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The use of dissemination and aggregation trees allows Byzantine Fault

Tolerance (BFT) consensus protocols to increase both their efficiency and

scalability, which are key requirements in blockchain applications. The

dynamic reconfiguration of a dissemination tree can be a complex task. As a

result, most protocols that use dissemination and aggregation trees avoid

frequent reconfigurations by using a stable leader policy. Unfortunately, the

use of a stable leader is undesirable in blockchain applications, due to equity

and censorship concerns. In this work, we propose efficient techniques

to support leader rotation and dynamic reconfiguration of dissemination

and aggregation trees in BFT consensus protocols. We have applied our

techniques to Kauri, a state-of-the-art tree-based consensus BFT algorithm.

Through the experimental evaluation, conducted on a real implementation

of our solution, we analyse the performance of our proposed mechanisms

and show that dynamic reconfiguration can be supported without incurring

a significant penalty on the throughput of the system.
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tine Fault Tolerance, Consensus

1 Introduction
Byzantine Fault Tolerance (BFT) consensus protocols allow correct

processes to reach agreement even in the presence of a fraction of

malicious processes. BFT protocols have been first introduced for

synchronous systems [1] but have been subsequently extended to

execute in eventually synchronous settings [2–4]. BFT protocols

require multiple rounds of message exchange among participants

and are, therefore, costly, both in terms of communication and

processing. For this reason, early implementations considered a

relatively small number of participants (in the order of dozens) [5].

However, with the emergence of blockchains and the increasing

relevance of large-scale systems based on blockchains, the need to

design Byzantine consensus protocols that can scale to hundreds of

participants has become a relevant topic. [6]

Practical Byzantine Fault Tolerance (PBFT) [2], one of the first BFT

consensus protocols designed for eventually synchronous systems,

is a leader-based protocol that uses an All-to-All communication

pattern, i.e., the algorithm proceeds in rounds where participants

send (and receive) messages to (from) every other participant. Due

to the use of this communication pattern, PBFT is inherently non-

scalable. Several approaches have emerged to circumvent the scal-

ability limitations of PBFT-like protocols. One approach consists

of using a star-based communication pattern, such as HotStuff [3],

where nodes only communicate directly with the leader: this re-

duces the message complexity from quadratic to linear, but the

leader remains a bottleneck. Another approach is to use hierarchical

strategies, such as in Fireplug [7], where consensus is achieved by

the hierarchical combination of several sub-consensus instances

that are executed among smaller sub-groups. A limitation to ap-

proaches of this nature is how they reduce the system’s resilience,

given that the fraction of Byzantine nodes required to take control

of a sub-group is smaller than the fraction of nodes required to

prevent consensus in the super-group. Once a sub-group is compro-

mised, the consensus in the super-group is compromised as well.

Finally, the use of dissemination and aggregation trees has been

proposed to circumvent the scalability limitations of the star-based

communication pattern, while retaining the resilience properties of

non-hierarchical approaches. In our work, we focus on protocols

that use this strategy. [4, 8–10]

Kauri [4] is a BFT consensus protocol that extensively uses dis-

semination and aggregation trees to achieve scalability. Since the use

of trees introduces extra latency in protocol communication, Kauri

uses an aggressive pipelining strategy that expands on the pipelin-

ing already used in protocols such as HotStuff, allowing the leader

to start multiple consensus instances before previous instances have

terminated. Kauri has two main limitations: first, it is designed for

homogeneous settings and its trees are constructed using randomiza-

tion, which does not take into account the different computational

capacity of nodes or the latency present in the communication links.

Secondly, when a reconfiguration is required, a tree is replaced by

a completely different tree that typically does not share any inner

node with the previous tree. While this reconfiguration strategy

permits Kauri to find a robust tree in a timely manner, it is disruptive

to the pipelining process and hence to performance. Additionally, in

the case that a robust tree is not found in a predetermined amount

of steps, Kauri falls back into a star-topology. As evidenced by these

cases, the process of reconfiguring a tree is a complex task, meaning

that a vast majority of tree-based consensus algorithms rely on

a stable leader strategy [4, 8, 9], where the same tree is used for

various consecutive consensus instances, only changing when the

system fails to make progress (such as the cases where a leader is

deemed to be faulty). However, in the context of blockchains, there

are various advantages derived from frequently changing the leader

node (which, in the case of Kauri, means changing the tree as well),

such as preventing non-apparent malicious nodes from censoring

transactions from certain clients.

In this work, we address the two main limitations of Kauri identi-

fied above. First, we aim to enhance Kauri with a mechanism that

would allow the system to diverge from its randomized tree genera-

tion and instead opt to use a schedule of different trees throughout

execution. This means that the schedule can be adapted towards

using trees optimised for heterogeneous networks by leveraging

information about the network latencies and the CPU capacity of

the nodes. Secondly, we aim to enable Kauri to utilize a rotating

leader policy by designing a reconfiguration strategy that can re-

duce the costs of reconfiguration between two different consecutive
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trees. We achieve this by proposing novel techniques to dynami-

cally reconfigure dissemination/aggregation trees in BFT protocols,

namely, a technique that avoids a significant throughput degrada-

tion during the reconfiguration of the dissemination/aggregation

tree. Additionally, we evaluate and analyse an implementation of

our approach in emulated network environments, considering both

homogeneous and heterogeneous settings.

2 Related Work
In this section, we analyse relevant features frequently utilized in

the design and implementation of state-of-the-art permissioned

blockchain BFT protocols.

2.1 Coordinated Agreement
In a blockchain environment, consensus is run to agree on which

transactions will be appended to the distributed ledger and in which

order they will be committed and executed. This means that protocol

designs need to take into account mechanisms that ensure coordi-

nation between correct nodes for consecutive consensus instances.

