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Abstract. Edge computing is a paradigm where small datacenters and
servers, located in the edge of the network, provide storage and comput-
ing services to smart devices. These devices need to o✏oad tasks to the
cloud, but cannot a↵ord the high latency associated with the access to
remote datacenters. Because edge devices may move and contact di↵er-
ent edge servers, these servers need to coordinate to provide a consistent
service to their clients. In this work we are interested in providing one of
the most fundamental forms of consistency, namely causal consistency.
For this purpose, we study ways of supporting causal multicast, among
multiple groups of edge servers, in a reliable and scalable manner. Tradi-
tional techniques to enforce causality, such as maintaining vector clocks
with one entry per edge server, may not scale in this setting. Thus we
look for alternatives that are scalable, and still can provide a reliable
service in face of transient failures of edge servers.

1 Introduction

The number of devices that are connected to the Internet keeps on growing, as
more and more appliances have computing capacities. Many of these devices have
sensors that produce large amounts of information that needs to be collected and
processed. Also, most devices, such as smartphones, are becoming increasingly
powerful and are today able to support novel applications such as augmented
reality. Edge computing is a paradigm where small datacenters and servers,
located in the edge of the network, provide storage and computing services to
such smart devices. These devices need to o✏oad tasks to the cloud, but cannot
a↵ord the high latency associated with the access to remote datacenters.

Because edge devices may move and contact di↵erent edge servers, these
servers need to coordinate to provide a consistent service to their clients. In
this work we are interested in providing one of the most fundamental forms
of consistency, namely causal consistency. In particular, we are interested in
mechanisms that can ease the deployment of a storage service, where di↵erent
edge servers keep replicas of data items, that can be updated by di↵erent clients,
maybe concurrently. Such updates need to be propagated and applied at di↵erent
replicas in a way that prevents clients from observing violations of causality. It
has been shown that causal consistency is the strongest consistency criteria that
can be o↵ered to applications without compromising availability (i.e., it does
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not require the execution of consensus, that can be blocking)[1]. Also, causality
is a key ingredient of many other stronger consistency criteria and, therefore, a
fundamental building block to build distributed reliable systems.

Most systems that o↵er causal consistency resort to some form of reliable
causal multicast, a primitive that is able to deliver messages in an order that
respects causality. Note that, in an edge computing scenario, not all servers will
keep replicas of all data items. Therefore, replicas would be organized in multiple
groups, that can overlap only partially. When a data item is written, the update
needs to be propagated to the group of nodes that maintain replicas of that
item. However, because clients read and write di↵erent data items, causality
needs to be preserved across groups. Classical techniques to implement causal
order, such as the ones based on vector clocks[2] may not scale when applied to
edge computing. Thus we aim at finding alternatives that are scalable, and still
can provide a reliable service in face of transient failures of edge servers.

In order to implement reliable causal multicast one needs to address di↵erent
complementary concerns. First data needs to be disseminated e�ciently among
group members. Second, dissemination needs to be reliable, which may require
messages to be retransmitted when faults occur. Third, messages need to be
tagged with metadata such that they can be delivered in an order that respects
causality. Finally, the membership of each replica group can change dynamically.
All these services need to be executed on top of some network that connects the
edge replicas. Such network can be a clique, where each edge server is aware
and can communicate with any other edge server directly, or an overlay network
where each nodes is only aware of a limited number of other edge servers.

The literature is rich in systems that address several of these concerns, al-
though very few systems address all concerns in a scalable and comprehensive
manner. Among the relevant areas of related work we have identified the fields
of overlay networks[3–6], reliable publish-subscribe systems[7–9], reliable causal
multicast[2, 10] and causal storage systems[11–15]. In this report we survey some
of the most relevant solutions from each of these fields and identify a set of mech-
anisms that can be useful to implement causal multicast on the edge. We then
use these ideas to o↵er a comprehensive solution to the problem of supporting
causal multicast in a reliable and scalable manner among edge servers.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. Section 3 explains in detail the partic-
ipants in the edge. Section 4 presents the definition of Reliable Causal Multicast

and how to implement it. In Section 5 we present all the background related
with our work. Section 6 describes the proposed architecture to be implemented
and Section 7 describes how we plan to evaluate our results. Finally, Section 8
presents the schedule of future work and Section 9 concludes the report.

2 Goals

The purpose of this work is to find scalable algorithms to implement scalable
multicast among edge servers. More precisely:
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Goals: To devise a causal multicast protocol that is scalable, reliable,
and can operate e�ciently in a network with a large number of edge
servers.

Any protocol that is able to ensure causal order in a fault-tolerant manner
must resort to metadata, that is both stored at the endpoints and exchanged in
the message headers. The most straightforward approach, in the line of systems
such as [2, 12], would require nodes to maintain and exchange metadata whose
size is linear with the number of servers and the number of replica groups.
This can be an impairment to scalability. We aim at seeking algorithms that
can implement causal multicast with a metadata size that is a function of the
number of neighbours that each server has in the server network, that can be
substantially smaller than the total number of nodes in the system.

The project is expected to produce the following results:

Expected results: The work will produce i) a specification of a causal
multicast protocol for the edge; ii) a prototype implementation, iii) an
extensive experimental evaluation of its performance using di↵erent met-
rics such as latency, throughput, and metadata overhead.

3 System Model

We assume a model of edge computing as the one that is illustrated in Fig-
ure 1. In this model, we consider two main layers, namely the cloud layer, com-
posed of large datacenters, and the edge layer composed of smaller servers, placed
in the vicinity of end edge devices, and of the edge devices themselves.

In our work, we are not concerned on how the cloud layer is organized. We
simply assume that cloud layer exhibits high-availability and has the capacity to
store copies of objects that reside on the edge whenever needed. We also assume
that the latency from the edge nodes to the datacenters may be relatively large,
which motivates the need to keep replicas of data in the edge layer. Typically,
the cloud layer is materialized by a relatively small number of large datacenters.

The edge layer can be divided into two main sublayers: the user edge and
the service edge layers. The user edge layer is composed by the client devices,
such as laptops, mobile phones, and IoT devices. These devices have low to
medium capacity and need support from the service layer to store data and
perform computation over data, which is replicated across several service layer
nodes. The service edge layer is composed of application servers placed in private
datacenters and in the premises on Internet Service Providers (ISPs), close to
the edge, complemented by intelligent network components such as 5G towers.
The nodes from the service layer have enough capacity to store a fraction, but
not all, of the data stored at the cloud layer. They are expected to be available
most of the time, but may su↵er from transient unavailability periods.

Our work focuses on the service layer. In detail, we are interested in providing
a reliable multicast communication primitive that allows edge servers to coordi-
nate in order to provide a consistent view of the data that is stored in this layer
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Fig. 1. The Edge

to the devices in the user edge. Because edge servers do not have the capacity
to store all data, di↵erent servers will store di↵erent subsets, or partitions of the
entire dataset. The group of servers that stores some partition i is denoted group
Gi, and members of Gi will use a multicast primitive to coordinate in order to
keep their replicas of data partition i consistent. As a result, multiple multicast
groups will co-exist, and these groups may or may not overlap, or may overlap
only partially.

4 Reliable Causal Multicast

In this section, we introduce the properties of the reliable causal multicast
service we want to support and identify the main building blocks for implement-
ing this service.

4.1 Properties

Reliable Causal Multicast is defined by the following definitions.

– Asynchrony Processes may broadcast messages concurrently.
– Gapless Delivery When a process P1 delivers a message from another process

P2, all following messages from P2 that P1 is interested in receiving will be
delivered by P1.

– No Duplication No correct process delivers the same message more than
once.

– Causal Order Messages may be received in any order, but are delivered in
causal order, as defined by Lamport[16].

4.2 Building Blocks

As we have mentioned before, to implement reliable causal multicast it is nec-
essary to combine di↵erent mechanisms that achieve complementary goals such
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as e�cient dissemination of data, fault masking or recovery, message ordering,
and management of group membership. In detail, we can identify the following
concerns, which are depicted in Figure 2.

