in Fireplug [6], where consensus is achieved by the
hierarchical combination of several sub-consensus instances that are executed among smaller sub-groups.
A limitation to approaches of this nature is how they reduce the resilience of the system, given that
the fraction of byzantine nodes required to take control of a sub-group is smaller than the fraction of
nodes required to prevent consensus in the super-group. Once a sub-group is compromised, consequently
the consensus in the super-group is as well. Finally, the use of dissemination and aggregation trees has
been proposed to circumvent the scalability limitations of the star-based communication pattern, while
retaining the resilience properties of non-hierarchical approaches. In our work, we will focus on protocols
that use this strategy.

Kauri [4] is a BFT consensus protocol that extensively uses dissemination and aggregation trees to
achieve scalability. Since the use of trees introduces extra latency in the communication, Kauri also
uses an aggressive pipelining strategy that expands on the pipelining already used in protocols such
as HotStuff, allowing the leader to start multiple consensus instances before previous instances have
terminated. Kauri has two main limitations. First, it is designed for homogeneous settings and its trees
are constructed using randomization, which does not take into account the capacity of the nodes or
the latency present in the communication links. Secondly, when a reconfiguration is required, a tree is
replaced by a completely different tree that typically does not share any inner node with the previous tree.
While this reconfiguration strategy permits Kauri to find a robust tree quickly, it is highly disruptive for
the pipelining process and hence for performance.

In this work, we address the two main limitations of Kauri identified above. On one hand, we aim
to design algorithms that optimise dissemination/aggregation trees by leveraging information about the
network latencies and the CPU capacity of the nodes. On the other hand, we aim to design reconfiguration
strategies that can be applied to sub-branches of the tree, to maximize the number of nodes that are not
affected by the reconfiguration.

The rest of the document is structured as follows: Section 2 summarizes the goals and the expected
results of this project. In Section 3, we provide more insight in regard to relevant blockchain BFT
consensus concepts. In Section 4, we survey relevant BFT consensus protocols with an emphasis on
efficiency and performance. In Section 5, we aim to define a high-level and preliminary approach to solve
our reconfiguration problem. In Section 6, we define our evaluation metrics, methodology, and goals. In
Section 7, we present the schedule of future work. And lastly, in Section 8, we provide a conclusion to
this report.
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2 Goals
Our work addresses the construction and reconfiguration of dissemination/aggregation trees to sup-

port scalable byzantine fault-tolerant consensus. More precisely:

Goals: We aim at using information regarding the network latency between consensus partic-
ipants and information regarding their performance to build dissemination/aggregation trees
that support the fast exchange of information among a quorum of the participants. Fur-
thermore, if one or more inner nodes of the tree are suspected to be faulty or showing poor
performance, we aim at designing reconfiguration strategies that can mitigate the problem
locally and avoid a global reconfiguration unless the leader is suspected to be faulty.

Consequently, the project is expected to produce the following results:

Expected Results: The work will produce i) a specification of a tree construction algorithm
and of its reconfiguration algorithm; ii) an implementation of the proposed algorithms, iii)
an experimental evaluation of the performance of the resulting implementation.

3 Background
The objective of this section is to introduce the required background for our work. Section 3.1 intro-

duces the blockchain abstraction, Section 3.2 defines Byzantine Fault Tolerant Consensus and Section
3.3 discusses the operation of consensus protocols in wide-area network (WAN) deployments.

3.1 Blockchain Systems
The term blockchain refers to an abstraction that offers a persistent, append-only, totally ordered

ledger of records. Records are grouped into blocks, that can be added to the head of the ledger. Once a
new block is committed, it can no longer be deleted or tampered with. Thus, the sequence of committed
blocks is immutable, and the ledger can only be updated by adding additional blocks to the ledger itself.
This ledger is typically implemented as a linked-list of blocks, where each block has a reference to their
predecessor block in the ledger, thus creating a chain of blocks. Although it is possible to materialize
this abstraction using a centralized server, blockchain implementations are generally distributed and
decentralized. In this case, the ledger is cooperatively maintained by a possibly large and open set of
nodes that coordinate to commit new blocks to the chain and to prevent committed blocks from being
tampered with. Using the appropriate protocol, it is possible to derive a reliable and trusted decentralized
implementation of the blockchain in settings where a fraction of the participants may not be trusted.

When considering which nodes can participate in a decentralized algorithm to maintain the blockchain,
it is possible to classify existing systems into two main categories:

Permissionless blockchains: In a permissionless blockchain, any node in the system can participate
in the coordination protocol used to maintain the chain. Decentralized ledgers were originally popularized
with a permissionless setting, as used in Bitcoin [7]. In this setting, a node can join or leave the protocol
at any moment, and the number of nodes participating in the protocol is not limited. Additionally,
individual nodes cannot be trusted but it is assumed that a majority of nodes are correct and do not
depict malicious faults. Malicious nodes can aim to overthrow the system, by discarding blocks proposed
by correct nodes and by attempting to prevent correct nodes from proposing new blocks. For this
purpose, malicious nodes may also adopt multiple identities to appear as multiple nodes, a behaviour
that is often referred to as a Sybil attack [8]. To limit the power of malicious nodes, and in particular, to
limit their ability to propose new blocks, a participant must commit a substantial number of resources
to the protocol using techniques such as Proof-of-Work (PoW) [7] or Proof-of-Space [9]. Unfortunately,
the use of techniques such as PoW limits the throughput of the system and induces substantial energy
consumption, making these protocols ecologically unfriendly. Another limitation of techniques such as

4



PoW is that parties may benefit if they collude to solve the algorithm’s crypto-puzzle, which creates an
incentive to reduce decentralization.

Permissioned blockchains: Permissioned blockchains have gained traction due to their potential
to create more efficient and secure systems when compared to permissionless designs [10]. In a per-
missioned blockchain, participants are known and limited, creating a scenario where the system has
controlled decentralization but that also performs better, as mechanisms for Sybil attack resistance are
no longer required. Additionally, permissioned blockchains allow for the implementation of BFT con-
sensus protocols, which, combined with the fact that participants have to be authorized, creates a much
more controlled environment for system execution. BFT consensus alternatives found in permissioned
blockchains are also known to be much more energy efficient when compared to protocols found in
permissionless settings, due to the fact that in the latter security is often assured through the use of
computationally heavy techniques and algorithms.

3.2 Byzantine Fault Tolerant Consensus
As mentioned above, BFT consensus protocols are a popular solution in permissioned blockchain

contexts. The goal of BFT consensus is to allow correct nodes to agree on a singular valid output for an
instance of consensus, under the assumption that there may be f nodes exhibiting arbitrary behaviour.
While arbitrary behaviour may refer to any type of failure where any error may occur, in the Byzantine
Fault Tolerant model we assume the worst-case scenario where faulty nodes may collude with malicious
intent to overthrow the system [11].

In a BFT system with N nodes, we say that we have N = 3f + 1 resilience when the system is able
to reach consensus in the presence of f = ⌊N−1

3 ⌋ faulty nodes. This is done by leveraging quorums of
size Q = 2f + 1 for coordination, which guarantees that at least one correct node belongs to any pair
of quorums, enabling them to relay protocol messages from one quorum to another. Byzantine Fault
Tolerant Consensus is characterized by the following properties [11]:

Definition 1 (Termination). Every correct process eventually decides some value.

This is a liveness property. It guarantees that, in every instance of consensus, all correct processes
will eventually output a value and thus the system will progress.

Definition 2 (Validity). If a process decides v, then v was proposed by some process.

The notion of validity is further extended into two variants in the context of Byzantine Fault Toler-
ance:

Definition 2.1 (Weak Validity). If all processes are correct and propose the same value v, then no
correct process decides a value different from v; furthermore, if all processes are correct and some process
decides v, then v was proposed by some process.

Definition 2.2 (Strong Validity). If all correct processes propose the same value v, then no correct
process decides a value different from v; otherwise, a correct process may only decide a value that was
proposed by some correct process or the special value □.

It is of note that Strong Validity does not imply Weak Validity ; While in Def. 2.1 correct processes
can only decide on a value if all processes are correct, in Def. 2.2 correct processes can decide on a value
proposed by a correct process or the special value ’□’ in execution scenarios that may have byzantine
participants. Both variants of Validity can be useful in different contexts, and the task of selecting which
one is desired for application execution is up to the protocol designers themselves.

Definition 3 (Integrity). No correct process decides twice.

Definition 4 (Agreement). No two correct processes decide differently.
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Integrity and Agreement, alongside a Validity variant, are the properties that uphold safety through-
out consensus execution. Adoption of such properties makes it so consensus instances have a deterministic
effect on system state when combined with the use of State Machine Replication (SMR) techniques to
propagate the agreed-upon changes and commands to all the system’s participants. Furthermore, the
combination of these properties makes it so that the agreed-upon state has been witnessed and approved
by all correct processes.

