
Versioned Transactional Shared Memory for the

FénixEDU Web Application ∗†

Nuno Carvalho
INESC-ID/IST

nonius@gsd.inesc-id.pt

João Cachopo
INESC-ID/IST

joao.cachopo@inesc-id.pt

Lúıs Rodrigues
INESC-ID/IST

ler@ist.utl.pt

António Rito Silva
INESC-ID/IST

rito.silva@inesc-id.pt

Abstract

The FénixEDU system uses a novel infrastructure for web applications
based on the Versioned Software Transactional Memory (VSTM) abstrac-
tion. The FénixEDU system has been deployed and is currently in opera-
tion in different facilities, including the Instituto Superior Técnico where
it serves the entire academic community, processing between 1,000,000
and 4,500,000 transactions per day.

This paper describes the ongoing work on the infrastructure support,
in order to increase its scalability and fault-tolerance. For that purpose
we are developing a distributed version of the VSTM, such that multiple
application servers can concurrently serve different request and still coor-
dinate in an efficient manner to provide strong consistency guarantees to
the applications.

1 Introduction

Web applications are a common solution for an increasing wide range of prob-
lems. In fact, solutions based on web applications are increasing not only in
number, but also in the complexity of their underlying domain logic. Many of
these applications manipulate information that is usually stored in relational
database management systems (DBMS), which have been for a long time the
main tool to store, manipulate, and maintain the integrity of data in information
systems.
∗This paper was partially supported by the GORDA (FP6-IST2-004758) and the Pastramy

(PTDC/EIA/72405/2006) projects.
†Parts of this work were published in the Proceedings of the Second Workshop on Depend-

able Distributed Data Management (in conjunction with EuroSys 2008).

1



Even though web applications may be developed using many different tech-
nologies, the de-facto standard used in the industry for developing complex web
applications relies on object-oriented platforms, such as the J2EE platform.
These technologies store and access DBMSs, which offer a uniform approach to
data integrity, durability, and availability.

Despite being widely used, the existing solutions have their drawbacks. On
one side, the development of web applications using such complex platforms is
time consuming and error prone. Several reasons contribute to the difficulty
in the development of web applications when applying an enterprise architec-
ture solution such as J2EE. Some of these reasons are: (i) the database cannot
be ignored, biasing the development of an object-oriented rich domain model,
and (ii) concurrent access to objects cannot be ignored, resulting either in er-
ror prone code that is difficult to debug, or in reduced performance, or both.
On the other side, specialized web based systems are challenging the general
purposefulness of a relational DBMS architecture. This is noticed even within
the common systems usually based on relational databases, where the need for
practical scale-out and near zero downtime translates to an increased need for
cheap and efficient consistent replication and for shared-nothing clusters built
on commodity hardware and software.

To overcome some of these problems, a new infrastructure for web applica-
tions that uses a Versioned Software Transactional Memory (VSTM) has been
proposed in [2]. This new infrastructure provides many of the properties that
are commonly supported by platforms such as the J2EE. Yet, it resulted in a
much simplified programming model, when compared to the J2EE program-
ming model. This new solution is in production since 2005 in the FénixEDU
web application [15], which has more than 900,000 lines of code and is executing
between 1,000,000 and 4,500,000 transactions per day. Since the shift to this
new approach, a significant reduction in the number of bugs and an increase in
the development agility was observed.

After some time using this approach in a production environment, new chal-
lenges were raised in terms of scalability. To cope with this increased usage, the
VSTM solution should scale in terms of processing, memory, and concurrency,
allowing the application to execute in several application servers simultaneously.
The scalability quality, which is a central quality of J2EE-like architectures, re-
quires that the VSTM approach be enriched with distribution, fault-tolerance,
and persistence. This paper introduces a new architecture that should fit the
new needs of the FénixEDU system, allowing it to scale in the number of ap-
plication servers, and improving fault tolerance. At the same time, this archi-
tecture should not compromise the simplified programming model that allows
programmers to easily develop new features.

This paper is organized as follows. The Section 2 introduces the Fénix-
EDU system and the VSTM infrastructure, and motivates the need for this new
architecture. The Section 3 introduces the proposed architecture. Finally, the
Section 4 presents related work and the Section 5 concludes the work and points
to future directions.

2



2 The FénixEDU system

The FénixEDU system is a web application that supports a wide range of aca-
demic activities in the IST campus (management of web pages for different
courses, student enrollment, etc). The FénixEDU system started as a typical
web application, with the application logic implemented in Java and its data
stored in a relational DBMS. In this first version, denoted FénixEDUv1, it was
used an Object/Relational mapping (ORM) tool to (almost) transparently store
the objects in the database while maintaining the object oriented programming
model to the programmers.