Fig. 2. Concerns of Reliable Causal Multicast

Overlay Membership addresses the problem of keeping all the nodes that
participate in the network connected, by maintaining an overlay network that has
at least one path between any two nodes. The simplest overlay is simply a clique,
where every nodes knows every other node and can send messages directly to it.
Maintaining a clique may not be scalable for large number of nodes. Alternative
overlay structures, where each node is only required to maintain information
regarding a small subset of the nodes in the system may scale better. Among the
main classes of overlay networks it is useful to distinguish unstructured overlays,
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using gossip protocols (such as HyParView[3]), and for structured overlays, such
as Pastry[4].

Tree Construction addresses the problem of building a tree embedded in
the underlying overlay. Trees o↵er the basis for implementing multicast e�-
ciently.

Tree Maintenance addresses the problem of reconfiguring the tree when
new nodes join, old nodes leaves, members of the tree crash, or links fail. A tree
may also be reconfigured for improving performance, for instance when some
links become congested and better paths become available.

Group Membership addresses the issue of upholding multiple application-
level groups on top of a common underlying overlay. The membership of the
groups is dynamic, and nodes can join or leave a group in run-time.

E�cient Message Delivery addresses the problem of propagating mes-
sages to the interested nodes as e�ciently as possible. This usually means avoid-
ing sending redundant messages to the same nodes and ensuring that only the
nodes that are interested in the messages are required to participate in the mul-
ticast protocol.

Inter-Tree FIFO addresses the problem of ensuring that messages from the
same sender are delivered in First In First Out order. This may require nodes to
add metadata to the messages (such as sequence numbers) and to bu↵er out-of-
order messages. Messages can be received out-of-order when di↵erent messages
use di↵erent paths, or when messages are lost and later retransmitted.

Causal Multicast addresses the problem of ensuring that messages are de-
livered in an order that respects causality. As before, this may require nodes to
add metadata to the messages (such as sequence numbers) and bu↵er out-of-
order messages. The metadata required to enforce causal order can be signifi-
cantly larger than the metatada required to ensure FIFO order. A significant
challenge is to keep this metadata as small as possible, without inducing signif-
icant delays in the message delivery.

Reliable Causal Multicast addresses the problem of ensuring that mes-
sages are delivered reliably within each group. Informally, this usually means
that if a member of the groups delivers a message, all members of the group also
deliver that message.

In the literature, it is possible to find many works that address several of
these concerns (but not all systems address all concerns). In the next section we
describe some of the most relevant system from the related work that have influ-
enced our design. When describing each system we will identify which concerns
it addresses.

5 Related Work

5.1 Overlay Networks

We assume that every node in the system is able to exchange message any
any other node using IP protocols, such as UDP or TCP. However, for scalability
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reasons, it is often not desirable to maintain a full clique, since in that case every
node needs to keep track of every other node in the system. Instead, it may be
preferable to build an overlay network on top of IP, where each node is only
required to become aware of a few neighbours. The construction of the overlay
network can resort to a centralized component or be fully decentralized, also
denoted as a peer-to-peer (P2P) network. P2P overlays can typically be classified
into two main classes, namely: structured overlays, where nodes cooperate to
maintain a distributed hash-table (DHT) and unstructured overlays, that put
little constraints on how nodes establish neighbouring relations. The former have
the advantage of supporting e�cient routing but require the use of costly overlay
construction and maintenance procedures while the later do not support routing
but are cheaper to maintain.

5.1.1 HyParView

Objective HyParView[3] is an overlay construction and maintenance protocol
that aims at building an unstructured overlay network where all links are bidi-
rectional and each node has a small set of neighbours that represent a random
sample of the entire network.

System model HyParView uses a fully decentralized P2P algorithm to build
and maintain an unstructured overlay. The algorithms assumes that nodes are
altruistic and only fail by crashing.

Algorithm In HyParView, each node maintains two distinct partial views of the
system. The passive view o↵ers a random sample of the entire network; it is
maintained by having nodes to perform periodic gossip exchanges, to propagate
information regarding existing nodes. The passive view is a building block to
maintain a second view, called the active view that actually defines the Hy-
ParView overlay. A key property of HyParView is that the links defined the the
active views are symmetric: if node ni is the the active view of node nj then
node nj is also in the active view of node ni. The algorithms used to maintain
both views ensure that, with high probability, the resulting overlay is connected,
has an almost uniform degree distribution, small average diameter, and low clus-
tering coe�cient.

Concerns HyParView addresses the Overlay Membership concern.

5.1.2 Plumtree

Objective Plumtree[5] is an algorithm to create and maintain a spanning tree on
top of an unstructured overlay network.

System Model Plumtree assumes that there is an underlying unstructured over-
lay that connects all nodes in the system and that this overlay, such as Hy-
ParView, is relatively stable (i.e., each node maintains its neighbours unless new
nodes join, nodes leave or nodes fail) and where nodes have few neighbours. All
nodes are altruistic and only fail by crashing.
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Algorithm The Plumtree tree construction algorithm is based on a broadcast

and prune strategy. The algorithm starts by eagerly sending the messages using
f random neighbours in the underlying overlay. If a node receives a message
multiple times, via di↵erent edges, it makes one of these edges as primary and
the others as backup. Namely, it selects as primary the edge from which the
message has been received first; this strategy tends to select edges on the shortest
path as primaries. After all redundant edges have been turned into backups, the
prune steps is finished and the remaining primary edges constitute a broadcast
tree. Subsequent messages are sent using eager push on primary edges and using
lazy push on backup edges, as follows:

– Eager push: Nodes send the message payload to the selected peers as soon
as they receive it for the first time;

– Lazy Push: When a node receives a message for the first time, it sends the
message id (but not the payload) to the selected peers. These messages are
denoted “ihave” messages. If the peers have not received the message, they
may make an explicit pull request.

Note that, at the start, each peer has two sets of peers: eagerPushPeers

(EPP), which initially has f random peers, and lazyPushPeers (LPP), which
is empty. Peers are moved from the first to the second set as a result of the
broadcast and prune step described above.

Tree maintenance is performed as follows. When a node receives an ihave
message from a backup edge without first receiving the corresponding payload
from the primary edge, it starts a timer. If the timer expires before the payload
is received, the primary edge is removed and the edge of the node who sent the
ihave is promoted to primary.

The tree construction and maintenance algorithms use the message latency,
with respect to the source of the messages, as a criteria to decide which edges
are primary and which edges are backups. Therefore, the resulting tree is op-
timized for a single sender and may not provide good latency when used to
propagate messages originating from other nodes. It is obviously possible to
maintain multiple trees, one for each sender, but this may impose a significant
signaling overhead on the system. The authors of Plumtree have also suggested
a few strategies to tune a single tree to support multiple senders.

Overlay Dynamism Plumtree allows nodes to leave or join the overlay. If a node
leaves, then it is simply removed from the membership. When a node joins the
system, then it is added to the set of eagerPushPeers, being considered to become
a part of the tree.

Concerns Plumtree addresses the Tree Construction concern, as it creates a
tree overlay from a group of disconnected nodes by using gossip communication,
and the Tree Maintenance concern as it handles nodes joining and leaving the
system.
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5.1.3 Thicket

Objective Thicket[6] is an algorithm to create and maintain multiple spanning
trees on top of an unstructured overlay network. However, in opposition to al-
gorithms that build a single tree, such as Plumtree, the construction of multiple
trees is coordinated to ensure that, with high probability, each node is an interior
node in only one tree and a leaf node in the remaining trees. This promotes a
good load balancing among nodes that are part of more than one tree.

System Model This system, like Plumtree, assumes there is an underlying un-
structured overlay that connects all nodes in the system and that this overlay,
such as HyParView, is relatively stable and where nodes have few neighbours.
All nodes are altruistic and only fail by crashing.

