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Abstract—This paper addresses the problem of offering
reliable causal multicast in a setting where nodes are organized
in an overlay network and use this network to disseminate
information among each other. The use of overlay networks for
this purpose is widely used when the number of nodes is large.
For instance, many publish-subscribe system use an overlay of
message brokers to support the exchange of information among
publishers and subscribers. To the best of our knowledge,
previous multicast algorithms for overlay networks either do
not enforce causal order or, in order to do so, require nodes
to keep metadata (for instance, sequence numbers) for all
senders and are, therefore, inherently non-scalable. In this
paper we propose a novel localized algorithm to implement
reliable causal multicast, where each node is only required to
keep metadata regarding nodes in its neighbourhood (with a
radius that is a function of the number of faults that need to
be tolerated). Experimental results show that our algorithm
can achieve significant improvements over non-localized alter-
natives, and can even outperform localized algorithms that do
not offer causal order.

I. INTRODUCTION

Reliable multicast is a classical problem in distributed
systems, and a fundamental building block of distributed
fault-tolerant systems [1], [2], [3]. Typically, reliable multi-
cast protocols offer not only delivery guarantees but also
ordering properties. Relevant ordering properties in this
context are FIFO order [4], [5] and causal order [1], [6],
[7]. The problem is relevant for systems of all scales, from
small-scale systems with less than a dozen replicas (such
as a replicated server in a single data center) to large-scale
systems with hundreds or thousands of participants (such as
large scale publish-subscribe system). This paper addresses
the problem of ensuring reliability and causal order for large
scale systems.

Techniques to implement reliable multicast with causal or-
der for small-scale systems are now well studied, and several
widely available systems, both academic and commercial,
offer this service [1], [8], [9]. However, providing causal
order for large scale systems is much more challenging.
This happens because causal order protocols are required to
maintain metadata (such as sequence numbers) to keep track
of causal dependencies among messages. This metadata
usually has the form of set of vector clocks [1] or a matrix
clocks [6], that have an entry for each sender in the system.
All these approaches are suitable for systems with small
numbers of nodes but are inherently non-scalable. Some

approaches offer causal order with less metadata, but are
not able to deliver messages unless all nodes periodically
send messages [10] or require nodes to be reliable and not
fail (by replicating all nodes in the system) [7]. Again, none
of the later approaches is practical in large-scale systems.
This paper explores a different alternative, that requires each
node to maintain metadata for a constant number of nodes
in the system, regardless of the system scale. To the best of
our knowledge this is the first localized algorithm to enforce
causal order.

This work assumes that the nodes in the system are
organized in an overlay network, that can be modelled as an
acyclic graph. The idea of organizing nodes in an overlay
network to support multiple variants of group communica-
tion in large-scale systems has been extensively applied, par-
ticularly in the implementation of publish-subscribe systems,
where the communication among publishers and subscribers
is supported by an overlay of message brokers [11], [4].
In the overlay network, each node only maintains direct
links with a small number of neighbours and should not
be required to have information regarding the global system
membership. An algorithm that requires each node to know
only its k-neighbourhood (where k is the maximum distance
between the node and any of its neighbours) is said to be
localized. Previous work has proposed a localized algorithm
for reliable propagation of information in publish-subscribe
systems [5] but it only supports FIFO order and, furthermore,
restricts the communication pattern, by preventing each pub-
lisher from having more than one message in transit at any
given time. This paper’s resulting algorithm, which has been
named LoCaMu (Local Causal Multicast), is substantially
more powerful because it offers causal order and allows
multiple messages to be in transit, fully exploring message
pipelining in the overlay. In LoCaMu, in order to tolerate f
faults in a given part of the overlay, each node is required to
maintain metadata for nodes in its (2f +1)-neighbourhood.

LoCaMu has been implemented and simulations have
been used to assess its performance against other algorithms
that can offer causal order and also against [5], which does
not enforce causal order but, as LoCaMu, uses a localized
approach. Experimental results show that by keeping the
metadata required to enforce causality localized, the system
can scale without increasing the size of the metadata, even
when several nodes are publishing messages concurrently,
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unlike the related work. Thus, LoCaMu can be successfully
used in large scale systems where, due to the size of their
metadata, previous works cannot be implemented in practice.

