
Schedulability Analysis of an Event-Based Real-Time Protocol

Framework∗

João Rodrigues

INETI

joao.carlos@mail.ineti.pt

João Ventura

Skysoft Portugal

jcv@skysoft.pt

Lúıs Rodrigues

Universidade de Lisboa

ler@di.fc.ul.pt

Abstract

This paper presents a method to analyze the timing behavior of an event-based real-time

protocol composition framework. The framework, called RT-Appia, allows the development and

implementation of configurable real-time protocol stacks. The method performs the schedula-

bility analysis for events flowing in a real-time channel and is based on the holistic theory for

distributed real-time systems. To illustrate the use of the model, a stack of modular reliable

group communication protocols for the CAN field-bus is analyzed and the collected results are

compared with previous work.

1 Introduction

A fundamental goal in the design of a real-time system is that it must behave in a predictable manner

with respect to timing requirements. This means that it must be possible to show, demonstrate or

prove that the timing requirements are met for the lifetime of the system [6].

With the increase of processing power and network bandwidth it is possible to build sophisticated

distributed hard real-time systems. The construction of communication systems using the compo-

sition of several micro-protocol objects, encourages the re-use of protocol components and allows

applications to configure protocol stacks exactly tailored to their needs. This aspect is particularly

relevant in the context of real-time applications where, due to memory and power consumption con-

straints, it is interesting to execute in each component just the protocol layers required to support

the intended functionality.

A protocol kernel is a software package that supports the composition and execution of micro-

protocols. In terms of protocol design, the protocol kernel provides the models and the tools that
∗Parts of this report will be published in the Proceedings of the Seventh IEEE International Workshop on Object-

oriented Real-Time Dependable Systems, San Diego, CA, USA, 7-9 January 2002. This work has been partially

supported by the project POCTI/33127/99, MOOSCO.

1

allow the application designer to compose stacks of protocols according to the application needs. In

run-time, the protocol kernel supports the exchange of data and control information between layers

and provides a number of auxiliary services (such as memory management for message buffers

and timer management). A real-time extension of a protocol kernel should be able to balance

the flexibility and efficiency of micro-protocols with the predictability requirements of real-time

applications. To demonstrate that timing requirements are met, a hard real-time protocol kernel

should provide the set of tools necessary to perform schedulability analysis.

This paper presents a method to perform the schedulability analysis for compositions of micro-

protocols in a protocol kernel, including message transmission. As usual in this type of methods,

we do not aim to perform an exact analysis, just to obtain an upper bound of the response time,

which can be used to demonstrate and prove the timing guarantees of a given application.

We have implemented a software tool able to execute the proposed analysis. This tool is a

companion design tool for the RT-Appia protocol kernel [4]. It should be noted that the model

(and the tool) can be adapted to other protocol kernels such as CORDS [9] or RT-Cactus [1, 2].

The paper is organized as follows. Section 2 presents the motivation for the work and a small

survey of the related work. Section 3 contains an overview of the RT-Appia system. In Section 4, the

theory underlying the selected timing analysis method is summarized. Section 5 shows preliminary

schedulability analysis results of a case-study protocol stack; the stack was developed to provide

fault-tolerance communication over the CAN field-bus. Finally, Section 6 concludes the paper.

2 Motivation and Related Work

We are building RT-Appia [4], a framework for the development and implementation of configurable

real-time protocol stacks. The goal of RT-Appia is to allow the construction of specialized protocol

stacks for real-time communication, through the composition of micro-protocols. RT-Appia is

an event-based kernel where individual micro-protocols are implemented as protocol objects that

subscribe and produce events; interactions among adjacent protocols are modeled by the exchange

of these events.

It is our goal to include in the framework mechanisms to extract the timing behavior of protocols

compositions. The first model and tool that has been developed for this purpose [10] was based on

the timing offset model proposed in [8].