Algorithm The algorithm used by Thicket can be seen as an extension to the
Plumtree algorithm. As in Plumtree each node also divides its neighbours in
eager push and lazy push neighbours (here called active peers and backup peers).
However, because the algorithm maintains multiple trees, Thicket maintains a
separate active set for each tree.

The tree construction algorithm has been modified to promote load balancing
for nodes that are part of multiple trees. The broadcast and prune procedure
is changed as follows. As with Plumtree, the tree construction starts with a
broadcast phase where each node send a message eagerly to f neighbours selected
at random. However, if a node is already an interior node in another tree, it
refuses to eagerly propagate the tree construction message and simply becomes
a leaf. Since one or more nodes can refuse to participate in the broadcast phase,
at the end of the prune phase it is likely that some nodes remain disconnected
from the tree. This situation is detected thanks to the exchange of “summary”
messages on the backup links (these messages play a role similar to that of ihave
messages on Plumtree) .

If a node discovers, via a summary, that it is not part of a tree, it selects
an edge to one of its upstream nodes to become a primary edge for that tree.
To promote a good load balancing among nodes, each node keeps an estimate
of the load of its neighbours (i.e., an estimate of the number of trees where that
neighbour already plays the role of an interior node). It then selects the less
loaded neighbour to become its source of eager push for the target tree. If an
interior node crashes or leaves the network, the tree is repaired using a similar
strategy.

Overlay Dynamism When a node n detects that another node p left the system,
it simply removes that node from all active and backup sets. This may cause n

to become disconnected from one or more trees, a scenario that is corrected by
the tree repair algorithm briefly describe above. In case a node n detects a node
p joining the system, then it adds p to the set of backup peers. This, in turn,
will ensure that p will receive “summary” messages and will be able to active
the tree repair mechanism to join all the active trees.
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Concerns Thicket, like Plumtree, is an algorithm that addresses both Tree Con-

struction and Tree Maintenance concerns.

5.2 Publish-Subscribe Systems

Publish-subscribe[17] (Pub/Sub) is a message passing paradigm that pro-
motes decoupling between the producers of information (the publishers) and
the consumers of information (the subscribers). When producing information,
the publishers do not need to know the identity, number, or location of sub-
scribers. Similarly, when consuming information, subscribers do not need to be
aware of the identity, number, or location of publishers. This paradigm can be
implemented in many di↵erent ways. One of the most common architectures
to support publish-subscribe uses a network of intermediate brokers, that route
messages from publishers to subscribers.

5.2.1 Scribe

Objective Scribe[18] is a Pub/Sub system built on top of a structured P2P over-
lay. It o↵ers high scalability, e�cient message propagation, and fault tolerance.

System Model Scribe implements what is known as topic based publish-subscribe.
Publishers tag messages with a given topicId and subscribers use these topicIds
to subscribe for events. Scribe builds and maintains a multicast tree for each
di↵erent topicId. In Scribe, each node can play one or more of the following roles:
publisher, subscriber, root of a multicast tree, or interior node of a multicast tree.
Scribe is built on top of Pastry[4], a structured P2P DHT.

Algorithm Scribe builds a spanning tree on top of the underlying DHT for each
topic. The tree is rooted in a rendez-vous node, the node with the identifier
that is numerically closest to the topicId. To join a multicast tree, a subscriber
uses the DHT to send a special “subscription” to the rendez-vous point. This
message is routed in the DHT and, each node in the path from the subscriber to
the rendez-vous becomes an interior node in the tree. Reverse path forwarding is
then used to route events from the rendez-vous to the subscribers. The algorithm
buils a tree because “subscription” messages do not need to travel up to the
rendez-vous point: if they happen to be routed by a node that already belongs to
the tree, that node registers the subscription locally and adds the downstream
node to the list of tree branches (denoted as the children table). Publishers simply
send events directly to the rendez-vous node that, in turn, uses the tree to send
them to subscribers.

When a node wants to unsubscribe, it first checks if it does not have to
forward the topic messages to other nodes by consulting its children table. If it
does not, then it sends an “unsubscription” message to its upstream node,
who then performs the same procedure. This procedure is executed recursively
until the “unsubscription” message reaches a node that still has other entries
in its children table.
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Tree maintenance is performed with the help of “heartbeat” messages. If
a node suspects its parent has crashed, it then uses Pastry to re-subscribe to
the same topic: Pastry will send the subscription message to the new parent,
repairing the tree. Scribe tolerates faults of the rendez-vous node (the multicast
tree root) by having its state replicated across the closest K nodes.

Overlay Dynamism New nodes can join the system by using Pastry. A new node
then contacts a nearby node which gathers contact information for the new node.
When a node leaves or fails, all nodes that knew the leaving node remove it from
their contact list.

Concerns Scribe handles the Tree Construction and Group Membership concerns
as it o↵ers an algorithm to build a tree for each topic, where nodes can join or
leave the topic group at will; Tree Maintenance concern as it allows nodes to
join and leave the system and E�cient Message Delivery concern as messages
are only propagated to the interested members of the overlay.

5.2.2 Gryphon

Objective Gryphon is a scalable content-based Pub/Sub system that has been
developped by IBM. Di↵erent aspects of the system are described in di↵erent pa-
pers, including [9], [19] and [20]. In this subsection we focus on how the Gryphon
ensures FIFO ordered exactly-once message delivery and how it handles subscrip-
tions.

System Model The algorithm assumes that brokers are organized in an overlay
that consists in a tree of logical nodes. The logical nodes that are leafs in the
tree are materialized by a single broker. The logical nodes that are interior nodes
in the tree are materialized by multiple “sibling” brokers. Publishers connect to
the root broker (called the pubend) and subscribers connect to the leaf brokers
(called the subends). When a message is forwarded to a logical node in the tree,
it can be sent to any of the brokers associated with that logical node. Thus,
a logical path from the root of the tree to a leaf logical node is supported by
multiple redundant paths at the broker level. Global knowledge of the system is
required, as each pubend needs to maintain state for each di↵erent subend and
each broker may need to maintain state for each di↵erent pubend and subend.

Algorithms Gryphon uses an algorithm to ensure that messages are reliably de-
livered in a FIFO order, that we refer to as the knowledge propagation algorithm,
and another algorithm to handle message subscriptions that we refer to as the
virtualtime algorithm.

In a content-based publish-subscribe system, such as Gryphon, each sub-
scriber may receive a di↵erent subset of the messages sent by the source (as a
function of the content of those messages). This makes it hard to distinguish
a message loss from a message that was filtered because it was not covered by
a subscription. Gryphon solves this problem by requiring brokers that filter a
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message to replace it by a silence token with the same sequence number as the
filtered message. Using this strategy, sources can produce an ordered sequence
of messages, and subscribers must receive a continuous stream of messages or si-
lence tokens. Subscribers must acknowledge the reception of messages or silence
tokens and should request the retransmission of messages (or silence tokens) if
they observe a gap in the message stream. The downstream flow of messages
and silence tokens is denoted by the authors as the knowledge stream and the
upstream propagation of acknowledgements or retransmission requests as the
curiosity stream. The authors propose a number of techniques to implement
these streams e�ciently and a technique that allows the system to identify when
a given message as been received by all subscribers and no longer needs to be
retransmitted.

The fact that multiple broker paths co-exists in a single logical path may
create inconsistencies when subscriptions are forwarded from a leaf node to the
root, given that the subscription information will not be propagated at the same
pace in all broker paths. Thus, if two consecutive messages are propagated down-
stream using di↵erent broker paths, one message may use brokers that are aware
of a new subscription and another message may use brokers that are not yet
aware of that subscription. If care is not taken, one of these messages may be
delivered to the new subscriber and the other may be dropped along the path,
creating gaps in the message stream. To address this problem Gryphon relies
on a virtualtime algorithm[9], that combines the following mechanisms. First,
each subscription is assigned a logical time and each node keeps track of which
subscriptions it is already aware. Second, each message is tagged by the sender
with the logical time of the most recent subscription per subend known by the
root. When a message is propagated downstream, two scenarios can happen. If
the broker already knows all subscriptions known by the root it can use its own
routing tables to decide if the message must be forwarded to each of its children.
If the broker is outdated (i.e., it still misses some subscriptions) it floods the mes-
sage to all children (this prevents messages from being prematurely dropped).
As a result of this mechanism, when a subscriber sees the first message tagged
with the corresponding subend ’s virtual time greater or equal than its own sub-
scription, it knows that it is safe to start consuming messages and that no gaps
will be subsequently generated.