II. RELATED WORK

The literature on reliable causal multicast is extensive and
covers many different designs that target a wide range of
settings. On the one hand, we can find systems designed
to support the development of fault-tolerant systems based
on the replicated state machine model and its variants [12].
These systems typically provide strong guarantees of re-
liability, and different ordering policies, including FIFO,
causal, and total order. These strong properties come at a
cost: most of these systems use algorithms where nodes
communicate directly with each other, run multiple rounds
of all-to-all coordination, and maintain control information
that grows linearly, or even quadratically, with the system
size [1], [6]. These algorithms are, therefore, inherently
non-scalable, even when using sophisticated techniques to
reduce the amount of control information exchanged [1].
On the other hand, we have systems designed to support
the dissemination of information among very large number
of participants, often relying on peer-to-peer overlays [11]
or epidemic protocols [13], which are known to be scalable
but that offer only probabilistic or even no guarantees of
reliability and ordering.

In this paper we are interested in algorithms that can
offer strong guaranties while still being able to scale. A
noteworthy application of algorithms with these characteris-
tics are publish-subscribe systems [14], where we can have
large numbers of publishers and subscribers, that exchange
multicast messages, and for which reliability and ordering
are relevant properties [4]. Although there are several possi-
ble strategies to implement publish-subscribe systems, most
works that aim at achieving scalability rely on the use of an
overlay network of message brokers, that are used to prop-
agate information among publishers and subscribers [15],
[16], [17], [18], [19]. A fundamental problem that emerges
when nodes are organized in an overlay network is how to
handle faults, in particular what to do when a broker fails.
In the next paragraphs we discuss the main techniques that
have been proposed in the literature to address this problem.
We can cluster previous works to address faults in broker
overlays into three main approaches:

Virtual reliable nodes (VRN): This approach consists of
having each logical node in the overlay to be implemented
by a set of replicated servers such that, even if a server
fails, the (logical) overlay node remains correct. Using this
approach, the topology of the overlay can be assumed to
be static, and the properties of this topology can be used
to enforce desirable properties. For instance, if the broker
overlay is acyclic and channels between brokers are FIFO,
it becomes trivial to ensure that event propagation respects
causal order[7]. Examples of systems that use this approach
are Saturn[7] and Gryphon[4]. Saturn uses a consensus
algorithm, such as Paxos[20], to implement each logical

Table I
LOCAMU VS RELATED WORK

Avoids
Algorithm Approach Replicas Parallel Causality Local
CBCAST [1] RP ! ! ! 7

Causal Barriers [6] RP ! ! ! 7

D.N.[5] RP ! 7 7 !

Saturn [7] VRN 7 ! ! 7

Gryphon [4] VRN 7 ! 7 7

Plumtree [21] OR ! ! 7 7

Thicket [22] OR ! ! 7 7

LoCaMu RP ! ! ! !

node. Gryphon also uses replication but requires weaker
coordination among the replicas of each node; this has the
advantage of offering lower latency, but forces each node to
maintain state for each sender that exists in the system to
tolerate message loss. In any case, replicating every node of
the overlay is not feasible when the system becomes very
large.

On-line overlay reconfiguration (OR): This approach con-
sists in reconfiguring the overlay when a broker fails, where
one node can connect directly to any other node in the sys-
tem. This approach is used in systems such as Plumtree[21]
or Thicket[22]. Unfortunately, ensuring reliability and order
of messages in face of the overlay reconfiguration may
not be trivial, in particular because most reconfiguration
algorithms cannot guarantee that reconfiguration is local;
since paths before and after the reconfiguration may change
substantially, messages may be lost and delivered out-of-
order unless global information is used to recover from the
fault.

Redundant paths (RP): This approach consists in using an
overlay that has redundant paths, such that message delivery
can be ensured without reconfiguring the overlay, even if a
node fails. The key difference with the previous approach is
that nodes have information about all redundant paths they
may need, but do not know about every possible overlay
reconfiguration. Examples of this strategy are [23], [17],
[5], [24]. Although the use of redundant paths increases
reliability, it makes it harder to enforce FIFO and causal
order, because related messages can follow different paths
and be received in unintended orders. To the best of our
knowledge, Delta-Neighbourhood[5] is the only algorithm
that uses redundant paths and is able to enforce an ordering
policy based on localized information. However, it is only
able to enforce FIFO order. Furthermore, it restricts the
communication pattern, by preventing each publisher from
having more than one message in transit at any given time.

Table I summarizes a comparison of the main features of
the systems mentioned above. Previous work offers only a
partial solution to the problem that we address in this paper.
LoCaMu, however, is able to provide fault tolerance, causal
order, pipeline multiple messages from the same source,
and use only localized information. In this way it combines
guarantees of quality of service with the ability to scale.
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Figure 1. Base graph and the corresponding extended graph (f = 1)

III. LOCAMU

In this section we describe LoCaMu. Before we describe
the algorithm in detail, we introduce a number of concepts
required to understand how the algorithm operates.