The current work intends to explore alternative methods to extract the timing behavior of event-

based protocols compositions in the RT-Appia protocol kernel. In particular we intend to exploit

the holistic schedulability analysis [7] since it offers greater flexibility than the timing offset model

when applied to distributed systems. Additionally, we feel that it is interesting to make available

tools based on different models, compare them and let the system designer choose the one that

2

better suits the requirements of his work.

Therefore, in this work we explore holistic schedulability analysis for distributed hard real-

time systems presented in [7]. As a case-study, we use the set of modular fault-tolerant group

communication protocols designed for the CAN network (EDCAN and RELCAN) described in [5].

This same set of protocols has been already analyzed using the timing offset model in [10]. The

goal is to demonstrate the flexibility of the holistic analysis and to compare the results of both

techniques when extracting the timing behavior of protocol compositions in RT-Appia.

3 RT-Appia Overview

RT-Appia,[4] is a real-time extension to the Appia protocol composition framework [3]. In RT-

Appia each stack is composed of one or more real-time channels. Each real-time channel is an

ordered sequence of sessions, instances of a specific protocol layer. The session maintains state

that is used by the layer to process events. The sequence of layers associated with a given channel

defines the quality of service implemented by the channel.

Communication between layers is made by exchange of events. For each subscribed event, the

protocol layer must provide a handler to process that event. During the quality of service definition,

each layer declares the set of events the layer produces and that the layer is interested in subscribing.

Using this information, RT-Appia constructs event routes that maintain the exact set of sessions

that need to be visited by each event, optimizing the time needed for the event to traverse the

channel.

Within each real-time channel, the routing of events is implemented by an EventScheduler, an

active component responsible for selecting the next event to be processed. The programmer may

also associate a different priority to each event. It should be noted however that all events of the

same channel are processed by a single RealtimeThread. This strategy tries to minimize the overhead

associated with concurrency control and context switching. The scheduler maintains all events that

flow in the channel in a data structure that we call the schedulable event set. The internal structure

of the set takes into consideration the priorities of the events but also the requirement to preserve

the FIFO order of events of the same priority exchanged between any pair of layers. When invoked,

the event scheduler selects the schedulable event of highest priority and delivers it to the session

that it should visit in its route. The processing of the event by a session is performed by the handle

method of that session. During the processing of the handle method, the session may insert new

events, possibly of higher priority, in the set of schedulable events. However, the invocation of

the method handle is not preempted by the insertion of other events in the set. In particular, if

the session decides to propagate the current event in the channel it must re-insert the event being

processed to the schedulable set. Only when handle returns, the scheduler picks a new (or the same)

3

event to be consumed. Naturally, the processing of events of a channel can always be preempted

by an event of a higher priority channel.

A communication channel interfaces the network and the application at well defined layers.

Typically, every channel has an application layer and a network layer. These layers are responsible

for inserting events in the channel in response to user stimuli or messages arriving from the network.

To perform schedulability analysis of the RT-Appia objects, it is necessary to derive the Worst

Case Execution Time (WCET) of any given channel activation. As previously noted, RT-Appia

stores an event route for each event. The event route defines the set of layers visited by a given

event. From the event route and the WCET of the handle methods it is possible to derive the worst

case computation time of any given event. However, the processing of an event at one session may

generate other events, so it is also necessary to capture the related chain of events with the longest

computation time. A related chain of events terminates when the last event is delivered to the

application, network or a timer.

The execution time for a chain of n events can be computed with the following equation:

Cchain =
∑

n
CHn + n.CSch (1)

CHn is the execution time of the handle method of session n and CSch the time the event scheduler

spends inserting (CSchIn) and removing (CSchRem) an event in the schedulable event set and is

computed by:

CSch = CSchIn + CSchRem (2)

We assume that all events in each related chain of events have the same priority, equal to the

priority of the event that generate the chain, so we can model each chain of events has a task. Note

that all the events in a channel are executed by the same task: the EventScheduler.

