
Fast Group Communication

for Standard Workstations

Werner Vogels

INESC†

Lisboa, Portugal
werner@inesc.pt

Luis Rodrigues Paulo Verı́ssimo

Technical University of Lisboa
INESC, Lisboa, Portugal
{ ler | paulov }@inesc.pt

Abstract

This paper presents a Group Communication Service suitable for stan-
dard workstations. The communication service is designed to take
advantage of the technology offered by modern standard Local Area
Networks and offers a very versatile multi-primitive interface to its
users. The authors focus on the design and implementation of the com-
munication service, and of the software modules necessary to exploit
specific network and operating system properties. Additionally perfor-
mance results are given and evaluated in the context of comparable
systems.

1. Introduction
Increasing use of distributed systems, with the corresponding decen-
tralization of activities, stimulates the need for structuring those activi-
ties around groups of participants, for reasons of consistency, user-
friendliness, performance and dependability. The concept appears
intuitively in all flavors of distributed actions: when participants coop-
erate in an activity (e.g. management of a partioned database, shared
document processing or distributed process control), compete for a
given activity (e.g. distributed use of a resource), or execute a repli-
cated activity for performance or fault-tolerance reasons (e.g. repli-
cated database server, replicated actuator).

The group paradigm is widely accepted as being an excellent method
of structuring these distributed activities. From the pioneering projects

hhhhhhhhhhhhhhhhhh
† Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 – 6° – 1000 Lisboa – Portugal, Tel.+351-1-3100281. This
work has been supported in part by JNICT, through Programa Ciência.

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 337

in the past [Bir91a, Coo85a, Che85a], a large number of research pro-
jects in areas related with group structuring and reliable group commu-
nication have emerged [Bir91b, Cri90a, Gar89a, Her89a, Pet89a,
Pow91a]. The Distributed Systems and Industrial Automation group at
INESC has contributed to the evolution of the group paradigm by focus-
ing on the development of highly responsive group communication and
management protocols [Ver92a].

To support the development of systems and applications that rely on
distributed paradigms, we have developed a Group Communication
Service. Originally designed and developed as part of the Delta-4†

ESPRIT project [Pow91a], an effort has been undertaken to make the
same service available for standard workstations. The results of this
effort have yielded a group communication module suitable for integra-
tion in UNIX kernels. Prototype implementations have been made for
the SunOS 4.1.1 and the Mach 2.5 kernels.

In this paper we discuss the global design and implementation of the
Group Communication Service and related modules. The next section
describes our approach to group communication in general, followed
by a section on the actual design of the service. The different modules
that found the basis of the service are each described in separate sec-
tions after the section on design. Section 10 will deal with the formal
specification and verification of the protocols. In Sections 11 and 12
we present the performance of our protocols and evaluate these results
by comparing them to other group communication systems.

2. The Group Communication Service
The need for support of group activity is based on the assumption,
shown correct by a number of real examples, that in a distributed archi-
tecture processes frequently get together to achieve a common goal.
The set of such processes can be called a group. A communication
service can be said to support groups when it provides services that
facilitate the design and the execution of distributed software running
on such a group of distributed processes in cooperation, competition or
replication [Ver92a].

The Group Communication Service described in this paper is based on
three essential services [Rod92a]:

g The first services required in a group communication service are,
naturally, the group membershipservices. Powerful support for
groups is given to allow the dynamic creation – and
reconfiguration – of process groups. During the lifetime of a
group, processes may join or leave the group and the communi-
cations service provides primitives to perform these operations.
The failure of a group member is also detected and an indication
of the event is provided to the remaining members.

g The second goal of the group communication service is to pro-
vide efficient and versatile support for exchange of information
between group members. To start with, a multicastcommunica-
tion service avoids the need to explicitly perform point-to-point
transfers to execute a multicast operation. The service accepts a
list of addresses, what we call a selective address, as a valid des-
tination address for a multicast message and – transparently –

hhhhhhhhhhhhhhhhhh
† Delta-4, ended in December 1991, was a CEC Esprit II consortium, formed by Ferranti-CSL (GB), Bull (F), Credit Agricole (F), IEI

(I), IITB (D), INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR (GB), Renault (F), SEMA (F), Un. of Newcastle (GB), designing an
open, dependable, distributed architecture.