A. Base Graph and Extended Graph
It is assumed that nodes are organized in an overlay net-

work that can be modelled by undirected graph G = (v, e),
where vertices v represent the system nodes and edges e
the communication channels between these vertices. This
graph, which is referred to as the base graph, is acyclic
and connected. Let vi be a vertex of the graph. V(G, k, vi)
represents the set of neighbours of the vertex vi which are
at a distance no longer than k in the graph (that is, if
vj ∈ V(G, k, vi), then the shortest path in the base graph
between vi and vj has at most k edges). The vertices in
V(G, 1, vi) are denoted as direct neighbours of vi (in the
base graph). G has no redundant edges and the failure of
any node partitions the graph.

In order to tolerate f failures in a given neighbourhood,
the base graph G is augmented with additional edges,
creating an extended graph Gf . The additional edges connect
each vertex vi with all vertices in V(G, f+1, vi), that is, for
each vj ∈ V(G, f +1, vi), an edge is added to the extended
graph, connecting vi and vj . The additional edges in the
extended graph create redundant paths that may be used if
a path in the base graph becomes unavailable. Figures 1a
and 1b illustrate a base graph and the corresponding ex-
tended graph for f = 1. In fault-free runs, the base graph
is used to propagate the messages in a order that respects
causality. If a node (such as f in Figure 2) fails, then the
additional edges are used to propagate the message. Even
when redundant paths are used, messages are routed along
the paths defined by the base acyclic graph, such that cycles
are avoided. When these redundant paths are used, messages
may be duplicated or re-ordered. As it will be seen, LoCaMu
maintains the required metadata to ensure that messages are
reliably delivered in order even in runs where faults occur.

B. Addressing Model
Nodes are assumed to be organized into groups that are

used to define the destination address of a message; each
message being addressed to a single group. The communi-
cation uses a publish-subscribe model, where information
about group members is propagated in the extended graph
through subscription messages. This allows each node to
maintain a routing table that, for each group, indicates which

neighbours participate in the forwarding of the messages.
The size of this table depends on the number of groups and
not on the number of nodes in the system.

Given a message m, which has a recipient group g(m), a
given node i can query its routing table to identify the sub-
set of its neighbours in the extended graph that are involved
in routing m. This sub-set is called the targets of m in
i, denoted T (m, i). This is illustrated in Figure 2, where
Figure 2a depicts the base graph and the group members
for message m1 that needs to be forwarded by node i and
Figure 2b shows the set of target nodes T (m1, i) for that
message for f = 1.

C. Fault Model

Nodes are assumed to be capable of failing and subse-
quently recover, and their state is kept in persistent memory.
The system is asynchronous and a faulty node may remain
unavailable for an arbitrary amount of time. Finally, it is
assumed that at any instant of time, in any neighbourhood
of size 2f + 1 in the base graph, there are at most f nodes
unavailable. A node that never fails is denoted as correct.

Each node of the system is assumed to have access to
an eventually perfect failure-detector [25], [26], that reports
if its neighbours are available or unavailable. This detector
ensures that if a neighbour becomes unavailable, the node
is eventually notified of this fact (and can avoid sending
messages in vain while the faulty node remains unavailable).
Similarly, when the neighbour recovers, the node is also
notified (so that it can use that neighbour again).

Using the output of the failure detector, every node i
maintains a set activeConnections as follows. Every time the
set of faulty nodes in its (f + 1)-neighbourhood changes,
i recomputes the shortest path to every other node in
V(G, f +1, vi). Then, the nodes that are both the first non-
failed node and hop on any of these paths are added to the
activeConnections set. When propagating a message in the
network, each node only forwards messages to the nodes
maintained in this set. This limits the amount of redundant
messages that circulate in the network. Figure 2c shows the
set of active connections at the black node when its direct
neighbours in the base graph are active and Figure 2d shows
how this set is updated when one of these direct neighbours
(in this case, node f ) becomes unavailable.

LoCaMu is fault tolerant in the sense that a message m
sent to a set of vertices V is delivered to all correct nodes
vj ∈ V (that is, all recipients who are not or that will not
fail), regardless of the failure of other nodes or the eventual
recovery of nodes that failed. LoCaMu also ensures that
nodes that are temporarily unavailable will end up receiving
all messages; of course, this only happens when they recover.