Overlay Dynamism The analyzed papers do not describe the algorithms used to
add and remove brokers from the overlay.

Concerns The knowledge algorithm handles the E�cient Message Delivery and
Inter-Tree FIFO concerns. The virtualtime algorithm handles the group mem-

bership concern

5.2.3 Fault-Tolerant �-neighbourhood.

Objective Kazemzadeh and Jacobsen[8] propose a technique to ensure the fault-
tolerant implementation of a content-based Pub/Sub on an overlay of brokers,
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where each broker is only required to maintain information regarding other bro-
kers in its �-neighbourhood.

System Model Brokers are connected in a overlay in the form of a shared tree.
However, the system assumes that links can be arbitrarily slow and nodes can
become temporarily disconnected from other nodes in the tree. To tolerate these
faults without rebuilding the tree, the algorithm allows messages to “jump” over
faulty nodes when they are propagated in the tree. For instance, when a node is
propagating a message downstream, if one of its children appears to be discon-
nected, the node can send the message directly to its grand-children, bypassing
the faulty node. As a result, messages can be propagated using di↵erent paths.
The algorithm ensure reliable, ordered, delivery of messages despite the fact that
each broker only needs to contact and maintain information about neighbours
on the tree that are at most � hops away.

Algorithm As noted above, when a message is propagated in the tree that consti-
tutes the broker overlay, it may bypass faulty nodes. As a result, nodes may see
only a subset of the messages and may miss important information. In particu-
lar, nodes in the tree may miss subscription information. The algorithm ensures
that when a node recovers it eventually becomes up-to-date but, during tran-
sient periods, it may operate on outdated information and not be able to route
events correctly. To address this problem, the �-neighbourhood enforces the fol-
lowing invariant: “a publication is delivered to a matching subscriber only if it is

forwarded by brokers that are all aware of the client’s subscription”.
The purpose of enforcing this invariant is to avoid scenarios such as the one

described below:

– There are two subscribers, Sub1 and Sub2;
– Each subscriber propagates a subscription message, Sub1 propagates s1 while

Sub2 propagates s2;
– s1 is received by every broker in the path, but s2 is not received by a broker

B ;
– A publisher publishes 3 messages m1, m2 and m3, with m1 and m3 matching

s1 and m1, m2 and m3 matching s2
– B then receives m1 and since it matches s1, it forwards m1 (Sub1 and Sub2

both receive m1)
– B then receives m2 but since m2 does not match s1, it does not forward the

publication.
– Finally the broker B receives m3 and since it matches s1, it forwards m3,

with both Sub1 and Sub2 receiving m1 and m3, however Sub2 did not receive
receive m2, resulting in a message gap.

The �-neighbourhood algorithm tolerates � concurrent faults, a fault being
either a broker crash or a link failure. It includes three sub-protocols to address
the following events: i) subscription propagation; ii) event forwarding and iii)
broker recovery. They achieve � fault tolerance by having each node in the overlay
maintain ”knowledge” of �=�+1 nodes in the neighbourhood, with knowledge
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implying each node knows the Subscription Routing Tables (SRT, used to decide
to which nodes to forward a message) of the neighbour nodes, as well keep track
of how many messages were sent by each node (a variable called brokerVal) in a
larger neighbour radius.

If a node A can not communicate with the next node B, then it communicates
directly with the node (or nodes) after B, say C, being able to communicate
directly to up �+1 nodes in a given path.

Messages that need to be propagated in the tree are queued in a FIFO queue.
Only one message may from each publisher be in-transit at any given point
in time. After sending one message, the next message is not sent before the
previous message has been fully acknowledged. At a given intermediate node in
the tree, a message is just acknowledged upstream after all downstream nodes
have acknowledged the message. A node that has no children to propagate a
given message (either because the nodes is a leaf node or because its children do
not have a matching subscription) can acknowledge a message immediately.

The paper introduces two concepts related to the occurrence of faults in
the tree, namely partition islands and partition barriers. A partition island is a
sequence of brokers that are not reachable (either due to crashing or having a
link failure) by a broker but can be bypassed as they are less than � in a row.
A partition barrier occurs when there are � or more unreachable brokers in a
row and therefore can not be bypassed. When a node detects a partition island
or barrier, then it becomes a Partition Detector (PD) and adds the partition’s
nodes (called pid, partition id) to its Partition Table (PT) and propagates the
partition information to its neighbours.

The first sub-protocol, named subscription propagation, controls how a sub-
scription is propagated downstream to the relevant brokers until it reaches the
publisher. Each subscription message carries a predicate (which is used for
matching), a subpath of brokers along the propagation path of the subscrip-
tion (which is used for forwarding) and a sequence of numbers, which is used for
duplicate detection, and when the subscription is accepted at the publisher, a
confirmation message is sent upstream to the subscriber. There are three possible
scenarios that can happen when propagating a subscription:

– Every broker on the path accepts the subscription, so every broker will be
aware of the subscription and the confirmation message does not have any
tags;

– Some brokers were unable to accept the subscription (partition islands), but
the publisher accepted it. This means that some brokers downstream of the
partition islands received the subscription, so they will send the subscription
to the partition islands before forwarding them publications (when they can
communicate with the islands) and the confirmation message does not have
any tags;

– The subscription did not reach the publisher because of a partition barrier. In
this case, the broker that detected the partition barrier stops attempting to
forward the subscription downstream, tags the confirmation message with
the pids of the partition barrier and sends the confirmation upstream, to
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the subscriber. These tags will be used for resolving whether the subscriber
should accept publications or not.

The second sub-protocol controls event forwarding. The following steps are
executed when a publication p arrives at a broker B :

1. Queuing step: duplicate messages are detected and new messages are put on
a FIFO queue.

2. Barrier checking step: B checks if p’s sender is on any partition barrier
known to B by checking its PT. If it is, then B tags the message with the
corresponding pids. This tag is used by the subscribers, whose subscription
was possibly confirmed with the same tags.

3. Matching step: B computes the subscribers that match p and obtains the
next routes to forward the publication.

4. Routing step: B sends p to each path obtained in the matching step, and
awaits an acknowledge from each path the message is sent to.

5. Cleanup step: p is discarded after receiving all acknowledges and an acknowl-
edge is sent to whichever nodes sent p to B.

In case B can deliver p, then it verifies if it is safe to deliver the publication.
For this, it compares the tags p carries with the tags of the subscription. If there
is a shared tag, then it is unsafe to deliver p, as the publication may have been
forwarded by a broker that did not know of the subscription. Otherwise it is safe
to deliver.

In order to detect duplicate messages, each message carries a vector of meta-
data. This vector has a maximum size of 2�+1. Each entry of the vector is a
pair (brokerId, brokerVal), where brokerVal is the number of new messages sent
by the broker brokerId. This vector is updated as the message is propagated
through the path to the subscribers. If a broker jumps over another broker when
propagating the message, then it inserts a special null value in the vector, rep-
resenting a jump and if it has to retransmit the message, the broker does not
increase its own brokerVal, as it is not a new message that is being sent. As
previously mentioned, the brokerVal of each neighbour is the second type of in-
formation that is kept by each node. A message is detected as a duplicate if for
any entry of the vector, the receiving broker sees a brokerVal that is not higher
than the corresponding broker’s knowledge of said brokerId’s brokerVal. If there
are more than � jumps then the message is ignored, because if the message does
not bypass more than � nodes in a given subpath of size 2�+1, then the mes-
sage is always forwarded by a majority, which means a node will always see all
messages and therefore be able to detect duplicates.

