Automatic Detection of Anomalies in
Microservices Architectures

Valentim Romao
valentim.romao@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisors: Professor Luis Rodrigues and Professor Vasco Manquinho)

Abstract. The microservices architecture is a design style that struc-
tures an application as a set of loosely coupled services. This approach
has several advantages, but also some disadvantages when compared with
the traditional monolithic architecture. A key challenge that the mi-
croservices architecture brings is the potential lack of isolation among the
concurrent execution of functionalities that span multiple microservices.
In a monolithic application, each functionality is typically implemented
by a transaction that accesses a single-database with ACID properties.
In a microservices architecture a functionality may need to be broken
into multiple independent sub-transactions, each executed by a different
microservice, and possibly accessing a different repository. Even if each
sub-transaction is isolated from other sub-transactions executed by the
same microservice, the potential interleaving among sub-transactions of
different executions of one or multiple functionalities may lead to unex-
pected results, also named anomalies. These would never occur in the
monolithic implementation and correspond to unintended outcomes. In
this work, we address the problem of automatically detecting anomalies
that might appear when decomposing a monolithic application into a
composition of microservices.

Keywords: Monolith - Microservices - Anomaly detection

[\

Table of Contents

Introduction. 3
Goals and Expected Results i i)
Background)
3.1 Monolithic and Microservices Architectures 5
3.2 Transactions and Transactional Properties................. ... 7
3.3 Anomalies 8
3.4 Concurrency Control........... 10
3.5 Transaction Choppingc..c.iiiiiiiieninen... 11
3.6 Distributed Databases i 12
3.7 Data Replication 14
3.8 Transactions in Microservices Architectures 16
3.9 Strategies to mitigate Anomalies 17
Related Work 18
4.1 Heuristics for Anomaly Awarenessc..ooveun .. 18
4.2 Anomaly Detection using Black Box Approaches 20
4.3 Anomaly Detection using White Box Approaches.............. 21
4.4 Tools COMPATISONo vv ittt et e 23
Architecture. o 24
5.1 Tool Moduleso 24
5.2 Sub-transactions Representation............................. 24
5.3 Relations between Sub-transactions and other Transactions 24
5.4 Anomalies Detectiont 25
Evaluation 26
6.1 Number of Anomalies Detected 26
6.2 Impact of the Consistency Model 26
Scheduling of Future Work i 26
ConCIUSIONS . .\ttt 27

1 Introduction

The microservices architecture is a design style that structures an application
as a set of loosely coupled services. This architecture has several advantages
with regard to a more traditional monolithic architecture. First, because each
microservice only implements the logic related to a small subset of the entities
managed by the entire application, the code becomes highly cohesive and easier
to develop and maintain. Second, because microservices are loosely coupled, it is
easier to assign different teams to program each service, which allows the work
to be done in parallel and with minimal interference between each team. Third,
it provides more flexibility, as multiple services can be deployed in different
machines, therefore managed and provisioned independently. For instance, it is
possible to assign more resources to a given microservice, instead of to the entire
application. Due to these advantages, many companies and software developers
are now using microservices architecture when building their applications, and
some are even migrating legacy monolithic applications to the microservices
architecture, to ease maintenance and scaling [1].

However, the microservices architecture also has some disadvantages when
compared to a monolithic architecture. An application typically implements mul-
tiple functionalities, each accessing several data objects representing different
domain entities. In a monolithic application, all these data objects are often
stored in a single database. Furthermore, each functionality is typically imple-
mented by a transaction that offers ACID (Atomicity, Consistency, Isolation,
Durability) properties. This simplifies the application’s design, as programmers
do not need to be concerned with the effects that may arise from the concurrent
executions of the same or different functionalities, or even by the partial execu-
tion of functionalities. In general, this is no longer viable when using a microser-
vices architecture. Each microservice tends to use its own storage, which can
be independent of the storage used by other microservices. Thus, a functionality
needs to be implemented by a set of independent sub-transactions, each executed
by a different microservice. Even if each sub-transaction is isolated from other
sub-transactions executed by the same microservice, the concurrent execution of
functionalities may lead to an interleaving of operations that would never occur
in the monolithic application. This new interleaving may lead to unexpected
results, also named anomalies, that correspond to non-serializable executions of
the transactions. Moreover, the execution of a functionality may no longer be
atomic, since each sub-transaction commits individually. This is a problem be-
cause it no longer assures the global commit of the operations’ effects, which
was previously guaranteed by all the operations being in one single transaction.
Anomalies that may result from the lack of atomicity and isolation are managed
by executing compensating actions, which represent an additional burden to the
programmer of microservices applications.

To make things even more complex, a microservice implementation often
needs to read data that is managed by another microservice. Different imple-
mentations of the microservices architecture may use different techniques to
support such accesses. In some cases, a microservice just makes a remote-call

to the other microservice to read a value. In other cases, updates to data val-
ues are disseminated among the relevant microservices using a publish-subscribe
middleware. In the latter approach, a microservice may cache the updates re-
ceived asynchronously, and subsequently read the values of remote data items
from the local cache. Depending on how the updates are propagated and made
visible locally at a given cache, a microservice may read remote data items with
different levels of data consistency. The potential lack of consistency from dif-
ferent microservices reading from different database snapshots is another source
of anomalies, since it allows microservices to read different versions of the same
object.

When a microservice implementation is the result of decomposing a legacy
monolithic implementation, the number of anomalies that may result depends on
how the monolith is decomposed. Namely on how many microservices interact
with each other, and on which domain entities are managed by each microser-
vice. In theory, it should be possible to find the anomalies that result from a
given decomposition in an automated manner. For that, one would need to com-
pare all outcomes that are possible with the monolithic implementation when
each functionality is executed in a single transactional context, with the out-
comes that are possible when the functionalities are executed as a sequence of
independent sub-transactions in the target set of microservices. Finding these
anomalies can help the programmer to select the best decomposition, as well as
ensuring that the appropriate compensating action is developed to fix each pos-
sible anomaly. Finding these anomalies in an automated and exhaustive manner
is relevant because concurrency anomalies are known to be notoriously hard to
identify via testing [2]. Unfortunately, this task is not trivial because one needs
to consider not only the effects caused by chopping a transaction into a sequence
of independent sub-transactions, but also the effects that may result from having
sub-transactions reading mutually-inconsistent versions of remote objects from
the local cache of the microservice.

In this work, we aim to study techniques that may automate the process of
finding anomalies in a microservices decomposition of a monolithic application.
To this purpose, we will study methods that address the problem of finding
anomalies that result from transaction chopping and methods that address the
problem of finding anomalies that result from reading inconsistent data. We also
aim to explore techniques to address both problems together. As will be discussed
later in this report, we believe that our goals can be achieved by extending an
existing tool that only addresses the effect of data consistency (CLOTHO) with
mechanisms to address the effects of transaction chopping.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Sections 3 and 4, we present the
background of the related work. Section 5 describes the proposed architecture
to be implemented, and Section 6 describes how we plan to evaluate our results.
Finally, Section 7 presents the schedule of future work, and Section 8 concludes
the report.

2 Goals and Expected Results

This work addresses the problem of automating the process of finding the
anomalies that arise from the decomposition of a monolithic application into a
composition of microservices.

Goals: We aim to create a tool that, given the source code of a mono-
lithic application, and the source code of a target decomposition of the
same application into multiple microservices, can automatically identify
the anomalies that may occur when executing the functionalities in the
microservices architecture.

To accomplish this goal, we intend to extend CLOTHO, an existing tool
that is able to identify anomalies that may result from having transactions read
inconsistent versions of data. Our extension will give it the ability to identify
anomalies that result from the transactional chopping that needs to be performed
as a result of the decomposition.