D. Localized Information and Safe Neighbourhood

LoCaMu is a localized algorithm, where each node is only
required to maintain metadata regarding messages sent or
received by other nodes into some safety neighbourhood.
For this reason, when a message is sent and tagged with
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Figure 2. Message targets and active connections.
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Figure 3. Message identifiers and safety neighbourhood (f = 1)

metadata, it only needs to be tagged with information re-
garding nodes that belong to the safety neighbourhood of the
recipient. In the case of LoCaMu, the safety neighbourhood
includes all nodes that are at most 2f + 1 hops away in
the base graph. More precisely, the safety neighbourhood of
node i, denoted VS(i) is VS(i) = V(G, 2f +1, i). The next
subsections provide an intuitive rationale for the size of the
safety neighbourhood in LoCaMu and how it relates to the
possible paths that can be followed by messages.

E. Message Identifiers

Non-localized algorithms typically assign an unique iden-
tifier to a message when the message is generated. This
unique identifier is then preserved as the message is prop-
agated in the network. The most common way to generate
such unique identifiers is to use a tuple that includes the
unique identifier of the source node and a sequence number
generated at the source. A fundamental drawback of this
solution is that, to perform tasks such as detecting duplicates
or enforcing order properties, nodes in the system need to

keep track of sequence numbers generated by every other
node in the system. These approaches are, therefore, not
localized (and not scalable).

LoCaMu is localized as nodes are only required to keep
track of identifiers generated by nodes in their safe neigh-
bourhood. Thus, if a message is generated by a remote node,
outside the safe neighbourhood, the identifier generated by
the source cannot be used; it needs to be replaced by
some identifier that is meaningful locally. In consequence,
in LoCaMu messages do not have a single identifier that is
preserved across the system. Instead, messages are assigned
multiple identifiers as they are forwarded in the network,
where each of these identifiers is only valid in a given
neighbourhood. Still, LoCaMu is able to keep track of how
these identifiers are related, such that it is able to eliminate
duplicates and to deliver messages in the right order.

The way message identifiers are created, propagated, and
replaced, is key to the operation of LoCaMu. To better
understand the process of propagating message identifiers,
an example is used. Figure 3a shows a network that consists
of a line, and illustrates the propagation of a message that
is propagated from node i to node n. In this example the
number of tolerated faults is f = 1 and, therefore, the set
of targets for the message are the next two nodes in the line
(i.e, T (m, i) = {j, k}, T (m, j) = {k, l}, etc). Note that in
this case, the safety neighbourhood of node m no longer
includes node i (given that the distance from i to l is more
than 2f +1), thus m will not process metadata produced by
node i. This results in each message only having identifiers
from at most 2f + 1 different nodes.

Each node keeps a separate sequence number for each
target and the tuples (source, target, sequence number) are
used as messages identifiers. Note that, in the example,
when message m is generated, it is assigned two identi-
fiers, namely (i, j, 1) and (i, k, 1), one identifier for each
link that can be used to propagate the message. To avoid
redundant messages in the network, the message is not sent
immediately by both links. In this example, the message
is just propagated in the base graph (and edges from the
extended graph are just used if faults occur). Then, when
the message is propagated by node j it gets assigned two
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new identifiers, (j, k, 1) and (j, l, 1), and now carries a total
of 4 different identifiers. This process is repeated every time
a message is forwarded in the network. However, at each
step, each sender only forwards identifiers that belong to
the safe neighbourhood of the recipient. Thus, when node
l forwards message m to node l, it no longer includes the
identifiers generated by node i (similarly, when l retransmits
the message it no longer includes the identifiers generated
by node j).

F. Duplicate Detection and Merging Identifiers
As noted above, LoCaMu does not require a perfect

failure detector. Thus, at any given time, different nodes may
make a different assessment on the correctness of a given
neighbour. Also, nodes may falsely suspect that a neighbour
is down and trigger the propagation of the message via
the redundant edges defined by the extended graph. This
may cause different copies of the message to be propagated
by different paths, as illustrated in Figure 3b where two
copies of message m1 are received by node l via different
paths, namely, the copy m′1 is received via the path that
uses vertices {i, j, l} and copy m′′1 via {i, k, l}. In this
case, m′1 does not carry the identifiers added by node k
and m′′1 does not carry the identifiers added by node j.
Note that, in this example, node j can still detect that m′1
and m′′1 are duplicates of the same original message, given
that there is at least one common identifier carried by both
copies (more precisely, identifiers (i, j, 1) and (i, k, 1) are
common to both copies). Also, when node l propagates the
message by sending m′′′1 , it can tag the copy with all the
identifiers known to it (the set of known identifiers results
from “merging“ the set of identifiers carried by m′1 and m′′1 ).

