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The microservices architecture allows structuring an application as a set of
loosely coupled services. This architecture has several advantages, such as
modularity and scalability, which motivate the migration of monoliths to
microservices, despite the challenges posed by the lack of isolation between
functionalities that require invoking multiple microservices. In a monolithic
application, each functionality is typically executed as a single transaction
that accesses a single database with ACID properties. In a microservices
architecture, a functionality may be divided into multiple independent sub-
transactions and each may be executed by a different microservice. The in-
terleaving between these sub-transactions, when the functionalities execute
concurrently, may lead to unexpected results, also called anomalies. In this
work, we present a tool capable of automatically detecting these anomalies,
as well as an experimental evaluation of the tool, using microbenchmarks
and several real-world applications.

1 INTRODUCTION

The microservices architecture structures an application as a set of
loosely coupled components (services), contrasting with the tradi-
tional monolithic architecture composed of a single centralized com-
ponent. This architecture has several advantages when compared
with the monolithic architecture. Firstly, each microservice only im-
plements the logic related to a small subset of the entities managed
by the application, making the code of each service more cohesive
and easier to develop and maintain. Secondly, each microservice can
be developed independently, allowing the development of the appli-
cation as a whole to be more agile. Thirdly, the architecture offers a
more flexible management of the system, since the microservices
can be managed independently. Due to these advantages, several
companies are currently adopting the microservices architecture
when developing their applications. In many cases, companies also
migrate their pre-existing monolithic applications to the microser-
vices architecture [14].

Although the microservices architecture has many advantages,
it also introduces challenges. A monolithic application is tradition-
ally composed of several functionalities, each commonly defined
as a transaction that executes in a single database. These transac-
tions offer the ACID (Atomicity, Consistency, Isolation, Durability)
properties, therefore guaranteeing the isolation between concurrent
executions of these functionalities. When migrating from a mono-
lithic application to microservices, a functionality may need to be
chopped into several sub-transactions, with each sub-transaction
possibly executing in a different microservice, breaking the isolation
of the functionality as a whole.

Typically, the microservices use the database per service [10]
design pattern. Although each sub-transaction is isolated from the
remaining sub-transactions that execute in the same microservice,
the concurrent execution of functionalities may lead to interleavings
between sub-transactions that execute in different microservices,

something that did not occur in the monolith. This may lead to
unexpected results, also called anomalies, which derive from non-
serializable executions of transactions.

The number of anomalies that can arise during the execution
of functionalities in microservices depends on how the monolith
is decomposed, in particular the number of microservices that in-
teract with each other and which entities are managed by each
microservice. Finding these anomalies using an accurate analysis
technique can be useful, considering that concurrency anomalies
are notoriously difficult to identify via testing [8]. One way of han-
dling this problem is by having a tool capable of generating all the
possible interleavings and comparing the executions that can oc-
cur in the monolith with the executions that can occur in a given
decomposition since these new anomalous executions result from
the migration. To the best of our knowledge, existing tools aimed
at doing this sort of analysis do not account for all the monolith to
microservices migration aspects, such as the chopping of a trans-
action into a sequence of independent sub-transactions, as well as
the effects of the sub-transactions reading mutually inconsistent
versions of remote objects by accessing their microservice’s local
storage. In this thesis, we describe the design and implementation of
a novel tool, named Microservices Anomaly Detector (MAD), which
can generate all the possible interleavings that originated from the
decomposition of a monolith into microservices. The tool works
by encoding the problem in a Satisfiability Modulo Theories (SMT)
formula and using Z3 [4] to find the satisfiable assignments. We also
performed an experimental evaluation to assess the accuracy and
applicability of MAD using microbenchmarks and test cases inspired
by real-world codebases.

2 RELATED WORK

In this section, we will present several tools with implementations
and objectives similar to the ones of our tool. We divide the related
work into three distinct classes: (1) tools that do not detect anomalies
but provide an estimate of the number of anomalies that may occur
(typically using heuristics); (2) tools that detect anomalies without
having access to the program’s code; (3) tools that detect anomalies
having access to the source code.

2.1 Heuristics for Anomaly Awareness

There are several proposals of algorithms to estimate the number
of anomalies that can occur when applying a given decomposition
of a monolith into microservices. These algorithms are based on
heuristics and intend to help the programmer choose the best decom-
position for the migration, considering that the programming effort
associated with a decomposition will be proportional to the number



of anomalies estimated. In this category, we highlight the works
presented in “A Complexity Metric for Microservices Architecture
Migration” (CMMAM) [12], and “Mono2Micro - From a Monolith to
Microservices: MetricsRefinement” [2]. These works use heuristics
that analyse the source code to identify patterns in the accesses to
the entities, which may expose intermediate states and generate
anomalies. For example, cases where the execution of a functionality
resorts to several different microservices. One advantage of these
heuristics is that they can be executed efficiently and applied to
monoliths with a high number of lines of code. One disadvantage
is that they only provide approximate values, which may be an
underestimate or an overestimate depending on the heuristic. In
particular, they can present false positives since they do not have
a fine enough granularity to distinguish that some access may be
performed to different instances of the same entity.

2.2 Anomaly Detection using Black Box Approaches

The black box approaches for anomaly detection do not need to
have access to the program’s code that they are analysing. The pro-
cedure of these tools consists of giving input values and observing
the output values, and based on this information determining if
any anomaly occurred by comparing the differences between the
observed behaviour and the expected behaviour. Cobra [13] and
MonkeyDB [3] are examples of tools that use this approach. These
tools are more generic than the heuristics presented before because
they do not need to have access to the system’s code that they are
analysing. However, their analysis may be incomplete, if, when
generating the input values and the scheduling of the operations,
never occurs a specific combination that would cause an anomalous
behaviour from the system.