We define the following approaches for coordinated agreement:

Leader-based [2–4]. In leader-based BFT consensus algorithms,

the role of the coordinator, or as it is usually called, the leader, is to

help all correct processes converge towards a decision in a relatively

fast manner [11]. In the context of blockchain, it is the leader’s

role to propose which transactions will be appended to the ledger.

Leader-based algorithms may adopt a stable leader policy, where
reconfiguration occurs only when a significant number of nodes

detect either a lack of progress or suspicious behaviour, triggering a

forced leader change, or a rotating leader policy, where the system
proactively rotates its leader to provide the protocol with censorship

resistance and workload distribution.

Leaderless [12, 13]. Leaderless coordination aims tomitigate leader-

based system issues such as censorship and leader-related bottle-

necks through the use of higher decentralization [11, 14]. Addi-

tionally, by providing equity in regard to the task of transaction

proposal, these systems often aim at utilizing this parallelization to

obtain gains in the system’s transaction throughput. The main disad-

vantage of leaderless coordination ends up being the complexity of

the mechanisms required to reach proper agreement and ordering,

especially in the context of blockchains, where blocks need to know

the previous block’s hash.

Multi-leader [15, 16]. Multi-leader coordination can be defined

as a specification of leaderless design, where instead of giving the

ability to propose simultaneously to all system participants, there is

a defined set of leaders assigned to a portion of system execution.

An example is Mir-BFT [15], where there is a throughput gain by

allowing a set of leaders to propose independently and in parallel.

As a drawback, the system is limited by its high communication

costs and complex design requirements [17].

Group-based [7, 18]. In group-based coordination, the system is

divided into groups based on factors like responsibilities or node

characteristics (e.g., location or latency). A typical design involves a

global group managing local groups, where global nodes collect and
share votes from local groups. Consensus is achieved via communi-

cation within the global group, and the results are then propagated

down to the local groups. GeoBFT [18] is a group-based protocol that

optimistically allows each cluster to make decisions independently

and only afterwards relays their decisions through a global channel.

Its robustness is limited by its high decentralization, however, as

every local cluster must verify Byzantine node resilience locally and

not at a global scale.

2.2 Pipelining
To compensate for the throughput losses experienced by systems

with several communication steps in their consensus execution,

protocols can leverage the added latency to their advantage through

a concept known as pipelining. Pipelining is based on the idea of

optimistically initializing future consensus instances while the cur-

rent one still has not terminated. This can be done due to the fact

that each instance of consensus can be divided into several phases

(or rounds) of communication that have idle time between them, as

nodes have to wait for the propagation and processing of messages

in order to receive the replies necessary to advance to the next

round. To exemplify, in systems such as Chained HotStuff [3], the

leader can optimistically initiate consensus for block (𝑛 + 1) after it
receives the proposal from the previous leader for block 𝑛, meaning

that it simultaneously executes round 1 of communication for block

(𝑛 + 1) as it executes round 2 of communication for block 𝑛. Mean-

while, in Kauri [4], pipelining is further extended by defining the

notion of pipeline stretch, which exploits the piggybacking function-

ality of network packets introduced in Chained HotStuff to allow

multiple new instances of consensus to be started simultaneously in

a singular round of communication of a given consensus instance.

3 Dynamic Reconfiguration
In this section, we propose the techniques to support what we call

dynamic reconfiguration in systems such as Kauri. We aim to com-

plement Kauri with a rotating leader policy such that the costs of

reconfiguration (more specifically, the impact on the throughput of

the pipelining execution) are reduced. Additionally, the tree con-

struction can be encapsulated in a schedule format to be used by

the leader rotation. As it will be discussed in our evaluation, the

performance of our reconfiguration mechanism can be dependent

on various factors such as tree height and fanout, the displacement

of the nodes between two different consecutive trees (switching

two nodes in the leaf layer might have a different effect compared

to switching the root node for a leaf node), the frequency of recon-

figuration, and so forth. It is also important to emphasize that the

overall performance of the system can be influenced by a smart

rotation of trees in heterogeneous system contexts, and for that

reason, we also provide an analysis of the benefits of our solution

in such environments.

3.1 Model and Assumptions
We consider a protocol that implements blockchain services in a

permissioned setting, meaning that the group of participants is

known amongst themselves. Given this environment, we assume

that a tree schedule is provided to all the participants (i.e., a schedule

containing the order of the various configurations the system will

rotate through), where each tree has its pipeline stretch associated
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with it (i.e., the number of consensus instances that can be initialized

optimistically whilst the current one has not been decided).

We also consider that the system is tolerant to Byzantine faults,

where we can support up to 𝑓 < 𝑁−1
3

nodes with arbitrary be-

haviour from a total of 𝑁 nodes. The only restriction imposed on the

Byzantine nodes is that they do not have the capacity to compromise

the cryptographic primitives. The system operates in an eventually

synchronous network, where it is possible to guarantee periods of

synchronicity between the participants (only it isn’t known when),

such that it is possible for the system to make progress. During

periods of asynchrony, the safety of the system is not compromised.

When a consensus instance is initialized by a leader, it uses a given

tree to disseminate a block containing client transactions. We denote

the tree associated with the said instance as the initial configuration.
We assume that, in the absence of faults, the initial configuration for

all consensus instances is pre-defined. This means that we assume a

pre-defined and globally known schedule from which participants

obtain the different trees that will be used to execute the first round

of communication for each consensus instance.

If, in the absence of faults, all instances use the same configuration,

then we consider that the protocol is using a stable leader policy. If

not all instances use the same configuration, then we say that the

protocol supports dynamic reconfiguration. Dynamic reconfigura-

tion can occur whenever a new instance is initialized or periodically.

Additionally, the various rounds of communication of a given in-

stance can all use the same configuration for the dissemination and

aggregation of values, or, alternatively, use different configurations.