This example also shows why node l needs to maintain
metadata produced by node i (and thus, i needs to be in
the safe neighbourhood of l). If this was not the case, in
this run, where a single node is suspected as being failed, l
would not be able to detect that m′1 and m′′1 are duplicates
of the same original message.

G. Safe Paths
The correctness of LoCaMu is rooted on the Safe Paths

Invariant, which is defined as follows:

Invariant 1. Any path of 2f + 1 nodes is considered safe
if there are at most f faulty nodes. Otherwise it is unsafe.

This means that if two nodes (say i and l in the example
of Figure 3) are at 2f + 1 hops away in the base graph, it
should be possible to propagate a message from i to l in
a path that contains at least f + 1 neighbours. Using the
example of Figure 3b, a copy of m1 arrives to l via a path
that uses {i, k, l} (skipping j) and another copy arrives to
l via a path that uses {i, j, l} (skipping k). These paths are
said to be safe.

H. Causal Past and Causal Order
To enforce causal order every node keeps a log (simply

called the node’s past) of the identifiers of all the messages

it has received and processed in the past. The algorithm
enforces that messages transmitted via a given edge are
delivered in FIFO order. Thus, in practice, because causal
order is transitive, only the most recent identifier generated
by any node needs to be preserved in the node’s past. Also,
nodes are only required to keep in the past information
from nodes in their safe neighbourhood. When messages are
sent they are tagged with the casual past of the sender. By
comparing the causal past of a message with its own causal
past, a recipient can check if the message can be processed
without violating causal order. If some message m cannot
be immediately processed when it is received because some
other messages in its causal past are missing, the message
is stored in a buffer, until it can be processed.

I. Detailed Algorithm

Overview: Messages carry two header fields: a set of identi-
fiers (as described above) and a causal past. When a message
is received it is not processed until two conditions are met:
i) the message is being processed in FIFO order with regard
to other messages from the same sender (message identifiers
are used to make this check) and ii) the message is being
processed in causal order (the causal past of the message is
used to make this check). When a message m becomes ready
to be processed one checks if the message is being received
for the first time or if another copy of the same message has
been previously received via another path (again, message
identifiers allow to detect duplicates, as illustrated before).
If the message is a copy, its identifiers are merged with
the identifiers of the previous copy. After a message is
processed, if the message needs to be forwarded (i.e, if the
routing table indicates that there are recipients downstream),
the message is scheduled for retransmission. Messages are
only retransmitted via safe paths. In the next paragraphs
a more detailed description of the algorithm is provided.
Pseudo-code is provided in Algorithm. 1.

Node Data Structures: Each node maintains three data
structures, listed below:

• The first is a matrix of sequence numbers called Past,
denoted by Pi, with one entry for each pair of nodes
in VS(i). Pi captures the causal past of the i node.
Consider that the position Pi[j][k] = s (s 6= 0). This
means that the state of i depends causally on a message
sent from node j to node k with the sequence number
s.

• The second is a matrix of received identifiers, RI .
Each entry Ri[j][k] is an ordered set that contains the
identifiers of all messages sent by node j to node k that
have already been processed by node i. The objective
of Ri is to detect duplicate messages, since in faulty
runs, the same message can be received via different
paths. While every entry is a set, each set is regularly
garbage-collected, which is explained in the full thesis.

• The third is the sent set that contains all buffered
messages.
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Algorithm 1 LoCaMu
1: . Retransmits a message to the relevant nodes
2: function (RE)TRANSMIT(m) at node i
3: for k ∈ T (m, i) ∩ activeConnections do
4: if PATHISSAFE(m, k) then
5: SEND(m, k)
6: . Forwards a message to the interested nodes
7: function FORWARD(m) at node i
8: Dm ← Pi

9: for k ∈ T (m, i) do
10: Im[i][k]← Dm[i][k] + 1
11: Dm[i][k]← Dm[i][k] + 1

12: (RE)TRANSMIT(m)
13: sent ← sent ∪ {m} . For future retransmissions
14: . Updates the Past and Received matrices of a node using message m
15: function UPDATENODESTATE(m) at node i
16: for k, l ∈ Im ∩ Ri do
17: Ri[k][l]← Ri[k][l] ∪ Im[k][l]

18: for k, l ∈ VS(i) do
19: Pi[k][l]← MAX(Pi[k][l], Dm[k][l], Im[k][l])