2.3 Anomaly Detection using White Box Approaches

At last, we analyse works that use a white box approach (have
access to the source code) to detect anomalies. These tools first
extract information from the program, such as the transactions,
types of parameters, and execution order, among others, and, based
on this information, consider all the program’s executions that have
anomalies. Examples of tools that use this approach are ANODE [6],
CLOTHO [9], and CLOTHO+ [11]. These tools have two advantages
with regard to the previous tools, namely, they do not generate false
positives and can perform a complete analysis, which detects all the
anomalies that may occur. The main disadvantages of these tools
consist of the need to have access to the source code of the system
being analysed, and their temporal and spatial complexities, due to
the time and memory space required to generate all the possible
anomalous executions of a system.

Since MAD uses CLOTHO as its basis, we present this tool with
more detail. CLOTHO is a tool designed to analyse the transactions of
a storage system that provides weak consistency semantics, to detect
if there are any serializability anomalies. CLOTHO has additionally
the capacity to simulate the anomalies found in concrete executions.
The way this tool’s analysis works consists of creating First Order
Logic (FOL) formulas where the satisfiable assignments correspond
to cyclic graphs, with the vertices being the operations and the edges
the relations between operations. The types of edges considered are:

ST (same transaction); RW (read followed by a write); WR (write
followed by a read); and WW (write followed by a write). The cyclic
anomalous graphs are defined as having at least one ST edge and at
least two dependency edges (RW, WR, WW). These graphs represent
non-serializable executions of the transactions (anomalies) [1].

First, CLOTHO receives a Java program and converts it to an
Abstract Representation (AR), which resembles an SQL-like language
and is described in CLOTHO’s paper. This step eases the extraction
of information from the input program, such as the edges between
operations that can access the same object. Second, using the pro-
gram in the AR, the goal is to construct a FOL formula. This formula
is the conjunction of the following five sets of constraints: @contexs
to represent the values that are plausible to be in the database; ¢
to represent the consistency and isolation guarantees provided by
the database; ¢gep—, to represent the dependency arrows between
operations that belong to the dependency cycle; ¢_, e, to represent
the dependency arrows between operations that do not belong to
the dependency cycle, and; ¢ 4nomaly to bound the possible anomaly
structures to a maximum number of transactions in a serial execu-
tion, a maximum number of transactions in a concurrent execution,
and a maximum length for a dependency cycle. Third, after having
the FOL formula built, CLOTHO uses an SMT solver (in CLOTHO’s
case Z3 [4]), to compute the assignments that satisfy the formula,
each of them representing an abstract execution that contains an
anomaly. In the cases where the formula is unsatisfiable, this means
that no anomalies were detected within the bounds defined for the
formula construction. Finally, CLOTHO allows the user to simulate
the concrete execution of the anomalies found, however, this aspect
falls outside the scope of our work.

CLOTHO+ [11] presents three extensions to CLOTHO to model
partially the behaviour of the microservices. Namely, the implemen-
tation of the consistency models formalized in CLOTHO, annotations
to indicate in which microservice each transaction executes, and
the introduction of a relation to indicate that two operations belong
to the same class/type of transaction.

2.4  Comparison

Table 1 presents a comparison of the tools. We split the table into two
sections. The first section (Properties) refers to the characteristics of
the tools. We divided this section into three columns which capture,
respectively, the approach used by the tool to analyse a system
(Analysis), the consistency guarantees that the tool is expecting
the system under test to respect, considering the ones the tool
can be extended to support (Consistency Model), and if the tool
is oriented to analyse microservices architectures (Microservices
Oriented). The second section (Techniques) refers to the mechanisms
used by the tools to fulfil their purpose. We divided this section
also in three columns which capture, respectively, how the tool
identifies the existence of anomalies (Method), if the tool uses an
SMT solver (SMT Solver), and which type of executions the tool
analyses (Executions Analysed) (“-” means that the tool does not
consider different executions of the system). Note that our tool,
MAD, offers a white box analysis applicable to any consistency
model and that takes into account all the aspects of the microservices
architecture, which is something none of the other tools do.



Table 1. Characterization of existing tools.

Properties Techniques
Analysis | Consistency | Microservices Method SMT | Executions
Model Oriented Solver | Analysed
CMMAM Heuristic Eventual Yes Static Analysis No -
Consistency
Metrics Heuristic Eventual Yes Static Analysis No Abstract
Refinement Consistency
Cobra Black Box | Serializability No Testing Yes Abstract
MonkeyDB | Black Box Any No Testing No Concrete
ANODE White Box Any No Static Analysis Yes Abstract
CLOTHO White Box Any No Static Analysis Yes Abstract/
Concrete
CLOTHO+ | White Box Any Partial Static Analysis Yes Abstract
MAD White Box Any Yes Static Analysis | Yes Abstract

3 MAD

In this section, we describe the design and implementation of the
Microservices Anomaly Detector (MAD) tool, which automatically
detects anomalies that may occur when applying a given decom-
position from monolith to microservices. We focused our efforts
on developing a precise tool that avoided false negatives and false
positives while considering all the aspects related to the migration
to microservices. In Section 3.1, we present an overview of MAD’s
design, and, in Section 3.2, we explain the implementation of MAD.