338 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

Consistent Group View
Px1 Each change to group membership is indicated by a message obeying total order, to all correct

group participants within a known and bounded time Tg.

Addressing
Px2 Selective addressing: The recipients of any message are identified by a pair (g,sl), where g is a

group identification and sl is a selective address(a list of physical addresses).

Px3 Logical addressing: For each group g there is a mapping between g and an address Ag, such
that Ag allows all correct members of g to be addressed without the knowledge by the sender of
their number or physical identification.

Validity
Px4 Non-triviality: Any message delivered, was sent by a correct participant.

Px5 Accessibility: Any message delivered, was delivered to a participant correct and accessible for
that message.

Px6 Delivery: Any message is delivered, unless the sender fails, or some participant(s) is(are) inac-
cessible.

Synchronism
Px7 The time between any service invocation and the (eventual) subsequent indication at any recipi-

ent (Te), as well as the time between any two such (eventual) indications (Ti), are:
– Loose synchronism:∆Te and ∆Ti may be not negligible, in relation to max Te.
– Tight synchronism:∆Te and ∆Ti are negligible, in relation to max Te

Agreement
Px8 Unanimity: Any message delivered to a participant, is delivered to all correct addressed partici-

pants.

Px9 At-least-N: Any message delivered to a recipient, is delivered to at least N correct recipients.

Px9.1 At-least-To: Given a subset Paddr of the recipients, any message delivered to a recipient, is de-
livered to all correct recipients in Paddr.

Px10 Best-effort-N: Any message delivered to a recipient, is delivered to at least N correct recipients,
in absence of sender failure.

Px10.1 Best-effort-To: Given a subset Paddr of the recipients, any message delivered to a recipient, is
delivered to all correct recipients in Paddr, in absence of sender failure.

Order
Px11 Total order: Any two messages delivered to any correct recipients, are delivered in the same

order to those recipients.

Px12 Causal order: Any two messages, delivered to any correct participants of any group, are deliv-
ered in their “precedes” order.

Px13 FIFO order: If any two messages from the same participant, are delivered to any correct recipi-
ent, they are delivered in the order they were sent.

Table 1: Group communication properties

delivers the message to the intended recipients. Additionally, a
logical addresscan be associated with a multicast group, allow-
ing all group members to be addressed through a logical name.
This frees the programmer from having to deal explicitly with
selective address lists. Note that a logical name can be seen as a
pre-defined address list, containing the addresses of all group
members, and being constantly updated upon every group
change.

g The third goal of the group communication service is to provide
an execution environment that applies algorithms to ensure a

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 339

given set of desirable properties.† These properties are summa-
rized in Table 1. Validity and synchronism properties (Px4, Px5,
Px6 and Px7) are desirable in most communication systems.
They usually state that the user can trust the system in the sense
that messages are not corrupted, arbitrarily lost or spontaneously
generated. Synchronism properties assure that the service is pro-
vided within known time bounds. Timely behavior of the proto-
col is of major relevance in real-time systems. Agreement prop-
erties describe when, and to whom, a multicast message must be
delivered. The strongest property in this set is unanimity (Px8).
Unanimity states that a message, if delivered to a correct partici-
pant, will be delivered to all other correct participants despite the
occurrence of faults. This may be stronger than usually required.
For instance, queries to replicated servers need only reach one of
the replicas, since all responses would be the same. Quorum-
based protocols are another example where unanimity is not
required. This raised the need to provide different agreement
properties (Px9 and Px10). Finally, order properties specify
which ordering disciplines the protocol should impose on the
messages exchanged between group members. The stronger
property, total order (Px11) assures that the messages are deliv-
ered in the same order to different participants. Causal (Px12)
and FIFO (Px13) are different, less costly, ordering disciplines
that can provide better performance for those applications not
requiring total order.