Expected Results: The work will produce i) a study of how to iden-
tify anomalies that may appear in a microservices decomposition; ii) an
implementation of a tool capable of doing such analysis; iii) an exten-
sive evaluation with different decompositions and considering different
consistency models that may be used by the implementation of the mi-
croservices architecture to support remote access to remote data.

3 Background

In this section, we will present the background knowledge required for our
work. We will start by introducing the monolithic and microservices architec-
tures, explain what are transactions and the properties associated with them,
followed by a list of anomalies that can occur on a system. After that, we present
mechanisms used to coordinate transactions, and a technique to divide transac-
tions. Next, we delve into the topic of having distributed databases, and how
data can be replicated between nodes. Finally, we explain how transactions are
normally implemented in a microservices application, and a strategy used to
mitigate anomalies when using microservices.

3.1 Monolithic and Microservices Architectures

An application is said to follow a monolithic architecture when it is com-
posed of a set of tightly coupled modules, organized in a single codebase, and
are deployed, provisioned, and executed as a single logical unit. One of the main
advantages of a monolithic architecture is that it makes data management easier.
It is often possible to store the application data in a single storage service, typ-
ically a database with support for transactions. This allows the functionalities
to be implemented as ACID transactions, relieving the programmers from the

burden of considering the effects that may result from the interleaving of concur-
rent executions. Monolithic applications also have some disadvantages. As the
application grows, and more functionalities are added, the codebase becomes big-
ger and more complex. Also, appropriate resource provisioning becomes harder,
because different modules may have different resource requirements, but the ap-
plication needs to be provisioned as a whole. Finally, if a component fails in a
monolithic application, then the entire application becomes unavailable.

In contrast, the microservices architecture advocates the design of the appli-
cation as a set of loosely coupled modules (or services), organized in multiple
codebases, and that can be deployed, provisioned, and executed independently
of each other. This architecture makes it easier to develop and maintain different
services. It is also possible to assign different resources to different services and
scale each service independently of the others. Additionally, if a service becomes
unavailable, functionalities that can be executed using the remaining services
continue to be available, allowing the system to suffer a graceful degradation.
On the downside, executing a functionality as an atomic transaction becomes
harder in microservices architectures. This happens because each service will
typically use a different storage service, making it inefficient, or even impossi-
ble, to run a functionality that spans multiple services as a single transaction.
Instead, operations in different services are run as independent transactions, al-
lowing interleavings that would not occur in a monolithic implementation. Also,
when a service needs to access data that is managed by another service, this
requires the implementation of mechanisms to perform remote data accesses or
mechanisms that allow a service to collect and cache updates performed to re-
mote services. This requirement increases the complexity of the code, and also
allows the possibility of a service reading inconsistent data versions.

Table 1 presents a comparison between the two architectures.

Table 1: Architectures Comparison.
Complexity | Modularity|Scalability| Graceful ACID
Degradation|Properties
Monolithic Low Low Low No Easy
Microservices High High High Yes Hard

Many companies believe the advantages of the microservices architecture out-
weigh its disadvantages, and the adoption of this architecture has been increas-
ing. In fact, some companies even initiated the process of transforming legacy
monolithic applications into microservices compositions [1]. Currently, there are
already some tools which ease the process of the monolith decomposition [3,4],
making the migration more appealing. This trend, however, forces programmers
to reason about the effects of concurrency and data consistency in a distributed
setting, to mitigate and compensate for the fact that ACID transactions are not
available for functionalities that span multiple services.

3.2 Transactions and Transactional Properties

A transaction is a sequence of one or more operations that are treated as
a unit and whose execution appears to be indivisible. Transactions are widely
used in database systems and are characterized by a set of properties known as
the ACID properties, namely: Atomicity, that ensures that if the effects of one
operation take place, then the effects of all operation take place; Consistency,
which guarantees that after applying a transaction to a consistent database
state, the database remains consistent; Isolation, that prevents the execution
of a transaction from being affected by the concurrent execution of the same
or other transactions; and Durability, which assures that after a transaction
commits, their changes will be permanent in the database. One specific type of
transactions, that we will later focus on in this work, is long-lived transactions,
which represent transactions that access many database objects and take a large
amount of time to complete [5].

The use of transactions simplifies the development of an application because
it shields the programmer from dealing with the effects of concurrency and/or
partial failures. For instance, if a transaction implements a bank transfer, the
atomicity property avoids the case where the withdrawal operation is executed
in one account but the corresponding deposit is not performed.

Also, in the same scenario, isolation ensures that multiple transactions can-
not withdraw more money than the funds available, even if they are executed
concurrently.

It is possible to define different isolation properties for transactions. The
strongest isolation properties are strict serializability and (the slightly weaker)
serializability, which are defined as follows:

Serializability [6] defines that the results of the concurrent execution of a set
of transactions should be the same as if the transactions have been executed
in some serial order. This model does not account for the precedences between
transactions in the real-time execution (one transaction starting after another
being committed), it only focuses on guaranteeing that the ordering of the exe-
cuted transactions is serial. A serial order is an order where a transaction only
begins to execute after all the operations of the previous transaction are done,
which means, no interleaving between transactions are allowed.

Strict Serializability [6] is the strongest isolation level, and enforces the same
properties as serializability but with an additional constraint. This level does not
only guarantee that the effects are perceived as they would in a serial execution
(like serializability), but it also imposes that if a transaction T, starts after
another transaction 7T} has been committed, then T3 is serialized after T7.

Unfortunately, ensuring isolation has some costs that depend on the con-
currency method used and on the characteristics of the workload. As a result,
transactions may execute slower, be delayed, or be forced to abort. These costs

can be reduced if weaker isolation guarantees are provided. In practice, there is
often a trade-off between the performance of the system and how strong the iso-
lation is. Thus, in some cases, the systems are configured to offer weaker isolation
guarantees, even if these guarantees allow interleaving among concurrent trans-
actions to become visible, which, in turn, may lead to inconsistent results. The
weaker isolation levels are read uncommitted, read committed and repeatable
read.

Read Uncommitted [7] enforces that the writes to a given object should be
handled respecting the total order. However, this model also allows operations
to read values that were written by other transactions but were not yet com-
mitted, resulting in a transaction being able to see intermediate values of other
transactions’ executions.

Read Committed [7] only allows operations to read values written by other
transactions if they are already committed. This avoids reads seeing intermediate
values of other transactions but does not enforce that if a transaction contains
two reads to the same object, they will both see the same value.

Repeatable Read [7] is identical to Read Committed with the addition that if
a transaction contains two reads to the same object, then those two reads need
to see the same value.

3.3 Anomalies

Sometimes, it is easier to understand the limitations of using isolation levels
that are weaker than serializability by identifying phenomena that may occur
only when serializability or strict serializability are not enforced, and that may
compromise the consistency of the application. These phenomena are typically
called anomalies. In the following list, we present some of the most relevant
anomalies based on a previous research work [8].

Dirty Write is an anomaly generated when the system has two transactions,
T1 and T5, each having two updates and writing on the same two variables, x
and y, respectively. Now, consider that T modifies x, then T3 interleaves 77, and
writes on x already modified by T}, and on y. This will result in an inconsistency,
because when T} resumes it will write on y, resulting in the final state being x
written by 75 and y written by 7). This anomaly is impossible under every
isolation level. Example in Fig. la.

Dirty Read is an anomaly generated when the system has two transactions,
Ty and T5, Ty composed of two updates and Ts composed of a read, all applied
to the same variable in the database, x. Then the following scenario happens, T}

executes its first update, but before it can execute its second update, T5 reads
that intermediate value from x in the database and uses it for an instruction in
its code. This is an anomaly because T, will be using an intermediate value that
would not be available in a serializable execution of the system. This anomaly
is only possible under read uncommitted. Example in Fig. 1b.