3.1 Overview

MAD takes as input the source code of a monolithic implementation
of an application and a high-level description of how the monolith
is decomposed into multiple microservices. In the current version,
the source code must be a Java program written using the JDBC
syntax (uses SQL queries to access the entities). The decomposition
of the monolith is expressed as the clustering of the domain entities
into aggregates [7] (entities grouped in the same cluster are assumed
to be managed by the same microservice) and is represented by a
JSON file (Decomposition File). Using this input, MAD executes the
pipeline presented in Figure 1, which we will now explain.

During the compilation to the AR, MAD performs two steps.
First, the AR Compiler, which extracts the monolith’s transactions
(designated by us as original transactions), parameters, and expres-
sions, originating the Monolith AR Program. Second, the Transaction
Chopping where the representations of the sub-transactions are
generated based on the original transactions and the decomposition
considered, originating the Microservices AR Program.

Often, the AR program is too complex to be represented in a single
encoding that can be easily analysed. Employing a divide and con-
quer strategy, MAD generates subsets of the original transactions
(Functionalities Subsets). Analysing these subsets independently al-
lows for the analysis of the whole problem to be simpler and done
in a reasonable time. Therefore, instead of creating a single SMT
formula with all the assertions, MAD creates several formulas, one
for each subset, with each formula only having the assertions related
to the original transactions of their given subset.

When constructing the formulas, MAD uses already existing asser-
tions to encode the basic behaviour of a distributed system and the
logic to detect cyclic graphs (executions with anomalies). However,

since those were not enough to model the context of our problem, we
had to add and adapt assertions of the formula. To illustrate that in
a graph there is a relation between two operations of the same orig-
inal transaction that are in different sub-transactions, we consider a
new edge type, SOT. To model where each operation executes and
the operations’ visibility effects, we add the notion of microservices
together with the usage of consistency model assertions.

After the SMT solver (Z3 [4]) finishes its analysis, we obtain the
Satisfiable Assignments, which represent the anomalies found. To
present more metrics, MAD has a Metrics Extractor, which applies a
pattern-matching technique to enumerate the number of anomalies
of each type, groups the anomalies by sets of sub-transactions con-
sidering the sub-transactions involved in each anomaly, and counts
the number of occurrences of each sub-transaction in the anomalies.

3.2 Architecture

We will now address how each of the different aspects of MAD’s
design are implemented in the tool. More specifically, the input files,
the notions of sub-transactions and microservices, the consistency
models, the search algorithm, and the metrics extractor.

3.2.1 Input Files. MAD receives as input a Java file with all the
original transactions and their respective operations using JDBC
and SQL queries to access the entities, and a JSON file that represents
the decomposition and indicates the existent microservices and the
entities assigned to each microservice.

3.2.2  Sub-transactions and Microservices Notions. To represent the
migration, two essential aspects need to be considered. These as-
pects are: (1) sub-transactions, transactions that originated from the
division of a transaction, and (2) microservices, the nodes where
the sub-transactions will execute. We divided the task of modeling
these aspects into three steps: 1) representing the sub-transactions;
2) introducing a feature to indicate that two transactions are related
since they will be executed under the same functionality (origi-
nal transaction); 3) introducing the concept of microservice and
associating it with the operations.

Upon compiling the Java program to the Monolith AR Program,
MAD proceeds to generate the representation of the sub-transactions
considering the assignments between entities and microservices
from the Decomposition File. For each original transaction, MAD
applies the procedure described in Algorithm 1.



Java Monolith AR Microservices
Program ) Program TnsaEien AR Program Divide and
— > AR Compiler Choppi c
Decomposition opping onquer
File
Fig. 1. MAD’s

Algorithm 1: MAD’s Transaction Chopping

Input: body: decompiled Java body of the original transaction
function, entitiesMicrosMap: mapping between entities and
microservices, tables: list of input program’s tables

Output: origTxn: representation of the original transaction

1 Function MADTransactionChopping(body, entitiesMicrosMap,
tables)

2 name <« body.getMethod().getName();
3 origTxn « OriginalTransaction(name);
4 unitHandler « UnitHandler(body, tables);
5 unitHandler.extractParams();
6 currentSubTransactionldx « -1;
7 currentMicroservice « “;
8 subTxns « 0;
// Iterate over all the statements (operations)
9 foreach s in unitHandler.data.getStmts() do
10 entityName « ((InvokeStmt)
s).getQuery().getTable().getName();

/* Create a new sub-transaction when the
microservice of the operation’s entity is
different from the current sub-transaction’s
microservice */

11 if currentMicroservice # entitiesMicrosMap.get(entityName)

then

12 currentMicroservice «—
entitiesMicrosMap.get(entityName);

13 currentSubTransactionldx < currentSubTransactionldx
+1;

14 newSubTxn « Transaction(name + “_" +
currentSubTransactionldx);

15 newSubTxn.setOriginal Transaction(name);

16 newSubTxn.setMicroservice(currentMicroservice);

17 newSubTxn.addStmt(s);

18 subTxns < subTxns U newSubTxn;

/* Add the operation to the current
sub-transaction when the microservice of the
operation’s entity is the same */

19 else
20 L subTxns.get(currentSubTransactionldx).addStmt(s);
21 origTxn.addStmt(s);

The rationale behind Algorithm 1 is to iterate over the opera-
tions of an original transaction (for loop in Line 9) and generate
sub-transactions based on the entities that are accessed by the opera-
tions. In each iteration, a verification is performed (if else in Lines 11
and 19) to assess if the entity accessed by the iteration’s operation

Another
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(entityName) belongs to a different microservice from the previous
operation’s entity (currentMicroservice), or not. If the entity belongs
to a different microservice (Line 11), then the current microservice
is updated and a new sub-transaction is created with the seen opera-
tion since it would execute in a different microservice. Else (Line 19),
the operation is added to the most recent sub-transaction created
since it would execute in the same microservice.