4 Schedulability Analysis of a Distributed Hard Real-Time Sys-

tem

4.1 Single Processor Schedulability Analysis

The worst-case response time of a task on a single processor can be computed using the schedula-

bility analysis for arbitrary deadlines (deadlines can be greater than task periods). The following

equation gives the worst-case response time of a given task i:

ri = maxq=0,1,2,···(Ji + ωi(q)− qTi) (3)

4

ωi(q) = (q + 1)Ci + Bi +
∑

∀j∈hp(i)

[
Jj + ωi(q)

Tj
]Cj + τi(ωi(q)) (4)

Where ri is the worst-case response time of task i, Ji is the task i release jitter and Ti is the task

period. Ci is the worst-case computation time of task i and Bi is a blocking factor representing the

longest time that task i could be blocked by lower priority tasks. The summing factor represents

the interference from higher priority tasks and hp(i) is the set of tasks of higher priority than i.

The tick scheduling overheads for a task i over a window of width ω is represented by τi(w) and

the following equation:

τi(ωi(q)) = LCclk + min(L,K)CQL + max(K − L, 0)CQS (5)

Using Equation 3 we can analyze the worst-case response times of event chains in a channel, by

substituting the execution time of a task, C by Cchain in Equation 1.

As noted before, the execution of an session handler cannot be preempted by a higher priority

event being inserted in the schedulable event set. We account this as release jitter (release jitter is

the worst-case delay between a task arriving and being released [7]). We will consider that higher

priority events suffer from a release jitter equal to the handler with the highest worst-case execution

time, when executed by lower priority events. We have made some experiments accounting for

release jitter and concluded, that its effect is significant.

An important aspect of an RT-Appia stack is that different real-time channels may share sessions

at one or more layers. Multi-channel sessions can easily suffer priority inversion problems due to:

i) concurrency control in the access to the shared data structures; ii) inter-channel coordination

features that are specific of each session. The support for multi-channel sessions is done using the

blocking factor Bi in Equation 4.

4.2 Holistic Scheduling Theory

In [7], the authors extended the schedulability analysis for arbitrary deadlines on a single processor

to a distributed hard real-time system where tasks with arbitrary deadlines communicate using a

TDMA protocol. According to the holistic scheduling theory presented, a destination task of a

message m inherits a release jitter equal to:

Jd(m) = rs(m) + am + rdeliver (6)

In which rs(m) is the worst-case response time of the sender task of message m and can be

computed using Equation 3; am is the worst-case time m takes to arrive at the destination processor

communication adapter; and rdeliver is the worst-case time to deliver the message to the destination

5

task. In our analysis, rdeliver is the worst-case time an interrupt handler and/or a task handler

assigned to the network controller spends inserting an event in a channel.

Our goal in using this approach is to easily integrate other models of real-time communication

networks by replacing the computation model for am. To illustrate this idea, we replaced the

computational model of the TDMA protocol with the computational model for computing the

worst-case latency of a given hard real-time message in a CAN field bus. In the following paragraphs

we provide a brief description of the CAN analysis.

4.3 CAN

The analysis that bounds the worst-case latency of a given hard real-time message in CAN was

derived by [8] and based on the following assumptions:

1. The deadline of a message must be less or equal to its period.

2. The message queuing window (i.e. the message queuing jitter) must be less than its period.

3. The bus controller must not release the bus to lower priority messages if there are higher

priority messages pending.

The worst-case response time of a given message m is defined as the longest time between the

queuing of m and the latest time the message arrives at the destination processor and is defined

as:

Rm = ωm + Cm (7)

The queuing delay ωm is given by:

ωm = E(ωm + Cm) + Bm +
∑

∀j∈hp(m)

[
ωm + Jj + τbit

Tj
]Cj (8)

The set hp(m) is the set of messages of higher priority than m and the summing represents the

interference from higher priority messages. Tj is the period of a message j and Jj is the queuing

jitter of the message j. The term τbit is the bit time of the bus.