3.3 WAN Deployment
Permissioned blockchains are frequently deployed within wide-area networks (WANs). As the name

implies, WANs are a type of network that connects different devices over a large geographic area, some-
times even globally. WANs may reveal themselves to be unreliable and create difficult conditions to both
guarantee system liveness and achieve good performance, due to the common occurrence of network
partitions and due to the usually high latency and low bandwidth that systems must face. These traits
accentuate the fact that in most real-world scenarios, network links in a WAN are inherently asym-
metric and create a heterogeneous topology, which consequently increases the asynchrony between pairs
of nodes. When deployed in these conditions, it is standard for systems to take into account mecha-
nisms that can compensate for and mitigate the downsides of the geographic distance between devices.
Blockchains are no exception to this, existing several works that tackle the scalability and reliability
of consensus in this setting, such as Steward [12], Mencius [13], and the recently proposed notion of
Planetary Scale Byzantine Consensus proposed by Voron et al. [14].

4 Related Work
Given the background provided by Section 3, we can now discuss the relevant features frequently

utilized in the design and implementation of state-of-the-art permissioned blockchain BFT protocols.
We will first enumerate important traits that help distinguish protocols apart and then look into several
examples of BFT protocols that leverage these traits to improve the efficiency and reliability of protocol
execution, namely scalability, reduced communication complexity, reduced latency, and increased system
throughput. Finally, we will provide an overarching discussion that will help highlight which beneficial
features our solution aims to achieve.

4.1 Towards Coordinated Agreement in Blockchain
With the formal definition for BFT consensus defined in Section 3.2, it is important to differentiate

and detail some of the more common approaches to achieve agreement between nodes in a distributed
system. It is of note that, in a blockchain environment, consensus is run to agree on which transactions
will be appended to the distributed ledger and in which order they will be committed and executed.
This means that at the heart of consensus applied to blockchain, protocol designs need to take into
account mechanisms that ensure coordination between correct nodes for consecutive consensus instances.
Through proper coordination, distributed consensus systems are able to commit and execute client
requests, avoid conflicts and achieve agreement with reduced message and time complexities [15]. We
define the following approaches for coordinated agreement:

Leader-based [2, 3, 4]. In leader-based BFT consensus algorithms, the role of the coordinator, or as
it is usually called, the leader, is to help all correct processes converge towards a decision in a relatively
fast manner [16]. In the context of blockchain, it is the leader’s role to propose which transactions will
be appended to the ledger. Consequently, this means that system progress is directly linked with leader
performance. Leaders in consensus are usually defined through the use of view synchrony algorithms
[11], where the transition from one view to the next dictates a leader change. Due to the importance of
the leader role, systems must provide mechanisms to define the leader election policy and to efficiently
recover from consensus executions where the leader is found to be faulty. Additionally, in the context
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of blockchains, the existence of a system-wide leader creates concerns regarding censorship and leader
fairness, which has led to the creation of more sophisticated algorithms that aim to mitigate these issues
[17, 18]. Leader-based algorithms typically fall under two categories: efficient leader-based, where the
leader’s role is correlated with achieving a target performance with high throughput and low latency in
fault-free executions; and robust leader-based, where the leader’s role is providing high fault-tolerance to
the system instead of achieving maximum performance [15].

Leaderless [19, 20]. Leaderless coordination aims to mitigate the previously mentioned issues re-
garding leader-based systems, such as censorship and leader-related bottlenecks, thus obtaining higher
decentralization [16, 15]. Additionally, by providing equity in regard to the task of transaction pro-
posal, these systems often aim at utilizing this parallelization to obtain gains in the system’s transaction
throughput. The main disadvantage of leaderless coordination ends up being the complexity of the mech-
anisms required to reach proper agreement and ordering, especially in the context of blockchains, where
blocks need to know the previous block’s hash. The lack of a primary node acting as a coordinator in
the system creates conflicts related to proposal order. Consequently, solutions end up having increased
message and time complexities due to the mechanisms which are usually applied to either avoid or correct
such ordering conflicts.

Multi-leader [21, 22]. Multi-leader coordination can be defined as a specification of leaderless design,
where instead of giving the ability to propose simultaneously to all system participants, there is a
defined set of leaders assigned to a portion of system execution. The multi-leader coordination approach
aims at bridging both the advantages of leader-based and leaderless protocols: it utilizes the additional
concurrency to achieve a better throughput and avoid bottlenecks while simultaneously limiting the
amount of leaders in the system to reduce the higher communication overheads and conflict rates seen
in leaderless designs. However, unlike leaderless systems, multi-leader protocols must take into account
election mechanisms and leader selection policies, which come with additional challenges in terms of
algorithm complexity [23].

Group-based [24, 6]. In group-based coordination, the system is divided into different groups that
align with either different responsibilities or different node characteristics, such as geographic location
or latency. Afterwards, these groups may be used to allow correct nodes to reach agreement through
the use of known coordination mechanisms. A common design example of group-based coordination is
the definition of a global group whose nodes are delegated with the management of a dedicated local
group. Each of the global group’s nodes may perform tasks such as the collection and dissemination of
their local group’s votes. Consensus is reached through the global group’s communication channels and
the results are later propagated to the lower hierarchy local groups. Although group-based systems can
offer better scalability and performance, these qualities can only be achieved under efficient grouping
assumptions, which is a highly complex task when taken into account in a real-world context [23].

4.2 Communication in Blockchain Consensus
Another fundamental aspect of the byzantine consensus paradigm applied to blockchain is how the

participants communicate between themselves throughout protocol execution. We can underline two
critical components which can influence both protocol scalability and efficiency:

4.2.1 Timing Assumptions

As expected of most real-world scenarios, distributed systems must be defined within the parameters of
real-world network systems, and blockchains are no exceptions. BFT consensus systems usually make
one of the three following assumptions regarding the time bounds on communication delays [11]:

7



Asynchronous Systems. The basis for asynchronous systems can be summarized as not making any
timing assumptions about processes and links. The passage of time is usually based on the transmis-
sion and delivery of messages, opposite to what happens in synchronous systems where participants
can accurately time their assumptions by relying on physical clocks. It is still possible to capture some
notion of the passage of time by encoding cause-effect relations between events using logical clocks [25].
Asynchronous systems must also take into account the FLP impossibility result [26], which states that
there is no deterministic algorithm that reaches consensus in an asynchronous network when in the pres-
ence of at least one faulty node. Several mechanisms have been studied to circumvent this impossibility
while retaining an asynchronous system, some of the more popular ones being the use of randomization
algorithms for the convergence of consensus values and the termination of consensus instances [10].

Synchronous Systems. In the synchronous model, there is a known upper bound for both processing
delays (synchronous computation) and for message transmission delays (synchronous communication).
Additionally, synchronous systems are able to coordinate themselves based on time, through the use of
a synchronous physical clock in each participant. This local clock has an upper bound on the rate which
it deviates from a global system-wide real-time clock. Due to how difficult it is to implement and assure
these timing assumptions, synchronous systems are not common case in the study of BFT consensus in
permissioned blockchains.

Partially Synchronous Systems. Partial synchrony is derived from the fact that while real-world
systems may observe some time bounds (most of the time), these timing assumptions are not guaranteed,
creating periods of time where the network is asynchronous. The partial synchrony approach is designed
around the fact that the network will correctly hold the proper timing assumptions eventually, just that
it is not known when. This makes it so execution is dictated in an eventually synchronous approach,
where once it reaches a long enough synchronous period of time, the system will be able to hold timing
assumptions, allowing for the remainder of the execution to terminate or do something useful towards
system progress. This approach was first introduced by Dwork, Lynch, and Stockmeyer (DLS) [27] to
circumvent the FLP impossibility, as a protocol that maintains safety during asynchronous periods will
be able to guarantee termination once it reaches a period of synchronous behaviour. These systems
are usually complemented with an eventually perfect failure detector, which can adjust and leverage the
timing assumptions in eventually synchronous systems in order to correctly suspect faulty participants
after an unknown amount of time.

4.2.2 Communication Patterns

The adoption of certain communication patterns in protocol execution dictates the message complexity
of the different phases of consensus. Such patterns balance the number of communication steps in each
phase, which is a source of latency during consensus, with the communication complexity of message
propagation itself, which is correlated to bandwidth performance. Some of the more relevant patterns
we analyse are as follows:

All-to-All. This pattern consists of every process sending protocol messages directly to all other pro-
cesses during consensus rounds. By avoiding intermediary processes in message delivery, adversaries
cannot interfere with the communication of two correct parties, offering robustness. However, this com-
munication pattern often leads to a higher probability of network saturation proportional to the number
of participants, as the resulting communication complexity ends up being O(n2).