In the migration to microservices, some transactions may need
to be chopped, which originates sub-transactions. Although these
sub-transactions can be seen as independent transactions, they are
still related to each other in the sense that they are part of the same
functionality (original transaction) and they need to be executed se-
quentially, to provide the same behaviour as the original transaction.
Therefore, to represent the relation between operations from differ-
ent sub-transactions that belong to the same original transaction,
we introduce an edge type, SOT (same original transaction).

To accomplish this, we add to the SMT formula a sort (OT), a
data type (OTType), two formula functions (ottype, which receives
an instance of an original transaction and returns its type, OT Type;
and original_transaction, which receives an instance of an operation
and returns the instance of original transaction where it belongs,
OT), and one predicate (step_sibling, which receives two instances
of operations and returns true if they are related as operations of
different sub-transactions but the same instance of an original trans-
action). The ottype function values are initialized at the beginning
of the formula by expressing that for all the operations of a given
operation type (OType), the instance of original transaction they
belong to has to be of a specific OT Type. The assertion can be found
in Equation 1 with otype being a function that receives an instance
of an operation and returns its type, OType. The original_transaction
function is involved in the establishment of dependency edges and
has its values assigned during the analysis when the SMT solver is
looking for satisfiable assignments.

Vol((otype(ol) = opl)
= (ottype(original_transaction(ol)) = orig_txnl)) (1)

When the SOT edge is established between two operations, it in-
dicates that both operations are in different transactions but belong
to the same original transaction, which allows MAD to understand
that the operations will always follow a specific order and that an
interleaving between the two operations may lead to an anomaly.

Considering this new edge type, our definition of a cyclic anoma-
lous graph is a cycle with at least one ST or SOT edge and at least
two dependency edges (RW, WR, WW). In Equations 2 and 3, we
present the anomalous cycles definition for lengths three and four,
respectively. For these definitions, we use two predicates besides



the edge types: D, which receives two instances of operations and
returns true if there is any dependency relation between them (RW,
WR or WW); and Any, which also receives two instances of oper-
ations and returns true if there is any relation between them (ST,
SOT, RW, WR or WW).

Yo1,02,03((ST(01,02) V SOT(01,02)) A D(02,03) A D(03,01))
@)

Yo1,02,03,04((ST(01,02) V SOT(01,02))A
D(02,03) A Any(03,04) A D(04,01)) 3)

Regarding the microservices notion, we defined a new data type
(MType) and a new formula function (mtype, which receives an in-
stance of an operation and returns the microservice it executes on,
MType) in the SMT formula. These are used to associate the opera-
tions with the microservice where they will be executed. The mtype
function values, similar to the ottype function, are initialized at the
beginning of the formula by expressing that for all the operations
of a given operation type (OType), their microservice has to be of a
specific MType. The assertion can be found in Equation 4.

Vol((otype(ol) = opl) = (mtype(ol) = M1)) (4)

This is used to restrict the consistency models and to control the
visibility between operations, as we will later discuss in Section 3.2.3.

In Figure 2, we present an example scenario of how the transac-
tions would be divided in a migration from monolith to microser-
vices. In this example, we consider two entities with only one at-
tribute each, Member and Item, two transactions, Txnl and Txn2,
and a decomposition where Member goes to microservice M1 and
Item goes to microservice M2. Both transactions, Txnl1 and Txn2,
are composed of three operations. TxnI’s operations are reading an
instance of Member, reading an instance of Item and updating the
Member’s instance that was read. Txn2’s operations are reading an
instance of Member, updating the Member’s instance that was read
and updating an instance of Item. Considering that Member and
Item will be in different microservices, the transactions Txn1 and
Txn2 need to be divided into two sub-transactions, each of which
executes in the microservice managing the entity they are accessing.

This division of the transactions allows for multiple executions
where the sub-transactions interleave with each other, something
that was not possible in the monolithic version and can lead to
anomalies. One example of a new possible interleaving that leads
to an anomaly can be seen in Figure 3. In this case, the execution
of Txn2 interleaves with the execution of Txnl, which leads to a
non-serializable execution of the system, since Txn1 sees an older
value for Member;, assuming that it executed before Txn2, but at
the same time it sees the new value for Item; that was written by
Txn2, assuming that it executed after Txn2, which is contradictory.

MAD detects this anomaly by finding the cyclic graph that can
be seen in Figure 4. The cycle contains two SOT edges and two
dependency edges (one RW edge and one WR edge) and represents
the interleaving of the original transactions Txn1 and Txn2.

3.2.3 Consistency Models. To make an analysis faithful to the envi-
ronment where the microservice systems will execute, we assume

two consistency models: Serializability and Eventual Consistency.
Between operations of the same sub-transaction and other opera-
tions of the same microservice, we assume that they will respect
Serializability. Between operations of different sub-transactions or
that execute on different microservices, we assume Eventual Con-
sistency 1. By default, MAD enforces Eventual Consistency between
the visibility effects of the operations. However, to enforce Seri-
alizability, we use the consistency models’ assertions defined in
CLOTHO’s paper [9] and implemented in CLOTHO+ [11] with some
adjustments so that Serializability is only applicable between opera-
tions that execute in the same microservice.