Over time, the system became a very large web application with a rich do-
main model. Currently, its domain model consists of more than 900 domain
classes, each one implementing a distinct entity type of the FénixEDU domain.
Unfortunately, the standard practices of persisting application data in a rela-
tional DBMS hinders the successful implementation of an object-oriented rich
domain model. First, because accessing the data for a complex operation incurs
into excessive round-trips to the external DBMS, thereby affecting the system’s
performance. Second, because rather than being a completely transparent as-
pect, relational-based persistence affects the programming model.

Both of these problems stem from the need to rely on the external DBMS
to ensure the required transactional semantics for an operation. Thus, to solve
these problems and benefit from all the expressiveness of an object-oriented
rich domain model, the FénixEDU architecture was changed, such that the
transactional semantics of an operation is supported by a Software Transactional
Memory running at the application server.

2.1 Versioned STM

Mechanisms such as Java’s synchronized keyword are useful to develop thread-
safe single objects, but are of little help when various objects are involved in
more complex operations. Ensuring, with lock-based mechanisms, that all the
objects accessed during a complex operation are in a consistent state is difficult
and highly error-prone. Much of the recent work on Software Transactional
Memory (STM) [14, 8, 6, 7] deals with this problem by introducing into the pro-
gramming language the notion of atomic actions, or transactions, which allow
the atomic execution of a group of operations, thereby ensuring the consistency
of the accessed data. The key idea underlying all the work on Software Trans-
actional Memory is that programmers specify which operations should execute
atomically, rather than protect accesses to the data with locks. The intended se-
mantics for such actions is that they execute atomically, independently of which
data is accessed by the operation.

We developed a new approach to STMs based on boxes that may hold multi-
ple versions of their contents [3]. This Versioned Software Transactional Memory
(VSTM) approach has the innovative aspect that it allows the execution of read-
only transactions that never conflict with other concurrent transactions. The
VSTM was implemented as a Java library – the JVSTM (Java Versioned Soft-

3



ware Transactional Memory) – and is used in the FénixEDU web application
that we call the FénixEDUv2.

Most of the STM systems that have been built execute only in a single ma-
chine: i.e., object versions and object state is fully accessible locally by the STM
runtime without the need to perform any sort of synchronization with other
nodes. Unfortunately, this represents a serious limitation in terms of scalability.
To overcome these limitations, the VSTM engine was augmented with sup-
port for distribution, by allowing to execute several instances of the application
server. The current version that is being used in the production environment,
denoted FénixEDUv2, uses a load balancer to distribute the client requests
among several application servers. The application servers use a logically cen-
tralized DBMS to store the data. The DBMS is also used as a synchronization
mechanism to maintain the cache of the servers consistent.

To the best of our knowledge, the FénixEDUv2 is the first distributed STM
system being used in production today. Unfortunately, the current solution
still relies on the access to a logically centralized database to enforce the global
synchronization required to ensure the VSTM correctness. Thus, albeit more
scalable than a centralized VSTM, the current solution still has many limitations
to scalability.

2.2 The FénixEDU Workload

The major assumption underlying the development of the VSTM for the Fé-
nixEDUv2 system was that the number of read-only transactions vastly out-
numbered the number of write transactions. Because of that, the main concern
during the development of the VSTM was the performance of the read oper-
ations. Meanwhile, the FénixEDUv2 team instrumented the system to collect
information about the system’s workload. The results obtained thus far con-
firm the initial assumption and give us a greater insight on the nature of each
transaction.

The number of read-only and write transactions successfully processed by
the system was logged over a period of nine months (from October 2006 to June
2007), giving a total of slightly more than 186 millions of read-only transactions
and 1.88 millions of write transactions. Thus, write transactions are approxi-
mately only 1% of the total number of transactions in the system. This ratio
justifies the use of a versioned STM that requires synchronization only for the
write transactions.

Given that a distributed version of the VSTM requires some form of commu-
nication between the nodes of the system, it is important to know the sizes of the
read-set and of the write-set of each transaction. We collected this information
in the FénixEDUv2 system over a period of two weeks, and we show a summary
of the results obtained in Table 1. These numbers show that the write-set is
much smaller than the read-set: Considering only write transactions, the aver-
age read-set is 1,349 times larger than the average write-set. This suggests that
the solution for a distributed VSTM should rely on the communication of the
write-set only, if possible.