One-to-All-to-One. In a One-to-All-to-One pattern, a designated coordinator is charged with per-
forming the aggregation of consensus round votes and the dissemination of the results. The aggregation
and dissemination of data are two different steps that must be executed at each relevant phase of con-
sensus, resulting in a higher overall latency for each phase when compared to All-to-All patterns. This
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pattern creates a network topology that is often referred to as a "logical star", where the coordinator al-
leviates the network load at the cost of being a single point of failure with a heavier processing workload.
This communication pattern’s main advantage is how it reduces the communication to O(n) complexity
when compared to standard All-to-All patterns.

Tree-based. Tree-based patterns are an extension of One-to-All patterns, where to reduce the load
of a singular aggregation and dissemination coordinator, the system instead divides itself into multiple
layers of aggregation and dissemination. The root of the tree still executes the functions of a leader, but
instead of relaying messages to all other processes, it only does so to its children nodes. Afterwards,
each child can be the parent of another set of nodes, performing first the dissemination of information
to its children and later the aggregation of the gathered responses to send to its own parent. Thus,
this structure spanning a tree spreads the load and responsibility of One-to-All communication amongst
all participants charged with the role of parent node, at the cost of further increasing the number of
communication steps in each consensus phase. The added latency can be accounted and compensated
for by a variety of mechanisms, such as pipelining techniques, which we describe in more detail in Section
4.3.

Hierarchical Groups. Hierarchical group patterns, just like tree-based patterns, offer a better dis-
tribution of load by assigning the responsibility of information dissemination and aggregation to sets of
nodes belonging to specific groups. As previously mentioned in group-based coordination, the usual sce-
nario is the definition of a global group (also called super-group), where each node is delegated the task
of information propagation and vote gathering for their respective local group (also called sub-group).
Nodes belonging to the super-group all belong to a sub-group, but not all nodes in a sub-group belong to
the super-group. The system is then able to achieve consensus on the higher super-group level through
the execution of different steps at the sub-group level. The efficiency of this pattern is highly dependent
on the quality of the grouping procedure applied to the system, commonly referred to as clustering, as
system performance depends not only on the latency between the nodes belonging to the global group
but also requires overall low latencies within the local group scope.

4.3 Pipelining
To compensate for the throughput losses experienced by systems with several communication steps

in their consensus execution, protocols leverage the added latency to their advantage through a con-
cept known as pipelining. Pipelining is based on the idea of optimistically initializing future consensus
instances while the current one still has not terminated. This can be done due to the fact that each
instance of consensus can be divided into several phases (or rounds) of communication that have idle time
between them, as nodes have to wait for the propagation and processing of messages in order to receive
the replies necessary to advance to the next round. To exemplify, in systems such as Chained HotStuff
[3], the leader can optimistically initiate consensus for block (n+1) after it receives the proposal from the
previous leader for block n, meaning that it simultaneously executes round 1 of communication for block
(n+1) as it executes round 2 of communication for block n. Meanwhile, in Kauri [4], pipelining is further
extended by defining the notion of pipeline stretch, which exploits the piggybacking functionality of net-
work packets introduced in Chained HotStuff to allow multiple new instances of consensus to be started
simultaneously in a singular round of communication of a given consensus instance. Kauri presents a
higher pipelining potential when compared to Chained HotStuff due to its nature as a topological tree,
where the latency between the root and the leaf nodes creates a considerable amount of idle time for
optimistic consensus instantiation. Consequently, pipeline stretch is directly linked with factors related
to the tree’s configuration: it is dependent on the tree’s fanout m (i.e., how many children a parent node
has) and on the tree’s height h (i.e., the number of layers in the tree).

The application of pipelining is dependent on how often a system may face reconfiguration. In
protocols based on a stable leader policy, a designated leader will carry out pipelining tasks throughout
multiple instances until it is suspected faulty. The execution of a view-change breaks the pipeline,

9



requiring the following leader to resume it once elected. In the case of rotating leader-based protocols
such as Chained HotStuff [3], as each instance is assigned to a different leader, pipelining is performed
by making it so each leader executes and certifies only one phase of the protocol and then passes the
pipelined information to the following leader. This method of ensuring leader fairness in rotating leader
pipelined protocols is often referred to as Leader-Speaks-Once (LSO) [28]. This is facilitated by the fact
that HotStuff leverages Quorum Certificates (QC), which are used as a collection of votes from a quorum
in regard to a phase of consensus. That said, QCs can be used to aggregate and disseminate information,
and, in the case of Chained HotStuff, generic QCs can be utilized to aggregate information related to
concurrent rounds of different consensus instances, simplifying the transfer process of all the necessary
information to the subsequent leaders in the pipeline. However, the LSO pipeline approach brings forth
liveness concerns due to the existence of the Consecutive Honest Leader (CHL) property [28], which can
be summarized as the fact that to reach the successful commit of a single proposal, then there needs
to be enough consecutive correct leaders in the pipeline to execute the consensus instance from start to
finish. In the case of Chained HotStuff, liveness is hindered by the fact it needs 4 consecutive correct
leaders to successfully decide on consensus instances, but pipelining is still proven to be beneficial to the
system’s overall throughput.

4.4 Reconfiguration
Now that we have established how a system may arrange itself for coordination and communication,

it is important to establish the method through which the protocol maintains its desired design choices.
Specifically, when dealing with mechanisms such as consensus, it is important to keep track of all the
participating members and, in case there is one, keep track of which node may be exercising the role
of leader (similarly, in the case of multi-leader systems, we need to keep track of all leader nodes for
a given instance). To that effect, we define that consensus is run in a system configuration (usually
referred to as view) that is updated incrementally when the system deems it necessary to. There are
three major reasons why a blockchain consensus system may want to reconfigure: i) to remove a faulty
leader from its position; ii) to frequently switch the leader position to ensure transaction fairness and
load balancing in the blockchain; iii) for general purpose membership and topology management reasons,
such as performance optimisations.

4.4.1 Leader-based Reconfiguration

From the reconfiguration scenarios mentioned above, we can outline two previously mentioned common-
place behaviours found in leader-based BFT protocols that dictate how frequently a system may need
to reconfigure itself:

Stable Leader Policy. In a Stable Leader Policy setting, the actuating leader is only switched when
enough nodes in the system suspect that it is faulty. Once a quorum of nodes deems that the leader
is showing arbitrary behaviour, they trigger the reconfiguration mechanism through the exchange of
messages to guarantee that the next instance of consensus is run with a new leader. An example of
this would be in PBFT [2], where nodes broadcast to all other nodes a VIEW-CHANGE message if the
current leader is not making enough progress within a given time bound. Stable Leader based systems
can leverage this reconfiguration policy to drive higher transaction throughputs in the system as, once
a correct leader is picked, it means that the system can avoid the need for reconfiguration for long
periods of time in most scenarios. However, in the context of blockchains, this type of behaviour is
undesirable as maintaining the same leader for long periods of time raises questions about leader fairness
and transaction censorship, as a biased leader can select client requests to be excluded from block
proposals for indefinite periods of time. Lastly, byzantine leaders can greatly diminish the throughput
gains of stable leader systems by acting correctly within the bounds of the reconfiguration trigger, at an
intentionally slower pace [10]. Such cases require that protocols adopt more fine-tuned and inquisitive
fault detection mechanisms.
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Rotating Leader Policy. Systems based on a Rotating Leader approach switch the leader role every
consecutive consensus instance, regardless of the perceived leader correctness. Contrasting with the
Stable Leader approach, the Rotating Leader Policy favours a proactive reconfiguration strategy over
a reactive one. The chosen leader node is picked according to the protocol’s discretion, although as a
baseline protocols usually follow a looping pattern that traverses all nodes in the system, such as the one
seen in HotStuff [3]. By frequently changing leaders, the system avoids the aforementioned censorship
and slow correct leader issues of Stable Leader based configurations, while simultaneously ensuring better
load balancing in regards to the additional workload tied to leader activities. Conversely, this approach
incurs an additional time overhead due to how the reconfiguration procedure becomes part of the normal
case operation. Additionally, byzantine leaders will periodically be put in charge of system coordination,
hindering system progress.

4.4.2 Reconfiguration Complexity

Given the previous context, it is clear that reconfiguration efficiency is crucial not only when the sys-
tem is subject to faults but also for normal case operations. To that end, it is important to take into
consideration factors that may impact the execution of view change procedures, most notably, the com-
munication complexity behind them. Just as a protocol’s execution may follow certain communication
patterns, a view change procedure may be designed to follow a similar strategy to enable the system to
reach agreement on a new configuration.

We can first mention protocols that utilize an All-to-All broadcast method in order to reconfigure,
such as PBFT. When a node suspects that the current leader is faulty, it begins broadcasting a VIEW-
CHANGE message to all nodes. Once a quorum of nodes has broadcast this message, if the subsequent
view’s leader is correct it will eventually prepare and broadcast a NEW-VIEW message within the
timeout bound. This message shares the needed system state and legitimizes the success of the view
change so all nodes may enter the new view. In case of failure, this process is repeated incrementally
until a view with a correct leader is found. As expected, albeit robust, this type of reconfiguration
pattern is highly limited by its quadratic message complexity, which quickly saturates the bandwidth of
the network and offers poor performance in large-scale systems.