The time spent by the message in the queue is given by the sum of the error recovery overheads

(modeled by the function E).

Bm is the longest time that the message m can be delayed by lower priority messages (this is

equal to the time taken to transmit the largest lower priority message because once transmission

of a message has begun it cannot be preempted by transmission of a higher priority message) and

is given by:

6

Bm = max∀k∈lp(m)Ck (9)

Where lp(m) is the set of lower priority messages.

Cm is the upper bound on frame transmission time with maximum insertion of stuffed bits and

is given by:

Cm = ([
53 + 8sm

5
] + 66 + 8sm)τbit (10)

The term sm denotes the size of message m in bytes. The factor gives the maximum number of

stuff bits. This equation takes in account the minimum three bit bus idle period that necessarily

precedes any data or remote frame transmission (the values used are for CAN 2.0B).

By using Equation 7 for computing am in Equation 6, we can extend the holistic theory to a

CAN network.

5 Case Study

To illustrate our analysis technique and compare results, we have adapted the example presented

in [10]. The example uses RELCAN, a reliable multicast protocol for real-time applications that

has been proposed by Rufino et al. [5].

5.1 Protocol Overview

RELCAN and EDCAN provide a totally ordered atomic broadcast service to overcome the problem

of CAN field bus being in an inconsistent state under particular circumstances 1. The protocol stack

of RELCAN, illustrated in Figure 1, is composed of RELCAN, EDCAN and CAN itself. CAN is

required by both RELCAN and EDCAN, and EDCAN is required by RELCAN.

The RELCAN protocol assures a reliable communication service, but with less transmission time

overhead, in the best case, than EDCAN. The sender uses a two phase protocol, the first phase

consisting of putting a DATA message on the CAN bus, after which it waits for the confirmation of

correct transmission from the CAN controller. The second phase consists of sending a CONFIRM

message signaling that no retransmissions are required. The receiver delivers the message to the

upper layer when receiving the message for the first time from the CAN layer, saves a copy for

possible retransmission and starts a timer alarm. If the CONFIRM message is received before the

alarm expires, then the alarm is canceled. If not, then it means that the sender has probably failed,

and the receivers should retransmit the message using the EDCAN services. In this example we

assume RELCAN in the best case (no alarm and EDCAN services are required).
1For a more detailed explanation of this problem and of RELCAN and EDCAN, please refer to [5].

7

���������
	

����� �������
������� �"!$#�% & '
(�) * +$,
-/."0212354

687�9�:�;8<

=>?�@ A�B�C�D
E�F�G�H I"J$K�L M N
O�P Q R$S
T/U"V2W2X5Y

Z\[]�^`_�a�b�c
dfehg$i5j/k
l�m�n o

p�qr�s8t

u8v�w�x�y8z

{\| }�~`�������
�f�h�$�5�/�
����� �

������8�

Figure 1: Protocol Stack of RELCAN

In the first place we must define the set of events required. The RELCAN sender handles two

events and generates three events:

• handles one event from the upper layer (relcan.req) and generate one event for the CAN

layer (data.req).

• handles one event from the CAN layer (data.cnf) and generate two events: rtr.req for the

CAN layer and relcan.cnf to the upper layer.

The recipient handles two events and can generates one event:

• handles the data.ind event from the CAN layer and generates the relcan.ind event to the

upper layer.

• handles the rtr.ind event from the CAN layer.

As mentioned in section 3, a task is assigned to each related chain of events. Three tasks for the

sender and two tasks for the recipient are used:

• RS1 - The first sender task handles the relcan.req event and sends the message in a CAN

data frame (data.req event).

• RS2 - The second sender task handles the data.cnf event and sends the CONFIRM message

(rtr.req).

• RR1 - The first recipient task (RR1) handles the reception of the message from the CAN

layer (data.ind event) and delivers it to the upper layer (relcan.ind).