The consistency models’ assertions rely on two relevant predi-
cates, vis and ar. vis receives two instances of operations and returns
true if the effects of the left operation are visible to the right op-
eration. ar also receives two instances of operations and returns
true if the left operation is executed before the right operation. The
assertions are implemented as follows (our adjustments are in blue):

Read_Committed = Yo1,02,03(ST (01, 02) A vis(01,03)
A (mtype(ol) = mtype(03)) = vis(02,03)) (5)

Repeatable_Read = Vo1, 02,03(ST(01,02) A vis(03,01)
A (mtype(ol) = mtype(03)) = vis(03,02)) 6)

Linearizability = Vo1, 02(ar(o1, 02)
A (mtype(ol) = mtype(02)) = vis(o0l,02)) )

Serializability = Read_Committed A Repeatable_Read
A Linearizability (8)

3.24  Search Algorithm. MAD’s search algorithm follows a Divide
and Conquer principle. Instead of taking into account all the original
transactions of the system at the same time, MAD restricts the search
for cycles to only consider a subset of the original transactions per
iteration. By using this method, we can divide a large problem into
several smaller problems, which can be solved in a much shorter
period of time. This search algorithm can also be applied to other
cases, such as CLOTHO’s analysis, by adapting the algorithm to use
the transactions (in MAD designated as sub-transactions), instead
of the original transactions.

The first step of the search algorithm is to generate all the com-
binations of size smaller than the maximum cycle length (in our
case four). The number of combinations generated when there are
at least three original transactions can be obtained by replacing the
value of n in Zi:l "Cx by the number of original transactions.

After generating the combinations, we proceed to restrict the
original transactions of the operations that we are considering for
the cycle in the SMT formula to be from the combination that is
being assumed at that iteration. The anomalies can have at most
the current cycle length minus 1 (current_cycle_length— 1) original

!https://martinfowler.com/articles/microservice-trade- offs.html
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Fig. 2. Example scenario of how the transactions are divided in a migration from monolith to microservices.
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Fig. 4. MAD’s cyclic graph for the example anomaly.

transactions involved because they must have at least one ST or
SOT edge, which implies that at least two operations share the
same original transaction. Therefore, MAD only iterates over the
combinations of size current_cycle_length — 1 in each cycle length
analysis. As an example, if we have five original transactions, order,
sell, buy, look and update, assume that the current cycle length is
3 and the combination [order, sell], then, complementing the cycle
assertions from Equation 2, we would have the assertions defined

in Equation 9 (for simplicity, we only present the assertions related
with o1, since for 02 and 03 they would be the same only changing
the operation instance used as argument).

Vo1, 02, 03(((ottype(original_transaction(ol)) = order)

V (ottype(original_transaction(ol)) = sell))

A (=(ottype(original_transaction(ol)) = buy))

A (=(ottype(original_transaction(o1)) = look))

A (=(ottype(original_transaction(ol)) = update)) A ...) (9)

Besides restricting each of the cycle’s operations to belong to one
of the original transactions of the combination considered, MAD also
restricts the assertions that are added to each formula, so that each
only includes the assertions related to the original transactions of
their combination. This procedure minimizes the overall complexity
of each SMT formula since it will only have the essential assertions
for the analysis. By doing this, the search space is reduced and the
analysis of each combination is done faster.

3.25 Metrics Extractor. Besides presenting the total number of
anomalies found, MAD also displays two additional metrics, the
number of anomalies by type of anomaly and the number of anom-
alies considering the sub-transactions involved in each anomaly.
The first additional metric is the number of anomalies by type of
anomaly (dirty read, dirty write, lost update, write skew, and read
skew). The technique we use consists of having a set of patterns
only considering the types of edges between operations and, when
an anomaly is detected, checking if the anomaly cycle matches any
of the patterns. In the cases where the anomaly execution is more
complex than our anomaly types’ patterns and the cycle found does
not match any of the patterns, then the anomaly is “Unclassified”.
Regarding the second additional metric, it focuses on present-
ing two aspects. First, the number of anomalies that occur when
the exact same set of sub-transactions is involved. This is used to
capture the impact caused by the interaction between certain sub-
transactions towards the number of anomalies. Second, the number
of occurrences of each sub-transaction in the anomalies found. This



aspect helps to understand how relevant each sub-transaction is
regarding the existence of anomalies in the system.

4 EVALUATION

In this chapter, we present the evaluation that we performed to as-
sess MAD capabilities. In Section 4.1, we describe all the benchmarks
that we used and the conditions under which the evaluation was
performed. Section 4.2 presents a comparison between MAD and a
heuristic approach tool oriented to microservices, “A Complexity
Metric for Microservices Architectures Migration” (CMMAM) [12],
also displayed in Table 1. At last, in Section 4.3, we present the
results obtained by MAD when applied to real-world codebases.

4.1 Experimental Setup

For this experimental evaluation, we use two types of benchmarks:
(1) handcrafted benchmarks that we name microbenchmarks; (2)
real-world codebases that can be found on GitHub.