The third sub-protocol, broker recovery, is executed when a broker that was
on a partition manages to regain connection to the rest of the network and
now needs to recover the missing subscriptions. There are two types of recovery
procedures, the first being a full recovery, for when the broker crashed and
its SRT is empty and the second is partial recovery, for when the broker lost
communication with the rest of the network and its SRT may be out of sync.
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The partial recovery consists of the recovering broker (R) connecting to a
stable broker (S), where R sends a summary of its SRT to S, S sends the miss-
ing subscriptions in R, R propagates the missing subscriptions to parts of the
network that were partitioned and S removes the pid of the partitions that it is
a PD from its PT and notifies its neighbours.

The full recovery consists of running the partial recovery protocol for every
neighbour, as the broker crashed and is now establishing new connections to
every neighbour.

Overlay Dynamism The �-neighbourhood algorithm does not focus in allowing
new brokers join the system, merely stating brokers can join the system with
the help of a registry service and then obtain knowledge of its neighbourhoods
within a distance of �. However, when this happens, the broker is considered a
permanent part of the system.

Concerns The �-neighbourhood algorithm addresses the Group Membership,
E�cient Message Delivery and Inter-Tree FIFO concerns.

5.2.4 Sequencing Graph

Objective The Sequencing Graph algorithm[21] aims at providing a scalable and
decentralized method of causally ordering messages across (potentially overlap-
ping) groups of subscribers in a a topic-based Pub/Sub system.

System Model This system model consists of having subscribers join groups
that represent topics, with the option to join or leave groups (by subscribing or
unsubscribing to the corresponding topic), send messages to any group (even if
they are not part of that group) and receive messages. For a subscriber to send
a message, the message is sent to a graph of sequencers, which act as special
brokers. An interesting note is that while the previous analyzed Pub/Sub systems
use trees to connect nodes, this system uses a graph of sequencers with some
invariants, namely a single path must connect sequencers associated with each
group and the graph must be loop free.

Algorithm In this ordered message delivery system, for a subscriber to send a
message, the message first needs to be sent to the sequencing network, where it
then goes through the sequencing network collecting sequence numbers and then
it leaves the network and is sent to the destination group. The focus of this work
is within the second part of this process, namely how messages travel through
the sequencing network.

Causal ordering is provided when senders subscribe to groups that they send
messages to. These messages are not ordered across the system, as they may be
delivered in any order to unrelated groups. This approach does not depend on
the size of the destination group and in the worst case depends on the number
of groups. The ordering protocol consists of having several sequencers, which are
connected in graph overlay, assign sequence numbers to messages to the groups.
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Groups may have members that are overlapped in other groups (referred to
as double-overlapped) and these members must see the common messages by
the same order. Each group has a specific sequencer and for each double overlap
between groups there is a sequencer which handles all messages for both groups.

A sequencer can be seen as a broker, as its state consists of having a sequence
number for its overlapped groups, a group-local sequence number for the group
that is directly connected to the sequencer, information regarding the sequencers
in the network on the path for each group and a bu↵er to store messages.

When a node sends a message to the sequencing network, the group-local
sequencer attributes the message a group-local sequence number and if the des-
tination group has no double overlaps, then the message can be delivered im-
mediately. However, if there is a double overlap at the present sequencer then
the current sequence number for the double overlap is added and the message
is distributed to the next sequencer (in case it exists). As messages for double
overlapped groups must go through the same sequencer, causal order is guaran-
teed.

Overlay Dynamism Sequencers can be added and removed as long as they follow
two invariants: i) A single path must connect the sequencers associated with each
group and ii) The sequencers graph must be loop free. The first one, there can
only be one path connecting the sequencers to each group, is easy to guarantee.
However, the second, the sequencer graph must be loop free, is harder and the
authors decided it was di�cult to uphold with only local knowledge and therefore
use a full vision of the current sequencing graph.

Concerns As the name implies, the Sequencing Graph uses a graph instead
of a tree. However the graph shares some of the properties of a tree (a single
path connecting the sequencers with each group, undirected and loop-free). It
addresses the Tree Construction, Tree Maintenance, E�cient Message Delivery,
Inter-Tree FIFO and Causality concerns.

5.2.5 VCube-PS

Objective VCube-PS[22] is a topic-based Pub/Sub system that enforces causal
order and propagates messages by dynamically building trees for each message.

System Model VCube-PS is built on top of an hypercube-like topology, where
there is no network partitioning, nodes do not fail and links are reliable, meaning
messages can not be lost, corrupted or duplicated, with messages of the same
topic respecting causal order. Nodes on the overlay are grouped in clusters, where
the neighbours of a node i are defined as the first fault-free node of each cluster.

Algorithm VCube-PS is di↵erent from the previous publish-subscribe systems
as there are no brokers, with every node in this system being aware of the
subscriptions of every other node. As such, we will explain how nodes subscribe
to topics, how dynamic trees are created to propagate messages, the properties

17



of their message delivery and finally comment on how causality is maintained in
the system.

There are three types of messages, namely subscription, unsubscription and
publish messages, with the first two being sent to every node and the latter
being associated with a topic and sent only to the nodes in the same topic. As
mentioned in the System Model section, nodes have a neighbourhood and when
a message is to be propagated, a dynamic tree is built using that information,
with each tree being constructed by using the relevant neighbours of each node
(all neighbours in the case of a subscription or unsubscription or the neighbours
that are part of a topic, in case of a publish message), starting at the root and
the tree will eventually have all nodes of the system (in case of a subscription or
unsubscription message) or all nodes that are part of a topic.

VCube-PS provides causal order per topic, by using Causal Barriers[10]. This
algorithm will be explained more in depth further in the report, but in summary,
the algorithm uses direct dependencies on the messages instead of the nodes’
identifiers, because it is more suitable for group dynamics where nodes can join
or leave a group and it does not require all nodes of a group to have the same
view of the group, like in CBCAST[2], another algorithm that provides causality
and that will also be discussed. An example of this in VCube is considering there
are two nodes, P1 and P2 in a topic t. P1 sends m1 to the members of t, which
currently is only to P2. In the middle of this, a node P3 joins t. P2 receives
m1 and broadcasts m2 to t with a dependency on m1. P3 receives m2 but then
does not know when to deliver it, because it depends on the first message sent
by P1 (m1), which P3 does not know if the message was directed at itself as
well. To solve this issue, nodes have a have a Per-source FIFO Reception Order,
meaning messages published by the same publisher are received by the same
order they are produced, which is assured by having the publisher only publish
a new message after receiving all the acknowledgements for the previous message
it previously published. If P3 receives another message from P1 in this topic then
it knows that it will never receive m1, as P1 received the acknowledges for all
destinations of m1, and therefore can deliver m2.

Overlay Dynamism No assumptions are made about new nodes joining or leaving
the system, other than nodes do not fail.

Concerns VCube-PS handles the Group Membership, E�cient Message Deliv-

ery, Inter-Tree FIFO and Causality concerns.

5.3 Reliable Causal Multicast

In this section we go through two important works related to Reliable Causal
Multicast, which has been defined previously.

5.3.1 CBCAST

System Model CBCAST’s system[2] is composed of N processes, where a process
may belong to one or several groups of processes. Processes multicast messages

18



to groups. Processes may leave or join groups dynamically. Vector clocks are
used to causally order messages, as is defined by Lamport[16].

Algorithm CBCAST operates under a virtual synchrony execution model, where
messages are sent to groups and every recipient of the group is in an identi-
cal group view (informally, this means every process in a group has the same
knowledge of which processes belong to the group) when the message arrives
and messages are delivered fault-tolerantly, meaning all operational destinations
eventually receive a message if it is sent.

