
The design ofRT-Appia∗

Jõao Rodrigues
Instituto Nacional de Engenharia e Tecnologia Industrial (INETI)

Departamento de Electrónica
Paço do Lumiar, Lisboa, Portugal

joao.carlos@mail.ineti.pt

Hugo Miranda, Jõao Ventura, Lúıs Rodrigues
Universidade de Lisboa (FCUL), Campo Grande, 1749-016 Lisboa, Portugal

hmiranda@di.fc.ul.pt
jcv@ieee.org
ler@di.fc.ul.pt

December 14, 2000

Abstract

This paper presents the design ofRT-Appia, a framework for the devel-
opment and implementation of configurable real-time protocol stacks. The
goal ofRT-Appiais to allow the construction of specialized protocols through
the composition of pre-defined micro-protocols.RT-Appiaattempts to bal-
ance the flexibility and efficiency of micro-protocols with the predictability
requirements of real-time applications.

1 Introduction

A protocol kernel is a software package that supports the composition and execu-
tion of micro-protocols. In terms of protocol design, the protocol kernel provides
the models and the tools that allow the application designer to compose stacks of
protocols according to the application needs. In run-time the protocol kernel sup-
ports the exchange of data and control information between layers and provides a

∗Parts of this report will be published in the Proceedings of the Sixth IEEE International Work-
shop on Object-oriented Real-Time Dependable Systems, Rome, 8-10 January 2001. This work has
been partially supported by the PRAXIS/P/EEI/14187/1998 project, DEAR-COTS. J. Ventura has
been supported by the PRAXIS XXI Programme under grant PRAXIS XXI/BM/20729/99.



number of auxiliary services (such as memory management for message buffers
and timer management).

The x-Kernel [7] is an early and influential work on protocol composition.
A version ofx-Kernel adapted to real-time operation has been developed in the
scope of the CORDS project [15]. Following the initial work withx-Kernel, many
other protocol kernels have been designed with enriched functionality. Notable
examples are Ensemble [5], Coyote [2]/Cactus [6] andAppia [8]. Although these
systems offer more flexible infrastructures to the development, composition and
execution of micro-protocols, most of them were not designed with the goal of
supporting real-time operation. This paper describes the design ofRT-Appia, a real-
time extension of theAppiaprotocol kernel.Appiahas been developed in the Java
programming language andRT-Appiais designed to use the facilities introduced
by the Real Time Specification for Java [3].

RT-Appiaretains the flexibility of its non real-time counterpart: complex stacks
can be composed of different channels and each channel may use a different quality
of service. If needed, channels may share state at more common protocol layers
and this facilitates the implementation of coordination policies among channels.

One common goal in the design of real-time systems is that they must behave
in a way that is predictable with respect to timing requirements. This means that it
must be possible to show, demonstrate or prove that these requirements are meet for
the lifetime of the system [10]. Real-time systems must support flexibility, however
too much flexibility can destroy predictability [11].Appiarelies on a single thread
to manage all communication stacks, does not take priorities into account while
scheduling events, and makes intensive use of the garbage collector. On the other
hand,RT-Appiaallocates memory and computing resources to each channel to
achieve predictable behavior.

The paper is organized as follows. Section 2 motivatesRT-Appiaand surveys
the related work. Section 3 briefly describes theAppia system and Section 4 de-
scribes the extensions that we designed to support real-time operation. Section 5
shows preliminary schedulability analysis results. Finally, Section 6 concludes the
paper.

2 Motivation and Related work

The design of a protocol kernel must take into consideration several distinct as-
pects of protocol development and execution. From the point of view of protocol
design the kernel must provide a framework to support the clean composition of
micro-protocols. This encourages the re-use of protocol components and allows
the applications to configure protocol stacks exactly tailored to their needs. This



Figure 1: x-kernel.a) A protocol graph. b) Using push to pass a message down a
stack and demux and pop to pass a message up a stack.

aspect is particularly relevant in the context of real-time applications where, due
to memory and power consumption constraints, it is interesting to execute in each
component just the protocol layers required to support the intended functionality.