For systems based on One-to-All communication such as HotStuff, processes that deem a view change
necessary send a NEW-VIEW message directly to the next view’s leader. Once this node has aggregated
a quorum of NEW-VIEW messages, it can effectively broadcast the collected votes and the necessary
system state so that the protocol’s next consensus instance runs in the new view. In HotStuff’s case,
all nodes send a NEW-VIEW message between consensus instances to the next leader as dictated by
its Rotating Leader policy. Overall, this approach has a linear communication complexity, proving to
be a more scalable alternative in systems that already leverage a coordinator mechanism. This is the
subject of study by solutions such as Cogsworth [29], which aim to make the optimal time of leader-based
reconfiguration more common through the use of speedup mechanisms.

4.4.3 Reconfiguration Goal

Another factor which should be taken into consideration is the goal of the reconfiguration. In systems
that aren’t based on All-to-All communication, where the topology is more complex, the reconfiguration
mechanism may need to be run several times in order to reach the desired system state. In the case of
Kauri, the system aims at deriving a robust tree, which can be defined as [4]:

Definition 5 (Robust Tree). An edge is said to be safe if the corresponding vertices are both correct
processes. A tree is robust iff the leader process is correct and, for every pair of correct processes pi and
pj, the path in the tree connecting these processes is composed exclusively of safe edges.

In short, a robust tree can be seen as a logical tree where neither the root nor any internal node
is faulty. This is a strict assumption that excludes cases where a tree may lead to consensus even
if not robust: for example, trees whose faulty internal nodes have all their children faulty as well.
Inherently, the amount of possible tree configurations is considerable in size, while only a small portion
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of said configurations are robust in nature. As a solution, Kauri leverages this definition to design a
reconfiguration mechanism that attempts to find a robust tree configuration in under t attempts, falling
back to a star topology in case of failure. This is done by framing the reconfiguration problem as follows:
by modelling a tree configuration as a static graph and the sequence of trees as an evolving graph, we
can guarantee that there will be a robust static graph under the definition of recurringly robust evolving
graph [4]:

Definition 6 (Recurringly Robust Evolving Graph). An evolving graph G is said to be recurringly
robust iff robust static graphs appear infinitely often in its sequence.

Afterwards, Kauri introduces the notion of t-Bounded Conformity to define an upper bound on the
number of consecutive reconfigurations we might face until we find a robust static graph [4]:

Definition 7 (t-Bounded Conformity). A recurringly robust evolving graph G exhibits t-Bounded
Conformity if a robust static graph appears in G at least once every t consecutive static graphs.

To reconfigure in t-Bounded Conformity, Kauri shuffles all its nodes into t disjoint bins, each of size
equal to or greater than the total number of internal nodes in the system, I. Theoretically, if the number
of faulty nodes in the system verifies the condition of f < t, then we can guarantee that one of the bins
is constituted entirely by correct nodes, meaning that we can draw correct root and internal nodes from
a singular bin and assign the leaves utilizing the remaining bins to establish a robust tree. However, in
the scenario of a balanced tree with fanout m, there will be at most m bins with size equal to or greater
than I. This limits Kauri’s reconfiguration to (m-1)-Bounded Conformity, where f < (m − 1) or more
explicitly f ≥ m faulty nodes may force the system to instead opt for a star-based reconfiguration with
a non-faulty leader. In this worst-case scenario, reconfiguration may take up to m + f + 1 attempts
and the system loses its tree topology benefits. As this process is randomized, it is of note that Kauri
does not aim to preserve its pipeline structure between configurations, opening up the possibility for the
optimisations in our work.

4.5 Systems of Note
To effectively support our solution design on previous BFT protocol contributions, we will first anal-

yse the background and motivation of our declared relevant systems and afterwards describe the key
design specifications and mechanisms that bring forth both strong contributions towards our goals and
potential pitfalls that warrant careful navigation.

4.5.1 PBFT

Being one of the more well-known BFT algorithms, Practical Byzantine Fault Tolerance (PBFT) was
the first protocol to enable systems to tolerate byzantine faults in a non-synchronous environment. More
specifically, while PBFT’s safety guarantee is upheld in an asynchronous environment, PBFT still requires
at least a partially synchronous network to guarantee liveness [15]. Based on an All-to-All communication
pattern alongside a leader-based design, PBFT reaches consensus in three communication steps. While
this design may provide little scalability and high network saturation, PBFT is still one of the most
robust BFT protocol definitions and is often used as a building block towards the different solution
requirements of a variety of blockchain consensus problems. Protocol execution is as follows (Figure 1):

Clients first broadcast their request to all processes in the system. The currently assigned leader
process, upon receiving a client request, communicates it by broadcasting a PRE-PREPARE message
to all processes. This proposal message effectively orders the client request by assigning it a sequence
number. Additionally, it contains the view it is being sent in and the digest of the request. PRE-
PREPARE messages are kept small in size as they are used as proof that the request was assigned a
sequence number in the specified view during the execution of a view-change procedure. All nodes upon
receiving the PRE-PREPARE message acknowledge it by replying with a PREPARE message bearing
similar contents, which is broadcast to all nodes. When any node receives a byzantine quorum of 2f +1
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matching PREPARE messages, it will then proceed with the broadcast of a COMMIT message to all
nodes once again. Now, when a process receives a byzantine quorum of COMMIT messages, it will know
that consensus was reached as there is a sufficient amount of correct replicas that have also reached the
same conclusion. Thus, it can be declared that the client request has been collectively decided on and
ordered with the sequence number it was assigned in the PRE-PREPARE phase by the leader.

P1

P2

P3

P4

P Leader Process

Client

Request Pre-Prepare Prepare Commit       Reply

Message

Figure 1: PBFT Normal Case Execution

To guarantee liveness, PBFT implements a view-change mechanism to enable progress when the
leader process displays faulty behaviour. In PBFT, views are incrementally numbered, and no two
consecutive views have the same leader. The leader-to-view assignment follows a looping pattern, given
by p = v mod N , where p is the id of the leader node, v is the number of the view and N is the number of
nodes in the system. View changes are typically initiated through the use of a timeout mechanism, where
a timer is initialized when processes receive a new request. If the system does not make enough progress
within the defined timeout interval, the system first attempts to stay within the same view by doubling
the timeout value. If it fails to make progress once more afterwards, then each of the participant’s timer
is triggered, signalling each process to execute the view change protocol. Just like normal case operations,
the view change protocol presents a communication complexity of O(n2), alongside the added latency
invoked by the timeout system, making view changes very costly. Additionally, it has been noted that
attackers can collude to arbitrarily delay the system’s performance once the timeout reaches a big enough
value, making it so only certain client requests are processed as late as possible [10]. To reduce the impact
of view changes in system performance, certain algorithms have been proposed to enable broadcast All-
to-All systems like PBFT to more commonly reach a theoretical O(n) optimal reconfiguration time, such
as the leader-based view change protocol proposed by Naor et al. [29].

4.5.2 HotStuff

To promote efficiency and scalability, HotStuff builds on top of PBFT. This is done by utilizing the
leader to aggregate protocol votes and disseminate results, having a One-to-All communication pattern
combined with threshold signatures to guarantee linear communication. The goal of HotStuff is to create
a protocol based on optimistic responsiveness [30] combined with linear communication to reduce the
message complexity of not only normal case operations but also view change sequences. For a protocol to
be responsive, it means that it can reach consensus in time that is dependant only on the actual message
delays instead of being dependant on any known upper bound on message transmission delays [31], the
latter being a frequent case in systems based on eventually synchronous models.

To compensate for the heavy workload the leader node faces and to also promote what is often
referred to as chain quality [32], HotStuff makes it so each consecutive instance of consensus initiates a
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new view with a new leader from its node rotation, diverging from PBFT’s stable leader policy. While this
rotating leader approach improves fairness and load balancing, it also creates a time overhead on protocol
execution due to the weight and frequency of leader node election [23]. Additionally, on the worst-case
of f cascading faulty leaders during leader rotation, the system may be forced to take O(f ∗ n) rounds
to terminate a consensus instance (which is on the magnitude of O(n2) complexity [15]). Other than the
rotating leader behaviour, protocol execution follows PBFT’s design, with the additional detail of each
phase requiring both the aggregation and dissemination of messages through the leader, as previously
described for One-to-All systems in Section 4.2.2. Thus, basic HotStuff execution can be expressed by
Figure 2.
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P4

P Leader Process
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Message

Pre-Commit Commit        New-View

Figure 2: HotStuff Normal Case Execution. At the end of the consensus instance, processes send a
NEW-VIEW message to the leader of the following consensus instance.