8

cpu 1 cpu 2 cpu 3

task Prio J WCRT task Prio J WCRT task Prio J WCRT

RS1 0 0 150 RS1 0 0 150 RS1 0 0 150

RS2 1 456 756 RS2 1 685 985 RS2 1 761 1061

RC1 2 456 906 RC2 2 686 1135 RC3 2 761 1211

RR12 3 685 1285 RR11 3 456 1056 RR11 3 456 1056

RR13 4 761 1511 RR13 4 761 1511 RR12 4 685 1435

RR22 5 1596 2496 RR21 5 1138 2038 RR21 5 1138 2038

RR23 6 1748 2798 RR23 6 1748 2798 RR22 6 1596 2646

msg Prio C WCRT msg Prio C WCRT msg Prio C WCRT

Data.req 0 153 306 Data.req 2 153 535 Data.req 4 153 611

Rtr.req 1 76 382 Rtr.req 3 76 611 Rtr.req 5 76 687

Table 1: RELCAN task set results using the extended holistic theory.

• RR2 - Handles the reception of the CONFIRM message (rtr.ind event).

We also defined a third sender task RC to generate the relcan.cnf event. Please note that in

handling data.cnf event, two events are generated (rtr.req and relcan.cnf), respectively.

5.2 Timing Analysis Results

In order to obtain the timing analysis tool, we have started by implementing a software component

that computes the worst-case latency of a given hard real-time message in CAN (Equation 7).

Then we integrated this component in the software tool used by Tindell in [7], by replacing the

TDMA protocol (am in equation 6). The resulting tool implements the holistic scheduling analysis

presented in Section 4.

The developed scenario consists of three message transmissions by 3 nodes. Each node sends its

message to the others two nodes on the bus, which receive it correctly, the same happening with

the confirmation message of the second phase.

The results presented in Table 1 refer to our case-study, computed with the tool introduced above.

The table presents Worst Case Response Time (WCRT) for all tasks (the values are presented in µ

seconds). The following parameters were used: The following parameters were used, for all tasks:

Tclk = 1, Cclk = 0, CQL = 0, CQS = 0 (no scheduler overheads), Ti = 3000, Di = Ti (task deadline

equal to its period) and a worst-case computation time Ci = 150, for each task. We also consider

Ji = 02, Bi = 0 (no initial jitter, nor blocking time) and an rdeliver = 0, for all tasks. For the

message transmission delays, a 1 Mbit extended CAN network was considered, without errors. The

prio column is the priority assigned to tasks and messages and J is the computed jitter suffered by

each task. As you can see from Table 1, all tasks meet their deadlines.
2This can be observed by the higher priority task in each node having Ji = 0.

9

cpu 1 cpu 2 cpu 3

task Prio J WCRT task Prio J WCRT task Prio J WCRT

RS1 0 150 300 RS1 0 150 300 RS1 0 150 300

RS2 1 756 1056 RS2 1 985 1285 RS2 1 1061 1361

RC1 2 756 1206 RC2 2 985 1435 RC3 2 1061 1511

RR12 3 985 1585 RR11 3 756 1356 RR11 3 756 1356

RR13 4 1061 1811 RR13 4 1061 1811 RR12 4 985 1735

RR22 5 2046 2946 RR21 5 1588 2488 RR21 5 1588 2488

RR23 6 2048 3248 RR23 6 2048 3098 RR22 6 1896 2946

msg Prio C WCRT msg Prio C WCRT msg Prio C WCRT

Data.req 0 153 306 Data.req 2 153 535 Data.req 4 153 611

Rtr.req 1 76 382 Rtr.req 3 76 611 Rtr.req 5 76 687

Table 2: RELCAN task set results using the extended holistic theory with jitter.

Because in this model, a task cannot receive more than one message within the same period we

must define additional recipient tasks, on all nodes:

• (RR1x) Refers to RR1 handling a message (data.ind), sent by node x.