Clearly, all these different requirements cannot be provided in an
efficient manner by a single communication primitive. That is why the
Group Communication Service provides several qualities of service
[Rod91a]:

g Best-Effort. Acknowledged datagrams with retries to reach a
certain quorum. Quorum can be set by either a number of mem-
bers or a subset of addressees.

g Reliable. Acknowledged datagrams with retries and Quorum
specification like in Best-effort but with guarantee of delivering
even if the sender fails.

g Causal. Reliable quality of service respecting the “happened
before” order.

g Atomic. Datagrams delivered to all members (including the
sender) or none with total order within the group.

g Tight. Total order datagrams within a group with queue re-
ordering for priority handling of messages and approximate same
time delivery.

g Delta. Support for total order of messages based on global time
(achieved by synchronized virtual clocks).

3. Design
The design of the Group Communication Service was driven by a num-
ber of goals:

g Exploitation of technology offered by the network infrastructure.

g Offer a versatile set of primitives that can satisfy all application
requirements regarding group communication.

hhhhhhhhhhhhhhhhhh
† For a more detailed study the reader is referred to [Ver89a].

340 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

M

LSE

operating environment

Abstract Network

xAMp
G
S

DIALOG

SYNC

Figure 1: Modules in the Group Communication Service

g Highly responsive behavior of all primitives.

g Entry points at all layers are accessible by the user of the service.

Another goal was to design the Group Communication System as a
highly portable software system suitable for integration in several dif-
ferent operating environments. User level programming environments
are getting more and more standardized, and it is becoming easier to
develop software that is portable at this level. At the operating system
level the situation is the contrary, manufactures are moving away from
the original base (often BSD UNIX) making it more difficult to built
portable kernel modules. We have gone through considerable effort to
design our Group Communication Service in such a way that the core
part of the system is highly portable, and is surrounded by a number of
well defined modules that implement the environment dependencies.

The following modules are part of the Group Communication Service
(see also Figure 1):

g Local Support Environment – Offers an environment indepen-
dent interface to system specific functions, such as memory allo-
cation, timers, buffer management and event handling [Fon90a].

g Abstract Network – This modules implements all network prop-
erties common to networks that need to support group communi-
cation [Ruf91a]. It handles address management, the sending of
messages, filtering of incoming messages, and supplies support
for algorithms that are based on properties like bounded execu-
tion time.

g xAMp – The core protocol kernel, implementing the Qualities of
Service described in Section 2 [Rod92a].

g MGS – The Multicast Group of Stations protocol. This is a low
level processor group membership protocol designed to support
membership and addressing techniques [Rod92b].

g SYNC The Clock Synchronization Service. Algorithms are
implemented to achieve synchronized virtual clocks, creating a
global time base [Rod91b].

g Dialog This is the interface module to make the system work
with each of the three standard UNIX communication interfaces
socket, streamsand device driver.

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 341

Each of these modules is described in detail in the following sections.
In nearly all sections we provide some implementation details. These
details are related to the SunOS and MACH 2.5 ports. Ports to other
environments have also been made but are out of the scope of this
paper as the are not considered as “standard workstations”.

4. Local Support Environment
The Group Communication Service is designed to be environment
independent, resulting in a highly portable protocol core that has no
dependencies to a particular operating environment and a well
described interface that covers all possible environment specific inter-
actions. Minimal porting efforts are needed to bring the service to
another environment.

To be able to shield the protocols from all environment dependencies a
Local Support Environment(LSE) has been developed [Fon90a]. This
LSE is not only a product of theoretical design, but it reflects our expe-
riences with porting the Group Communication Service to different
platforms. Especially in the areas of timer and buffer management the
design of the LSE modules have undergone substantial changes through
the years, to arrive at a point where they have become generic pack-
ages, usable by designers of any protocol, offering more functionality
then the underlying operating system provides.