4



Read/Write-set size

Average Maximum

Read-set of read-only transactions 5,844 63,746,562
Read-set of write transactions 47,226 2,292,625
Write-set of write transactions 35 32,340

Table 1: Average and maximum read-set and write-set sizes for each kind of
transaction in the FénixEDUv2.

3 Towards a Distributed VSTM

The current FénixEDU architecture requires each application server to access
the database every time it starts a new transaction to check whether its cache
is still up-to-date. Yet, the cache needs to be updated only when another
application server in the cluster commits a write transaction. Given the ratio of
read/write transactions for the FénixEDU system, this means that only 1 out
of 100 transactions would actually need to go to the database. To address this
inefficiency, we are currently working on a distributed version of the VSTM that
uses group communication to update all the nodes in the cluster when a write
transaction commits.

To cope with the new challenges, we propose a new architecture that does
not rely on the database to store and to synchronize transactions. Instead,
transactions are executed in application servers and committed in a distributed
and transactional shared memory system. This system uses group communi-
cation and an atomic broadcast primitive to order transactions and maintain
a consistent state. The proposed architecture is denoted FénixEDUv3 and is
depicted in the Figure 1, including the details of the Application Server.

The system is composed by application servers that access a common (pos-
sibly replicated) persistent storage. Each application server runs the following
components: a Request processor (RP), responsible for receiving the requests
and starting the VSTM transactions; a VSTM executes the transactions by
running a protocol described in the next paragraphs; a Cache manager (CM),
responsible for maintaining a consistent cache of regularly used objects; a Per-
sistent store (PS), responsible for persisting the updates on stable storage for
later recovery; a Certification manager (Cert), that certifies the transactions
ready to commit to see if there are conflicts; a Group communication service
(GC), responsible for maintaining up-to-date information regarding the mem-
bership of the group of application servers (including failure detection) and
providing the required communication support for the coordination among the
servers. In particular, the service provides both an Atomic broadcast service
used by the VSTM to disseminate the write-sets of transactions that are ready
to commit, and a non-ordered Reliable broadcast service used by an application
server to notify the other application servers about commit/abort decisions of
transactions.

5



Group Communication / Atomic broadcast

Appl Server

Appl 
Serv 2

Appl 
Serv 3

Appl 
Serv n

Load Balancer

Replicated Storage System

...Replica 1 Replica n

RP
VSTM Cert

GC PS CM

Figure 1: The proposed architecture.

The algorithm works as follows. The application server receives requests
from clients (typically, web browsers) via a load balancer and optimistically
locally executes a transaction. To execute the transaction, the application server
may have to retrieve some objects from the stable storage to fill its cache. Upon
commit, the write-set of the transaction (i.e., the set of objects whose value was
changed by the transaction) is disseminated to all the other nodes using atomic
broadcast. The nodes that receive the write-set should mark their copies of
the objects as potentially obsolete. The local node certifies the transaction and
decides on its outcome (commit or abort); a write transaction can commit if
its read-set has not been updated by other transactions serialized in the past.
After the certification procedure, a notification of commit/abort is sent to all
nodes using a group communication primitive. If the transaction can commit, all
nodes update their version of the objects, otherwise the updates are discarded.

Note that read transactions never abort, since the properties of the VSTM
are kept. This algorithm also ensures that all replicas of the application server
have up-to-date copies of the objects on their cache. This avoids retrieving an
object from the storage system when it is already in the cache, just to check if
the cache contains the latest version. If a write transaction aborts, it can be
resubmitted later. The consistency of the replicas is ensured by the ordering
imposed by the atomic broadcast primitive, which avoids the synchronization
of application servers via a central node.

The commit procedure includes the steps required to make data persistent
(by accessing the persistent store). Although this step is required in Fénix-

6



EDUv3, the technologies used to make the state persistent are orthogonal to
the mechanisms used to distribute the STM. The reader may note that several
existing technologies can be used, including the traditional DBMS, a file system,
or Java based object persistence technologies. Naturally, the persistent store will
also include fault-tolerant and high-availability mechanisms, such as the ones
described in [5, 4]. Due to lack of space, storage systems are not addressed
further in this paper.

4 Related work

Several different solutions have been proposed to add support for replication
and fault-tolerance in the context of complex web applications. The most com-
mon approach relies on using a relational database to implement the application
domain model. Replication solutions for relational databases have been exten-
sively studied in the literature, and mature solutions are now available such as
primary-backup [11], state-machine [12], or certification based [10] replication.
However, for efficiency, our work requires the replication of the volatile state
as well as the persistent state, thus solutions for database replication are not
enough to reach our goals.