Thex-Kernel [7] introduced a model in which protocol stacks are building as
a graph of protocols organized hierarchically. This simple model as three primitive
communication objects to support it:protocols, sessionsand messages. Proto-
col objects represent conventional protocols and serve to major functions: they
create session objects and they demultiplex messages received upward. Session
objects are dynamically created and can be seen as instances of protocols. Loosely
speaking, protocol objects export operations for opening channels, resulting in the
creation of a session object, and session objects export operations for sending and
receiving messages. Messages objects move through sessions viaPUSh andPOP

session operations. Session push operation is invoked to pass a message downward.
While flowing upward, a message alternatively visits a protocol via itsDEMUX

operation and then a session via its pop operation. The protocol demux opera-
tion makes the decision to which session the message should be routed. Figure 1
presents these relationships.

Sox-Kernel supported composition by restricting the communication between
adjacent layers to the exchange of dataPUSH, dataPOP, and control events. More
recent systems, such as Ensemble [5], Coyote [2] andAppia [8], offer a more flex-
ible structure by allowing the exchange of a richer set of events.

From the point of view of support for protocol execution, the protocol kernel
implements the mechanisms that support the exchange of events among layers. In



run-time,x-Kernel supports the thread-per-message model, where a thread is as-
signed to process each message. Thus the push/pop interaction between adjacent
layers is implemented as function calls that are executed in the context of the mes-
sage’s thread. Afterx-Kernel, several systems have proposed different models of
binding layers to stacks and of supporting event propagation. In Ensemble [5] and
Coyote [2] events are data structures that are routed from one layer to the next by
a specialized event scheduler. In real-time applications, the event scheduler must
allow priorities to be assigned to different events and communication channels. It
must also ensure that the priorities of each communication channel (with respect
to other channels and the remaining activities in the system) are respected.

Additionally to scheduling of events, a protocol kernel usually also provides
auxiliary libraries that simplify protocol implementation, such as efficient inter-
faces to message buffers (offering primitives to add and remove headers to mes-
sages) and timer management. A real-time communication kernel must support
resource reservation to ensure that the resources required by a channel, including
buffer requirements, are available during the protocol execution.

CORDS [15] and Cactus [6] are framework that systematically addresses the
problem of supporting protocol development in real-time environments. CORDS
extended the originalx-Kernel system to include resource reservation mechanisms.
These resources include memory allocation, CPU cycles (the ability to select the
number of threads and their scheduling attributes) and network bandwidth. The
“unit” of resource reservation is called aPATH. CORDS follows thex-Kernel
“thread per message” model and allows the application designer to select the num-
ber of threads and their scheduling attributes (policy and priority) for aPATH. This
work is supported by the real-time kernel OSF MK (derived from the Mach ker-
nel [1]). The kernel Integrated Time-Driven Scheduler (ITDS) allows the user to
define several scheduling policies for a set of processors. Thread synchroniza-
tion mechanisms provide a priority inheritance protocol to avoid priority inversion
problems. This kernel also provides a memory management mechanism to avoid
unpredictable delays in paging faults [14].

Cactus extends the Coyote system to support the construction of configurable
real-time services ascomposite protocols. A real-time service is implemented by
combining finer-grain micro-protocol modules with the Cactus runtime system.
A micro-protocol interact with other micro-protocols using event propagation. A
micro-protocol is the basic building block in Cactus and is a software module that
implements a well-defined property of the desired service. A micro-protocol, in
turn, is structured as a collection of event handlers, which are procedure-like seg-
ments of code bound to be executed when a specified event occurs. When such
event occurs all event handlers are stored in an ordered event handler queue (EHQ)
and are executed serially by a dispatcher thread. Execution of handlers are atomic



Figure 2: Composite protocol.

i.e. each handler is executed to completion without interruption. Figure 2 illustrates
this design. In the figure EHQ is the event handler queue. Solid arrows represent
threads of execution, including the dispatcher thread associated with EHQ. The
other threads represent the threads invoking the x-kernel push and pop operations
from the protocols above and below, respectively. The dashed arrows represent the
handlers being inserted into EHQ as a result of raising an event through theRAISE

procedure call in the composite protocol.
Cactus uses CORDS as its underlying communication subsystem, included in

the OpenGroup/RI MK 7.3 Mach operating system. In Cactus each composite pro-
tocol is a protocol in a CORDS protocol graph. Thus composite protocols interact
through the x-kernel procedure call interface push and pop operations. An appli-
cation may open multiple logical connections called sessions with its own quality
of services requirements (QoSs). A session may have one or more CORDS paths
assigned to each QoS. Event handlers associated with different QoSs within a com-
posite protocol are assigned to corresponding CORDS paths.