In addition to the modules that implement the interface to the environ-
ment dependent system parts, a number of generic data structure han-
dling routines have been integrated into the LSE, adding easy to use
pools, lists, etcto the protocol development environment. There is an
overhead in making these data structure handling routines generic, but
during the design phase it shortens the prototyping path. If during
profiling it turns out that the generic manipulation introduces a substan-
tial performance penalty, dedicated implementations of the data struc-
ture handling routines are built.

When porting to a different operating system environment, the depen-
dent parts of the LSE need to be re-implemented to match the new envi-
ronment. The environment dependent modules include:

4.1. Buffer Management

How to construct and manipulate messages is of extreme importance
when designing high-performance protocols [Bir84a, Che88a, Hut89a,
Dru92a, Sch89a, Ber89a]. Former research pointed out that operations
on message buffers are often bottlenecks in the performance of net-
work software. Especially the copy operations are to be avoided.

Although an effort has been made to design the LSE buffer manage-
ment as efficient as possible, the avoid to copyrule dominates the
design, resulting in that the operating system specific buffer manage-
ment scheme is left intact as much as possible.

In the UNIX kernel and the MACH macrokernel versions this resulted in
using the LSE buffer management as a frontend to operations on
mbuf ’s. The only need for copying is from user to kernel space and
from kernel to device space. These are, given the current structure of
UNIX, the minimum number of operations that you have to apply. The
new mbuf scheme in SunOS 4.1.1, which makes it possible to add pri-
vate manipulation functions to arbitrary sized mbuf’s, looks promising
for designing dedicated buffer management. But for the time being it is

342 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

inadequate because the network devices will still use the old scheme
for assigning frames to buffers. To convert to the new style mbuf’s an
extra copy operation is needed.

The LSE buffer management is implemented as a regular mbuf chain in
which the first mbuf has data size zero (0) and contains only adminis-
trative data for buffer manipulation. When passing the mbuf chain to
standard kernel routines, these routines will discard this first mbuf.

The user of the buffer management is presented a contiguous buffer in
which read and write operations can be done at any desired location
and headers and tails can be added and removed without caring about
the mbuf representation.

4.2. Memory Management

This module presents an interface to allocating and releasing pieces of
memory. The routines in this module are merely function calls to the
system routines that perform memory allocation. No direct translation
can be made because often the malloc and free calls have different
semantics when used in different environments. The SunOS kernel
version of free for example expects the number of released bytes to be
given as an parameter, while most higher level versions of this routine
can be satisfied with just an address of the memory block. Some clever
tricks have to be used if one wants to keep the interface as efficient as
possible. In the UNIX kernel the memory is taken of the kernel heap,
which turns out to be out an expensive operation. This justified the
design of a local memory management package that would overcome
all these difficulties, but adding this type of complexity does not out-
weigh the advantage. When designing the protocols care has been
taken only to use dynamic allocation in startup phases and when there
is not critical impact on protocol performance.

4.3. Timer Management

A module with standard timer operations is based on operations on a
delta list of timers using the kernel timeout function to fire a timer
interrupt function.

Timers can be created, destroyed, started and stopped. Two types of
timers are available:

g A-synchronoustimers which execute a registered function at the
moment they expire.

g Synchronoustimers which will send a timeout message to a mes-
sage queue once they expire.

Using synchronous timers can enhance the simplicity of the protocol
code as there is no need for complex interrupt handling of timer trig-
gered routines. Concurrency is locked out of the design of the protocol
state machines to simplify the state transition mechanisms.

4.4. Debug and Logging Management

This module offers convenient routines for printing warnings, errors
and debug statements. It also provides interface for time measurement
to enable intra-kernel performance management.

When operating normally or with a small number of debug messages
the system makes use of the syslog facility or writes directly to the con-
sole device. When the number of debug messages is expected to
become high, the messages can be send to a special xamp-debugdevice

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 343

that handles the messages very efficiently. Extreme care has to be
taken when writing verbose debug messages to the console of a SUN
workstation, as this console is so slow that it can effectively block the
execution of protocols when printing for longer periods, making the
protocol deaf and dumb for unacceptable periods.