20: . Updates any missing identifiers in a sent message
21: function MERGEIDENTIFIERS(m) at node i
22: if ∃m′ ∈ sent : ∃k, l : Im[k][l] = Im′ [k][l] then
23: for k, l ∈ VS(i) do
24: Im′ [k][l]← MAX(I′

m[k][l], Im[k][l])

25: . Checks if any buffered messages can be processed
26: function UNBUFFER at node i
27: for m ∈ buffer do
28: if ∀k : Dm[k][j] ≤ Pi[k][j] then
29: buffer ← buffer \{m}
30: RECEIVE(m)
31: . Receives a message from FORWARD(m)
32: function RECEIVE(m) at node i sent by node j
33: if ∃k : Dm[k][i] > Pi[k][i] ∨ ∃l : l < Im[j][i] ∧ l /∈ Ri[j][i]) then
34: . Message out of order
35: buffer ←buffer ∪ {m}
36: else
37: UPDATENODESTATE(m)
38: if ∃k, l : Im[k][l] ∈ Ri[k][l] then
39: . Duplicate copy
40: MERGEIDENTIFIERS(m)
41: else
42: . First copy
43: if i belongs to g(m) then DELIVER(m)
44: FORWARD(m)
45: UNBUFFER()
46: . A node generates a message
47: function PUBLISH(m)
48: FORWARD(m)

Message Control Fields: Each message contains two control
fields, listed below:
• The first, called identifiers (denoted as Im), is an array

of up to 2f+1 vectors, containing the known sequence
numbers that were assigned to m by each node in any
given path.

• The second, called dependencies (denoted by Dm)
carries the causal past of m known by the forwarder;
Dm is of size |VS(i)|2.

Message Reception: When a node i receives m, which was
sent by j, i performs the steps presented in the RECEIVE
function in Algorithm 1. In short, the node verifies if
all causal dependencies have been satisfied (that is, the
messages in the past have already been delivered). If that
is the case, then i updates its Pi and Ri and then, if the
message is not a duplicate, delivers m if i is interested in it
and forwards m. If it is a duplicate and the original copy was
forwarded then the original copy’s identifiers are updated
with the duplicate’s identifiers. Note that, after the identifiers

have been merged, some paths for the original message may
become safe.

Message Forwarding: When a node i wants to forward a
message m for the first time, the following manipulations
are made to its own state and to the metadata of message
m: First, i puts Dm = Pi. Then i queries its routing
table to get the targets of m, T (m, i). Then, the values
of Pi[i][j] ∀j ∈ T (m, i) are incremented by one and a
new vector with the changed entries is added to Im. m is
then sent to the targets present on activeConnections (i.e., to
T (m, i) ∩ activeConnections), provided the resulting path
is safe, as described in Section III-G

J. Extra details

The following details are not mentioned in this extended
abstract but are included in the full thesis: Message Retrans-
mission, Message Stability, Ri matrix garbage collection,
message metadata optimization, correctness proofs.

IV. EVALUATION

LoCaMu is evaluated in order to answer the following
questions:
• What is the performance of LoCaMu when compared

to a localized algorithms (even if it only offers FIFO
order)?

• What is the performance of LoCaMu when compared
to other algorithms that enforce causal order?

• How does LoCaMu compare with previous works in
term of signaling and memory overhead?

A. Experimental Settings

LoCaMu is compared with CBCAST [1] and Causal
Barriers [6] (that ensure causal order but are not localized)
and with Delta-Neighbourhood[5] (that is localized but only
only ensures FIFO). Nodes are organized in an overlay
network with the topology of a binary tree. It is assumed that
there is a multicast group for each subtree of the overlay.
This means that there is a large group that contains all nodes,
then two smaller groups with the nodes on the left subtree
and the nodes of the right subtree, respectively, and then
4 smaller groups the result from further dividing the tree,
and so forth. This is a simple setup that ensures that the
experiments combine groups of all sizes (up to groups of just
two members), while showcasing the advantages of locality.
Simulations were used to perform the evaluation because this
allowed us to experiment large overlays that would be other-
wise impossible to test. For this the Peersim [27] simulator
was used, with extensions to simulate edges with realistic
latency and bandwidth constraints. In the experiments, each
node has a limited bandwidth that is shared among all its
edges. All links have an average latency of 1ms (note that the
latency only affects the throughput of [5], not the throughput
of LoCaMu, [1], or [6]).