Cactus supports implementing real-time channels with several shapes as a com-
posite protocol and uses system resources allocated as CORDSPATHS. Resource
allocation has been divided into the channel control module (CCM) and admission
control module (ACM). The CCM translates channel arguments into general re-
source requirements as a set of micro-protocols, paths and CPU cycles that satisfy
these requirements. The ACM is a process that mantains information about avail-
able resources, and based on this information, either grants or denies requested
resources.

The CactusRT system uses the concept of micro-protocols and a good execu-
tion model. However this system is dependent on x-kernel and if we want a stack of
composite protocols we must call the push/pop operations and miss the flexibility



Appl Layer

FIFO Session

Device Session

FIFO Session

Device Session

Appl Session

FIFO Layer

Device Layer

Device Layer
Channel (filled)

Channel (empty)

SessionsLayers

createSession()

Appl Session

QoS

createUnboundChannel()
Appl Layer

FIFO Layer

Binding

Figure 3: Relation among QoS, layers and session inAppia.

of event propagation. This system seems to have one thread per composite pro-
tocol (dispatcher) and a thread per message (inherited from CORDS). This leads
to two context switches per composite protocol. Furthermore the non-preemptive
scheduling of CORDS results in a priority inversion between traffic types with
different deadlines and with a worst case duration being the maximum across all
handler execution times.

In this paper we also follow the approach of extending an existing protocol
kernel, theAppia system [8], with the mechanisms required to support real-time
operation. SinceAppia offers a more flexible structure thanx-Kernel, with this
effort we attempt to balance the flexibility and efficiency of micro-protocols with
the predictability requirements of real-time applications.

3 Appia

TheAppiasystem is an object oriented framework developed in Java providing a
set of classes to support definition and implementation of protocols stacks [8]. In
Appiaeach stack is composed of one or morechannels. Each channel is an ordered
sequence ofsessions, instances of a specificprotocol layer. The session maintains
state that is used by the layer to process events. A layer that implements an ordering
protocol may maintain a sequence number or a vector clock as part of the session
state. In connection oriented protocols, the session also maintains information
about the endpoints of the connection. The sequence of layers associated with



a given channel defines the quality of service implemented by the channel. An
important aspect of anAppiastack is that different channels may share session at
one or more layers. This mechanism supports the implementation of inter-channel
coordination policies. The relation among QoS, layers and session inAppia is
illustrated in Figure 3

Communication between layers is made by exchange ofevents. Events are ob-
ject oriented data structures, all descendant of theEVENT main class. New events
can be created by deriving from a previously defined event class. In order to al-
low future event refinement, event type tests are always performed on the weakest
class satisfying the desired requisites. The goal is to support event specialization
using inheritance. This way, legacy protocols, unaware of the new event attributes,
will continue to execute correctly. At quality-of-service definition time, each layer
declares the set of events the layer produces and that the layer is interested in sub-
scribing. Using this information,Appia constructs event routes that maintain the
exact set of sessions that need to be visited by each event, optimizing the time
needed for the event to traverse the channel.

The routing of events is implemented by anEVENTSCHEDULER, a passive
component responsible for selecting the next event to be processed. It is possible to
assign different schedulers to different set of stacks but all schedulers are activated
by a single thread, avoiding the need to implement concurrency control on every
session. A discussion of the comparative advantages of this strategy against the
“thread per message” model can be found in [9]. However,Appia is not single
threaded. Additional threads are used to manage timeouts and to interface the
network.

Some of the advantages ofAppiaare the use of an open event model that allows
the protocol designer to define the set of events more appropriate to a target appli-
cation area, the fine grain configuration possibilities and the efficient mechanisms
for event routing. Thus it provides an excellent framework to develop specialized
and efficient protocol stacks to be used in real-time applications.

4 RT-Appia

TheRT-Appiaadds to the originalAppiasystem a number of mechanisms to ensure
the predictability of execution of real-time communication stacks.

A real-time channel (RTChannel) is a schedulable object and has a priority at-
tribute to distinguish channels with different traffic priorities. Figure 4 presents a
RTChannel. Channel is an instance of QoS and is a concept imported fromAppia.
Events represents the events supported by RTChannel. EventScheduler is respon-
sible for scheduling and executing events in the channel.



Figure 4: RTChannel.