In the case of Kauri, in the absence of faults, a consensus instance

uses the same tree configuration for all rounds.

Lastly, the protocol assumes the same behaviour as Kauri when

handling Byzantine faults. This means that the dynamic reconfigu-

ration does not affect the original protocol’s recovery mechanisms,

even during periods of asynchrony or when malicious nodes try

to delay the transition between configurations. In the normal case,

reconfiguration is triggered in a participant when the last block of

a configuration is delivered. In the case of a Byzantine fault during

operations, participants will fail to make progress before delivering

the current configuration’s last block. In this scenario, participants

will move on to the next configuration in the rotation and attempt to

make progress under the new tree. The duration of configurations

is always fixed, meaning that planned rotations will adapt in the

case of recovery so that configurations do the expected amount of

blocks.

3.2 Schedules
Our rotating leader policy takes a tree schedule as the input that

determines the sequence of the different configurations that will be

utilized during protocol execution. Trees belonging to a schedule are

identified from 0 to 𝑛, with 𝑛 being an arbitrary number. Every par-

ticipant in the protocol can infer from any tree in the schedule the

following configuration details: the root of the tree (i.e., the leader),

its own parent (if it has one) and its own children (if they exist).

Additionally, each tree in the schedule can have a distinct value for

its fanout (i.e., the number of children each internal node has) and

for its pipeline stretch, making these values dynamic throughout

protocol execution. Lastly, each tree has a target duration, defined
by the number of blocks during which the tree will remain in ef-

fect before the system reconfigures again, assuming the absence of

faults. When the system reaches the target block of 𝑇𝑛 , the system

will reconfigure and resume execution with 𝑇0, making it so that

schedules are cyclical. In the current version, in the case of faults,

the trees in the schedule are not recomputed.

3.2.1 Advantages of Using Schedules. Given the context of the prob-

lem, a rotating leader policy offers additional flexibility in systems

that rely on tree topologies, since by allowing the system to choose

the structure of the tree, it is selecting which pairs of nodes will

establish an edge for communication. Compared to a star topology,

where every node is forced to communicate directly with the node

that is the leader, in a tree topology we can more easily select the

structure that will lead to the usage of communication channels

with a better performance in order to drive a higher throughput in

the system. However, as the number of possible trees is exponential,

exercising a judicious choice of which trees to use is a complex

and difficult task, albeit crucial. Considering that the protocol is to

be applied in a permissioned blockchain context, we can assume

that nodes can obtain an estimate of the quality of the connections

between themselves. Thus, a tree schedule can utilize this informa-

tion to define trees that can obtain an expected better performance,

when compared to randomly chosen trees in a geo-distributed WAN.

Additionally, we can further improve the throughput of the system

by adapting the pipeline stretch of each tree accordingly and by

ordering the trees in the schedule in a way that reduces the impact

of the reconfiguration on the execution of the pipelining techniques.

3.2.2 A Simple Schedule. As a base for our rotating leader policy,
in order to guarantee that a schedule lets every node perform the

role of leader (that is, be the root of a tree), we assume that, unless

explicitly stated otherwise, executions will utilize a schedule based

on the rotation of the tree’s participant array. What this means is

that each tree in the schedule is obtained by rotating the nodes in

the previous tree. This also means that the schedule will have 𝑁

trees, with 𝑁 being the total amount of participants in the system.

An example of this type of schedule can be seen on Figure 1 for a

system with 𝑁 = 7 nodes.

0

1 2

3 4 5 6

1

2 3

4 5 6 0

T0

2

3 4

5 6 0 1

Tree Array:

{0, 1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6, 0} {2, 3, 4, 5, 6, 0, 1}

Tree Array: Tree Array:

T1 T2

Links kept in the reconfiguration from T0 to T1

Links kept in the reconfiguration from T1 to T2

Fig. 1. A simple rotation-based schedule.

This type of schedule makes it so that each node has an equal

opportunity to become and act as the leader of consensus. Each
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participant is the leader of the tree with an ID that matches its

replica ID. In terms of node displacement, this schedule makes it so

that consecutive reconfigurations keep part of the links utilized in

the previous configuration. Additionally, when reconfiguring, for a

tree with ℎ layers, only ℎ nodes will dislocate into a different layer,

independently of the fanout. When reconfiguring with this schedule,

the previous leader goes to the right-most leaf position, meaning

that their workload is alleviated. Meanwhile, the next leader is a

direct child of the previous leader, thus it is one of the nodes with the

least expected latency to start proposing in the new configuration.

All other nodes that are displaced into higher layers of the tree

during the reconfiguration process only shift by one layer. This

limits the displacement of nodes and therefore the disruption of the

throughput of the system throughout the process of reconfiguration,

making this schedule a good baseline for our approach.

3.3 Transitioning Between Configurations
One of the biggest challenges in our work is reducing reconfigu-

ration costs. These costs come from various sources, such as the

latency caused by the tree’s height, the overhead from switching

connections and updating the internal state, and the cost of process-

ing blocks that are still in transit through the consensus pipeline

during reconfiguration. Additionally, as nodes in higher-up levels

receive data earlier compared to the lower levels of the tree, it means

that the time it takes for the system to begin proposing new blocks

could be dependent on the level where the next configuration’s

leader is located. This logic can be applied to the tree as a whole:

the more nodes that are displaced from lower levels to higher ones

in a reconfiguration, the higher the likelihood that the system will

have to wait for them to complete the procedure.