One way to implement a web application domain model is using an object-
oriented architecture. In most systems, the current approach to implement it is
to use a multi-tier J2EE architecture where the business logic and data are mod-
eled using Enterprise Java Beans, being the data stored in databases by means
of an Object/Relational mapping tool. The solution proposed in [13] presents
a way to replicate such systems by adding fault tolerance mechanisms on both
the application server and the database. The authors rely on a locking based
approach and propose a replication protocol based on Snapshot Isolation. Our
solution avoids explicit locking by means of a STM and proposes a replication
protocol that provides Serializability.

In the scope of object oriented models, most software transactional memory
systems have been implemented assuming a single (central) server. Distributed
solutions need to address the new challenges that emerge in a environment where
processes can fail and recover. A distributed version of an STM should leverage
on the expertise accumulated in the design and implementation of Distributed
Shared Memory (DSM) systems. For instance, Sinfonia [1] is a recent DSM
system that has been shown to scale with the number of servers even if it uses
two phase commit to maintain memory consistency. However, Sinfonia is word
based and applications must know the memory location (nodes and address)
of the data that needs to be accessed. Object-based DSM systems also exist.
One such example is Terracotta [9] which replicates objects in a set of servers,
offering a transparent location of objects to the applications. On the other
hand, our approach is tightly integrated with the VSTM system and the updates
are disseminated and validated in a way that preserves the VSTM consistency
model.

7



5 Conclusions and future work

This paper introduces the new architecture for the FénixEDU system that we are
currently implementing. The FénixEDU system captures all the requirements of
complex web applications that are becoming more and more common today. Its
implementation is based on a Versioned Software Transactional Memory system
that frees the programmers from coding concurrency control explicitly. The
introduction of VSTM in the FénixEDU system has significantly improved the
productivity of the development team and the quality of the resulting code. This
approach helps to build complex web application systems in a more effective way,
but lacks some important properties to cope with scalability and fault tolerance.
The architecture described here is aimed at addressing these problems.

The choice of the best technology to make data persistent is still an open
issue. Given that a large majority of the transactions in FénixEDU are read-
only transactions, we should favor very fast read operations (to update the cache
of application servers). This suggests that the persistent copy of data may also
be replicated in a way that allows (consistent) concurrent reads from multiple
repositories.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sin-
fonia: a new paradigm for building scalable distributed systems. In SOSP
’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 159–174, New York, NY, USA, 2007. ACM.

[2] J. Cachopo and A. Rito-Silva. Combining software transactional memory
with a domain modeling language to simplify web application development.
In Proceedings of the 6th International Conference on Web Engineering,
pages 297–304. ACM Press, July 2006.

[3] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory
transactions. Science of Computer Programming, 63(2):172–185, Dec. 2006.

[4] Continuent. Sequoia v3.0. http://sequoia.continuent.org, 2006.

[5] A. Correia Jr., J. Pereira, L. Rodrigues, N. Carvalho, R. Vilaca, R. Oliveira,
and S. Guedes. Gorda: An open architecture for database replication. In
Proceedings of the 6th IEEE International Symposium on Network Com-
puting and Applications (IEEE NCA07), pages 287–290, Cambridge, MA,
USA, July 2007.

[6] T. Harris and K. Fraser. Language support for lightweight transactions.
In Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, volume 36 of SIG-
PLAN Notices, pages 388–402. ACM Press, Oct. 2003.

8



[7] T. Harris, S. Marlowe, S. Peyton-Jones, and M. Herlihy. Composable mem-
ory transactions. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM Press, June 2005.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In Proceedings of
the 22nd Annual ACM Symposium on Principles of Distributed Computing,
pages 92–101. ACM Press, July 2003.

[9] T. Inc. Terracotta. http://www.terracotta.org/.

[10] Y. Lin, B. Kemme, M. Patino-Mart́ınez, and R. Jiménez-Peris. Middle-
ware based data replication providing snapshot isolation. In SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, pages 419–430, New York, NY, USA, 2005. ACM.

[11] S. Mullender. Distributed Systems. ACM Press, 1989.

[12] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. In Journal of Distributed and Parallel Databases and Technology,
2003.

[13] F. Perez-Sorrosal, M. Patio-Martnez, R. Jimnez-Peris, and B. Kemme.
Consistent and scalable cache replication for multi-tier j2ee applications.
In Middleware, volume 4834 of Lecture Notes in Computer Science, pages
328–347. Springer, 2007.

[14] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of
the 14th Annual ACM Symposium on Principles of Distributed Computing,
pages 204–213. ACM Press, Aug. 1995.

[15] I. S. Tecnico. Fenix project. https://fenix-ashes.ist.utl.pt/.

9