Regarding the microbenchmarks, we created three instances, each
with a different set of transactions, however, all assuming the same
context. The context consists of an application that has two enti-
ties, Member and Item, with Member having three attributes, id,
status and money, and Item also having three attributes, id, price
and stock. All the microbenchmarks assume the same decomposi-
tion, Member executing on microservice M1 and Item executing
on microservice M2. The purpose of these microbenchmarks is to
illustrate the differences between MAD and CMMAM. Microbench-
mark1 targets dependencies between writes (WW) and is composed
of two functionalities, UpdateMI that updates a member’s status
and an item’s price, and ResetMI that resets a member’s status and
an item’s price (writes 0 on both). Microbenchmark2 targets access-
ing different instances of the same entity and is composed of two
functionalities, Ultem1 that reads the status of a specific instance
of Member (Member;) and updates the price of a specific instance
of Item (Item;), and UMember2 that reads the price of a specific
instance of Item (Itemy) and updates the status of a specific instance
of Member (Membery). At last, Microbenchmark3 targets access-
ing different attributes of the same entity and is composed of two
functionalities, Ultem that reads a member’s status and updates an
item’s stock, and UMember that reads an item’s price and updates a
member’s money.

To evaluate MAD’s applicability to real-world scenarios, we gath-
ered several software applications that can be found on GitHub. The
list of applications and their respective description is the following:

e TPC-C ? is defined in the OLTP-Bench [5] project and simu-
lates the behaviour of a delivery and warehouse management
system,;

e jpabook 3 simulates a shop where members can order items
and track the delivery process;

e spring-framework-petclinic (petclinic) 4 simulates how a
pet clinic operates regarding the interactions between owners,
pets, and veterinarians, as well as the visits to the pet clinic;

Zhttps://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/
benchmarks/tpcc
Shttps://github.com/holyeye/jpabook/tree/master/ch12-springdata-shop
4https://github.com/spring- petclinic/spring-framework-petclinic

Table 2. MAD and CMMAM microbenchmarks results.

MAD CMMAM
#Anomalies | Complexity

Microbenchmark1 3 0
Microbenchmark2 0 4
Microbenchmark3 0 4

o myweb > is an application that simulates the behaviour of
the web allowing users to have roles and perform operations
to interact with resources. The operations are create, read,
update, and delete (CRUD);

e spring-mvc-react (react) ¢ is a platform where users can post
questions and answers with tags associated with them. Be-
sides that, the system also allows users to upvote or downvote
publications, which has an impact on the users’ popularity.

For both types of benchmarks, we use MAD considering four
as the maximum cycle length. The evaluation was performed in a
virtual machine with 32 CPUs and 128GB of RAM using Ubuntu
18.04.4 LTS, Java 8, and version 4.12.3 of Z3.

4.2 Comparison between MAD and a Heuristic Approach
Tool

The comparison between MAD and CMMAM consists of the analysis
of the results that can be obtained when applying each of the tools
to the three microbenchmarks. The results can be found in Table 2.

First, in Microbenchmark1, the migration leads to anomalies when
instances of the UpdateMI and ResetMI functionalities execute con-
currently, since their interleaving results in an inconsistent database
state at the end of the execution. MAD detects three anomalies,
whereas CMMAM returns that the given decomposition leads to no
problems. The anomalies MAD detects are the interleaving between
different instances of UpdateMI, and instances of UpdateMI with
instances of ResetML. CMMAM does not alert this type of situations,
since it only accounts for observable states of the application.

Second, in Microbenchmark2, there are no anomalies, because
functionalities Ultem1 and UMember2 always access different in-
stances of the entities, Member; and Item, and Member; and Items,
respectively. Since MAD considers the instance being accessed in
each operation, it returns that there are zero anomalies. On the other
hand, CMMAM returns that the migration has complexity four, due
to the fact that it only considers the entity that is being accessed.

Third, in Microbenchmark3, similar to Microbenchmark?2, there
are no anomalies. However, in this case, both functionalities, Ultem
and UMember, can access the same instances of the entities. The
difference is that the operations are accessing different attributes.
Therefore, there are no conflicts between the values that are read and
the values that are written. MAD considers the attributes accessed
and returns zero anomalies, whereas CMMAM, by not considering
those aspects, returns complexity four for this migration.

Shttps://github.com/Jdoing/myweb
®https://github.com/noveogroup-amorgunov/spring-mvc-react
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4.3  MAD Results for Real-World Applications

To evaluate MAD’s applicability to real-world scenarios, our pro-
cess can be divided into four steps: 1) gathering five monolithic
applications that can be found on GitHub; 2) adapting them to the
syntax processed by MAD (adjusted some queries and used JDBC
instead of JPA considering each controller method as a transaction);
3) generating two decompositions of each application with the help
of a migration tool [7] that supports programmers on the task of
grouping the entities by the microservices; 4) using MAD on each
decomposition. We assume that the monolithic version of each appli-
cation is correct and contains no anomalies. Therefore, any anomaly
that arises in the microservices versions must have resulted from
the migration. Besides the overall results, we also showcase MAD’s
ability to display the number of anomalies found in each decompo-
sition by anomaly type and set of sub-transactions, together with
the number of occurrences of each sub-transaction in the anomalies.
We are only considering the analysis of the sub-transactions metrics
for one decomposition, but it could be done for the other decompo-
sitions as well. At last, we discuss the improvement provided by the
search algorithm by comparing MAD’s performance without and
with it when applied to the same decompositions.