With that said, we know that for any configuration 𝑖 ≥ 0 there

are 𝑘 proposed blocks such that 𝐵𝑖𝑘+𝑗 , where 1 ≤ 𝑗 ≤ 𝑘 , identifies a

block in said configuration. To compensate for the wait mentioned

above, we parallelize the transition between two consecutive trees

as follows: knowing that block 𝐵𝑖𝑘+𝑘 is the last block of tree 𝑇𝑖 , the

leader of the said tree will transition to the new configuration as

soon as it finishes proposing 𝐵𝑖𝑘+𝑘 . Every node that receives block

𝐵𝑖𝑘+𝑘 will also transition to the new configuration as soon as it

verifies if the proposed block is valid and votes for it. Even with

nodes transitioning to a new configuration, messages related to the

consensus of block 𝐵𝑖𝑘+𝑘 will be shared by using the same tree that

was used for its proposal, meaning that it is decided on the same

tree that was used for its proposal. Amongst the nodes that voted

for block 𝐵𝑖𝑘+𝑘 and transitioned to the next tree, if one of them

is the leader of the tree 𝑇𝑖+1, it starts proposing blocks in the new

configuration as soon as it finishes reconfiguration. That being said,

the system will finish the pipeline of the previous configuration

concurrently with the initialization of the pipeline of the new config-

uration. This entire process is facilitated by the fact that the protocol

messages come with an identifier of the tree that was used for their

transmission, allowing nodes to differentiate recipients in commu-

nication whenever the system utilizes two trees simultaneously for

consensus.

A node that receives block 𝐵𝑖𝑘+𝑘 but still has not received the

blocks in the causal past of 𝐵𝑖𝑘+𝑘 (i.e., proposals from any consensus

instance 𝑗 , where 𝑖𝑘 < 𝑗 < 𝑖𝑘 + 𝑘) can only transition to the new

configuration once these have been received and processed. Only at

that moment can the node process 𝐵𝑖𝑘+𝑘 and subsequently recon-

figure to participate in consensus on tree 𝑇𝑖+1. This is because, for a
node to reconfigure, it must witness and vote in the proposal that

concretizes the target of the configuration in which it is inserted,

and for that, it needs to witness and vote in all the blocks in the

causal past of said proposal. Although it must witness the last block

of the current tree to reconfigure, a node does not need to wait for

this block to be decided, meaning that concurrency is increased.

This also applies to proposals from future configurations: in the

case that, by reconfiguring, the next configuration’s leader proposes

a block to a node that has still not reconfigured, this node will wait

for the causal past necessary to enter the reconfiguration and only

then will it process the pending received proposals (in order). Nodes

preemptively partially validate future proposals by confirming if

the height of the proposed block is possible (it has to be a height

bigger than the target of the current tree) and if the proposing node

is indeed the leader of the tree it was proposed in. If these conditions

are cleared, the node keeps the proposal pending till reconfiguration.

After reconfiguration, a node processes the pending proposals in

order and sends them to their children within the new configuration.

Lastly, we provide a formalization of the normal case operation

of this algorithm in Algorithm 1. Lines 7 − 15 provide the leader’s
propose functionality, assuming that the Propose function receives

an already validated block of client transactions. Lines 16 − 28

provide the remaining replicas’ proposal handler logic and its steps

for ensuring safety. Note that we must preemptively check pending

proposals in line 18 for proposals that are out-of-order in a pipeline

batch, but we can also proactively check them after reconfiguration

on line 35 for proposals that are out-of-order between configurations.

The function ProcessPendingProposals follows a similar logic to

what is seen in lines 25−34, however for all the proposals belonging
to the pending_proposals queue and in-order. We can note that this

formalization is simplified by decoupling reconfiguration from the

Pacemaker [19], which is further expanded on in Section 3.4.4.

Given the intricacies of maintaining a stable pipeline throughput

over the course of reconfiguration, it is expected that it is favourable

for the system to schedule trees in a way that pairs of consecu-

tive trees differentiate little in their edges. By maintaining similar

pipeline structures, the system can reduce wait times for nodes that

were previously part of lower layers in the previous configuration.

However, this comes with the trade-off of increasing contention for

bandwidth on the links that are maintained through reconfiguration.

3.4 Implementation
3.4.1 Challenges. To adjust Kauri to our approach, we must address

the following challenges: i) Defining an encapsulated and standard-

ized solution for both schedules and topology trees to facilitate

intuitive schedule definition and fast extraction of relevant data; ii)
Adapting the protocol’s messages and message handlers to enable

the algorithm to concurrently use connections related to different

configurations. iii) Modifying Kauri’s original Pacemaker in order

to distinguish planned reconfigurations from forced reconfigura-

tions. Additionally, we need to define the instant where planned
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Algorithm 1: Commutation to Next Configuration

// Local state for a replica at the start of the

protocol

1 system_trees← {𝑇0,𝑇1, ...,𝑇𝑛}
2 current_tree← 𝑇0

3 proposer← GetRoot(current_tree)

4 child_peers← GetChildren(current_tree)

5 lastCheckedBlockHeight← 0

6 pending_proposals← ∅
// Proposal function for leader

7 function Propose(block) :
8 if proposer == GetReplicaId() then
9 Broadcast(child_peers, Propose(block))

10 Vote(block)

11 lastCheckedBlockHeight← block.height

12 if block.height == current_tree.target then
13 Reconfigure()

14 end
15 end

// Proposal handler

16 function ReceivePropose(peer, proposal) :
17 prop_tree← system_trees[proposal.tid]

18 ProcessPendingProposals()

// Validate if correct proposer and correct

parent

19 if (GetRoot(prop_tree) ! = proposal.proposer) ∨
(GetParent(prop_tree) ! = peer) then

20 return
21 end

// Verify block height

22 if proposal.block.height ≤ lastCheckedBlockHeight then
23 return
24 end

// Check if we have block’s causal history

25 if (prop_tree ! = current_tree) ∨
(proposal.block.parent.height ! = lastCheckedBlockHeight)
then

26 pending_proposals← pending_proposals

∪{proposal}
27 return
28 end

// Update internal state

29 Validate(proposal.block)

30 Broadcast(child_peers, proposal)

31 Vote(proposal.block)

32 lastCheckedBlockHeight← proposal.block.height

33 if lastCheckedBlockHeight == current_tree.target then
34 Reconfigure()

35 ProcessPendingProposals()

36 end
// Transitions to next configuration in the

schedule

37 function Reconfigure() :
38 current_tree← NextTree(𝑇0)

39 proposer← GetRoot(current_tree)

40 current_tree.target← lastCheckedBlockHeight +
current_tree.duration

reconfigurations are triggered such that protocol safety is ensured

throughout and after the reconfiguration process. iv) Enhancing
Kauri’s out-of-order message handling so that it takes into account

messages that may originate from future configurations.