Regarding the performance metrics, maximum individual
throughput was the most used metric, which considers a
single sender, and the maximum aggregated throughput,
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Figure 4. LoCaMu vs Delta-Neighbourhood under different settings

which considers several different senders. By definition,
aggregated throughput is the total number of messages
delivered to all nodes in the overlay. All the algorithms
used in the evaluation are able to capture causality with
roughly the same degree of accuracy. Thus, the differences
in performance, if any, will be mainly caused by the amount
of metadata that messages need to carry. This metadata
consumes bandwidth and affects the latency of message
propagation. Since the overlay is a tree, the maximum
aggregated throughput is limited by the bandwidth of the
root node. Therefore, it is expected that algorithms that use
less metadata can achieve higher aggregated throughput than
algorithms that use more metadata. However, algorithms
such as Delta-Neighbourhood impose additional restrictions
on message pipelining, that prevent nodes from using effec-
tively the available network bandwidth.

Finally, it is important to emphasize that all algorithms use
a number of optimizations in their implementation, which
are detailed in the thesis. For fairness, in these experiments,
all 3 protocols use their optimized versions.

The following experiments use a base configuration con-
sisting of a) the system size was set to 511 nodes; b) the
bandwidth of the nodes was set to 100 Mb/s; c) the payload
size was set to 32 bytes (this value was chosen based on
Facebook’s production TAO system [28], where 32 bytes
represents the 90 percentile of data size that is stored); d)
the number of tolerated faults in each neighbourhood was
set to f = 1; e) the node degree was set to 3 (a binary
tree). In each experiment one of these variables is changed,
keeping the remaining parameters unchanged. Information
regarding the number of publishers and groups is declared
for each experiment.

B. LoCaMu vs Delta-Neighbourhood

LoCaMu and Delta-Neighbourhood are similar in the
sense that both use localized information, therefore it is
important to compare them. Since the latter offers less

guarantees (only supports FIFO), it should perform better
than LoCaMu (that needs to keep track of causal depen-
dencies among multiple senders). As will be shown, Delta-
Neighbourhood is, in fact, able to offer better maximum
aggregated throughput if there are enough publishers and
enough nodes in the system, but performs poorly when the
maximum individual throughput is considered. This happens
because in Delta-Neighbourhood a node is not allowed to
send a new message before the previous one is received.

In these experiments, messages are sent to a single group
that includes all nodes and by default there is only one pub-
lisher that publishes messages as fast as possible, saturating
the bandwidth of the root node. Figure 4a shows the max-
imum individual throughput as the system size is changed.
As this size increases, the diameter of the network grows
and it takes longer for a message to reach its destinations.
Since, Delta-Neighbourhood does not support pipelining, the
throughput of this protocol scales poorly with the system
size; LoCaMu does not have such drawback. In Figure 4b,
the number of senders is changed in order to measure the
maximum aggregated throughput. Since LoCaMu exploits
pipelining, it is able to approximate the maximum network
capacity even with a single sender. Delta-Neighbourhood
has less individual throughput but, as it uses much less
metadata, it supports a much higher aggregated throughput,
growing linearly with the number of publishers and even-
tually overcoming LoCaMu’s. In Figure 4c, the bandwidth
available to the nodes is changed. Again, given that the
maximum individual throughput of Delta-Neighbourhood is
constrained by the end-to-end latency, it cannot benefit from
the extra available bandwidth, while in LoCaMu a single
sender can fully exploit the available bandwidth. Finally in
Figure 4d, the f value is changed; because the size of the
metadata in LoCaMu is a function of the size of the safe
neighbourhood, and this size grows exponentially with f ,
the performance of LoCaMu drops notably for large values
of f .

V. LOCAMU VS CAUSAL MULTICAST ALGORITHMS

Causal order is only relevant when there are multiple pub-
lishers, hence it makes no sense to measure the maximum
individual throughput of an isolated node. Therefore, this
section concentrates on assessing the maximum aggregated
throughput achieved by the different algorithms. For these
experiments the same base configuration is used as before.
However, to make sure that all nodes send messages and
causal dependencies are established among these messages,
the throughput of each publisher is limited to 100 msg/s.
Note that the size of the metadata maintained by LoCaMu
and Causal Barriers is similar, regardless of the number of
groups in the system. CBCAST uses a vector clock for each
group, thus the metadata changes with the number of groups.
The experiments were ran with 1 group and with 255 groups.
Two different bandwidths were also used, in order to see the
impact of the metadata increase on the throughput.
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Figure 5. Throughput comparison (left) in a system with 511 nodes
with 1 group between the causal algorithms and the corresponding average
metadata size per message (right). Bandwidth is 100 Mbps (top) vs 10
Mbps (bottom)