4.3.1 Overall Results. As we previously stated, for this part of the
evaluation, we use five monolithic applications (mono) with two
decompositions to microservices for each application. The microser-
vices decompositions are: “best”, which is the decomposition with
the highest Silhouette Score (a metric used to assess how well the
clustering of the entities is done) calculated by the migration tool [7];
and full, which is a decomposition where each entity is managed
by a different microservice, resulting in the largest functionalities’
division possible in a microservices migration, illustrating the worst
case scenario in terms of anomalies. In Table 3, we present the
results from applying MAD to each of the decompositions.

By analysing Table 3, we can observe several relevant aspects
associated with MAD’s analysis of the decompositions. As expected,
the number of anomalies found in the full decompositions is big-
ger than in the “best” decompositions since they originate more
sub-transactions. By looking at the number of anomalies found in
each application’s decompositions, MAD allows programmers to
assess how problematic each decomposition will be, therefore en-
abling them to make a more informed decision when migrating
to microservices. For instance, in jpabook and react, even though
their “best” decompositions have the highest Silhouette Scores out of
their possible decompositions, they still have anomalies. Note that
in the petclinic application no decomposition led to anomalies. After
analysing the application, we noticed that this occurred because
the application’s operations are mostly reads and the functionalities
tend to be short and access few entities.

Although MAD can provide these results with precision, in some
cases, it takes a relatively long period of time to perform its analysis,
as can be seen from the results in column “Execution Time [s]”.
This problem is less common in simple applications or when the
microservices version of the application does not originate many
sub-transactions. However, in complex applications with a high
number of functionalities and/or sub-transactions, MAD will tend
to take a larger amount of time.

Another aspect one can notice is that all the “best” decompositions
have two microservices. From our understanding, this phenomenon
may be related to Martin Fowler’s Strangler Fig pattern 7, where
the migration to microservices is done incrementally by extracting
a few services at a time, considering the coupling between entities.
The Silhouette Score might indirectly take this into account, resulting
in its value suggesting that from the monolithic implementation,
the most appropriate decomposition to microservices is to migrate
to two microservices. Moreover, in most cases, the “best” decompo-
sitions lead to a migration where no anomalies emerge. However, in
two applications (jpabook and react), this does not occur since the
“best” decompositions for these cases required the functionalities to
be more divided, therefore generating more sub-transactions and
allowing more interleaving between functionalities.

4.3.2  Anomalies Found per Type. In Table 4, we present the number
of anomalies found for each decomposition by type of anomaly.
These results may be helpful to the programmers since they al-
low them to anticipate unexpected behaviours that the application
might have after the migration to microservices following a given
decomposition. Another aspect to point out is the relatively high
number of anomalies in the column “4Unclassified”. This happens
due to the fact that the types’ counters are not incremented when
there is an execution with two or more anomalies and our patterns
only consider the minimum number of operations to describe each
type of anomaly. For example, in a dirty read, it is only required
two writes in one functionality but in different sub-transactions
and one read in a different functionality, so that it is possible to
have an execution where an intermediate value is read. However, if
there is any extra operation in the execution considered, then that
execution will not be identical to the one of our dirty read pattern,
and, therefore, will be considered “Unclassified”.

4.3.3 TPC-C Anomalies Found per Sub-Transactions. InListing 1, we
present the number of anomalies found by sets of sub-transactions
and the number of occurrences of each sub-transaction in the anom-
alies of the TPC-C full decomposition. By analysing these results, one
can notice that two functionalities alone cause most of the anom-
alies. These functionalities are “payment” and “delivery”, which
are responsible for 44 (4+20+20) and 24 (4+4+4+4+4+4) anomalies,
respectively, out of the 98 anomalies found. As expected, the sub-
transactions of these functionalities (“payment_0”, “payment_1",
“payment_2”, and “delivery_0”, “delivery_1", “delivery_2”, “deliv-
ery_3”) occur in a large number of anomalies. Based on these results,
one possible approach to mitigate this issue is to analyse the entities
involved in those functionalities, and either reorder the operations,
so that the operations that access the same entity are sequential,
or design a decomposition where the entities managed by each of
these functionalities are in the same microservice.

4.3.4 Performance of the Search Algorithm. To conclude MAD’s
evaluation, we address the impact that our divide and conquer
search algorithm has regarding MAD’s performance, as well as its
capability to mitigate the existence of applications/decompositions
that are too complex for MAD to analyse in a reasonable period of
time. Table 5 presents MAD’s execution time to analyse each of the

"https://martinfowler.com/bliki/StranglerFigApplication html
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Table 3. MAD overall results.

Application | #Entities | #Functionalities | Decomposition | #Microservices | #Sub-Transactions | #Anomalies | Execution
Time [s]

mono 1 5 0 13

TPC-C 9 5 “best” 2 6 0 13
full 9 22 98 994

mono 1 10 0 33

jpabook 5 10 “best” 2 15 70 356
full 5 21 79 465

mono 1 14 0 77

petclinic 6 14 “best” 2 14 0 79
full 6 27 0 119

mono 1 20 0 259

myweb 5 20 “best” 2 22 0 265
full 5 32 7 400

mono 1 23 0 571

react 5 23 “best” 2 28 45 1677
full 5 39 58 1951

Table 4. MAD anomalies found per type.

Application | Decomposition | #Dirty | #Dirty | #Lost | #Lost Updates/ | #Read | #Unclassified || #Total
Reads | Writes | Updates | Write Skews | Skews

mono 0

TPC-C “best” 0
full 13 27 58 98

mono 0

jpabook “best” 3 6 10 51 70
full 3 7 15 54 79

mono 0

petclinic “best” 0
full 0

mono 0

myweb “best” 0
full 2 4 1 7

mono 0

react “best” 12 33 45
full 12 46 58

decompositions without and with the usage of the search algorithm
that we described in Section 3.2.4.