These challenges are addressed in the following sections.

3.4.2 Standardized Trees and Schedules. Every replica in the sys-

tem keeps a data structure in which it will store the currently in-

use schedule. This structure is instantiated on system startup, as

currently, the protocol utilizes a pre-defined schedule. However,

implementation-wise, when reconfiguration is triggered, the system

is able to edit the schedule safely throughout reconfiguration, thus

allowing for the possibility of the protocol interacting with external

components to recompute the schedule at runtime. Upon startup,

the system can either use a default simple rotation schedule with 𝑁

trees or extract the schedule from a dedicated file. In the file, each

line specifies the fanout, pipeline stretch, and participant order for a

tree topology in the schedule. Each tree is assigned a Tree ID (TID),

either based on the root of the tree (for the default simple rotation

schedule) or the order in which the trees appear in the file (if the

schedule is extracted from a file).

We define a Tree structure, which represents a tree topology

objectively for each replica, tracking properties such as the TID,

fanout, pipeline stretch, and the tree array (the order of replicas

within the tree). This structure is serializable to allow sharing of

trees through the network. Additionally, we define a TreeNetwork
structure, which acts as a wrapper for the Tree structure and cal-

culates relative replica data for the corresponding topology upon

instantiation, such as parent and child peers, the number of children

in the replica’s sub-tree (for aggregation purposes), and more.

3.4.3 Enabling Concurrent Configurations. To enable Kauri to con-

currently handle protocol messages from multiple configurations at

once, we need to adapt two key components:

• First, protocol messages must now include the TID of the

sender’s current configuration (for proposals) or the TID

of the message it is replying to. Recipients can use this to

quickly identify causality and verify whether the sender

is the expected source of the message. For example, in the

algorithm, proposals are only relayed by parents to their

children. Therefore, if a replica receives a proposal, it can val-

idate the message by checking both: i) whether the proposal

originates from the proposer of the tree with the matching

proposal TID, and ii) whether the sender is the parent of

the replica in the tree with the corresponding message TID

(Algorithm 1 line 19).

• All message handlers now extract the context of the config-

uration used to communicate the corresponding message.

This is to ensure proper validation and routing of protocol

message replies. The process is facilitated by the TreeNet-
work abstraction, and can be exemplified in Algorithm 1

line 17, where the message’s context can be extracted from

the system_trees map by utilizing the TID contained in the

proposal message.

3.4.4 Triggering Reconfigurations. Both our prototype and Kauri

utilize what is known as a Pacemaker [19] to handle liveness and
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fault detection in the protocol. Implementation-wise, it is the Pace-

maker that keeps track of the current configuration and who the

current proposer is, and it is also through the Pacemaker that we

trigger a reconfiguration in the system.

In normal case operations, planned configurations can be exe-

cuted by comparing either i) if the proposed block’s height reaches

the target of the current configuration, in the case of a proposer

(Algorithm 1, lines 12 − 13); or ii) if the received proposal block’s

height reaches the target of the current configuration, in the case of

a non-proposer replica (Algorithm 1, lines 33−34). This is done after
the block is validated and voted for in both cases, maintaining safety,

but before the block has been decided, increasing concurrency.

Faults are detected within the Pacemaker component if the sys-

tem fails to make progress for a determinate amount of time. In

these cases, replicas locally advance to the next configuration of

the schedule and increase the timeout period. The target of the new

configuration can be determined utilizing the tree’s known duration

and the last block height the Pacemaker recorded. Originally, Kauri’s

fault handling mechanism considered that once a fault was deemed

in a tree, the faulty replica would cease to participate in consensus

indefinitely. For our approach, we adapted the Pacemaker to main-

tain the necessary state for all replicas to continue participating in

consensus whether the reconfiguration is forced or planned. The

task of removing replicas from the schedule is now encompassed

by external schedule computation, meaning that previously faulty

nodes stay in the rotation of trees until the schedule is explicitly

altered. This task is out of the scope of this work, being further

described in our future work section.

3.4.5 Out-of-OrderMessage Handling. While Kauri’s original imple-

mentation includes detection and handlingmechanisms for pipelined

blocks that might arrive out-of-order, it must be adapted to take

into account that i) an out-of-order block might be the one to reach

the target of the current configuration and ii) that blocks can be

out-of-order due to being from a future configuration. By defining a

queue for the pending out-of-order blocks at the proposal handling

step, we can process them in order. This function can be safely exe-

cuted at any time in the protocol, although the key moments where

it needs to be called are right before we process a new proposal

(Algorithm 1 line 18) and right after a reconfiguration (Algorithm 1

line 34). In a worst-case scenario, we may have an entire pipeline

stretch of proposals from the next configuration pending, which can

all be processed in order in a single execution of our out-of-order

message handler.

3.5 Execution Example
To visualize our prototype’s optimized reconfiguration, we provide

the following example. In Figure 2, we visualize Kauri’s pipeline

in motion when deployed as a tree of 3 layers (𝑁 = 7,𝑚 = 2).