Appiawas implemented in Java language. One of strongest advantages of Java
is its platform independence through the adoption of a virtual machine, a feature
advertised as “write once run everywhere”. However, the basic Java platform and
language does not provide adequate support for development of real-time applica-
tions, which the unpredictable latency introduced by the garbage collector is an ex-
ample. The Real-Time for Java Experts Group (RTJEG) is currently polishing the
Real-Time Specification for Java (RTSJ) [3, 4]. The goal of RTJEG is to provide a
real-time software development platform, suitable for a wide range of applications,
with backward compatibility with Java. RTSJ defined seven main areas to achieve
this goal: scheduling, memory management, synchronization, asynchronous event
handling, asynchronous control transfer, asynchronous thread termination and ac-
cess to physical memory. The mechanisms added toAppiarely of the basic mecha-
nisms provided by the RTSJ. Namely,RT-Appiaintroduces the following features:

• Preallocation at initialization time of memory to allocate events and message
buffers.

• A REALTIME THREAD is associated with eachRT-Appiachannel. To each
channel is allocated a private set of resources, including memory resources
allocated from aSCOPEDMEMORY area. There is also prioritized event
scheduling within each channel.

• Timer management using theTIMER mechanism.



• Channels interface with the user and with the network using asynchronous
event handlers.

Each of these features is discussed with more detail in the subsequent sessions.

4.1 Memory allocation

In RT-Appia, each channel owns an individual set of resources including a perma-
nent memory area. The memory allocation overhead is pushed into the channel
instantiation time inRT-Appia. In channels, one can find permanent and transient
objects. Permanent objects are those that will exist as long as the channel instance
exists. Examples of these objects areSESSIONSandEVENTROUTES1. Permanent
objects are allocated from a memory are reserved for theRT-Appiakernel. The
RT-Appiakernel is responsible for allocating and releasing these resources.The
quantification of the necessary memory must be performed prior to channel in-
stantiation. The memory required by each session can be obtained from the lay-
ers composing the Quality of Service of the channel. Additional objects like the
CHANNEL and theEVENTSCHEDULER have constant memory requirements that
can be added to those of the channels.

Transient object examples areEVENTS, MESSAGES, and channel specific ses-
sion state. These objects will be allocated from aSCOPEDMEMORY area reserved
for each channel. Since the amount of memory required for each channel depends
on the specific needs of the chosen layers, at channel startup (when handling the
CHANNEL INIT event) eachSESSION is requested to preallocate all the required
data structures and all instances of events that it may generate. Thus, each session
will have several pools of predefined events (one pool for each class of event) that
it generates. In run-time, events are taken from the pool by each session and re-
turned to the pool by the kernel (an event may be returned to the pool after being
processed by the last session in its route). Pools of events must implement the
OBJECTPOLL interface defined by theRT-Appia.

Data structures associated with protocol messages are managed by theMES-
SAGE class and must be associated with events (there is a particular subclass of
EVENT, theSENDABLEEVENT, that owns reference to a data message). While in
the basicAppia, the size of the data buffers associated with each message grows
and shrinks dynamically while headers are added or removed, inRT-Appiawe have
opted to maintain the size of messages fixed once allocated. This avoids the need
to maintain a message heap for each channel.Appia already owns the introspec-
tion mechanisms that allows a layer to dynamically obtain the size of the headers
required by the lower layers.

1Each Event Route keeps the sequence of sessions to be visited by each event type.



4.2 Scheduling

The originalAppiasystem uses a single thread to schedule all the events. As we
have noted before, this strategy tries to minimize the overhead associated with
concurrency control and context switching. We have opted to retain this approach
in RT-Appiabut opted to assign a differentREALTIME THREAD for each protocol
channel. Since each channel owns private resources, this allows the preemption of
a channel by another channel of higher priority.

Within each channel, the programmer may also associate a different priority to
each event. Event priorities may be used by any specialization of the basicAppia
EVENTSCHEDULER that takes priorities into account. It should be noted however,
that all events of the same channel are processed by a singleREALTIME THREAD.