An important concept for HotStuff efficiency is the notion of Chained HotStuff, which utilizes pipelin-
ing to mitigate the throughput losses induced by the higher latency of its aggregation and dissemination
communication steps. It follows a Leader-Speaks-Once paradigm, and, by piggybacking messages related
to different consensus instances on the same network packet, Chained HotStuff enables the parallelization
of up to four different consensus instances simultaneously. This means that the first round of communi-
cation of instance n can be run in parallel with the second round of communication of instance (n− 1),
the third round of communication of instance (n−2) and the fourth round of communication of instance
(n− 3).

4.5.3 Kauri

To address the leader bottleneck found in One-to-All systems like HotStuff, Kauri shapes the system’s
communication pattern into a tree topology with multiple layers of aggregation and dissemination. This
way, the workload assigned to the leader node is spread across all nodes that belong to the inner processes
of the tree, which execute similar functions to the root except at a sub-tree level. When we say that
a node has a fanout of m, it means that it has m children nodes which it is assigned to disseminate
messages to and aggregate the votes of. In the end, this tree structure incentivizes load balancing and
improves system scalability, with the trade-off of creating additional communication steps for each layer
of depth that the tree has. The protocol’s execution can be seen on Figure 3. Kauri divides the execution
time of a node during a round of consensus into three categories:
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Figure 3: Kauri Normal Case Execution with a balanced tree of N=7 nodes.

Sending Time. Sending Time is the time a node takes to send (disseminate) a block to all its children.
It is dependent on three major factors: node fanout (m), block size (B), and link bandwidth (b). With
this, we can say that the time spent on the dissemination process is given by the formula mB

b .

Processing Time. Processing Time is the time a node takes to validate and aggregate the votes it
receives from its children. It is dependent on the fanout m of the aggregating node but it is also heavily
dependent on the cryptographic algorithm utilized for signatures. It is given by the formula mP , where
P represents the processing time per signature.

Remaining Time. Remaining Time is the time that elapses from when the node finishes sending the
block to its children until it receives and processes the last reply. To that effect, it depends on the maxi-
mum height sub-tree belonging to its children, the round trip time (RTT) for each layer of said sub-tree,
and lastly the processing time of each inner node in the sub-tree. For simplicity, we can consider the
case of the root node, which has to take into account the full height of the system tree h. In this case, we
have that the remaining time of the root is given by the following formula: h ·(RTT +Processing T ime).

Inherently, a tree topology-based system like Kauri will have plenty of remaining time in which the
leader is idle. It is through this remaining time that Kauri can effectively calculate its pipeline stretch:
by analysing to find out which is bigger, sending or processing time, the system can infer which is the
most likely candidate for a bottleneck, the network speed or the CPU, respectively. Afterwards, Kauri
calculates the number of consensus instances that can be started during its remaining time through the
formula Remaining Time

Bottleneck Time . Note that to reach optimal throughput, Kauri still needs to carefully leverage
both the height of the tree and the fanout of the root node, even if it leads to smaller pipeline stretches.

It is important to refer to the fact that the issue of implementing topological awareness in Kauri has
been previously discussed in a similar work [33]. The aforementioned solution proposed an optimistic
clustering mechanism based on latencies, with the aim to exploit the local communication benefits of
a balanced tree with n balanced clusters branching from the root. It then leverages this topology-
aware clustering approach to implement a rotating leader scenario to provide the necessary chain quality
features to Kauri in a WAN deployment.

We however find this solution to be lackluster, as the described scenario is highly optimistic and would
gain little to no benefits in an imbalanced cluster context. Not only that, this reconfiguration approach
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fails to leverage past information in order to provide better support for the future of the system, which
is a topic often found in state-of-the-art rotating leader algorithms. It is also important to note that,
as the heuristic is solely based on latency, this could lead to repetitive leader node assignments. This is
due to how low latency clusters will always have priority during reconfiguration in this scenario, limiting
leader fairness.

4.5.4 GeoBFT

GeoBFT is a partially synchronous BFT protocol designed to handle geo-scale deployments alongside
the ResilientDB permissioned blockchain [34]. The aim is to provide both high scalability and high
decentralization benefits to blockchain systems without compromising the throughput of the system.
This is achieved through the topologically aware grouping of nodes into local clusters, which lets the
protocol distinguish between local and global communication towards a more efficient consensus design.
GeoBFT optimistically allows each cluster to make decisions independently and only afterwards relays
their decisions through a global channel, thereby globally sharing and ordering all of the locally decided-
upon client requests. Effectively, this means that an instance of consensus is separated into three stages:
local replication, global sharing and ordering and execution. All of these stages rely on the fact that
each cluster has a coordinator named the primary replica. This primary performs the role of leader for
local PBFT replication but also performs the role of intermediary with the other primary replicas of the
remaining clusters during the global sharing phase.

The notion of independent clusters being able to locally decide on transactions in a decentralized
manner harms the robustness of the system as a whole: instead of being able to tolerate the classical
BFT notion of f = ⌊N−1

3 ⌋ faulty nodes in its entirety, the system must verify that condition at a
local level for every cluster. As a consequence, for a cluster with Nc total nodes, it can only handle
at most fc = ⌊Nc−1

3 ⌋ local faulty nodes. If this condition is breached, the global sharing phase would
compromise blockchain integrity, as other clusters are completely absent from another cluster’s local
replication process and byzantine nodes would be able to collude towards proposing their desired block
to the global group.

As a partial reconfiguration mechanism, GeoBFT designs a completely decentralized view-change
procedure aptly named remote view-change. The intuition is that in situations where a byzantine primary
node is correct to every replica except another specific primary replica (where it either does not send
messages to or drops all the messages from), it is impossible to know which of the two is byzantine. To
resolve this, we rely on the fact that a cluster Ci may assess the activity of a cluster Cj by communicating
not only with Cj ’s primary node but also with some of its other nodes during the global sharing phase.
Likewise, the replies from global sharing are forwarded to a subset of Ci’s local cluster nodes. If enough
suspicion arises or if communication is deemed unreliable, Ci can reach agreement and request the nodes
of Cj to initiate a local view-change to change leader. However, due to the fact that the decision to
execute this procedure is external to the cluster, it brings forth a lot of optimisation issues and execution
edge cases that make it difficult to be a reliable approach in a real-world implementation, where the
multitude of clusters and the complexity of communication may heavily hinder the performance and
purpose of the remote view-change, leading to system congestion.

As a last note, it is important to state that GeoBFT does not specify a strategy or metric towards
the efficient clustering of replicas at a geographic scale.

4.5.5 Fireplug

Fireplug presents a flexible architecture model for building SMR for geo-replicated databases. Although
not initially presented in the context of blockchains, Fireplug proves to be of interest as it tackles both
the requisites for scalable BFT consensus and how systems may leverage different kinds of heterogeneity
towards their overall robustness to compromises. Fireplug implements geo-scale distribution by defining
the existence of datacenters and leveraging what it defines as a hierarchical composition of multiple
instances of BFT-SMART [35]. This way, each datacenter communicates locally with a different instance
of BFT-SMART and multiple datacenters may communicate with each other through a global instance
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of BFT-SMART. Furthermore, Fireplug abstracts away the interface to interact with each database
by implementing both a proxy for multi-versioned data and a replication middleware at a node-based
level. This heterogeneity abstraction, coupled with the software diversity provided by its N-Version
Programming support, enables Fireplug to leverage diversification at an inter and intra-datacenter scope.
This helps reduce the probability of multiple replicas being compromised simultaneously through the
same vulnerability, whether at a technology or software level.

To coordinate the high amount of possible system configurations, it was later proposed the notion of
a replicated adaptation manager that maintained the state of each datacenter through the use of both
replicated sensors and actuators, alongside a replica factory. This external manager would enable the
system to use global information to deterministically reconfigure single datacenters at runtime. However,
the kind of centralization that is added by a component such as an adaptation manager would be hard
to favour in the context of blockchain, as it would be a critical component for system safety and would
need to be assured by a trusted party.

4.5.6 Mir-BFT

Mir-BFT was designed with the idea that the reduction of message complexity is not enough to make
a system more scalable and that instead, protocol design should aim to increase throughput to be able
to support a higher number of participants. In Mir-BFT, this is achieved by allowing a set of leaders
to propose independently and in parallel in an eventually synchronous environment. Additionally, the
design choices behind Mir-BFT were adapted into a modular framework named Insanely Scalable SMR
(ISS), which can act as a wrapper to enable leader-driven total order broadcast-based protocols to scale
and present the same concurrency characteristics as Mir-BFT. However, it is of note that the adaptation
of already existing protocols to the ISS framework is not straightforward and often requires compromises
that may jeopardize the added concurrency benefits.