Lost Update is an anomaly similar to the dirty write, but, in this case, T}
will not initially write to the same variable as T5. Now, 17 will read the vari-
able, then T5 reads and updates the variable, and T} finishes its job by updating
the variable. This will result in the value prevailing to be the one written by
T1, nullifying the write made by T5. This is an anomaly because it is not pos-
sible to order the two transactions in a serial manner. If we assume that T
executed before T5, then T5 should have read the value written by 77, and vice-
versa. Considering the scenario previously described, we cannot assume that one
transaction started before the other, therefore there is no possible serial order
of the transactions. This anomaly is possible under read uncommitted and read
committed. Example in Fig. 1lc.

Read Skew is an anomaly associated with a system having an invariant condi-
tion, and caused by the fact that all the updates of a transaction do not execute
atomically. These two factors, together with a transaction that reads the values
to verify if the invariant holds, may give the perception that the invariant was
broken. Considering the scenario where we have a system’s invariant with two
variables, x and y, a transaction 77 with two updates, one for each variable, and
a transaction T, that will read both variables, x and y. If 75 happens in the
exact moment when the first update of 77 has already executed, but the second
one is still to be executed, then the program will act as if the invariant was bro-
ken, although T; was still executing, and would leave the system respecting the
invariant when it finished. This anomaly is possible under read uncommitted,
read committed and repeatable read. Example in Fig. 1d.

‘Write Skew is an anomaly, similar to the read skew, where one needs to account
for the delay between the verification of a variable and the update of another
variable. Considering the scenario where we have a system’s invariant with two
variables, x and y, a transaction 77, which reads z and writes a value on y, if
the value read from = and the updated value of y still respect the invariant,
and a transaction T, with the same purpose as T} but reads y and writes on
x. If T7 starts executing and reads x, and T5 interleaves the execution reading
y. Then, T7 and T will decide if they update their respective invariant variable
considering the value that they read from the other variable, not accounting
for the possibility of other transaction having updated its value after it was
read. This sequence of events may break the system’s invariant. This anomaly is
possible under read uncommitted, read committed and repeatable read. Example
in Fig. le.

write x

T4

write x

(a) Dirty Write. (b) Dirty Read. (c) Lost Update.
T4 Tq T,

(d) Read Skew. (e) Write Skew.

Fig. 1: Anomalies examples.

3.4 Concurrency Control

In order to assure the serial execution of the transactions, one needs to en-
force isolation between transactions. One way of achieving this is by having
concurrency control mechanisms responsible for coordinating the execution of
the transactions. When two transactions are executing concurrently and access
the same object, with at least one of them modifying the object, this is called a
conflict. It is possible to ensure that potential conflicts do not cause anomalies by
implementing concurrency control mechanisms. There are two main approaches
to concurrency control, the pessimistic approach and the optimistic approach.

In the pessimistic approach, the goal is to prevent two transactions from
accessing the same object and detect it as soon as it happens. A common way
of assuring this is by assigning one or two locks to each object in the database.
In order to access an object, a transaction needs to first obtain a read or a
write lock on the object. The access mechanism ensures that no more than one
transaction can own a write lock on an object and that, if some transaction owns
a write lock, no transaction can own a read lock on that object and vice versa. A
transaction that cannot obtain a lock is blocked until the lock(s) owner(s) releases
the lock(s). Therefore, the correct use of locks can ensure serializability, since a
transaction only releases the lock(s) when it commits or aborts. However, this
mechanism is prone to deadlocks. Also, one issue with this approach is that long-
lived transactions may hold locks for large periods, preventing other transactions

10

from making progress, or leading to deadlocks, since they tend to access a high
variety of objects.

In the optimistic approach, it is assumed that conflicts are rare, so transac-
tions are executed without checking for conflicts until the commit time (typically,
in this approach, updates are also not made visible until the commit time). Con-
flicts are only checked when a transaction attempts to commit, by executing a
certification procedure. The certification of different transactions needs to be exe-
cuted in total order and verifies if the objects read and written by the transaction
have not been subsequently updated by other transactions that have been com-
mitted after the operations were performed. If a transaction passes certification,
the updates are applied atomically. Otherwise, the transaction is forced to abort,
and the resources used to execute the transaction are wasted. As stated before,
long-lived transactions access a high variety of objects, which increases the risk
of conflicts, and makes them more prone to abort than other transactions. As
a result of this, the system is punished by having long-lived transactions, since
they are more likely to abort, and, when it happens, it results in a significant
waste of the system’s resources.

3.5 Transaction Chopping

As it was mentioned previously, long-lived transactions may affect negatively
the system’s performance. This happens because long-lived transactions can
either block the execution of other transactions for a long time period (pes-
simistic approach), or have long executions that may need to be aborted and
re-executed (optimistic approach). The concept of chopping transactions, pro-
posed by Shasha et al. [9], was introduced as a technique to avoid long-lived
transactions. This method consists in dividing the large transactions into smaller
transactions (sub-transactions). We define sub-transaction as a transaction com-
posed of a subsequence of operations from one transaction. The chopping method
consists in identifying subsequences of operations from a transaction, considering
the objects they access and the type of access, and, based on that, create new
sub-transactions. This results in an improvement of the system’s performance,
since the amount of time that other transactions that access the same resources
will be blocked and the amount of work that may be wasted, and subsequently
have to be repeated, are both decreased.

Associated with transaction chopping, a number of issues need to be consid-
ered. Suppose a transaction T} is chopped into k smaller transactions, T}, T2,
..., TF. Although all these transactions are independent, T} still needs to be exe-
cuted before Tf+17 for all i between 1 and k—1, to provide the same logic as in the
original transaction 7. Moreover, the sub-transactions will act as the original
transaction, but without providing isolation when they are executing, allowing
for other transactions to execute in-between sub-transactions. Another problem
is that if, for instance, the transaction has rollback statements, then they need
to be placed in the first sub-transaction. Otherwise, if one sub-transaction fails
mid-execution, it might not be capable of undoing the work done by the previous
sub-transactions, since they are independent of each other. When the chopping

11

is performed on a transaction that either has no rollback statements, or all the
rollback statements are in the first sub-transaction, the authors consider that
chopping to be rollback-safe.

In their work, Shasha et al [9] also delve into the topic of verifying if a chop-
ping is correct. The authors state that for a chopping to be considered correct,
all of its executions need to be equivalent to a serial execution of the original
transactions. To accomplish this, they use an undirected graph to represent the
executions, where the vertices are the transactions and the edges are the re-
lations between transactions. The edges can be one of two types, S, between
sub-transactions of the same original transaction, and C, between transactions
that have conflicts with each other. In the paper, this graph is called chopping
graph. After representing the execution as a chopping graph, the next step is to
look for cycles that contain at least one S edge and at least one C edge. Each
cycle with this format is an execution that would not preserve the serializable
behaviour of the original transaction set, since it would denote that there is no
possible serial ordering of the transactions executed that would respect the re-
lations between them. Another requirement for a chopping to be correct is that
the chopping is rollback-safe, to guarantee that the rollback behaviour is the
same as the one in a serial execution. To summarize, a chopping is only correct
if all of its executions can be represented as an acyclic chopping graph, and the
chopping is rollback-safe.

To illustrate a chopping of transactions, we elaborated an example inspired
by an example from the book “Microservices Patterns: With examples in Java”
[10]. In this example, we have two tables; PRODUCTS and ORDERS. The first
table is composed by a product_id and a state (“available”, “ordered” or “out-
of-stock”) and the second table is composed by an order_id and a product_id. We
also have four transactions, placeOrder, cancelOrder, checkProductOrder and
removeProduct, their implementations are shown in the example, and they are,
respectively, responsible for placing an order, canceling an order, checking which
is the order id of a given product, if it was ordered, and removing a product
from stock.