In this scenario, the execution is a stable leader approach and the

pipeline is set to have a pipeline stretch of 4, meaning that for each

pipeline batch, a block is disseminated alongside 4 optimistically

disseminated blocks. This diagram simplifies communication by

merging the interactions of nodes within the same layer into one.

Realistically, nodes in the same layer diverge in terms of message

arrival and relaying times, further extending the time it takes to

decide a pipeline batch.
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Fig. 2. An example of Kauri’s stable leader pipelined execution.
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T1
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I
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...
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Fig. 3. An example of dynamic reconfiguration.

To exemplify a rotation with our optimised approach, we provide

Figure 3. We instantiate this execution with our simple rotation

schedule (Figure 1), and additionally, reconfiguration happens every

50 blocks, meaning that𝑇0 is reconfigured on block 𝐵50. In this case,

once nodes receive the disseminated block 𝐵50 from the root, they

can start participating in tree 𝑇1’s consensus while simultaneously

deciding the previous configuration’s remaining blocks. This way,

the pipeline is finished in the previous reconfiguration while the

pipeline in the new configuration is filled, adding concurrency to

our reconfiguration process. We highlight the reconfiguration of the

node that is 𝑇1’s leader with the purple arrow. The gained concur-

rency is increased the earlier the next configuration’s leader receives
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the last block of the current configuration. It is important to keep in

mind that in larger systems, nodes within the same layer experience

greater divergence in message communication times (which is not

represented in these diagrams). This accentuates the need for a more

thoughtful approach to the placement of the nodes in consecutive

tree rotations to better exploit concurrent configurations.

4 Evaluation
In this section, we present various cases of interest that enable us

to analyse the impact of our dynamic reconfiguration in Kauri. We

establish Kauri’s original performance as the baseline and analyse

whether or not our reconfiguration mechanism exhibits detrimental

costs that would justify picking a stable leader over our rotating

leader solution.

4.1 Experimental Setup
This experimental evaluation was conducted through the use of Kol-

laps [20], which permits us to emulate the different characteristics

of a distributed network, such as the latency and the bandwidth

of the links between the nodes. Every experiment was conducted

with two physical machines connected in a way that communica-

tion costs between them are insignificant when compared to the

emulated topology. The workload we provided puts computational

resources close to saturation, meaning that processing time is the

bottleneck of the system. Every network utilized defines its network

properties at the link level. Each participant has a link to every

other participant. Implementation-wise, network communication

leverages concurrency to improve message dissemination, meaning

that multiple links can be used throughout the process to reduce

the sending time of blocks for consensus. It is possible to saturate

node communication links by defining a topology where all of a

participant’s traffic is routed locally through a switch, making it

so that a node’s link to its switch is a point of contention and the

bottleneck for communication. Since resources are already near sat-

uration at the computational level, we choose networks where each

participant has a dedicated link to every other participant, avoiding

the interference and contention that would occur on both resources

when using a bottlenecked switch-based topology.

To simplify our experimental evaluation, we assume that all the

trees in the schedule have an equal target duration of 𝑘 blocks. Since

all reconfigurations will occur every 𝑘 blocks, systems with higher

throughputs will be reconfiguring more frequently.

4.2 Homogeneous Networks
The goal of running experiments in a homogeneous network en-

vironment is to limit the number of factors that can influence the

throughput of the system throughout the process of reconfiguration.

We study the impact of the following three factors in the perfor-

mance of our dynamic reconfiguration: i) the height of the trees the

system uses; ii) the displacement of the nodes between consecutive

configurations and iii) the frequency at which the system recon-

figures. For all the experiments run, unless stated otherwise, we

attributed a latency of 50 ms and a bandwidth of 750 Kbp/s to all the
connections used between the participants. The selected bandwidth

makes it so that the sending time is still a significant factor for the

execution of our algorithm, even if dissemination is parallelized and

optimized.

4.2.1 Tree Height. For this experiment, we evaluate how the height

of the trees being used can affect our reconfiguration procedure.

In all the executions presented, our trees have a target duration of

𝑘 = 300 blocks and we utilize a simple rotation schedule (Figure 1).

To accurately represent the expected load of a Kauri execution, the

pipeline stretch of each scenario was adjusted taking into account

the height of the trees used for consensus. We analyse the following

scenarios: i) Height of ℎ = 2: using 𝑁 = 31 nodes structured into

a star topology of fanout 𝑚 = 30. This scenario corresponds to

HotStuff’s [3] topology; ii) Height of ℎ = 3: using 𝑁 = 31 nodes

structured into trees of fanout𝑚 = 5; iii) Height of ℎ = 5: using

𝑁 = 31 nodes structured into trees of fanout𝑚 = 2.

Note that we always opted to use trees that are perfectly balanced.

This is because unbalanced trees have extra sources of variation in

the results that we want to diminish in this study.

Fig. 4. Throughput (in blocks per second) over time of the three different
scenarios where the tree heights are varied.

In these scenarios, the processing power available for each node is

the bottleneck of the execution, further accentuated when the fanout

is increased. That said, a star topology execution is the scenario

with the worst performance, even when considering the fact that

the implementation can make use of the concurrency offered by our

topology to reduce HotStuff’s heavy sending time. The results of this

experiment are represented in Figure 4. In the graph, the different

scenario executions are aligned so that their first reconfiguration

occurs at the same point in time. Additionally, each different scenario

has its overall average throughput represented by a horizontal line.