To enable the correct ordering of client requests even when there are simultaneous proposals occur-
ring, Mir-BFT multiplexes multiple instances of its broadcast primitive over a partitioned domain of
client requests, which can guarantee liveness and safety properties but also implement data duplication
prevention mechanisms. The assignment of leaders to the partitioned client hash space is rotated over the
course of consecutive epochs, meaning that the transition between them can be seen as a view-change in
the system. Some of the limitations of Mir-BFT include the high communication costs of the broadcast-
based behaviour of the system and the high complexity of the design [23]. An example of the latter is
how the batching of client requests depends on concurrent request handling data structures, which is a
complex component with a lot of discussion regarding reliable implementation.

4.5.7 DBFT

DBFT is a leaderless protocol that runs on a partially synchronous network model. In this case, the
scalability, load distribution and throughput gains all come from the fact that all nodes play the same
role in the execution of consensus, while the offered decentralization avoids bottlenecks. To avoid the
FLP impossibility, DBFT utilizes the notion of a weak coordinator, whose goal is to help the algorithm
terminate when non-faulty nodes know that their proposals might be decided. This goes against the
habitual coordinator behaviour of leader-based systems, where the leader imposes their value on other
nodes and forces the system to wait for their decision. It is through this weak coordinator that the
system is able to resolve conflicts related to its concurrent proposals. However, for this conflict resolver
to work, it requires the existence of partial synchronicity, which is a drawback to the leaderless design of
DBFT, as other state-of-the-art leaderless protocols such as HoneyBadgerBFT [36] are able to execute
consensus in asynchronous environments.

It was recently argued that this type of leaderless design can drive high throughput and ensure good
scalability in WAN settings [14]. This was alleged as DBFT’s parallel distinct proposals implement
the notion of cumulative All-to-All broadcasts. Through this, the system is able to drive a high pay-
load transfer rate (goodput) and exploit larger proposal batch sizes to avoid the waiting time between
broadcasts (hiccup).
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4.5.8 MyTumbler

MyTumbler is a recent timestamp-based leaderless BFT protocol that is able to execute in an asyn-
chronous network model. It aims to create a system that is able to move at the speed of the network
delay, where commits are either proposed or aborted, instead of being dependent on the speed of coor-
dinators and the difficulties of tuning the maximum network delay in eventually synchronous systems,
where an improperly set timeout bound may lead to excessive consecutive leader changes or too big of
a delay to recover from faults. MyTumbler additionally implements the notion of Super Multi-value
Agreement (SuperMA) to leverage an optimal fast path in the randomization process often found in
asynchronous protocols. By utilizing a promise mechanism, the non-deterministic common coin [11]
component of randomized consensus may be sped up if a quorum of correct processes has submitted
the same value for consensus initially. Overall, MyTumbler imposes a trade-off of high communication
complexity for the possibility of quick termination, alongside the possibility of transactions having to
abort due to conflicts in the asynchronous network.

4.5.9 Other Systems.

We highlight two additional systems which are relevant for our solution discussion in Section 5: Pres-
tigeBFT [17], which leverages the concept of node reputation (i.e., a metric for the perceived correctness
of a participant) to build a system that keeps track of the past faultiness of its nodes, and Helena et al.’s
attempt at a topologically aware Kauri [33], whose solution was analysed more in-depth in our discussion
of Kauri above.

4.6 Discussion

BFT Consensus
Algorithm

Coordination
Approach

Communication
Pattern

Topologically
Aware

Leverages
Pipelining

Offers N = 3f + 1
Resilience

PBFT [2] Leader-based All-to-All ✗ ✗ ✓
HotStuff [3] Leader-based One-to-All ✗ ✓ ✓
Kauri [4] Leader-based Tree-based ✗ ✓ ✓

GeoBFT [24] Group-based Hierarchical Groups ✓ ✗ ✗
Fireplug [6, 37] Group-based Hierarchical Groups ✓ ✗ ✗

Mir-BFT [21, 22] Multi-leader All-to-All ✗ ✗ ✓
DBFT [19] Leaderless All-to-All ✗ ✗ ✓

MyTumbler [20] Leaderless All-to-All ✗ ✗ ✓

Our Approach Leader-based Tree-based ✓ ✓ ✓

Table 1: Proposed approach when compared to other existing BFT consensus algorithms.

Table 1 summarizes the main characteristics of the state-of-the-art algorithms mentioned above. The
features that our comparison aims to highlight are as follows:

Coordination Approach. The coordination approach is one of the most integral factors for dictating
how a system handles the load distribution between its nodes and if a system may even need to reconfigure
at runtime in the first place. The role of coordinator implicitly comes with additional processing costs
and responsibilities, meaning that the system may quickly rise in complexity when it is performed by a
multitude of nodes. Systems that spread the responsibility of coordination (GeoBFT, Fireplug, Mir-BFT)
or remove the role of dedicated coordinators altogether (DBFT, MyTumbler) often obtain throughput
gains from the added concurrency when the communication is non-redundant (distinct proposals). As a
drawback, however, the system must implement more complex mechanisms that both deterministically
order all concurrent transactions in the system and avoid conflicting simultaneous proposals, which can
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lead to unsatisfactory design solutions. It is important to note that leaderless systems such as DBFT
and MyTumbler do not require the same notion of reconfiguration as the other protocols, since every
node has equal capabilities and blockchain membership reconfiguration is out of the scope of their design.
Our solution, in order to properly benefit from the load distribution benefits of its tree topology and
maintain an easily scalable design, should aim to be leader-based.

Communication Pattern. A protocol’s communication pattern influences the protocol’s communica-
tion complexity and consequently the system’s network saturation and latency as well. We can first note
that the All-to-All broadcast behaviour of PBFT, Mir-BFT, DBFT, and MyTumbler can be taxing on the
network and processing power of nodes. Other protocols that do not rely on All-to-All communication
may have increased node idle times, such as HotStuff and Kauri, as the communication is segmented into
several communication steps. In these cases, the use of pipelining techniques compensates for the added
latency by optimistically increasing the throughput of the system. Another example of a throughput
compensating technique is in GeoBFT, where its highly decentralized hierarchical group pattern allows
for its local groups to propose client requests independently and concurrently.

Topologically Aware. To be topologically aware is to utilize information regarding how the network
or nodes are structured to the system’s advantage. The most common example of this is to attempt to use
geographic localization to promote communication in faster node links. This is usually applied through
the definition of a heuristic external to the protocol’s execution, which enables the clustering or grouping
of nodes. Such cases lead to highly decentralized designs, as seen in GeoBFT and Fireplug. Another
example of topological conditions that can be leveraged for system efficiency is how computationally
strong nodes are. This information allows leader-based, group-based and multi-leader protocols to assign
coordination responsibilities to priority nodes which can deliver better performance to the system and
mitigate some of the consequences of design bottlenecks. We can state that none of the protocols
studied, with the exception of Fireplug, have this capability. Our approach should attempt to apply
topology awareness to define a dynamic and well-performing reconfiguration algorithm that takes into
consideration the asymmetries present in a WAN deployment.

Leverages Pipelining. Pipelining is an important factor for increasing consensus performance when
in the presence of protocols with ample idle time such as Kauri. Without it, the drawbacks from the
additional communication steps of their aggregation and dissemination behaviour would be too costly
when compared to the performance of broadcast-based systems such as DBFT. On the other hand,
pipelining is a complex mechanism which may need fine-tuning to be able to be fully taken advantage
of. An example of this is with the ISS [22] version of HotStuff, where the presence of the modular
multi-leader framework alongside pipelining made it so the protocol could not take full advantage of
the parallelization, as part of the partitioned proposal space was wasted on dummy batches needed for
the extra rounds to avoid breaking the pipeline. Our approach should leverage pipelining in a way that
reconfiguration may take into account the links used in the previous configuration.

Offers N = 3f + 1 Resilience. This is a critical aspect of byzantine consensus, as mentioned in
Section 3.2. It is important to highlight this design choice because it is the central weakness of the
highly decentralized and highly scalable protocols of GeoBFT and Fireplug. Optimistically, our solution
should still maintain the optimal expected resilience while attempting to benefit from the decentralization
tactics applied by these two designs. It is important to also highlight that in the case of Kauri, we consider
that it has N = 3f + 1 resilience due to the fact it exclusively utilizes robust trees for configurations.
Internal node faults in Kauri create faulty underlying sub-trees due to the aggregation and dissemination
behaviour displayed by its topological tree. This makes it so assessing correct behaviour with different
quantities and arrangements of faulty nodes in Kauri configurations a very complex and difficult task.
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5 Approach
In this section, we outline an approach that follows the criteria that we have established in Section 4

and explain how it will be used towards the goals defined in Section 2.
We aim to enhance Kauri with a reconfiguration mechanism that not only utilizes a more dynamic

approach to create trees with reduced latency when compared to the original protocol but also avoids
the need to globally reconfigure trees when a fault may be able to be fixed locally within a sub-tree. The
approach, when combined with a component that provides heuristics regarding the topological charac-
teristics of the system’s WAN deployment and the reputation of its nodes, will be able to more efficiently
reconfigure with a top-down procedure that gives priority to more desirable and trusted participants. For
our approach, for example, we can assume the existence of two modules: one that is able to provide the
system with metrics regarding its network infrastructure (e.g., Vivaldi [38]) and another one that is able
to compute and keep track of node reputation (as exemplified in works such as PrestigeBFT [17]). These
modules can then provide the system with up-to-date information that can be easily be fetched during
the reconfiguration procedure, allowing the reconfiguration mechanism to weigh which characteristics it
deems more important for system performance.