The scheduler maintains all events that flow in the channel in a data structure
that we call theSCHEDULABLE EVENT SET. The internal structure of the set takes
into consideration the priorities of the events but also the requirement to preserve
the FIFO order of events of the same priority exchanged between any pair of layers.
When invoked, the event scheduler selects theSCHEDULABLE EVENT of highest
priority and delivers it to the session that it should visit in its route. The process-
ing of the event by a session is performed by theHANDLE method of that session.
During the processing of theHANDLE method, the session may insert new events,
possibly of higher priority, in the set of schedulable events. However, the invoca-
tion of the methodHANDLE is not preempted by the insertion of other events in the
set. In particular, if the session decides to propagate the current event in the chan-
nel it must re-insert the event being processed to the schedulable set. Only when
HANDLE returns, the scheduler picks a new (or the same) event to be consumed.
Naturally, the processing of events of a channel can always be preempted by an
event of a higher priority channel.

4.2.1 Multi-channel sessions

Multi-channel sessions are those being shared by more than one channel. The pos-
sibility of having one session being used in more than one channel is an important
feature ofAppia as it allows inter-channel coordination. Multi-channel sessions
can easily suffer priority inversion problems due to:i) concurrency control in the
access to the shared data structures;ii) inter-channel coordination features that are
specific of each session.

SinceAppia tries to avoid unnecessary synchronization costs, calls to a given
session are not synchronized by default. On the other hand, inRT-Appiawe have
opted to assign a different thread to each channel, thus, sessions shared by differ-
ent session require the use of synchronization. Sharable sessions inRT-Appiaare



Figure 5: Example of an event execution in a channel.

required to implement a pair ofPREHANDLESYNC andPOSTHANDLESYNC syn-
chronization methods where session specific synchronization is implemented. The
PREHANDLESYNC should be invokedbeforetheHANDLE method andPOSTHANDLESYNC

invokedafter theHANDLE method returns. These method are automatically called
by theRT-Appiarun-time only in the case the session is being shared by differ-
ent channels. Typically,PREHANDLESYNC will lock the session resources and
POSTHANDLESYNC will unlock the same resources, although more spohisticated
fine-grain concurrency control mechanims can be implemented (readers-writers,
etc). Needless to say, multi-channel sessions must be used with care.

Figure 5 presents an example for exchange of messages between objects in
RTChannel, for an event who visit two sessions in a channel. Session1 produce
a event and invoke the methodinsert of the Event object. The event is inserted
in the SCHEDULABLE EVENT SET. To find the next session to visit, EventSched-
uler invokepopSessionin the Event object. Finally EventScheduler executes the
protocol, by invokehandlein the Session2 object.

4.3 Timer management

In RT-Appiathe timer management is very similar to its implementation in the
basicAppiasystem. Timeouts are triggered using special events that are captured
by the Appia kernel. When the timer expires the kernel re-injects the event in
the channel’s schedulable event set. While inAppia, the list of pending timers is



managed by a dedicated thread, inRT-Appiathe asynchronousTIMER mechanism
is used. When a timer expires the event must be asynchronously inserted in the
schedulable set. Thus the methods that perform insertion and removal of events
from this set must by synchronized.

4.4 Interfacing the channel

A communication channel interfaces the network and the application at well de-
fined layers. Typically, every channel has an application layer and a network layer.
These layers are responsible for inserting events in the channel in response to user
stimuli or messages arriving from the network. InRT-Appiathese layers are re-
sponsible for defining the asynchronous events and asynchronous event handlers
associated with those stimuli. The handlers use the sameSCOPEDMEMORY of the
channel and should allocate the events from the pool of the associated interface
layers. Like the timers described above, these events are inserted asynchronously
in the channel’s schedulable events set.

5 Schedulability analysis

To determine if all the objects used byRT-Appiaare schedulable or not, it is nec-
essary to perform an analysis of the complete system. This includes not only the
computation time used by theRT-Appiaobjects, but also the time taken by mes-
sage transmission. The proposed method is based on the work of [12, 13] and is the
subject of an ongoing study [16]. The mathematical model used assumes all events
are periodic. Sporadic events can be handled through the use of a periodic task that
acts as a server for this type of events, called the sporadic server.

To perform schedulability analysis of theRT-Appiaobjects, it is necessary to
derive the Worst Case Execution Time (WCET) of any given channel activation.
We have previously noted that theRT-Appiastores an event route for each event.
The event route defines the set of layers visited by a given event. From the event
route and the WCET of theHANDLE methods it is possible to derive the worst
case computation time of any given event. However, the processing of an event
at one session may generate other events. To perform the schedulability analysis
it is also necessary to capture the chain of events with the longest computation
time. Note that a chain of events must have a finite number of events. A chain of
events terminates when a channel has no further events to process and must remain
idle waiting for stimuli from the application, network or timers. The WCET of a
channel activation is derived from the computation time of the worst case chain of
that channel and from the WCET of other higher priority channels.