Fig. 2 presents the original set of transactions, and Fig. 3 presents the same
set of transactions after being partially chopped. We decided to chop placeOrder
and cancelOrder, since they were accessing objects from both tables, like the
other transactions, but were also the biggest transactions, making them the best
candidates to be chopped. Note that this was a handcrafted chopping made
by us, to illustrate what a set of transactions looks like before and after being
chopped, so it may be, and in fact is, incorrect. However, the chopping we made
is incorrect on purpose, so that later we are able to use this example to motivate
our solution.

3.6 Distributed Databases

Software developers sometimes opt to have more than one database in their
system, since, by doing this, they can guarantee properties such as data sepa-
ration, scalability, fault tolerance, among others. These databases tend to run

12

placeOrder(p_id, o_id)

cancelOrder(o_id)

checkProductOrder(p_id)

SELECT state FROM PRODUCTS
WHERE product_id=p_id

SELECT product_id AS p_id FROM
ORDERS WHERE order_id=o_id

SELECT state FROM PRODUCTS
'WHERE product_id=p_id

UPDATE PRODUCTS SET state="ordered’
'WHERE product_id=p_id

DELETE FROM ORDERS WHERE
order_id=o_id

SELECT order_id FROM ORDERS
WHERE product_id=p_id

INSERT INTO ORDERS (order_id,
product_id) VALUES (o_id, p_id)

UPDATE PRODUCTS SET state=‘available’
WHERE product_id=p_id

Fig.

placeOrderl(p_id)

removeProduct (p_id)

SELECT order_id FROM ORDERS
'WHERE product_id=p_id

UPDATE PRODUCTS SET state=‘out-of-
stock” WHERE product_id=p_id

2: Monolith transactions.

cancelOrder1(o_id)

checkProductOrder(p_id)

SELECT state FROM PRODUCTS
WHERE product_id=p_id

SELECT product_id AS p_id FROM
ORDERS WHERE order_id=o_id

SELECT state FROM PRODUCTS
WHERE product_id=p_id

UPDATE PRODUCTS SET state=‘ordered’
WHERE product_id=p_id

DELETE FROM ORDERS WHERE
order_id=o_id

SELECT order_id FROM ORDERS
WHERE product_id=p_id

placeOrder2(p_id, o_id)

cancelOrder2(p_id)

removeProduct (p_id)

UPDATE PRODUCTS SET state=‘available’
WHERE product_id=p_id

SELECT order_id FROM ORDERS
'WHERE product_id=p_id

UPDATE PRODUCTS SET state=‘out-of-
stock” WHERE product_id=p_id

Fig. 3: Microservices transactions.

on different machines, distributing the load between them, which may also ben-
efit performance. When the storage system is composed of several databases in
different machines, it is possible to coordinate them, such that they execute as
a single database. This type of storage system is called a distributed database.
Coordination is needed to ensure both atomicity and isolation. For atomicity,
one needs to ensure that if a transaction is aborted in one database, it is aborted

13

in all databases. For isolation, one needs to ensure that all databases serialize
concurrent transactions in the same order.

To ensure atomicity it is necessary to execute an atomic commitment pro-
tocol among all participants in the transaction, to agree on the outcome of the
transaction. A widely adopted atomic commitment protocol is the Two-Phase
Commit Protocol, where one of the participants acts as a coordinator. This pro-
tocol initiates with a setup phase where the participants send a message to
the coordinator, to inform it that they will participate in the execution of a
transaction. After that, each participant executes the received transaction. The
coordinator will be verifying with each participant if they want to commit or
not. A participant will say “yes” if it successfully executed the transaction, and
“no” if it aborted. The coordinator will collect all the responses, including its
own, and decide the outcome of the transaction. If all the responses are “yes”,
then the coordinator will send a message to all the participants telling them to
commit. Otherwise, the coordinator will send a message to all the participants
that answered with “yes”, to tell them to abort [11]. As one can tell, this protocol
assures the atomicity of a transaction even in a distributed scenario, by having
all database nodes either commit or abort the transaction.

The concurrency control will be done by using the techniques from Sec-
tion 3.4 adapted to the context of distributed databases. In this context, the
pessimistic approach will continue to hold locks for each object in the databases.
In the distributed setting, this approach introduces a new problem, the dis-
tributed deadlock. This problem may occur because each database may execute
the transactions in a different order. For example, consider we have two transac-
tions 77 and T» that will execute concurrently and two nodes N7 and N, that
will choose different orders to execute the transactions. Assume that in N; the
order is T1, T3, and in N5 the order is Ty, T;. Considering this scenario, N1 will
begin by obtaining the locks of the database objects of T7, and Ny will do the
same but for the database objects of T5. If this happens, then both nodes may
be blocked, since they will not be capable of accessing the database objects of
the transaction that they still need to execute. In the optimistic approach, the
certification is done in parallel by an independent set of servers, each of them
validating the transactions that access their respective objects. However, one
needs to ensure that all participants validate transactions in the same order. A
transaction only commits if it passes the certification at all databases.

3.7 Data Replication

In order to guarantee that the data of the system is available most of the time,
one can resort to data replication. The way this method works is by creating
copies of the original data and distributing them between different nodes of the
system. By doing this, the system becomes tolerant to faults, since one node
failing would not result in the loss of data, because there would be another node
with the same data (replica). Another advantage is that, by distributing the
copies between nodes that can be in distinct geographical places, one can choose

14

to read from a replica that is local, or at least closer, to the origin of the request,
decreasing the latency time and providing a faster response.

However, keeping all the replicas consistent with each other represents an
hindrance of using this process. Ideally, one would want the replicated system
to be 1-copy-equivalent, which means that the replicated system behaves the
same way as a non-replicated system [12]. One naive way of achieving this is
to apply each update to all the replicas, and only proceed after all the replicas
were updated. As one might expect, assuring 1-copy-equivalence is costly, and
requires mechanisms that are strict regarding how data is managed. These mech-
anisms either slow down the execution, or block it until a certain event occurs,
resulting in the system offering a poorer performance, as well as a decrease of
its availability.

Therefore, programmers tend to avoid these costs by adopting weaker consis-
tency models, and accepting the fact that data may not always be consistent in all
replicas. A consistency model reflects the consistency guarantees offered by the
system to the user when executing its functionalities. Depending on the model,
only certain sequences of operations can be perceived. The weaker the consis-
tency model, the more permissive the system is regarding its valid executions,
implying more concurrency between transactions, which ultimately benefits per-
formance. However, this can also lead to anomalous behaviours, if not handled
correctly. These behaviours may occur because now operations from different
transactions can interleave with each other, and modify or read objects that will
still be modified or read by mid-execution transactions. On the opposite side,
we have stronger consistency models, which are stricter on how transactions in-
terleave with each other. The stronger consistency models lead to safer and less
anomalous executions, but neglect performance, since the system will offer less
concurrency [8].

There are several consistency models that a programmer can use. The fol-
lowing list presents the consistency guarantees that we will later use in our
evaluation:

Eventual Consistency [7] guarantees that if several nodes are working with
the same object, then, after some time without seeing new updates, every copy
of that object will converge to the same value for all the nodes.

Causal Visibility [13] is a property that affects one specific object, and is de-
rived from the concept of visibility and Lamport’s Happens-Before relationships
[14]. This property represents a causality relation between two operations (one
operation needs to happen before the other operation), making all threads re-
spect this order, and forcing the write effect of the first operation to be visible for
the second operation. For example, if we have an operation ol and an operation
02, and we establish a causal visibility relation between ol and 02 (ol — 02),
then we are expressing that ol happens before 02, and that 02 sees the effect of
the write made by ol.