This protocol uses vector clocks (VC) to order messages, with an entry of
the vector clock corresponding to a process of a group, and with one VC per
group. As it can be inferred, this will lead to a vast amount of metadata overhead
in each message, however it is not always necessary to transmit the full vector
timestamps, so these vectors can be compressed by only sending the entries that
changed since the last sent message, e.g. if a process sends m1 with the entire
vector timestamp and then immediately after sends m2, m2 only needs to carry
the entries of the vector that changed. However, this compression requires extra
data to represent which fields changed, so in some cases the compression may
cause more overhead than without compression.

To synchronize the views of the group when there is a change in membership,
the concept ”flushing” is used, where members send a message that contains the
new view. For a process to send a flush message, it first waits for its multicasts
to be stable (meaning its multicasts reached every destination). After a process
sends a flush, it will accept and deliver messages but will not start multicasts. A
member of the group, called flush coordinator, receives flushes from all members
of the group and then sends its own flush message to all members. When a
member receives the flush message from the coordinator then it means the system
is stable and it can start multicasting. To support virtual synchrony when failures
occur, a k-resilient protocol is used that delays communication outside of a group
until all causally previous messages are k-stable. For example, if a process Pi has
sent or received multicasts in group G1, it will delay multicasting to a group G2

until g1’s multicasts are stable.

5.3.2 Causal Barriers

System Model The Causal Barrier algorithm[10] ensures that messages are de-
livered according to causal order in a system composed of N processes that can
communicate directly with each other. Unlike CBCAST, messages are not con-
strained to be sent to groups of processes that need to be explicitly created.
Instead, any subset of the N processes can be selected as a multicast address for
any message.

Algorithm Causal barriers is an algorithm that causally orders messages by using
direct dependencies of messages instead of node dependencies.

An example of this algorithm is as follows (taken from the paper): Message
M1 is sent from P1 to P2, P3 and P4. P2 receives M1 and then sends M2 to P3,

19



P4 and P4. P3 receives M1 and M2 and then sends M3 to P4. P4 cannot deliver
M3 before M2 and before M2 it needs to first deliver M1. Therefore, to guarantee
causality M3 only needs to carry information about its’ direct dependency, M2,
not requiring to carry information about its transitive dependency on M1 with
respect to P4.

Each process i has the following data structures:

– A counter senti which counts the number of unique messages it sent to other
processes;

– A N*N matrix called Deliveredi to track dependency information. This
tracks Pi’s knowledge of the latest messages delivered to other processes.
Deliveredi[j, k] = x would mean that Pi knows that all messages with se-
quence number equal or less than x from Pj where delivered to Pk.

– A vector CB of length N which stores direct dependency information. Each
entry of this vector is a set of tuples, in the form of (process, counter). The
number of tuples is bounded by N (meaning there is a message dependency
from each other node), but is usually less than that. An example of an entry
in the vector would be if a tuple (k, x) 2 CBi[j]. This means if Pi sent Pj a
message, the next message sent could only be delivered after Pj receives the
xth message from Pk.

If a process Pi receives a message M, it may also receive information saying
which other processes received the same message (not necessary for the message
to carry this extra metadata if it is known by other means which other processes
will receive the message). Messages sent by Pi to those processes are then causally
dependant on M, therefore the set of CBi[k], where k is every other process
that received M, is updated by adding the set (senderM , senderCounter) and
transitive dependencies are deleted.

The Deliveredi matrix is used for garbage collection. For example, given
Deliveredi[l, k] = y, then Pi knows that the yth message from Pl to Pk has been
delivered, so if there is a set (l, x) 2 CBi[k] such that x < y, then Pi knows this
constraint has already been fulfilled and can safely delete the set from CBi[k].

5.4 Causally Consistent Storage

We now address replicated storage system that keep di↵erent data items,
that can be read and written, and where clients observe a state that is always
consistent with causality. We assume that the storage system is composed of
multiple datacenters and each datacenter is materialized by a set of nodes. Inside
each datacenter, di↵erent data items can be stored in di↵erent nodes (each set of
items is denoted a partition). Datacenters may replicate all partitions (a scenario
known as full replication) or just a subset of the partitions (a scenario known as
partial replication). Clients execute read and write operations by contacting one
of the datacenters and accessing the copy of the data item maintained at that
datacenter. When a client makes an update, the update needs to be subsequently
propagated to other datacenters.
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5.4.1 Gentlerain

Description Gentlerain[11] is a consistent geo-replicated data store using causal
order, where servers contain partitions that are replicated in other servers and
if one partition is updated, the update is propagated to the servers that contain
the replicated partitions.

Causality Each server maintains a version vector for each partition, and this
vector has an entry for each data center the partition is replicated in. Each
entry of these vectors is a timestamp and the global stable time (GST ) is the
lower bound of the minimum element of all partitions within the server.

Updates are timestamped with the physical clock of the originating server
and remote updates become visible when the update’s timestamp is older than
the global stable time. If a partition is not updated, then the GST will not
increase. In order to prevent this, partitions send heartbeats with their server’s
physical time.

Fault tolerance Servers are assumed to be replicated with strongly consistent
replicas, so server failures are discarted; network failures are also assumed to
be handled as datacenters have redundancy in their networks. Datacenters are
not assumed to be immune to partitions and if this does happen then all remote
updates stop being processed, as the GST stops advancing. In order to deal with
this, they discard the partitioned datacenter from the system.

5.4.2 Cure

Description Cure[12] is a protocol for highly available transactions between dat-
acenters. The system contains geo-replicated key-value stores that are replicated
across D datacenters and each datacenter has N partitions.

Causality Each partition has two vectors, both of size D. where the first one
tracks the number of updates received by the replicated partition in each dat-
acenter and the second, which provides a globally stable consistent snapshot
(GSS).

Remote updates carry a timestamp that is a vector clock with one entry per
datacenter and when the timestamp is lower or equal to the GSS vector, then
the remote update can be made visible.

Fault tolerance While if there is a failure in Gentlerain the entire system stops
being able to make remote updates visible; in Cure, since there are vector clocks,
updates from healthy DCs can be made visible, however updates from discon-
nected DC remain frozen until they recover.

5.4.3 Saturn

Description Saturn[14] is a distributed metadata service for Causal Consistency.
In Saturn there are several datacenters that have data replicated across other
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datacenters and in order to maintain causal order, each time data is updated
in one datacenter, a label is generated and sent to the Saturn network to be
propagated to the datacenters that replicate that data. Each Saturn node may
have several datacenters attached.

Causality The Saturn network maintains causality with these updates by having
each Saturn node connected in a tree overlay. Since nodes communicate with
FIFO channels, causality is naturally maintained.

Each update has a constant metadata size, and unlike Gentlerain, there is
no need for a global synchronization of the system, relying instead on the tree
topology.

Fault tolerance The possibility of network partitions is taken into account, which
can cause the tree topology to become disconnected. The authors do not focus
in fault tolerance, using a fail-stop model in their implementation.

5.5 Comparison

Our system will need to deal with the Group Membership concern, as
nodes should nodes should be able to join and leave groups (data partitions),
Tree Maintenance, as it is desirable for service layer nodes to join and leave,
E�cient Message Delivery, as messages should only be propagated to the in-
terested members, Inter-Tree FIFO, as messages from one node should always
be received in a FIFO order to another node in the system and finally Reliable
Causal Multicast as messages need to be causally ordered while supporting
faults.

We will now compare systems per section.

Overlay Networks In this section we analyzed two types of systems. The first is
structured Peer to Peer system, with Scribe (running on top of Pastry) and the
second is unstructured peer to peer, with Plumtree and Thicket (both using Hy-
ParView). Scribe’s trees are built by using Pastry’s routing, whereas Plumtree’s
and Thicket’s are built by using gossip, with Thicket creating several trees.

Plumtree and Thicket both allow nodes to join and they eventually are made
part of the tree (or trees). In Scribe, nodes may join the system by first using
Pastry to become part of the overlay and then by using Scribe to subscribe to a
topic and join a tree.