4.5. Generic Data Structures

As described earlier the LSE also has a small set of generic data struc-
ture handling routines:

g Pools A pool of a certain type of data structures can be created,
data units can be requested and returned to the pool, (re-) initial-
ization routines can be specified to be called each time a data unit
is returned to the pool.

g Queues A collection of generic single and double linked lists
routines.

g Plists A list of data structures that reside in a pool linked by a
list.

5. Abstract Network
At the basic to the design of the Group Communication Service is the
strategy to take advantage of Local Area Network (LAN) technology,
using different types of LANs like 8804-4 token-bus [ISO85a], 8802-5
token ring [ISO85b], FDDI [X3T86a] and Ethernet [ISO85c]. Although
these LANs are quite different in their use of technology, one can deter-
mine a general set of properties that are to be offered by every LAN
[Ver91a]. The Abstract Networkis used to hide the LAN specific
details from the protocol environment [Ruf91a], exporting a number of
helpful (Table 2) properties that are used to implement the properties of
the group communication protocols. These abstract network properties
are partially provided by the LAN technology and is complemented by
additional software.

The properties Pn1 and Pn2 guarantee detection of erroneous delivery
by the LAN in case of the broadcast/multicast case. Properties Pn4 and

ii

Pn1 Broadcast: Destinations receiving an uncorrupted frame transmission, receive
the same frame.

Pn2 Error detection:Destinations detect any corruption by the network in a locally
received frame.

Pn3 Bounded omission degree:In a network with N nodes, in a known interval, cor-
responding to (k+1) series of unordered transmissions, such that each of the N
access points transmits one frame per series, all transmissions are indicated in
all destination access points, in at least one series.

Pn4 Full duplex: Indication, at a destination access point, of frame reception, during
transmission by the local source access point, may be provided, on request.

Pn5 Network order:Any two frames indicated in two different destination access
points, are indicated in the same order.

Pn6 Bounded transmission delay:Every frame queued at a source access point, is
transmitted by the network within a bounded delay.iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Network Properties

344 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

Pn5 are the foundation for the ordering properties of the group commu-
nication protocols. Pn3 and Pn6 define the behavior in the time
domain, Pn3 denotes a bounded omission degree, based on failure
detection and fault treatment, Pn6 depends on the particular network,
its sizing, parameterizing and loading conditions. The Abstract Net-
work, in a sense, extends the concept of LLC,† the LAN independent
sublayer of the IEEE, and later ISO 802 standard [ISO85d].

5.1. Abstract Network Primitives

The user of the abstract network service has a number of primitives
available for interaction with the network [Ruf91b].

g Data Request primitives.These primitives request the transmis-
sion of a frame.

♦ Group request – multicast this frame to all members of a
given group.

♦ Selective request – multicast this frame to a given subset
of the members of a group.

♦ Individual request – send the frame to a specified station.

g Data Receive primitives– Indications of data from the network,
or confirmations from the network interface if a given data
request has been served or not.

g Network Management primitives– These primitives provide
interaction with manageable objects in the abstract network like
addresses, network sizing, load control, traffic monitoring, proto-
col characterization. All objects can be read, some can be set to
new or predefined values.

g Station Management primitives– a number of primitives manipu-
late the stations presence on the network and the management of
the multicast address space it will receive frames on.

♦ Stations can be inserted or removed from the network.
The routines initialize or shutdown the internal abstract
network protocols and control the presence of the station
on the network.

♦ Groups can be opened and closed. This is the manage-
ment of the multicast address space using either hardware
or software selection.

♦ Selective addresses can be set or removed. These are the
identifiers used as the station selective address, used in
subset addressing.

♦ Fault injection mechanisms like making the station deaf
or dumbto introduce faults for protocol testing.

g Notification primitivesfor flow control, network failure detection
and station management.