15

Causal Consistency [13] enforces an ordering of the operations that respects
their causal relations. We establish a causal relation (Happens-Before) between
two operations when the operations execute one after the other in the same
thread, or when they execute in different threads but one of them reads a value
written by the other one. As an example, consider an operation, ol, that reads
from a variable z, and an operation, 02, that writes on a variable y. If one thread
executes 01, reading a version ¢ of x, and after executes 02, creating a new version
of y, 7. Based on this example, the model will guarantee that all the threads that
read version j of y cannot read a version of x that is older than version i.

Linearizability [6] is a property that affects one specific object and consists
of all the operations applied to that object being seen as atomic, preserving the
object’s single-threaded semantics. For example, if an object is updated, then
all the subsequent reads will see the updated version of that object.

3.8 Transactions in Microservices Architectures

When implementing a microservices application, software developers opt to
use some of the techniques and mechanisms previously presented. There are
two aspects that need to be considered regarding the microservices architecture.
First, microservices are inherently distributed, since different services run in
different machines, and manage different data. Second, we may have cases where
a given service needs to access data from a different service, which may lead to
consistency issues.

One way of assuring strong consistency is to run distributed transactions
using an atomic commitment protocol. Although this type of protocol fixes the
consistency issue, it worsens the system’s performance, since, as we saw before,
atomic commitment protocols are expensive procedures. The costs of using them
come from the communication between the coordinator and the participants to
run the protocol, as well as the time they need to wait for other participants to
respond in order to proceed. For this reason, distributed transactions tend to be
avoided in a microservices architecture.

Since distributed transactions are not a feasible option, developers opt for al-
ternatives. These alternatives consist of chopping transactions and using weaker
consistency models. The chopping alternative aims for each service to only have
transactions that they can execute by accessing their local data. Note that by
doing this, the operations of a transaction will be divided between several inde-
pendent sub-transactions, and can no longer provide properties such as atomicity
and isolation by themselves. Also, guaranteeing that one can chop transactions
to be fully executed by running only on one service, may not always be possible,
and we might have cases where one service still needs to access the objects of
another service. When opting for the weaker consistency model alternative, one
is aiming for the system to provide a better performance, by accepting the fact
that the replicas of the system may not be consistent with each other all the
time. To implement this alternative, the first requirement is that each service

16

has a replica of the contents of all the other services that it needs to access.
After that, when an update is made on a given service, for example, Sy, then
the update will be propagated to all the other services that have a replica of the
contents of S;. Although this assures that each service has the objects it requires
to execute, one needs to account for the fact that when an update is made on
a service, the propagation to the remaining services is asynchronous and not
instantaneous, which may lead to inconsistencies. These inconsistencies occur,
because there is a time window when the replicated data on a service is not
consistent with the data on the original service. One example of a consistency
model oriented towards the execution of transactions is Transactional Causal
Consistency (TCC), which is defined as follows:

Transactional Causal Consistency [15] is a model similar to Causal Con-
sistency, where transactions read from a causally consistent snapshot, which
includes all causal dependencies of the objects read. This model extends Causal
Consistency by adding the notion of causal relations between transactions based
on the objects they access. Another feature it provides is that the updates of
a transaction can be seen as if they are executed atomically (all of them are
executed or none of them are executed).

3.9 Strategies to mitigate Anomalies

In order to mitigate anomalies in a monolith, developers can use stronger
database consistency models, neglecting performance. On the other hand, for mi-
croservices, it is not that simple, since they usually have more than one database,
and when there is data replicated in more than one database, different services
may read different versions of the data. Therefore, software developers came up
with several design patterns specific to microservices. In the book “Microservices
Patterns: With examples in Java” [10], we can find several of these patterns, as
well as examples of their applications.

A pattern that is strongly related to Transaction Chopping is the Saga pat-
tern, introduced by Garcia-Molina and Salem [5]. A saga is composed of a se-
quence of sub-transactions, which originally belonged to the same long-lived
transaction. Note that, previously, these sub-transactions were being executed
as operations inside a single transaction, whereas now they are being executed
as multiple, smaller transactions. Due to this change, one must take into account
that each sub-transaction can fail, and leave the execution of a saga incomplete.
To fix this issue, the authors introduced compensating transactions to revert
the actions from partial executions of a saga. This type of transaction is helpful
for software developers, since it allows the possibility of reverting work done by
previous sub-transactions in case of failure. Now, when a sub-transaction fails,
the system will proceed to backward recover, which consists in executing the
compensating transactions of the previous sub-transactions. The authors also
introduce the possibility of adding a save-point, which is a point where all the
changes made by sub-transactions behind it are saved. If one sub-transaction

17

fails after the save-point, then the system only needs to run compensating trans-
actions for the sub-transactions executed after the point. The Saga pattern has
since evolved to use a model defined by Lars Frank and Torben U. Zahle [16],
which presented three types of sub-transactions. Compensatable, a transaction
that can be reverted by a compensating transaction. Pivot, a transaction that
serves as the save-point. And finally, Retriable, a transaction that does not re-
quire a compensating transaction and can just be retried in case of failure.

4 Related Work

In this section, we will present several tools with implementations and ob-
jectives similar to the ones we intend to achieve. In Section 4.1, we describe
tools whose goal is to give an estimate of how complex the decomposition of a
monolith will be, considering patterns that may raise anomalies. In Section 4.2,
we cover tools that use a black box approach (do not require information on how
the system is built) to detect anomalies. In Section 4.3, we cover tools that use
a white box approach (need to know how the system is implemented) to detect
anomalies. In Section 4.4, we present a table comparing all the tools.

4.1 Heuristics for Anomaly Awareness

A Complexity Metric for Microservices Architecture Migration [17]
is a work with two contributions. These are an estimate of the effort required
to migrate from a monolith to microservices, and the impact of the similarity
measure chosen for the decomposition of the monolith. In their work, the authors
define a microservice as a group of entities called a cluster, and to aggregate the
entities into clusters, a similarity measure is used. In the paper, a similarity
measure consists in a criterion that quantifies how coupled two entities are. The
paper presents several similarity measures, each accounting for how frequently a
certain event is common to both entities, and the obtained frequency represents
how related the entities are. The complexity metric takes into account certain
patterns in the code, which are likely to raise anomalies after the migration to
microservices.

For the first contribution, the paper defines the complexity of the decom-
position as the average of the functionalities’ complexity. The complexity of a
functionality is the sum of the complexities of the clusters accessed by a sequence
of operations. The complexity of accessing a cluster is the number of elements in
the union of the complexities of the accessed entities inside the cluster. Finally,
the complexity of accessed entities depends on the access mode. The complexity
of an entity read is the number of other functionalities that write to that same
entity, and vice-versa.

For the second contribution, the authors create clusters using four different
similarity measures to aggregate the entities. The first similarity measure is given
by the number of functionalities that access both entities divided by the number
of functionalities that access the first entity. The second similarity measure is

18

given by the number of functionalities that read both entities divided by the
number of functionalities that read the first entity. The third similarity measure
is given by the number of functionalities that write on both entities divided by
the number of functionalities that write on the first entity. The last similarity
measure is given by the number of times that both entities are accessed con-
secutively in all functionalities divided by the maximum number of consecutive
accesses.

The first contribution is more related to our work, since their complexity
estimate is based on the occurrences of certain patterns in a monolith that can
possibly lead to anomalies after a decomposition.

Mono2Micro - From a Monolith to Microservices: MetricsRefinement
[18] is a research work with the intent of improving the accuracy of the metric
presented in A Complexity Metric for Microservices Architecture Migration [17]
by providing the user a set of operations to manipulate a monolith decompo-
sition. The authors’ goal is to offer a more realistic scenario of a migration to
microservices considering the Saga Pattern, local transactions, which are trans-
actions that can commit only by executing on one machine, and semantic locks,
application-level locks that indicate when the local transaction of a saga already
wrote on a given entity.