This approach is more likely to provide the system with efficient and robust trees in stable leader
scenarios, with the possibility of partial reconfiguration. In a partial reconfiguration context, we limit
the tree’s reconfiguration to only a sub-tree within the encompassing tree, allowing us to maintain a
majority of nodes unchanged from the last configuration. Through this concept, we may be able to drive
progress in the system throughout the partial reconfiguration procedure while also avoiding the risk of
breaking robust sub-trees that weren’t deemed faulty. Additionally, by achieving a topologically efficient
tree structure, we are able to decrease the latency and increase the throughput of normal-case operations.
The way the heuristic-based assignment component obtains and leverages its metrics will be abstracted
away in our discussion as it is not within the scope of this project.

5.1 Challenges
Given the previously discussed attempt at a more topologically aware Kauri in Helena et al.’s

work [33], we shift our attention from the topology heuristic definition and clustering process and instead
focus on the design of a reconfiguration mechanism that is already topologically aware through abstracted
away means. By obtaining both the reputation of nodes and topological features of the system through
encapsulated modules, our approach can instead focus on how we can use this information to benefit the
system. An example of an application process that leverages this information can be seen down below
in Section 5.2.2. That said, when dealing with a paradigm such as reconfiguration, we have three major
concerns that we have to tackle:

• How does the protocol know what needs reconfiguring and when?
• How does the protocol establish a feasible goal for the reconfiguration?
• How complex is the process of reconfiguration towards the established goal?

We can answer the previous questions as follows.
First, we need to define the two reconfiguration scenarios in our system: the case of full reconfiguration,

where the root node is suspected faulty, and the case of partial reconfiguration, where the parent node
of any sub-tree is suspected faulty (excluding the case of the root). In both cases, the information
exchanged must be global to all the nodes in the system, so as to not open the opportunity of byzantine
nodes excluding information to certain nodes. In the case of full reconfiguration, a quorum of all the
nodes in the system can elect to change the leader if it is deemed that the system is not making enough
progress (hence, the leader is suspected faulty). In the case of partial reconfiguration, the parent of
any sub-tree may order its children to rearrange if the system deems that their specified sub-tree is not
making any progress.

In the second scenario, it is important to note that we aim to give power to parent nodes and not
children nodes, as doing it the other way around may lead to undesirable risks. To put it simply, the case

20



of a byzantine parent will always be the worst-case scenario for a sub-tree, meaning that if a byzantine
parent orders its sub-tree to rearrange, it will not provide a more harmful outcome to the system other
than the delay experienced by the reconfiguration itself. Meanwhile, if we took an approach where the
children nodes were able to obtain a quorum that could force the sub-tree to be rearranged, a correct
parent could be forced out of its position by a quorum of colluding malicious participants, leading to a
worse system state. This situation is possible within the scope of any sub-tree, as there can be a majority
of byzantine nodes colluding at this level. While this latter approach opens up the possibility of correct
children nodes being able to force a byzantine parent out of its position, it equally opens up the risk of a
correct parent being kicked out of its inner node position, which is undesirable. In the following section,
we will discuss two possible approaches to initializing both full and partial reconfiguration scenarios.

Secondly, we need to make it so that reconfiguration is a deterministic process. By leveraging the
concept of complaint messages, which will be our reconfiguration requests with information regarding
which sub-trees are failing and which nodes are suspected, participants will be able to simulate the
reconfiguration process (i.e., accurately predict the results for the different steps of the reconfiguration
given a set of complaint messages) through the use of a deterministic function in order to verify a
desirable outcome for reconfiguration. This enables a node to propose a deterministic goal by utilizing a
set of complaint messages as a foundation. Additionally, any other participant can confirm the validity
of that goal by taking into account i) the current tree and ii) the proposed goal’s set of complaints.
Thus, reconfiguration can be split into two phases: the election phase, where nodes propose their goals
alongside their respective complaint sets, and the voting phase, where all nodes process and validate the
candidate proposals before casting their votes accordingly.

To implement the aforementioned deterministic process, we will leverage the notion of Recurringly
Robust Evolving Graph introduced by Kauri and referenced in Definition 6. Through the use of a
deterministic function, we can simulate any reconfiguration process when taking our evolving graph
G, our current static graph equivalent to our current tree TC , a set of complaint messages C and our
abstracted assignment component into consideration.

Lastly, as our approach will follow the behaviour of a top-down tree algorithm (i.e., reconfiguration
starts at the highest layer parent and moves down recursively to their children), it is easy to assume
that it may reach the established goal in h parent-to-children communication steps, where h is the
height of the sub-tree being reconfigured. However, as the system state must be reliably spread across
all nodes, it is important to note that reconfiguration requires broadcast-based communication patterns
that include all nodes in the system. As a starting point, our approach utilizes this broadcast-based
behaviour with the possibility for optimisations in the future. The system itself must also be halted
during the reconfiguration process, both in the case of full reconfiguration and in the case where the
system is not able to obtain a quorum of correct nodes during partial reconfiguration, meaning that
there is no progress during this time.

5.2 Provisional Approach
To follow up on the high-level approach defined in Section 5 and the challenges that have been

discussed in Section 5.1, we propose a preliminary algorithm that is described below. This proposal will
be split into two parts: i) the reconfiguration trigger, which will have two proposed mechanisms and ii)
the top-down reconfiguration execution.

5.2.1 Reconfiguration Trigger

As previously mentioned, this mechanism will be leveraging the notion of complaint messages, which will
contain information that can be useful to infer which sub-trees are failing and which nodes are suspected
for said faults. These complaint messages contain complaint reports that will infer if progress is being
hindered by a lack of messages from the parent node or by a lack of replies from its children nodes, from
the perspective of the reporter node. To exemplify, as can be seen in Figure 4, complaint reports from
nodes 1, 6 and 7 may prove to be key factors in identifying node 3 as faulty when given the context that
the root’s leftmost sub-tree is not making any progress. That said, once compiled together, quorums of
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Figure 4: Partial Reconfiguration example for a sub-tree with N=7 nodes where I=3 are inner nodes.

complaint reports can establish intersections in the root cause of arbitrary behaviour and the candidate
suspect nodes behind it. The process of creating, communicating and asserting complaints in the system
is by far the more complex topic in this provisional approach, leading us to propose two alternative
approaches:

Global Complaint. In this approach, once a node suspects it is in a sub-tree which is not mak-
ing enough progress within a defined time bound, it communicates a complaint message containing a
complaint report to the entire system through a reliable broadcast channel. This way, the system can
essentially be aware as a whole of the reported complaints, making sure that complaints are sent globally
and that every node has the opportunity to receive the same complaints. Once a big enough quorum of
complaint messages are propagated in the system, each node that possesses a quorum of complaints is
able to determine and propose a reconfiguration goal in what we previously referred to as the election
phase. Inherently, this proposal must exhibit the set of complaint messages used to generate it, to enable
voters to check its validity. This means that all nodes can run a deterministic function which will be
able to process the elected sets of complaint reports and establish the best candidate reconfiguration
goal. The decided-upon goal is then reliably broadcast to all nodes in the system, and with a byzantine
quorum of equivalent messages, the system can begin the execution of the top-down reconfiguration to
enter a new view with a new configuration.

Restricted Complaint. This approach relies on processes sending their complaints to select partic-
ipants instead of attempting to send them to the entirety of the system. Different recipient selection
policies may be used, depending on the context of the sender and the contents of the complaint. If the
system is not able to progress within a defined time bound or if a node reaches a quorum of complaints
and attempts to change the current tree, we initiate the election phase. Just as how it was described in
the global complaint approach, during the election phase, all nodes that have received complaints com-
municate their reconfiguration goal alongside the set of complaints used to generate it. However, in this
case, elected participants will act as the leader of the sub-tree they aim to reconfigure. Participants are
then once again able to deterministically vote for the best candidate reconfiguration goal by validating
and processing the proposed complaint sets. Votes are sent directly to the participant’s chosen candidate
leader, which may start the top-down reconfiguration execution once it receives a quorum of votes.