When nodes leave, the tree/trees become disconnected and the repair mech-
anism in Plumtree will create cycles (which they detect by receiving a message
twice) and change the overlay in unwanted ways, which also happens in Thicket.
In Scribe, if a node leaves, the tree is repaired using Pastry, at the cost of sacri-
ficing Inter-Tree FIFO.

In the Sequencing Graph, when the sequencers join the system they have
full information of the current sequencing graph, in order to prevent cycles in
the graph and when a sequencer is removed, its parent is informed to connect
to its children. Requiring the full information of the sequencing graph is not a
desirable approach, however the logic for removing a node is useful.
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Fig. 3. Concerns of Reliable Causal Multicast filled with the analyzed systems
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Publish-Subscribe There are some di↵erences in how each system handles group
membership. In VCube-PS, all nodes are aware of every subscription of every
node, while in Scribe and �-neighbourhood only the nodes on path from the
subscriber to the publisher are aware of the subscription and in Gryphon the
nodes in the redundant paths between a subscriber and the publish eventu-
ally receive the subscription. An unique aspect that both �-neighbourhood and
Gryphon deal with, namely message gaps, are dealt in two di↵erent ways, with
�-neighbourhood using partition ids and Gryphon using the concept of virtual
time to detect when messages can start being delivered.

Scribe, VCube and Sequencing Graph are topic-based pub-subs while Gryphon
and �-neighbourhood are content-based. Messages in Scribe need to go from the
publisher to a special node (rendez-vous) who then spreads the message to the
subscribers via a tree. This can require global knowledge if a node is a publisher
that has topics in every node. In VCube messages are spread through dynami-
cally built trees, Sequencing Graph uses a graph, Gryphon uses a spanning tree
for each pubend and �-neighbourhood uses a single tree.

Scribe does not guarantee FIFO order by default. Gryphon guarantees Inter-
Tree FIFO by having a stream of messages per publisher node where messages
are continuously sent without having to wait for the previous message to be
acknowledged. Sequencing Graph uses FIFO channels between nodes, however
has no fault-tolerance. �-neighbourhood and VCube-PS wait for each message
to receive system-wide acknowledges.

Reliable Causal Multicast Sequencing Graph provides causal order by having
messages that are shared between elements of di↵erent groups go through a spe-
cific sequencer. VCube-PS o↵ers causal order by using Causal Barriers, however
it does not o↵er causal order between di↵erent topics. Also, both systems do not
take into account node failures.

CBCAST and Causal Barriers are two algorithms that provide causality in
group communication, albeit by using di↵erent kinds of metadata with several
di↵erences. Whereas CBCAST guarantees causality by having the sender of a
message attach a vector clock for each existing group it is aware of, Causal
Barriers uses direct dependencies on messages. Another di↵erence is that in
CBCAST messages are sent to specific groups and every process of the group
must receive the message in the same ”view” of the group, meaning if process
sends a message to a group Gi and then a new process joins the group, every
member needs to be sure they received every previously sent message in the
previous view of the group before starting sending new messages to the new
view of the group. In Causal Barriers, however, messages can be sent to one or
several processes, with dependencies being tracked by knowing which processes
received which messages messages. This either requires the nodes to know in
some way who the recipients of the message are (in VCube-PS, this is known by
having the message be sent to every subscriber of a topic, and every node knows
who are the current subscribers for a topic) or additional metadata needs to be
attached with each message, indicating who the recipients are.
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There is also the di↵erence in the amount of data that needs to be stored.
Considering a system with N processes, in CBCAST a process only needs to
store data related to the groups it belongs, which can be very small (if a process
only belongs to one group of 2 processes) or very huge (if a process can indirectly
interact with all possible group combinations of N processes). In Causal Barriers
each process needs to always store a N ⇥ N matrix, to track how many messages
a process knows each process received from another process.

Type of Metadata Uses Extra Metadata Amount of Data Stored
CBCAST Vector Clock(s) No Variable, from 2 to *
Causal Barriers Message dependencies Possibly N x N

Table 1. Causality Protocols comparison
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Causally Consistent Storage In GentleRain, if there is one datacenter in a net-
work partition then the entire system stops processing remote updates. In Cure,
if there is one datacenter in a network partition then every remote update that
is not related to that datacenter is able to be processed, however updates from
failed datacenters remain frozen. In Saturn, if there is a leaf in the saturn tree
that stops responding then the tree becomes disconnected and remote updates
will not reach all datacenters through the tree. However, remote updates can
still be processed as labels are piggybacked with the data itself.

Conclusion As our system is meant to be used on the edge, global knowledge
is not scalable. Therefore, each node in our system will need to only use local
knowledge. It is more interesting to use an unstructured peer to peer overlay,
where nodes can join any part of the system without the restrictions of managing
a DHT. As analyzed, it is possible to create a tree using gossip, which is enough
for our objective. To deliver messages, �-neighbourhood is the most suitable
work as it focuses purely on local knowledge. However, it has the constraint of
requiring every subscriber to acknowledge each message before sending a new
message. Gryphon, on the other hand, does not require this, at the cost of re-
quiring global knowledge. Our ideal solution would be to mix these two solutions
in order to forward messages while using local knowledge and not having to wait
for all interested nodes to acknowledge.

Regarding the causality concern, our system cannot follow Sequencing Graph’s
ideas as we desire to support failures and the graph (in our case, tree) overlay
would be changing very often (as subscribers join di↵erent groups and require
new sequencers to be created), which is something that would be more expensive
on our system. On the other hand, VCube o↵ers per topic causal ordering, which
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is a weaker property than the one we desire (inter topic causality) and in Vcube
each node only publishes a new message after receiving acknowledges from all
interested parties, which is a slower form of publishing messages, similar to �-
neighbourhood, than the one we desire. However, by adapting Causal Barriers
into our problem, this may be a good solution.

6 Architecture

Before discussing the architecture, let us recap our system model and the
objective. We focus on the service layer of the edge, where edge servers are lo-
cated and user devices are connected to these servers, interacting over partitions
of data. As these servers (which we will call nodes) do not have the capacity
to store all data, each node will store di↵erent partitions of data and when a
partition i is updated in a node, all nodes that replicate that partition need to
receive the same update, called remote update, obeying causal order between the
nodes of the same group. Therefore, a group of nodes that replicate the partition
i is denoted Gi. However, as the number of nodes and di↵erent groups can be
vast, it is unfeasible for each node to be able to communicate directly with every
other member in every group the node belongs to while guaranteeing causal or-
der, which means these remote updates will need to travel through intermediary
members, not belonging to the update’s group, in order to reach all destination
nodes while keeping the metadata for ensuring causal consistency small and the
system tolerant to node failures.

Taking into account all analyzed systems and our concerns, we will address
each concern and how our system will handle it, either by using an already
existing system or by modifying one to better suit our requirements.

Membership Since our system is located on the edge, it is important that nodes
are logically connected to physically close nodes, therefore an unstructured P2P
overlay o↵ers more freedom to achieve this, such as HyParView[3].

Tree Construction Taking into consideration that we chose an unstructured P2P
approach for the Membership concern, it is necessary to choose a protocol that
creates a spanning tree on top of an unstructured overlay network. As shown
by Plumtree[5] and Thicket[6], there are already existing protocols that handle
this. As such, we do not create a new algorithm to handle this concern, instead
using an existing one, choosing Plumtree as it is desirable to maintain a single
tree.

Tree Maintenance Although the analyzed systems that handle the Tree Con-

struction concern also handle Tree Maintenance, we will need to handle this
concern, as the logic for the arrival and departure of nodes impacts directly our
algorithm for Reliable Causal Multicast. This concern will be explored in detail
in section 6.3.
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Group Membership In our desired system, nodes can join a group Gi by replicat-
ing the i data partition. When this happens, all existing members of that group
will need to know about the new member. However, as nodes will be separated in
the tree, each node will receive the notification about a new member at di↵erent
times. This can be seen as a subscriber joining a new topic and propagating its
subscription across the system to every publisher of the given topic.