The first operation is Sequence Change, which receives a pair of transac-
tions, representing a local transaction remotely invoking another transaction,
and changes the invoking transaction to a different transaction that happens be-
fore the invoked transaction. The second operation is Local Transaction Merge,
that given two local transactions that either execute sequentially or execute both
after a common local transaction, allows the user to merge these two local trans-
actions. The third operation is Add Compensating, which, inspired by Sagas,
allows the user to create a local transaction that will act as a compensating
transaction. The last operation is Define Coarse-Grained Interactions, which is
composed of Sequence Change and Local Transaction Merge. This operation
considers as input two remote invocations with four different local transactions,
Ty, Ty, T3, T4. T1 and Ty are in the same cluster. T35 and Ty are in the same
cluster, but a cluster different than the one from 7} and 75. 1} happens before
Ty, and T3 happens before Ty. The remote invocations are (T3, T3) and (Ty, Ty),
meaning that T3 calls T3 and T calls T}, respectively. Based on this information,
the operation allows the user to simultaneously reorder the two remote invoca-
tions to generate remote invocations that can be merged, (T, T3) and (T3, Ty),
finally resulting in one remote invocation with the two merged local transactions
(Th2, T34).

This paper also presents three new complexity metrics. First, the Function-
ality Redesign Complexity, which is the sum of the complexities of the local
transactions in the functionality. The complexity of a local transaction is given
by the number of semantic locks in the entities accessed by the local transac-
tion added to the number of other functionalities that write, or have semantic
locks, in the same entities that the local transaction accesses. Second, the Sys-

19

tem Added Complezity, which is given by the number of functionalities that read
from at least two clusters that are modified by another functionality. Third, the
Query Inconsistency Complexity, which is only briefly mentioned and consists
of the complexity of a query (transaction with only reads) being given by the
number of other functionalities that write to one, or more, cluster(s) read by the

query.

4.2 Anomaly Detection using Black Box Approaches

Cobra [19] is a tool designed to test if a transactional key-value store in the
cloud respects serializability. Cobra focuses on the constraints of serializability,
to encode the problem in a way that it can be solved by an SMT solver. It uses
a black box testing approach, since it suits the tool’s target environment, due
to, most of the time, applications running in the cloud being considered black
boxes.

The tool is composed of three components, the Clients, the History Collec-
tors, and the Verifier. The Client is meant to mimic the actions of real clients by
randomly sending requests to the database under test, and receiving the respec-
tive responses. The History Collector is responsible for logging all the operations
made and responses received in the interaction between a specific Client and the
database. Each History Collector creates a fragment of history, which is a se-
quence of the operations and responses it saw. All the fragments together result
in a history, which is a sequence of all the operations and responses that oc-
curred in the system. The Verifier assembles the fragments of history to create
a history and verify if it is serializable.

Focusing on the verification, the Verifier creates a serialization graph from
the history, where the transactions are the vertices and the dependencies are
the edges. The tool also considers constraints, which the paper defines as a
set of possible dependencies, represented as a pair of edges. For the tool to
provide a faster response, the authors defined three techniques to reduce the
solution space. First, Combining Writes, which consists in only considering one
of the writes to create an outwards edge, if there are two or more consecutive
transactions with writes to the same object. Second, Coalescing Constraints,
this is done by considering all the reads after the same write as one read. Third,
Pruning Constraints, this technique consists in decreasing the number of possible
combinations by discarding the edges of a constraint that generate cycles in
the graph, as these executions are impossible to be reached by the constraint
definition. After applying all these techniques, they use the resultant graph, the
constraints, encoded using logic notation, and the SMT solver (in their case
MonoSAT [20]), to verify if the graph is acyclic, since this would mean that the
execution is serializable.

MonkeyDB [21] is a system designed for users to test their program against
multiple consistency levels of a DB by simulating the behaviour of a normal
storage system.

20

This tool provides APIs for SQL and key-value store applications, both com-
monly used by developers to interact with their storage system. One component
of this system is the history, which aggregates the dependency relations between
operations, as well as all the operations that are executed. Another component
is the consistency checker, that uses logical constraints (axioms) to represent the
properties of consistency models and is responsible to check if the execution is
valid under the consistency model selected by the user.

To use the tool, first, the user needs to define a program to test. This pro-
gram will consist of two or more sessions, which the paper defines as sets of
transactions that can execute in parallel. After that, MonkeyDB will simulate
the executions of these sessions running in parallel, and will log each operation
executed in the history. If the operation is a read, it will compute the possible
returned values, based on the history and the consistency model used in the
consistency checker, randomly returning one of the possible values. Note that,
by using this procedure, the user can never be absolutely sure that the system
does not have an anomaly. They can only be more or less confident depending
on how many times they run the tool with the test program and the outputs
they observe.

4.3 Anomaly Detection using White Box Approaches

Automated Detection of Serializability Violations under Weak Consis-
tency (ANODE) [22] presents a tool that statically analyses a given SQL-like
program, to check if it contains serializability anomalies under bounded abstract
executions and different weak consistency models.

To use this tool, first, the user gives as input their SQL program with some
small adaptations to fit the syntax of the tool. Then, the tool generates ab-
stract executions of the program by creating instances of the transactions in the
program and simulating how they would execute. The next step is to convert
each abstract execution to a dependency graph. To replicate the behaviour of
consistency models, they use logical constraints (axioms), so that the abstract
execution is compliant with the chosen consistency model properties. The tool
also assumes that each dependency graph will have a cycle. After that, the tool
creates a First Order Logic (FOL) formula with three clauses, encoding the
program characteristics and the consistency model, the dependencies between
transactions, and the length of the cycle that is assumed to exist. Finally, the
tool uses a theorem prover to check if the FOL formula is unsatisfiable (there
is no possible assignment that would respect all the constraints). In this case,
unsatisfiability means that the cycle assumed, or any cycle of a smaller length,
cannot exist in the dependency graphs. Therefore, all the executions are serial-
izable, unless they have a dependencies cycle of a bigger length.

CLOTHO |[23] is based on the work of Nagar and Jagannathan [22] and is also
a tool designed to analyse the transactions of a storage system that provides
weak consistency semantics, to detect if there are any serializability anomalies.

21

The tool receives as input a Java program with a single class, containing a
set of methods representing the system transactions, and returns as output the
number of anomalies found, as well as concrete tests to reproduce the anomalous
executions. Regarding the architecture, it is composed of two main components,
the analyzer, and the replayer. The former is responsible for doing the analysis
of the program and detecting anomalies, and the latter is used to generate an
environment that allows a user to run concrete executions that will lead to the
anomalies detected.

The tool’s pipeline can be split into three steps for the analysis, and one last
step for the anomaly concrete execution.

First, the tool converts the Java program to an Abstract Representation (AR),
which resembles an SQL-like language and is described by the authors in the
paper. This step eases the extraction of information from the input program,
such as the dependencies between operations that can access the same object.
The types of dependencies considered are: RW (reads from a value that will be
written); WR (writes on a value that will be read); and WW (writes on a value
that will be written).

Second, using the program in the AR, the goal is to construct a First Order
Logic (FOL) formula. This formula is the conjunction of five sets of constraints.
The objective of these sets of constraints is to represent as accurately as possible
the environment where the transactions will run, the relationship between them,
and the characteristics of the anomalies the user is looking for. The paper rep-
resents the sets of constraints using Ycontewt, Pdbs Pdep—s> P—sdep ANA Panomaly-
Yeontext TEPTEsents the values that are plausible to be in the database. g, repre-
sents the consistency and isolation guarantees provided by the database. @gep—s
represents the dependency arrows between operations that belong to the depen-
dency cycle. ¢_,q¢p represents the dependency arrows between operations that
do not belong to the dependency cycle. Yanomaly bounds the possible anomaly
structures to a maximum number of transactions in a serial execution, a maxi-
mum number of transactions in a concurrent execution, and a maximum length
for a dependency cycle.