With this experiment, we can deduce that the overall throughput

of the different scenarios follows what was expected regarding the

fanout utilized in each of the executions: the scenario that used

a HotStuff-like star-based topology for its trees (ℎ = 2) has the

lowest throughput, as the resources available for a single node are

the bottleneck in this experimental setup, being close to satura-

tion. Meanwhile, both executions with higher-depth trees present

similar throughputs which are better than HotStuff, as the tree topol-

ogy balances consensus’ workload. Additionally, as the pipelining

techniques used were adjusted according to the tree’s height, these

compensate for the added latency of the trees. The slight difference

in performance between trees with ℎ = 3 layers and ℎ = 5 layers
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can be justified due to the differences originating from the workload

distribution: the trees with fanout𝑚 = 2 were able to more evenly

distribute consensus workload. Although this is a valid strategy

for distributing workload in this experiment, it is not applicable to

every context as real-world scenarios have to take into account the

drawback of more nodes being assigned to internal nodes in the

tree, which increases the difficulty of finding a robust tree.

For this experiment, when taking into account the selected homo-

geneous network and tree schedule, the impact of reconfiguration

was negligible in all executions. This shows that even when the

system is close to saturation and the pipeline is in full use, our re-

configuration mechanism can effectively parallelize the work of two

consecutive configurations in a way that the throughput does not

drop. In the execution with more layers (ℎ = 5), as the pipeline is

also increased, the expected additional latency from the layers is

compensated during our parallelized reconfiguration process.

4.2.2 Node Displacement. For this experiment, we evaluate the

impact that the displacement of nodes between two consecutive

configurations has on the dynamic reconfiguration’s performance.

For our executions, we use trees with 𝑁 = 31 nodes and a fanout of

𝑚 = 5 (consequently, ℎ = 3). Each tree now utilizes a target duration

of 𝑘 = 100 blocks to reconfigure more frequently. To measure the

impact of node displacement in our reconfiguration process, we com-

pare the performance of the reconfiguration mechanism between

two different schedule strategies, namely: i) Root-Child Switch
Schedule. This schedule oscillates between two trees, where the

root of the next tree is a child of the root of the current tree. It is

expected that this schedule has a reduced impact on the reconfig-

uration process because by only switching the root with a direct

child, the latency of the switch is reduced (as nodes only jump one

layer in the tree) and the disruption on the pipeline will be kept

to a minimum; ii) Internal-Leaf Switch Schedule. This schedule
oscillates between two trees, where the internal nodes of a tree

become the leaf nodes of the following tree, and vice-versa. In this

schedule, the root of the tree will always be swapped with a leaf

node. It is expected that this schedule has a bigger impact on the

reconfiguration process, as a high amount of nodes jump various

layers in the tree. Additionally, we include an execution without

reconfiguration (i.e., a stable leader execution) to act as the baseline

of the expected stable performance. The results are displayed on

Figure 5.

First and foremost, we can note that the difference in overall aver-

age throughput between all executions is minimal, with the biggest

one being between the stable leader execution and the Internal-Leaf

Switch schedule. The Internal-Leaf Switch schedule execution has

roughly 6% less average throughput than the stable leader.

Secondly, as expected, the Internal-Leaf Switch schedule applies

more strain to the throughput of the system due to the higher

displacement of nodes. This can be seen by the fluctuations of the

throughput throughout the execution when compared to Root-Child

Switch schedule’s more stable throughput. Even then, for such a

high displacement of the pipeline structure, the reconfiguration

costs are relatively low. This aligns with what was witnessed in the

rotating schedule used in Figure 4, where the reconfiguration costs

were kept at a minimum even when a moderate amount of nodes

Fig. 5. Throughput (in blocks/s) over time between two systems with
different schedules, compared to a system that has no reconfiguration.

had to switch their respective parent and children nodes during

reconfiguration.

Thus, for schedules that follow Internal-Leaf Switch’s behaviour,

where most of the nodes change roles upon reconfiguration and

the pipeline suffers a bigger disruption, reconfiguration is still feasi-

ble without heavy costs. However, we would like to note that the

throughput pattern witnessed here is noisier than expected and

did not manage to reach the other executions’ stable throughput.

It is easy to suspect that, if the system reconfigures faster than the

throughput stabilizes after the reconfiguration’s disruption, then

inherently the system will never be able to reach stable performance.

This can be further accentuated by the fact that the system’s re-

sources are near saturation. For this reason, we provide a follow-up

test to this schedule type in Figure 6, where the computational load

is alleviated and where we give more time between reconfigurations

to confirm reconfiguration recovery time.

Fig. 6. Throughput (in blocks/s) over time in Internal-Leaf Switch schedule
executions where we vary the latency.

We once again use a Internal-Leaf Switch schedule, but this time

the system only has 𝑁 = 21 nodes laid out in trees of ℎ = 3 height

where fanout is equal to𝑚 = 4. For further insight into the high

displacement of nodes in this scenario, we vary the latency of the

network between the values of 50 ms, 150 ms and 250 ms, with the

pipeline stretch adjusted accordingly. There’s no change to the band-

width of the network, and reconfiguration happens every 𝑘 = 400
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blocks. As seen in Figure 6, recovery time for reconfiguration is

consistent across all networks, with higher latency networks hav-

ing a stronger throughput impact. Even then, the overall average

throughput of all executions is largely unaffected, maintaining simi-

lar values. We also note that certain reconfigurations present in this

schedule end up having less impact than others, which highlights

how important it is for schedules to not only have in mind network

properties but also node workload and computational power.

4.2.3 Reconfiguration Frequency. Finally, we study the impact that

the frequency of reconfiguration can bring to the performance of

the system. We once again use a simple rotation schedule and a

system with trees of 𝑁 = 31 nodes with a fanout of𝑚 = 5. This

time, however, we evaluate the performance of our system for four

distinct 𝑘 values, namely: i) 𝑘 = 1: A system that rotates leader

every block, emulating LSO algorithms like HotStuff [3]; ii) 𝑘 = 25:

A system that rotates every 25 blocks; iii) 𝑘 = 50: A system that

rotates every 50 blocks; iv) 𝑘 = ∞: A systemwhere the configuration

is not changed (Stable Leader). The results are shown on Figure 7.We

include the execution that uses HotStuff’s topology from Figure 4

for comparison purposes.