A. Single Group

Figure 5a and Figure 5c compare the maximum aggre-
gated throughput achieved by the different algorithms when
all nodes send messages to a single group that includes
all members. As before, as more publishers are added to
the system, the aggregate throughput continuously increases
up to a point where the maximum flow of the network is
reached. Figure 5b and Figure 5d show the corresponding
average metadata present in each message when the number
of concurrent publishers is increased. By analysing these
two last figures, Causal Barriers is shown to use a very high
amount of metadata and while CBCAST initially uses less
metadata than the other algorithms due to its optimizations
compressing the clocks, as the number of parallel publishers
increases, the effectiveness of the optimizations decreases,
until it eventually starts requiring more metadata than Lo-
CaMu. This in turn results in its aggregate throughput
decreasing as seen in Figure 5c, where, due to the network
having a smaller bandwidth, the network is saturated.

B. Various Groups

Figure 6a and Figure 6c compare the maximum ag-
gregated throughput achieved by the different algorithms
when all nodes send messages to the existing 255 groups
of different size (as explained in IV-A). Figure 6b and
Figure 6d represent the corresponding average message
metadata. Causal Barrier’ and LoCaMu’s average metadata
is similar when there is one group or several groups, as their
metadata is independent of the number of groups, so these
algorithms’ performance is similar to the previous section.
CBCAST, instead, scales much worse, because messages are
required to carry several vector clocks (in the worst case, as
many as the number of groups that exist in the system).
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metadata size per message (right). Bandwidth is 100 Mbps (top) vs 10
Mbps (bottom)
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Figure 7. Metadata worst case and memory required (causal algorithms).
Default settings: f = 1, node degree = 2, nodes = 65, 536

VI. METADATA SIZE COMPARISON

From the results of the previous experiments, it is clear
that the size of the metadata exchanged in the header field
of messages has a significant impact on the performance of
the different algorithms. Detailed data is now provided for
the amount of metadata required by each algorithm.

A key aspect that the reader should retain is that Causal
Barriers and CBCAST are inherently non scalable: the size
of the metadata required by the algorithms quickly becomes
unfeasible to manage in practice as the size of the system
grows. Recall that in Causal Barriers the size of metadata
may be roughly quadratic with the system size, for CBCAST
is linear with the system size and linear with the number of
groups, and with LoCaMu is exponential with the size of
the safe neighbourhood. The size of the safe neighbourhood
is a function of f and of the degree of the nodes in the
overlay, but does not depend on the entire system size. For
instance, for a system with 1, 024 nodes, assuming that every
node has sent a message to every other node, Causal Barriers
would be required to send a message with over 220 entries.
Assuming 8 bytes per entry (an entry is a tuple that includes
an identifier and a sequence number), Causal Barriers uses
8 MB. In the same setting, CBCAST would require a vector
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clock with size 4 KB for a single broadcast group. In turn,
LoCaMu requires 540 bytes assuming a node degree 3 and
f = 1, no matter the system size. Figure 7 illustrates
these facts with more detail. Here, consider the existence
of 1, 500 groups and network size of 65, 536 nodes. A Zipf-
like distribution is used for assigning the size of the group
membership such that Members(g) = [Ng−1.25+0.5], where
g is the unique number of the group (from 1 to 1, 500 in
this particular case) and N is the amount of nodes in the
system. This results in the sum of the amount of members
of every group being 237, 895. This distribution was used
for the membership of the groups, because it typically used
in others works that consider large-scale publish-subscribe
settings (such as [11]).

Figure 7a and Figure 7b show the size of the header fields
and the amount of local memory used by each algorithm,
as the size of the system increases. These plots consider a
node degree of 3 and f = 1, which show that LoCaMu
scales much better than the opposing algorithms.

VII. CONCLUSIONS

This paper has presented LoCaMu, an algorithm that
guarantees message delivery with causal order in a publish-
subscribe system built on top of a broker overlay. LoCaMu
is the first algorithm to offer causal order and fault tolerance
while using localized information, i.e. each node maintains
state regarding only the nodes on its neighbourhood and
not every other node on the system. Thus, LoCaMu can be
used in large scale systems, while previous work requires so
much metadata that any practical implementation becomes
infeasible. For systems with hundreds of nodes, where the
previous work can still be applied, LoCaMu shows clear
advantages, given that it makes a much better use of the
available bandwidth.
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