• (RR2x) Refers to RR2 handling a message (rtr.ind), sent by node x.

Task RR12 in cpu 1, handles the data.ind sent by cpu 2, task RR23 in cpu 2 handles the rtr.ind

sent by cpu 3, and so on.

The results presented in Table 2 refer to the same example by considering that tasks suffer from

release jitter, due to non-preemptive session handlers, as described in Section 3. Note that each

higher priority task now suffers from a initial jitter of Ji = 150, which corresponds to the session

handler of low priority events, with the highest WCET (each lower priority task has Ji = 0). It

can be seen that with the effect of jitter some tasks miss their deadlines.

Table 3 refers to the same example computed with a tool implementing the timing offset model

(results generated using the method of [10] and presented here for convenience of the comparison).

A transaction is composed by a set of tasks that execute with given offsets in relation to its initial

value (in this model end = offset + WCRT). Note that since the transactions are not synchronized

between them, each one can start at any instant during the execution of the others. Each transaction

corresponds to the chain of events generated by a user request to the RELCAN layer. All the tasks

(and messages) in transaction 1 have higher priority than the ones in transaction 2, which in turn

has higher priority than the ones in transaction 3.

By comparing the results in Table 1 and 3, it is possible to see that the latest task misses its

deadline in the offset model. On the other hand, task response times in transaction 1 are lower

than the times obtained for tasks in Table 1, but this does not occur with the other transactions.

10

transaction 1 transaction 2 transaction 3

task cpu offset end task cpu offset end task cpu offset end

RS1 1 0 150 RS1 2 0 300 RS1 3 0 600

RS2 1 456 606 RS2 2 835 1135 RS2 3 1135 1735

RC 1 456 756 RC 2 835 1435 RC 3 1135 2035

RR12 2 456 606 RR11 1 835 1285 RR11 1 1135 2035

RR13 3 456 606 RR13 3 835 1135 RR12 2 1135 1885

RR22 2 835 985 RR21 1 1517 1967 RR21 1 2117 3017

RR23 3 835 985 RR23 3 1517 1817 RR22 2 2117 2867

msg offset end msg offset end msg offset end

DATA 150 456 DATA 300 835 DATA 600 1135

CONFIRM 606 835 CONFIRM 1135 1517 CONFIRM 1735 2117

Table 3: RELCAN task set results using the extended timing offset model.

cpu 1 cpu 2 cpu 3

task Prio J WCRT task Prio J WCRT task Prio J WCRT

RS1 0 0 150 RS1 0 0 150 RS1 0 0 150

RS2 1 456 756 RS2 1 685 909 RS2 1 761 985

RC1 2 456 906 RC2 2 686 1059 RC3 2 761 1135

RR12 3 685 1209 RR11 3 456 1056 RR11 3 456 1056

RR13 4 761 1435 RR13 4 761 1435 RR12 4 685 1359

RR22 5 1596 2496 RR21 5 1138 2267 RR21 5 1138 2267

RR23 6 1748 2722 RR23 6 1748 2722 RR22 6 1596 2646

msg Prio C WCRT msg Prio C WCRT msg Prio C WCRT

Data.req 0 153 306 Data.req 1 153 459 Data.req 2 153 535

Rtr.req 3 76 611 Rtr.req 3 76 687 Rtr.req 5 76 687

Table 4: RELCAN task set results with changed message priorities.

This is because in the timing offset module, it can happen that the largest task of a higher priority

transaction is scheduled at any time during the execution of the current transaction. The pessimism

that is introduced by the holistic model, was verified by validating these results manually (for a

best case). We also experimented with giving higher priority to the Data.Req messages, instead

of giving higher priorities to messages in a given cpu. As can be seen from Table 4, slightly better

results were obtained. Now the response time for RR1 tasks has decreased which means that all

nodes receive the RELCAN DATA message earlier.