From the analysis of Table 5, we can observe that the divide
and conquer search algorithm does not always provide a perfor-
mance improvement. However, for long analyses, it can significantly
shorten their analysis time. The reason behind this is that the search
algorithm was developed to mitigate the time and space complexi-
ties of MAD for large applications/decompositions, unintentionally
neglecting the performance for simpler cases. This occurs because
the search algorithm originates an overhead to MAD’s analysis by re-
quiring that MAD unnecessarily iterates over combinations with no
anomalies. Without the search algorithm, MAD would not need to
do that since if after a search iteration it did not find any anomalies,
it would increment the cycle length considered or end the analysis
if it reached the maximum cycle length assumed. For complex cases,
the search algorithm presents a significant performance improve-
ment since it manages to simplify the SMT formula and mitigate the
time and space complexities by not having to find anomalies while

considering all the original transactions at the same time. Another
positive aspect of the search algorithm is that it enables the analysis
of complex cases to be performed under a timeout period (4 hours =
14400 seconds) that we defined as the reasonable amount of time a
programmer would wait for the analysis to be complete. Without the
search algorithm, MAD exceeds the timeout limit when analysing
decompositions “best” and full of the react application, only finding
6 anomalies out of 45 and 6 anomalies out of 58, respectively.

5 CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed an approach to automatically detect the
anomalies that may appear when one migrates from a monolith
to microservices following a given decomposition. We developed
MAD, a tool that implements the proposed approach. The thesis
described MAD’s design and implementation, which includes several
strategies to improve its performance and scalability. We performed
an experimental evaluation of MAD, aiming to compare the results
with alternative tools and assess its performance when used with



Listing 1. Number of TPC-C full anomalies by sub-transactions.

newOrder_3,
delivery 0,
delivery 1,
delivery 0,
newOrder_6 ,
newOrder_2,
newOrder_1, newOrder_2,
payment_0, payment_1]:

[ newOrder_7,
[
[
[
[
[
[
[
[payment_1, payment_2]:
[
[
[
[
[
[
[

delivery_2,
delivery_2,
delivery_1,
newOrder_7 ,
newOrder_7,

orderStatus_1 , 2/98
newOrder_4, newOrder_7]:
newOrder_3, newOrder_7]: 8/98
newOrder_3, newOrder_4]: 4/98
stockLevel_1, stockLevel_2]:
stockLevel_0, stockLevel_1]:
payment_0, payment_1]: 2/98
4/98

20/98

20/98

4/98

4/98

4/98

4/98

4/98

orderStatus_2 ]:
8/98

1/98
1/98

payment_0, payment_2]:
delivery_0 ,
delivery_1,
delivery 0,
delivery 0,
delivery_1,
delivery_ 2,
[newOrder_2,
delivery (delivery_0):
delivery (delivery_1):
delivery (delivery_2):
delivery (delivery_3):
newOrder (newOrder_1):
newOrder (newOrder_2):
newOrder (newOrder_3):
newOrder (newOrder_4):
newOrder (newOrder_6): 5/98
newOrder (newOrder_7): 20/98
orderStatus (orderStatus_1):
orderStatus (orderStatus_2):
payment (payment_0): 26/98
payment (payment_1): 26/98
payment (payment_2): 40/98
stockLevel (stockLevel_0):
stockLevel (stockLevel_1):
stockLevel (stockLevel_2):

delivery_3]:
delivery_3]:
delivery_2]:
delivery_1]:
delivery_2]:
delivery_3]: 4/98
newOrder_6]: 4/98
24/98
24/98
28/98
12/98
2/98
7/98
14/98
12/98

2/98
2/98

1/98
2/98
1/98

Table 5. MAD performance comparison without (w/o0) and with (w/) the
search algorithm (SA).

‘ Application ‘ Decomposition ‘ w/o SA [s] ‘ w/ SA [s] ‘

mono 7 13

TPC-C “best” 6 13
full 2767 994

mono 6 33

jpabook “best” 5996 356
full 7133 465

mono 9 77

petclinic “best” 7 79
full 13 119

mono 11 259

myweb “best” 11 265
full 248 400

mono 114 571

react “best” (timeout) 1677
full (timeout) 1951

real-world applications. The results highlighted not only how MAD’s
analysis can be more accurate than a heuristic approach, but also
that it can be applied to existing applications, providing insights
regarding how one can migrate their monolithic application to a
microservices architecture.

Although we have incorporated in MAD techniques to process
realistic use cases with reasonable performance, MAD still has some
limitations. First, even though our search algorithm reduced the
time and space complexities of the analysis, it can still be a problem
for more complex cases. Second, our pattern-matching technique

to determine the anomaly type is simple, lacking the notions that
would allow it to assign the anomalies to each type better. Third,
MAD only considers one replica of each node, therefore not being
able to reproduce scenarios where there is replication of the nodes,
and where the impact of the consistency model enforced between
replicas would also have to be taken into account. At last, MAD
lacks the notion of association between entities when they are in
different microservices, such as JPA relationships, foreign keys,
and semantic invariants that the system must respect. For future
work, we consider that addressing these limitations may represent a
significant improvement to MAD since it would allow the tool to be
faster, more accurate, and able to target a wider range of scenarios.
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