5.2. Abstract Network Implementation

The Abstract Network presents the user with an interface to the real
network network, through use of the primitives from the previous sec-
tion. But not all network controller give the designer the same set of
mechanisms to implement the Abstract Network, often additional soft-
ware is needed to implement all properties of the Network correctly.

hhhhhhhhhhhhhhhhhh
† Logical Link Control sublayer.

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 345

Implementations have been made for token-bus, token-ring and Ether-
net, an experimental implementation for FDDI is in progress.

The abstract network is implemented independent from the xAMp pro-
tocol suite. Within SunOS the only abstract network implemented are
of the Ethernet type (and LAN class, see [Ver92a]). Within each sta-
tion a number of abstract networks instances is available to which a
higher level protocol can connect, either directly from within the kernel
or from user space through a device driver interface. This way the
abstract network is not only available for the group communication ser-
vice for can be used for other types of protocol development as well.

Binding of a protocol to an abstract network is done dynamically, and
after this binding the abstract network instance is initialized to use a
specified network interface (corresponding to its type, only Ethernet in
the SunOS case) and to use a specified network type identifier (the pro-
tocol field in the Ethernet frame header).

An important aspect of the abstract network is the management of the
multicast address space [Vog91a, Vog92a]. To all extend one should
avoid using broadcastor all-multicastmodes of the network controller,
as one looses the advantage of hardware multicast address filtering. If
this can not be avoided there are two possible schemes;

g All stations receive all messages from all other stations partici-
pating in the conversation, and address filtering is done by soft-
ware.

g Messages are send using multiple point-to-point messages.

In both cases the real advantages of hardware multicast are nullified.

Per network interface a module handles the multicast address manage-
ment for all abstract networks connected to that interface. For the Eth-
ernet case there is a mapping between group identifiers and the multi-
cast address, in contrast with the token-bus implementation made for
the SPART/UE real-time environment where the selectiveaddress is
part of the hardware address filtering scheme.

In the Ethernet version the selective address filtering is done by soft-
ware. It are simple, inexpensive bit masking manipulations. Although
the selective address for a particular abstract network can be altered, it
is implicitly connected to the selective address assigned by the MGS to
this station.

For each interface a number of statistics are kept to be able to identify
load, sizing, error rate etc. This information is used to compute round
trip estimates, omission timeouts, transmission delays, etc.

6. The Group Communication Protocol

The core of the Group Communication Service is the eXtended Atomic
Multicast Protocol(xAMp) [Rod92a], which offers a number of quali-
ties of service as described in Section 2 [Rod91a]. The selection of
these QOS’s was driven by user requirements put by diverse classes of
distributed applications. These requirements arisen from the literature
and largely from the needs of the group replication and membership
protocols of Delta-4 architecture.

In the following Sections we describe the basic transmission procedure
and its use by a number of the qualities of service.

346 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

iii

0 // tr −w −resp (m, ord, send, Pr , nr , Mr)
1 // “m” is a message to be sent. (D(m) is the set of recipients).
2 // “ord” is a boolean specifying if network order is relevant.
3 // “send” allows the first transmission to be skipped.
4 // Pr is a set of processors from which a response is expected.
5 // nr is the number of responses expected.
6 // (usually nr = #Pr ; Pr =D (m))
7 // Mr is a bag of responses
8
9 retries : = 0;

10 do // while
11 if(retries = 0 | ord) then
12 Pw : = Pr ; nw : = nr ; Mr : = 0 ;
13 fi
14 if(retries > 0 |send) then send(m) ; fi
15 timeout : = 0; start a timer; // wait responses
16 while (nw > 0 & ¬ timeout) do
17 when response(r m) receivedfrom p & p ∈ Pr do
18 add(r m) to Mr ;nw : = nw −1;
19 remove pfrom Pw ; od
20 when timer expiresdo
21 timeout : = 1; od
22 od
23 retries : = retries+1;
24 while(retries < MAX & nw > 0)
25
26 if(nw > 0) then check membershipfiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2: Transmission with response (tr-w-resp) procedure