Fig. 7. Throughput (in blocks/s) over time between four different systems
with different reconfiguration frequencies and HotStuff.

Once again, for the homogeneous network selected, reconfigura-

tion following the rotation schedule does not seem to provide any

noticeable costs for values where 𝑘 does not interrupt the pipeline.

In these cases, there are negligible throughput losses when the re-

configuration rate is higher. Meanwhile, when 𝑘 = 1, Kauri suffers

a loss of throughput as, by reconfiguring every block, the system

can not make use of its pipelining techniques to compensate for

the latency derived from its tree topology. Even then, Kauri still

gains throughput in this context over the HotStuff topology seen

in Figure 4, as it more evenly distributes the load across various

participants. This means that a LSO approach to Kauri can in fact

outperform HotStuff when combined with our dynamic reconfigu-

ration.

4.3 Heterogeneous Networks
We can infer the utility of our solution in a WAN by once again uti-

lizing Kollaps, however this time with a careful definition of various

network links that could represent a real-world deployment of a

permissioned blockchain application. A variety of works take into

account that many permissioned blockchains are usually deployed

as a data center network, meaning that most participants can be

grouped and approximated to different clusters. [18, 21, 22]. Given

this, for our heterogeneous experimental evaluation, we define a

simplified version of a cluster-based environment for the definition

of our network links.

We maintain a bandwidth of 750 Kbp/s for all links in this setup.

This is due to how computational resources are already near satu-

ration, meaning that for our emulated environment, maintaining

the previously used bandwidth provides clearer results for interpre-

tation. The most significant aspect of this heterogeneous network

definition is not the absolute values chosen for the network prop-

erties (which are influenced by and adjusted to our experimental

infrastructure), but the relative values between the cluster commu-

nication links. The asymmetry brought forth by the latency discrep-

ancies between the clusters is enough to showcase the impact that

a heterogeneous network may have on system execution. With this,

we can say that network properties for the connections between

the three different clusters A, B and C are set so that: i) Intra-cluster
latency is reduced for all clusters, meaning that trees should use

same cluster links as much as possible; ii) Latency between A and

B is moderate, same with latency between B and C; iii) Latency
between A and C is relatively bad, meaning that trees should avoid

using links between these two clusters.

We once again use a system with 𝑁 = 31 nodes structured into

balanced trees of 𝑚 = 5. Nodes are distributed so that the clus-

ters are balanced. To evaluate the impact of a smart tree schedule

in this heterogeneous network setting, we establish the following

three schedule executions: i) Rotation Schedule: the same rota-

tion schedule defined in Figure 1; ii) Randomized Schedule: a
schedule of 𝑁 trees where trees are completely randomized, akin

to what Kauri originally used for its bucket-based construction; iii)
Informed Schedule: a schedule of 𝑁 trees that avoid weak links

and prioritize intra-cluster communication.

It is important to note that our dynamic reconfiguration allows

different trees in the schedule to have different pipeline stretch

values. However, here we simplistically assume that all trees have

the same ideal pipeline stretch, equivalent to the one used in the

homogeneous network evaluation. This is to compare efficiency

between the three different schedules more strictly, and because

pipeline stretch adjustments would reveal partial knowledge of the

system’s network, belonging only to an informed schedule context.

Reconfiguration for these executions happens every 𝑘 = 300 blocks.

From Figure 8, we can infer that a random schedule has the worst

performance in the heterogeneous network provided. This is be-

cause with already 3 different kinds of clusters, the network already

has enough variety to increase the probability of inner nodes having

high latency links. These network asymmetries can heavily increase

the wait experienced to aggregate votes and therefore in consensus.

Simultaneously, a rotation schedule provides a performance that can

be compared to a random schedule, however bringing forth more

consistency. This is because throughout execution tree performance

will often only slightly diverge, as this type of schedule maintains a

moderate portion of past links between configurations. Lastly, we

note that an informed schedule ends up having better performance

than the other two schedules throughout the entire execution. In
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Fig. 8. Throughput (in blocks/s) over time of three different schedules in a
heterogeneous network.

this case, trees can be set up to avoid weaker links while still shifting

around the leadership role between configurations. In theory, in-

formed schedules can be further adjusted in different heterogeneous

contexts, such as increasing the pipeline stretch according to the

current tree’s expected remaining time from its links’ latency.

5 Conclusions and Future Work
With this work, we described a solution that aimed to make Kauri

viable with a rotating leader policy. The implementation aims to

mitigate the inherent costs of reconfiguring amidst the pipeline exe-

cution of this tree-based protocol. Additionally, we set out to define

a way to encapsulate the rotation schedule so that system designers

can accurately construct the desired tree schedule to be put into

use by the protocol. By combining our optimised reconfiguration

mechanism with an informed tree schedule, we were able to prove

our solution’s efficiency in a network that can be approximated to

a geo-distributed WAN. Furthermore, by evaluating our approach

in a homogeneous configuration, we were able to pinpoint that our

solution is efficient in a wide variety of scenarios that could affect

the dynamic reconfiguration’s performance.

Overall, we were able to confirm that Kauri is compatible with

a rotating leader policy and that with our solution we can hope

to obtain even better scalability in real-world scenarios, whilst ob-

taining the full benefits of a rotating leader consensus protocol. For

future work, we aim to enable our approach to recompute schedules

at runtime. By defining tree performance metrics and leveraging

external systems to measure node correctness and/or network per-

formance, our approach would allow tree-based consensus with a

rotating leader policy to perform well in WANs, while also adapting

to environmental changes during protocol execution.
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