Third, after having the FOL formula built, the tool uses an SMT solver (in
CLOTHO’s case Z3 [24]), to compute the assignments that satisfy the formula,
each of them representing an abstract execution that contains an anomaly. In
the cases where the formula is unsatisfiable, then this means that no anomalies
were detected for cycles of length equal or smaller than the predefined maximum
length.

Finally, one can opt to use the replayer to simulate a concrete execution that
will make the anomaly emerge. However, this aspect falls outside the scope of
our work.

Microservice Decomposition for Transactional Causal Consistent Plat-
forms (CLOTHO+) [25] is a work strongly related to ours, since it also focus
on the microservices architecture, and extended CLOTHO to execute new func-
tionalities associated with this architecture.

22

Besides providing relevant insights regarding the decomposition into mi-
croservices, it also addressed how prepared CLOTHO is to face microservices
architectures, and introduced useful features to the tool. The first addition was
the implementation of other consistency models in CLOTHO, since, although
they were formalized in CLOTHO’s paper [23], CLOTHO only had eventual
consistency implemented. The second addition was a label to differentiate the
transactions that were running in one microservice from the transactions run-
ning in another microservice. This is used to simulate microservices running in
different machines and avoid raising a false positive, in cases where the two con-
flicting transactions would be running on the same machine. The last addition
was a relation to represent that two operations belonged to the same transaction.

4.4 Tools Comparison

Table 2 presents a comparison of the tools. We split the table into two sec-
tions, “Properties” and “Techniques”. The “Properties” section refers to the
characteristics of the tools. The “Techniques” section refers to the mechanisms
used by the tools to fulfil their purpose. We divide the “Properties” into three
columns, “Analysis”, “Consistency Model”, and “Microservices Oriented?”. “Anal-
ysis” refers to the approach used by the tool to analyse a system. “Consistency
Model” refers to the consistency guarantees that the tool expects the system
under testing to respect, considering the ones that the tool can be extended
to enforce (“-” means that the tool does not take into account the consistency
model of the system). “Microservices Oriented?” indicates if the tool is oriented
to analyse microservices or not. For the “Techniques” section, we also divide
it into three columns, “Method”, “SMT Solver?”, and “Executions Analysed”.
“Method” refers to how the tool identifies the existence of anomalies. “SMT
Solver?” indicates if the tool uses an SMT solver or not. “Executions Analysed”
refers to the type of executions that the tool handles (“-” means that the tool
does not consider different executions of the system).

Table 2: Comparison between the related tools we presented.

Properties Techniques
Analysis |Consistency|Microservices| Method SMT |Executions

Model Oriented? Solver?| Analysed
Cobra Black box |Serializability No Testing Yes Abstract
MonkeyDB | Black box Any No Testing No Concrete
Complexity |White box - Yes Static Analysis| No -
Metric
Metrics White box - Yes Static Analysis| No Abstract
Refinement
ANODE White box Any No Static Analysis| Yes Abstract
CLOTHO |White box Any No Static Analysis| Yes Abstract/

Concrete

CLOTHO+ |White box Any Yes Static Analysis| Yes Abstract

23

5 Architecture

For our solution, we will use as a starting point CLOTHO [23] with the ex-
tensions made by Madalena Santos [25]. Our goal is to further extend CLOTHO,
to make it capable of detecting anomalies in microservices applications that orig-
inated from a monolith to microservices migration. At the moment, CLOTHO
cannot do this, because it does not allow to express that two or more transac-
tions may have resulted from the chopping of the same transaction, and that
different transactions may, or may not, execute on the same machine depending
on the microservice they belong to.

5.1 Tool Modules

As mentioned in Section 4.3, CLOTHO has two main components, the ana-
lyzer and the replayer. Considering our goal, we will only focus on the analyzer,
more precisely on the Z3 module, since this is the module where we intend to
implement our logical representation of sub-transactions, as well as represent
how they are expected to behave in an abstract execution.

5.2 Sub-transactions Representation

To represent the sub-transactions, we will need to consider three aspects.
First, the original transaction that originated the sub-transactions, so that we
can adapt the analysis to consider the fact that the executions of two or more sub-
transactions from a same original transaction are not completely independent
from each other. Second, the order of the sub-transactions inside the original
transaction, to avoid executions that would not be possible in the system, since
the sub-transactions will continue to respect the operations’ execution order
that existed before the chopping. Third, the microservice in which the sub-
transaction executes and the machine(s) it runs on, to account for the cases when
a microservice needs to access data that belongs to a different microservice.

5.3 Relations between Sub-transactions and other Transactions

Considering the relations between operations in CLOTHO, we would suggest
that the dependency relations between the operations of a sub-transaction and
the operations of other transactions remained the same (RW, WR, WW). The
only difference would be a new relation between operations of different sub-
transactions that used to belong to the same original transaction. This relation
would be similar to the ST (Same Transaction) relation, but less restrictive.
For now, we will call this new relation SOT (Same Original Transaction). The
difference between ST and SOT resides in the properties assured by each relation.
For example, under serializability, an ST relation would provide ACID properties
and not allow operations from different transactions to interleave, whereas SOT
would be weaker and only provide ACD properties, allowing for other operations
to interleave the execution of the sub-transactions.

24

In order to illustrate these relations, we used the transactions of the mi-
croservices system that we presented in Fig. 3, and made two examples where
we drew the relations that are meant to be established between the operations.
In Fig. 4a, we are executing placeOrder! and placeOrder?2 concurrently with
checkProductOrder. As it can be seen from the figure, there is a cycle, so the
execution of these transactions will be non-serializable and lead to an anomaly,
a Dirty Read. The Dirty Read happens, because a product is marked as “or-
dered”, but when checking for the product’s order it cannot be found, since the
order is still not yet in the database. In Fig. 4b, we are executing cancelOrderl
and cancelOrder2 concurrently with removeProduct. In this case, we also have a
cycle, meaning that this execution is also non-serializable and has an anomaly,
a Lost Update. This anomaly happens, because a given product order is deleted
by cancelOrderl, which leads to no orders for that product in the database, al-
lowing removeProduct to remove the product from stock (update its state to
“out-of-stock”). However, when cancelOrder2 executes, the product state will
be placed as “available”, obfuscating the fact that the product should have been
removed.

SELECT state FROM PRODUCTS SELECT product_id AS p_id FROM
'WHERE product_id = p_id 'ORDERS WHERE order_id = o_id

UPDATE PRODUCTS SET state = ‘ordered” DELETE FROM ORDERS WHERE

'WHERE product_id = p_id & order_id = o_id WR
SELECT state FROM PRODUCTS SELECT order_id FROM ORDERS

WHERE product_id = p_id WHERE product_id = p_id
sot ST sot ST
SELECT order_id FROM ORDERS UPDATE PRODUCTS SET state = ‘out-of-
'WHERE product_id = p_id stock’” WHERE product_id = p_id
RW ww
UPDATE PRODUCTS SET state = ‘available”
WHERE product_id = p_id
(a) Dirty Read. (b) Lost Update.

Fig. 4: Examples of relations between transactions.

5.4 Anomalies Detection

To detect the anomalies, we will need to adapt CLOTHQO’s assertions to in-
clude the processing of the SOT relation. We are aiming for it to be processed
similarly to the ST relation, with the major difference being that SOT will not
provide isolation, since other transactions can interleave the sub-transactions ex-
ecutions. SOT also intends to account for the microservices of the sub-transactions,
and the machines they will execute on, so that the analysis process is aware
when data from different remote microservices is being accessed, since it may
lead to inconsistencies. After doing this adaptation, the rest would be handled by
CLOTHO, which would create the FOL formula considering the sub-transactions

25

assertions, find the assignments that would satisfy the formula using Z3, and
output the assignments found (anomalies), if any were found.