6.1. The Transmission with Response Procedure

Basic to the xAMp is the use of the abstract network service which
offers an unreliable multicastservice. In absence of faults the broad-
cast (Pn1), full duplex (Pn4) and network order(Pn5) properties of the
abstract network provide message delivery at all connected stations in
the same order. However, although errors can be considered rare in
LANs, the occasional loss of messages – or omissions – cannot be pre-
vented. Thus, the communication service must be able to recover from
such errors. In the xAMp, omission errors are detected and recovered
using a transmission with response procedure: it uses acknowledgments
to confirm the reception of the message and detects omission errors
based on the bounded omission degreeproperty of the abstract net-
work.†

The tr-w-respprocedure‡ is depicted in Figure 2. It consists of a loop,
where the data message is sent over the network and responses are
awaited for. The procedure waits during a pre-defined time interval for
the responses (l.15), which are then inserted in a response bag (l.17)
and exits when the desired number of responses is collected. If some
responses are missing, the response bag is re-initialized (l.12) and the
message re-transmitted. The main loop finishes when all the intended

hhhhhhhhhhhhhhhhhh
† The detailed technique, as well as its advantages over other approaches such as diffusion based masking is discussed in detail in
[Ver91a].

‡ It is a modified version of the procedure given in [Ver90a].

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 347

responses are received or when a pre-defined retry value is reached
(l.23).

To preserve network order, the procedure re-transmits the message
until it is acknowledged by all recipients in a same transmission. When
order is not required, the procedure can be optimized by keeping
responses in the bag from one re-transmission to the other (response
messages are inserted only once in the response bag). For some omis-
sion patterns, this would allow the bag to be filled faster. To activate
this mode, the flag ord must be set to false. Finally, the boolean vari-
able send allows the user to specify that the message should be sent
over the network on the first cycle of the procedure. This parameter is
useful to allow another processors to collect responses – and execute
the procedure – on behalf of the sender without immediately re-
transmitting the message. In later sections we explain how this feature
is used to provide some of xAMp qualities of service.

Several transmissions with response can be executing simultaneously,
on the same or on different machines. We assume that messages can
be uniquely identified. Different re-transmissions of the same message
can also be distinguished. It is thus possible to route any response to
the appropriate tr-w-resp instantiation (also called an emitter-
machine).† To make a protocol tolerant to sender crashes, several
emitter-machines may be activated concurrently, at recipients sites, for
a same message transmission (in this case, responses must be also
broadcasted). See atLeastagreement for an example.

6.2. BestEffort and atLeast Qualities of Service

A number of distributed applications do not need communication prim-
itives that provide very strong order and agreement primitives, but do
want to use the efficient dissemination of messages to a group of sta-
tions. To give support for this type of application demands the xAMp
offers the bestEffortand atLeastprimitives.

BestEffortis used to simply send a message to a group of stations. The
user can specify the number of responses needed (nr), or which named
subset of addressees (Pr) needs to acknowledge the message. If the
number of requested responses is zero the service is equivalent to an
unreliable multicastservice.

The bestEffortquality of service is not able to assure delivery in case
of sender failure. In order to provide assured delivery, in the presence
of sender failures, we make every recipient responsible for the termina-
tion of the protocol. In consequence, tr-w-resp is invoked both at the
sender and at the recipients, as depicted in the figure (l.7). However, to
avoid superfluous re-transmissions of the data message, recipients skip
the first step of the tr-w-respprocedure, using the send boolean param-
eter). In the no fault case, the data message will be acknowledged by
all intended recipients, these acknowledgments will be seen by the all
the participants and no retransmission takes place.‡ As with bestEffort
several variants on agreement are possible by choosing the set of sta-
tions that need to respond (Pr) or the number of responses (nr) needed.

hhhhhhhhhhhhhhhhhh
† Since several emitter-machines can run in parallel, the protocol implementation is able to execute several user requests at the same
time. However, since a node usually has limited resources (memory and cpu), the implementation may restrict the number of simulta-
neous transmissions, for instance keeping a fixed size pool of emitter machines. Some qualities of service may impose additional re-
strictions on parallelism.