From the results presented in Table 2, we can conclude that the effect of jitter is an important

aspect that must be taken in consideration when designing the event scheduler that supports this

class of event-based protocol composition frameworks. We are currently studying methods to

minimize the jitter in RT-Appia.

11

6 Conclusion

In this paper we have presented a method to analyze the timing behavior of real-time protocol stacks

implemented using event-based composition frameworks. The method proposed here, which is based

on the holistic approach [7], has been compared with a related method based on the offset timing

analysis [8]. In our experiments, despite the pessimism inherent to the approach, the holistic model

can achieve better results. On the other hand, for a small number of transactions, the offset timing

analysis is more optimistic. Unfortunately, this optimism is lost as the number of transactions

increases. This is due to the fact that interference caused by higher priority transactions in the

lower ones introduces to much pessimism.

We verified this having computed our case-study with both methods for several number of nodes

(and the correspondent number of transactions). With two nodes the offset timing analysis gave

better results. However as the number of transactions increases, the worst case response times of

tasks approaches the ones computed with the holistic model and the later gave little better results.

We think that the pessimism introduced by both methods is due to the fact that the computed

response times follows a exponential form, with the increasing number of nodes and transactions.

We believe that the offset timing analysis is more appropriate for systems that support asyn-

chronous events and when its possible to have a small number of transactions. For more complex

systems in which all events are synchronized, the holistic method may be preferable. We intend to

support both methods and use the most appropriate according to the application scenario.

References

[1] Matti A. Hiltunen, Xiaonan Han, and Richard D. Schlichting. Real-time issues in Cactus.

Technical Report AZ85721, Department of Computer Science, University of Arizona, Tucson,

1996.

[2] Matti A. Hiltunen, Richard D. Schlichting, Xiaonan Han, Melvin Cardozo, and Rajsekhar

Das. Real-time dependable channels: Customizing qos attributes for distributed systems.

IEEE Transactions on Parallel and Distributed Systems, 10(6):600–612, June 1999.

[3] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multi-

ple coordinated channels. In Proceedings of the 21st International Conference on Distributed

Computing Systems, pages 707–710, Phoenix, Arizona, April 2001. IEEE.

[4] J. Rodrigues, H. Miranda, J. Ventura, and L. Rodrigues. The design of RTAppia. In Proceedings

of the Sixth IEEE International Workshop on Object-oriented Real-Time Dependable Systems,

pages 275–282, Rome, Italy, January 2001. IEEE.

12

[5] José Rufino, Paulo Veŕıssimo, Guilherme Arroz, Carlos Almeida, and Lúıs Rodrigues. Fault-

tolerant broadcasts in CAN. In Digest of Papers, The 28th IEEE International Symposium on

Fault-Tolerant Computing, pages 150–159, Munich, Germany, June 1998. IEEE.

[6] John A. Stankovic and Krithi Ramamritham. Editorial: What is predictability for real-time

systems? The Journal of Real-Time Systems, 2:247–254, 1990.

[7] Ken W. Tindell. Holistic schedulability analysis for distributed hard real-time systems. Tech-

nical Report YCS197, Department of Computer Science, University of York, April 1993.

[8] Kenneth William Tindell. Adding time-offsets to schedulability analysis. Technical Report

YCS221, Department of Computer Science, University of York, January 1994.

[9] Franco Travostino, Ed Menze, and Franklin Reynolds. Paths: Programming with system

resources in support of real-time distributed applications. In Proceedings of the 2nd IEEE

Workshop on Object-Oriented Real-Time Dependable Systems, Laguna Beach, CA, February

1996.

[10] J. Ventura, J. Rodrigues, and L. Rodrigues. Response time analysis of composable micro-

protocols. In Proceedings of the 4rd IEEE International Symposium on Object-oriented Real-

time distributed Computing (ISORC), pages 335–342, Magdeburg, Germany, May 2001. IEEE.

13