From the WCET of a channel activation and the periods of the relevant events
that activate the channel it is possible to derive a conservative figure for the schedu-
lability analysis of a given channel (the analysis of channels that share sessions with
other channels is more complex). Note that this figure is conservative, since not
all channel activations process the longest chain of events. Additionally, a chain
of events may contain events of different priorities and it would be interesting to
obtain WCET figures for each specific event. Techniques to exploit the finer de-
tail given by the theoretical model are still under study. For instance, since the
theoretical model described in [16] takes the distributed computation into account,
it would be interesting to schedule additional channel activations in order to pro-
cess response events as soon as they arrive. This is possible because the distributed
model computes the offsets introduced by the network and remote endpoint delays.

6 Conclusion

RT-Appiais a protocol kernel that supports the development and execution of real-
time protocol stacks that can be constructed through the composition of micro-
protocols. The approach allows the application to create protocol stacks that ex-
actly match their requirements.RT-Appiahas been designed to run on the real-time
Java environment and is currently being implemented. The reference implementa-
tion of the RTSJ, scheduled for early 2001 will be used to evaluate the architecture.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: a new kernel foundation for Unix development. InProceedings of the Summer
Usenix, July 1986.

[2] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system for con-
structing fine-grain configurable communication services.ACM Trans. on Computer
Systems, 16(4):321–366, Nov. 1998.

[3] G. Bollella and J. Gosling. The real-time specification for java.IEEE Computer,
33(6):47–54, June 2000.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull.The
Real-Time Specification for Java. Java Series. Addison-Wesley, June 2000. URL:
www.javaseries.com/rtj.pdf .

[5] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Computer Sci-
ence Department, 1998.

[6] M. A. Hiltunen, X. Han, and R. D. Schlichting. Real-time issues in cactus. Technical
Report AZ85721, Department of Computer Science, University of Arizona, Tucson,
1996.



[7] N. C. Hutchinson and L. Peterson. The x-kernel: An architecture for implementing
network protocols.IEEE Transactions on Software Engeneering, 17(1):64–76, Jan.
1991.

[8] H. Miranda and L. Rodrigues. Flexible communication support for CSCW appli-
cations. In5th Internation Workshop on Groupware - CRIWG’99, pages 338–342,
Canćun, México, Sept. 1999. IEEE.

[9] S. Mishra and R. Yang. Thread-based vs. event-based implementation of a group
communication service. InProc. of the 1st Merged Intl. Parallel Processing Sym-
posium and Symposium on Parallel and Distributed Processing (IPPS/SPDP-98),
pages 398–402, Orlando, Florida, USA, Mar. 1998. IEEE Computer Society.

[10] J. A. Stankovic and K. Ramamritham. Editorial: What is predictability for real-time
systems?The Journal of Real-Time Systems, 2:247–254, 1990.

[11] J. A. Stankovic and K. Ramamritham. A reflective architecture for real-time oper-
ating systems. In S. H. Son, editor,Advances in Real-Time Systems, pages 23–38.
Prentice-Hall, Inc, 1995.

[12] K. W. Tindell. Holistic schedulability analysis for distributed hard real-time systems.
Technical Report YCS197, Department of Computer Science, University of York,
Apr. 1993.

[13] K. W. Tindell. Adding time-offsets to schedulability analysis. Technical Report
YCS221, Department of Computer Science, University of York, Jan. 1994.

[14] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: Towards a predictable real-
time system. In USENIX, editor,Mach Workshop Conference Proceedings, October
4–5, 1990. Burlington, VT, pages 73–82, Berkeley, CA, USA, Oct. 1990. USENIX.

[15] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system re-
sources in support of real-time distributed applications. InProceedings of the 2nd
IEEE Workshop on Object-Oriented Real-Time Dependable Systems, Laguna Beach,
CA, Feb. 1996.

[16] J. C. Ventura and L. Rodrigues. Timing analysis of object-oriented communication
protocols. Di/fcul tr, Departament of Computer Science, University of Lisbon, Sept.
2000.