6 Evaluation

The focus of our evaluation will be on how many anomalies, resulting from
a monolith to microservices decomposition, our system can detect. Another as-
pect that we will test is how different consistency models affect the number of
anomalies found in the decomposed application compared with the monolith
application under the same consistency model.

6.1 Number of Anomalies Detected

We will gather several examples of transactions in a monolithic application
and convert them to chopped transactions. For each example, we will first assess
the number of anomalies in the monolithic application, so that, if our tool’s
analysis detects any new anomaly after the decomposition, we can safely assume
that it originated from the migration to microservices. After that, we will check
the number of anomalies detected on the microservices application and compare
it with the number of anomalies detected on the monolithic application (ground-
truth). By doing this procedure, we can check if our tool manages to detect the
anomalies resulting from the migration from a monolith to microservices.

6.2 Impact of the Consistency Model

We will also assess the impact that the consistency model has on the number
of anomalies detected. We will do this by analysing the same examples as before,
but with the different consistency constraints added to CLOTHO by Madalena
Santos [25]. The objective is to infer how the different consistency guarantees
affect the number of anomalies detected.

7 Scheduling of Future Work

Future work is scheduled as follows:

— January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

— March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

— May 24 - June 15: Finish the writing of the dissertation.

— June 15: Deliver the MSc dissertation.

26

8 Conclusions

The microservices architecture has recently become a standard when devel-
oping large-scale and highly complex applications, due to its advantages suiting
developers’ needs. First, modularity allows teams to work in parallel in each
service. Second, high scalability properties, due to the possibility of assigning
different resources to different services, and scaling each service independently
of the others. Third, the high availability of the system, since it provides graceful
degradation by allowing the system to run with a partial set of services. However,
some changes must be made to the code, transactions and resources, in order to
adopt this architecture. From these changes, problems regarding the execution
of the transactions can arise. We focus particularly on the problems originating
from the chopping of transactions, which are the anomalies. These may appear
after a decomposition, since the isolation property, previously provided by the
original transactions, no longer holds in the execution of the sub-transactions,
and this can compromise the whole system, because each transaction can now
see/modify intermediate database states that previously were not exposed.

Therefore, the final goal of our work is to provide a tool capable of detecting
the anomalies that might appear when one decomposes the transactions of a
monolith to fit the microservices requirements.

In summary, this report starts by introducing the context of our problem,
presenting some background knowledge for the reader to be acquainted with the
concepts, and enumerating several works related to ours. After that, we explained
the architecture of the tool we intend to build, how we propose to evaluate it,
and the schedule of our future work.

Acknowledgments We are grateful to Rafael Soares and Joao Queirés for
the fruitful discussions and comments during the preparation of this report.
This work was partially supported by project DACOMICO (via OE with ref.
PTDC/CCI-COM/2156/2021).

References

1. Thones, J.: Microservices. IEEE Softw. 32(1) (jan 2015) 116

2. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4) (oct 1979) 631-653

3. Nunes, L., Santos, N., Silva, A.: From a monolith to a microservices architecture:
An approach based on transactional contexts. In: Software Architecture: 13th Eu-
ropean Conference, ECSA 2019, Paris, France, September 9-13, 2019, Proceedings,
Paris, France, Springer-Verlag (2019) 37-52

4. Kalia, A., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., Banerjee, D.: Mono2micro:
A practical and effective tool for decomposing monolithic java applications to mi-
croservices. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering. ESEC/FSE 2021, Athens, Greece, Association for Computing Machinery
(2021) 1214-1224

27

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’87, San Francisco,
California, USA, Association for Computing Machinery (1987) 249-259

Jepsen consistency models. https://jepsen.io/consistency Accessed:
24/12/2022.
Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J., Stoica, I.: Highly
available transactions: Virtues and limitations. Proc. VLDB Endow. 7(3) (nov
2013) 181-192

. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of

ansi sql isolation levels. In: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data. SIGMOD 95, San Jose, California, USA,
Association for Computing Machinery (1995) 1-10

Shasha, D., Llirbat, F.; Simon, E.,; Valduriez, P.: Transaction chopping: Algorithms
and performance studies. ACM Trans. Database Syst. 20(3) (sep 1995) 325-363
Richardson, C.: Microservices Patterns: With examples in Java. Manning (2018)
Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Con-
cepts and Design. 5th edn. Addison-Wesley Publishing Company, USA (2011)
Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc., USA (1987)
Viotti, P., Vukoli¢, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1) (jun 2016)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (jul 1978) 558-565

Akkoorath, D., Tomsic, A., Bravo, M., Li, Z., Crain, T., Bieniusa, A., Preguica, N.,
Shapiro, M.: Cure: Strong semantics meets high availability and low latency. In:
36th IEEE International Conference on Distributed Computing Systems, ICDCS
2016, Nara, Japan, June 27-30, 2016, IEEE Computer Society (2016) 405-414
Frank, L., Zahle, T.: Semantic acid properties in multidatabases using remote
procedure calls and update propagations. Softw. Pract. Exper. 28(1) (jan 1998)
77-98

Santos, N., Silva, A.: A complexity metric for microservices architecture migration.
In: 2020 IEEE International Conference on Software Architecture, ICSA 2020,
Salvador, Brazil, March 16-20, 2020, IEEE (2020) 169-178

Almeida, J., Silva, A.: Monolith migration complexity tuning through the applica-
tion of microservices patterns. In: Software Architecture: 14th European Confer-
ence, ECSA 2020, L’Aquila, Italy, September 14-18, 2020, Proceedings, L’Aquila,
Italy, Springer-Verlag (2020) 39-54

Tan, C., Zhao, C., Mu, S., Walfish, M.: Cobra: Making transactional key-value
stores verifiably serializable. In: Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation. OSDI’20, USA, USENIX Associ-
ation (2020)

Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: Sat modulo monotonic theories.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
AAAT'15, AAAT Press (2015) 3702-3709

Biswas, R., Kakwani, D., Vedurada, J., Enea, C., Lal, A.: Monkeydb: Effec-
tively testing correctness under weak isolation levels. Proc. ACM Program. Lang.
5(00PSLA) (oct 2021)

Nagar, K., Jagannathan, S.: Automated detection of serializability violations under
weak consistency. In Schewe, S., Zhang, L., eds.: 29th International Conference
on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China.

28

https://jepsen.io/consistency

23.

24.

25.

Volume 118 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2018)
41:1-41:18

Rahmani, K., Nagar, K., Delaware, B., Jagannathan, S.: Clotho: Directed test
generation for weakly consistent database systems. Proc. ACM Program. Lang.
3(OOPSLA) (oct 2019)

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08,
Budapest, Hungary, Springer-Verlag (2008) 337-340

Santos, M.: Microservice decomposition for transactional causal consistent plat-
forms. Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa (June
2022)

29

	Introduction
	Goals and Expected Results
	Background
	Monolithic and Microservices Architectures
	Transactions and Transactional Properties
	Anomalies
	Concurrency Control
	Transaction Chopping
	Distributed Databases
	Data Replication
	Transactions in Microservices Architectures
	Strategies to mitigate Anomalies

	Related Work
	Heuristics for Anomaly Awareness
	Anomaly Detection using Black Box Approaches
	Anomaly Detection using White Box Approaches
	Tools Comparison

	Architecture
	Tool Modules
	Sub-transactions Representation
	Relations between Sub-transactions and other Transactions
	Anomalies Detection

	Evaluation
	Number of Anomalies Detected
	Impact of the Consistency Model

	Scheduling of Future Work
	Conclusions