E�cient Message Delivery Basing on the previous concerns, we will have a single
tree connecting every node in the system (similar to the �-neighbourhood), with
remote updates published on this tree eventually reaching every destination. This
tree will be rooted around a datacenter, which will reliably store most or all data
partitions.

Inter-Tree FIFO Our work presents two requirements regarding this concern,
namely each node should only need to use local knowledge of its neighbourhood
(as in �-neighbourhood[8]) and a node that is the source of updates should be
able to publish updates without waiting for each update to receive acknowledges
from every interested destination (as in Gryphon[19]), and as previously men-
tioned in the conclusion of the related works, there is no existing work (to the
best of our knowledge) that solves both requirements. Therefore we will cre-
ate a new algorithm in order to solve the Inter-Tree FIFO concern with our
requirements. This algorithm is explained later in section 6.1

Causal Multicast and Reliable Causal Multicast For these two concerns both
CBCAST[2] and Causal Barriers[10] work, with both using additional metadata
for di↵erent reasons. We adopt Causal Barriers, explaining in detail how this is
applied in our algorithm in section 6.2.

Fig. 4. Tree overlay
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After analyzing each concern, we can divide our solution in three stages:
The first stage consists of providing reliable delivery, which in our system

means nodes receive gapless ordered streams of messages from each node in a
tree overlay in the face of node faults (section 6.1). The second consists of adding
causality to the reliable delivery, providing Reliable Causal Delivery (section
6.2). The third and final stage consists of allowing nodes to leave or join the tree
(section 6.3).

We will now discuss each stage in detail.

6.1 Reliable Delivery

As mentioned, it is our objective to have a system using local knowledge, like
in �-neighbourhood[8], while not waiting for acknowledges across the system,
like in Gryphon[19]. Therefore our solution uses ideas from both algorithms.

We want to tolerate � consecutive node failures on a given subpath of the
tree overlay, so each node in our system will have knowledge of the Subscription
Routing Tables of every node in a �+1 radius, which will be the node’s neigh-
bourhood. Using figure 4 as an example overlay, if A wants to send a message
that will be forwarded to D by B, then A sends the message to B, who then
forwards the message to D. However, if B becomes unreachable (due to a net-
work partition), then A contacts D directly and sends the message there instead,
jumping over B. This is possible because of the neighbourhood knowledge.

This becomes more complex when A sends multiple messages to B which
will be forwarded to D. If A sends a message m1 to B who then forwards it to
D and then B is detected as being in a partition and A sends m2 directly to D,
it is possible D did not receive the first message as B might have failed before
sending the message to D, resulting in an unordered stream of messages.

Therefore, it is required for some kind of metadata to be attached to each
message so that D is able to detect if there is any message missing.

To solve this, each time a node forwards a message to a path, it attaches
two values to the message: An ID of the path where the message is supposed to
travel and the number of messages sent to that path by the node. Each node
would be required to store a list of path IDs and the number of messages received
per path. When a node receives a message, it compares the metadata entries of
the message to the metadata that it has stored. For each path on the message,
it compares the corresponding number on the message with the number it has
stored:

– If all entries have a number higher by one compared to the entries that are
stored, then the message is ordered;

– If at least one entry on the message has a lower or equal number than the
one that is stored, then the message is a duplicate;

– If at least one entry on the message has a number higher by more than one
than the one that is stored, then there is a missing message.

The following scenarios will use the path itself as the path ID to better
explain what is put on each message.
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In the described scenario and with �=1, A would send m1 with a value
“ABD:1” to B and if B failed afterwards, A would sendm2 with a value “ABD:2”
to D. If D did not receive the first message, then it would notice that a message
is missing and would either wait for m1 to arrive or ask A directly for the missing
message.

The size of this path is �+2. This value comes from the node at the start of
the path (1), the number of intermediate nodes that can fail (�) and the node
at the end for the path (1). We consider the message has a vector of metadata,
with each entry being a pair (Path:Value), corresponding to a path and the
number of messages sent to said path, and nodes can add or remove one entry
to the vector. Since every node will be attaching metadata to the message, there
has to be a limit to the size. This limit is 2�+1, for the same reason as in �-
neighbourhood[8], namely it is required for retransmissions of the same message
to pass through a common node in order to detect duplicate messages.

This solution is a tradeo↵ between the size of metadata each message carries
and amount of metadata that each node needs to store, with a focus on smaller
message metadata and bigger metadata stored.

Since a node may need to forward the same message to di↵erent paths, having
the metadata for a single path will not su�ce to guarantee our reliable delivery to
all routes. Therefore, the message will need to have additional metadata entries,
one for each path. These additional entries may then be removed when the
message is forwarded to the di↵erent paths. For example, in Figure 4, if A sends
m1 to both D and C through B, A puts [ABD:1, ABC:1] on the message. When
B receives m1, B sends m1 with [ABD:1, BD:1] to D and m1 with [ABC:1,
BC:1] to C. However, not removing these entries is useful, as shown in the next
subsection.

6.2 Reliable Causal Delivery

We start this discussion with the following scenario using figure 4. A sends
message m1 to both D and C through B. B forwards m1 to C but crashes before
sending it to D. C wants to send a message m2 to D but cannot communicate
with B, therefore it sends m2 directly to D. D will receive m2 before m1, and
since it does not know that there was a causal dependency between messages,
causality will be broken.

Stabilization tactics (either by adding a single entry or vector clock to track
dependencies, like in GentleRain or Cure) do not work here as if B does not
recover, stabilization will never occur therefore D will not know if there was any
messages sent by B that caused other messages.

However, by using Causal Barriers[10], C can send m2 directly to D and say
that it depends on m1. D will see that it did not receive m1 and either wait to
receive it or ask for it directly.

In the previous subsection, it is mentioned that when a message is forwarded
to several paths, the message needs to carry each path as additional metadata
and when the message is forwarded to each path, the additional metadata may be
removed. However, by using Causal Barriers this metadata will not be removed
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as it is required so that each node knows which other nodes received the same
message. This is the required extra metadata as indicated on Table 1.

6.3 Overlay Dynamism

We assume nodes may join or leave the tree. For a node to join, it will need to
synchronize with its neighbourhood. As such, when a node joins the tree, it will
communicate with every neighbour to announce its presence, generate path IDs
that include itself and distribute them to the neighbours. For a node to leave,
if it is a leaf then it can send a special message to its neighbours so that they
remove the path entries related to the leaving node, otherwise it also needs to
tell its children to communicate directly to the parent node, so that they can
update their neighbourhood.

7 Evaluation

The system will be evaluated based on the impact of metadata with vari-
ous values for � to analyze the impact on throughput based on the amount of
consecutive faults supported. The metadata used to support causality will also
be evaluated, testing the system with and without this additional metadata for
various values of �.

As our objective is to create a system that is scalable to the scales of the
edge, we will compare our system with an implementation of Gryphon (that
is topic-based instead of content-based), �-neighbourhood and a clique, where
every node communicates directly with every node. However, Gryphon and �-
neighbourhood were not designed to support causal order, so these two systems
will be compared to our system without the use of causal order metadata.

Latency will be measured, namely the time di↵erence between sending mes-
sages without any jumps on the path and with jumps and also how long it takes
one message to reach its destination based on various values of �. For causality,
di↵erent timeout values will be used when waiting for messages to arrive before
asking for the messages directly, in order to obtain the best balanced value.

Membership dynamism will be evaluated based on the value of � to com-
pare the delay between synchronizing with the neighbourhood and starting to
propagate messages.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.
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9 Conclusions

Edge computing is a new paradigm where small datacenters or servers are
located in the edge of the network to provide services for clients. Since these
servers share data, it is required to discover a way to multicast updates between
servers, in a reliable and causal way that is also scalable to handle the edge.
In this work we discussed the motivation for requiring reliable causal multicast,
what it is, where it is to be applied, the requirements for it and several works
related to one or several of the requirements. We presented a scalable algorithm
in order to support reliable causal multicast on the edge. Finally, we presented
our evaluation methods and the schedule of future work.
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