5.2.2 Top-Down Execution

Once reconfiguration has been triggered and its goal has been established, we know which sub-tree
will be reconfigured. Additionally, in the case it is a full reconfiguration, we also know which node has
been selected to be the leader of the new view. The reconfiguration process begins by assigning all of
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the sub-tree’s nodes with a value calculated by a higher-level component. This value can be seen as a
metric which is the combination of the node’s topological qualities (in the context of the sub-tree) and
the node’s reputation, updated with the recently inferred activity from the accumulated complaints. To
simplify, we will refer to this value as classification, where a higher classification means a more desirable
node.

After the assignment process, we can utilize the same bucketization strategy that Kauri employs: we
distribute all nodes along t disjoint bins, each of size equal to or greater than the total number of internal
nodes in the sub-tree. The difference is that in this case, the buckets are filled progressively and in order,
starting from the higher classification nodes to the lower classification ones. After the buckets are filled,
we can average out the classification of its constituent nodes and add a weight representing the average
perceived latencies between themselves. With this, each bucket will now have an assigned classification,
and the system can attempt to establish a robust tree with the currently generated buckets. It is also
important to note that the buckets internally have their nodes sorted from highest classified to lowest
classified.

With the buckets decided, tree construction ensues. To guarantee a deterministic pick order, the
ordering for each bucket is decided on by the leader and subsequently passed down recursively to its
children. The process is as follows: the root of the sub-tree picks the m leftmost nodes in the bucket
(highest classified). This selection process is repeated for each of its children, starting from the leftmost
child to the rightmost child, and then afterwards to their children recursively. Once the bucket is
emptied (meaning that the last internal nodes have been picked), the leaf nodes are decided with the
same selection policy starting from the next highest classified bucket till the last least classified bucket.
With this in mind, we can simplify the communication in a top-down approach: the root sends a certified
message directly to its newly assigned children nodes to validate their position. This message includes the
generated buckets and the receiving node’s position in the sub-tree. This means that upon its reception,
a node knows which participants they will have to contact to assign them as their children. Additionally,
when a node receives an assignment message, it certifies its validity and subsequently signs it to forward
it to its children. By forwarding their parent’s message, every node is able to prove it was correctly
selected for its current position in the sub-tree.

A high-level example of the reconfiguration process can be seen in Figure 4: after processing a
quorum of complaint messages and deciding on a goal, the system dictated that the sub-tree to the
left of the root node was not making enough progress, thus initiating partial reconfiguration. In this
case, the root is able to command the sub-tree to update its node classification values through the
assignment component, which leverages the modules referred to in Section 5. As previously stated, a
higher classification value means that a node is more desirable for reconfiguration, meaning that it offers
better topological characteristics, is more trustworthy, or both. It is of note that the values attributed in
this example are arbitrary, with the exception of Node 3, which has a higher probability of having a lower
classification due to it being suspected in the complaints that triggered reconfiguration. Afterwards, as
we know that there are I = 3 inner nodes in total and the tree has a fanout of m = 2, we create t = 2
disjoint bins each of size ≥ 3. As this sub-tree only presents f = 1 faulty nodes, we know through Def. 7
that since f < m we are able to obtain at least one bucket that has no faulty nodes in it. Thus, this
bucketization strategy lets us pick a bucket to fill in all the inner node positions of the sub-tree with
correct nodes, while simultaneously increasing the probability of it being the first bucket through the
use of its classification mechanism. Finally, partial reconfiguration is able to construct an efficient and
robust tree for the suspected sub-tree.

5.2.3 Discussion

It is safe to say that the efficiency of our solution will be heavily dependent on the added cost
of having two phases for the reconfiguration goal selection and also on the algorithm chosen for the
trigger mechanism. While the global complaint approach may lead to a more straightforward solution,
the overhead brought by its higher communication complexity might diminish the expected results on
executions with higher numbers of nodes. Meanwhile, the restricted complaint approach, while lighter
on communication complexity, may be difficult to implement at a partial reconfiguration level, requiring
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careful optimisations in both its selection policy and the election voting phase. The objective of specifying
a complaint system as part of the solution is directly linked with the need to avoid byzantine nodes in
the internal positions of the tree, which should be a top priority if we aim to avoid situations where we
have to reduce the tree to a star topology. By utilizing a complaint system, we are able to provide more
up-to-date information regarding the behaviour of nodes from the current configuration, which could
later be put to use by our classification assignment component.

On another note, the top-down reconfiguration in and of itself shows promise in regards to efficient
leveraging of system heterogeneity towards well-performing dynamic trees. Its main hindrance is how
dependent it is on the quality and efficiency of its abstracted classification assignment component. How-
ever, on a theoretical implementation that can take into account different system features such as node
reputation, node link bandwidth, node latency, node capacity, and pipelining potential, we are able to
provide a good baseline heuristic to designate nodes that are both trustworthy and reliable.

6 Experimental Evaluation
The purpose of this section is to describe an evaluation plan that will take into account the charac-

teristics defined in our provisional approach in Section 5 and the goals outlined in Section 2.
That said, by promoting the creation of topologically aware trees in WAN environments, we aim to

increase both the efficiency and scalability of Kauri. To that effect, it will be important to measure
the performance of the new trees when compared to Kauri’s old reconfiguration approach. A variety of
real-world contexts may be used, including systems with varying node quantities, different geographic
deployment coverages (which consequently induce different bandwidth strengths), different block proposal
sizes, and varying quantities of node faults. Through comparison in these contexts, we will be able to
evaluate the added performance of our solution in both normal-case operations and throughout the
reconfiguration process, including partial and full reconfiguration scenarios. Additionally, it is important
that we pit our reconfiguration trigger algorithms against one another to finalize which one would be
most beneficial to our solution. The performance metrics we aim to analyse for our evaluation are as
follows:

Latency. Latency is one of the key factors that can be analysed to infer the scalability of our solution.
It is evaluated by measuring the time it takes for the system to finish a consensus instance from start to
finish and can be compared directly with other systems (most importantly, with Kauri).

Throughput. Throughput is another metric that can be analysed to infer the scalability of a system.
It is usually measured by counting the number of client requests decided on per unit of time in the system
(kreq/s). Throughput can be used to more accurately analyse the impact of design choices and evaluate
in which settings a system has its best performance.

Reconfiguration Speed. We can evaluate reconfiguration speed in two different ways: i) it can be the
time it takes for the system to reconfigure since the moment faults are inserted or ii) it can be the time it
takes for reconfiguration to terminate since the moment it is triggered. While i) takes into account both
the time it takes for the system to detect faults and initialize the reconfiguration process, ii) can more
easily infer the added costs of our reconfiguration mechanism’s complexity, which did not exist in Kauri’s
original randomization strategy. Both notions are valuable assets when comparing which reconfiguration
approach provides a more reliable solution. These metrics can also be used to compare the execution
times of partial and full system reconfigurations.

Reconfiguration Success Rate. To deduce if the concept of partial reconfiguration brings any no-
table benefits to protocol design, it is important to measure how often partial reconfiguration succeeds
at creating robust trees. Although a probabilistic metric, with sufficient repeated testing in different
test scenarios, we may be able to infer if partial reconfiguration achieves robust trees at an equal or
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better rate when compared to full reconfiguration (the desirable case). This metric can also be discussed
with the speed of reconfiguration in mind and the added benefits of maintaining a portion of the tree’s
previous node positions in the case of partial reconfiguration.

As mentioned above, when compared to Kauri’s original solution, this new version of the reconfigura-
tion procedure has an added cost. To measure if this additional cost on reconfiguration is justifiable, we
will first have to measure our new approach in the context of Kauri’s original benchmarks. This means
we must directly compare tests where the bandwidth, CPU capacity and workload of nodes are the exact
same as Kauri’s, as to correctly infer the new mechanism’s performance.

7 Schedule of Future Work
The proposed schedule for future work is presented in Figure 2.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Solution Implementation

Experimental Evaluation

Descriptive Project Paper

Writing of Dissertation

Table 2: Future Work Schedule

8 Conclusion
In the realm of permissioned blockchains, multiple approaches have been discussed to design scalable

BFT consensus protocols for systems with elevated numbers of participants. While Kauri showed promise
by employing a scalable tree design which leveraged pipelining techniques, it encountered challenges
in real-world applications due to its design being tailored for homogeneous settings. This was the
main motivation for our work, which aims to provide Kauri with more topology-aware capabilities in
WAN environments, allowing for better scalability potential. As this issue tackled the tree creation
and reconfiguration process, it also opened up the possibility of partial/local reconfiguration, a feature
commonly used in more decentralized and scalable protocols such as GeoBFT and Fireplug.

Having surveyed the work of several BFT protocols, we were able to establish which design patterns
and features were most beneficial to solve our problem. With the goal of using topological information
to Kauri’s benefit, we have designed a provisional approach which can theoretically achieve better scala-
bility guarantees in WAN settings and promote higher reliability in heterogeneous networks. Lastly, we
provided an evaluation method for our proposed solution and the scheduling of future work that requires
completion.
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