‡ This algorithm can be improved to avoid multiple retransmissions when a single omission occurs, by making the recipients use
slightly different timeout values, and making the protocol refraining from re-sending when a retransmission from other participant is
detected before the timeout expires.

348 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

If the number of responses needed is smaller then the set of addressed
stations (nr ≤ #D(m)), the primitive will assure that at least that num-
ber of the addressees receive the frame even if the sender fails. This is
satisfactory to implement quorum based protocols.

In the case where the number of responses required is equal to the
number of members of the group, the primitive is also called reliable
multicast. Reliable multicast is used as the base of two other qualities
of service: causaland delta.

6.3. The Atomic Quality of Service

The atomic quality of service, in relation to the other qualities of ser-
vice previously described, introduces the assurance of total order. This
can be achieved exploiting the properties of the abstract network: in
fact messages are naturally ordered as they cross the LAN medium
(abstract network property Pn5). To preserve network order, a mecha-
nism must be implemented to ensure that the messages are delivered to
the user respecting the order they have crossed the network and, when
a message crosses the network several times, that a unique re-
transmission is used to establish this order. This requires extra work
both at the sender and at the recipient sides, as described below.

In each recipient, is maintained a reception queue, where messages are
inserted by the order they cross the network. Since at the moment of
reception, a recipient as no way to know if the message was also
received by the other recipients, the message cannot be delivered
immediately to the user. Instead, it is stamped as unacceptedand kept
in the queue until there is an assurance that it was inserted in the same
relative position in all recipient’s queues. If meanwhile, a re-
transmission is received, the message is moved to the end of the queue.
On its side, the sender invokes tr-w-resp activating the “ord” flag, thus
requiring the re-transmission of the message until all recipients
acknowledge the same retry. When a successful re-transmission is
detected, the sender issues an accept frame, committing the message.
When the accept frame is received, the recipients mark the associated
message as acceptedand deliver it as soon as it reaches the top of the
queue.

If a receiver is not able to process the message† due to lack of resources
like buffer space or scheduling guarantees it notifies the sender by
returning a not-ok acknowledgementto the sender. The sender reacts
on the receipt of such a negative acknowledgement by issuing a reject
instead of an acceptmessage. Upon receipt of the reject all recipients
discard the corresponding data message.

The atomic service consists of a two-phase accept protocol (see Figure
3) that resembles a commit protocol where the sendercoordinates the
protocol: In the dissemination phase the data message is sent to all
recipients, who have to respond if they will be able to process the mes-
sage. In the second phase (decision phase) the sender decides to send
either an accept or a reject message. To increase performance the
accept message is sent using a negativeacknowledgement scheme: If a
recipient has not received a decision message due to an omission, it
will detect this through a timeout mechanism and send a Request-
Decision frame. Using this scheme a second round of acknowledge-
ments is avoided increasing the performance. In the scenario where
there is an omission of an acceptmessage, termination of the protocol

hhhhhhhhhhhhhhhhhh
† More related work on inaccessibilitycan be found in [Ruf92a, Ruf92b].

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 349

error in
DECISION
PHASE

error in
DISSEMINATION
PHASE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T1 T0

Ti

Wait Decision
Timer

Wait Response
Timer

Data Indication

Data Indication

Timeout

RecipientsSender

Data Req.

Data conf.

Data ind.

data

data

accept

request
desicion

accept

Figure 3: Structure of the multi-phase Atomic Multicast protocol

is delayed but due to the low error rate expected in local area networks,
throughput is significantly improved.

Since in the two-phase accept the sender coordinates the protocol,
some exception mechanism must be implemented to overcome its fail-
ure. In the atomic quality of service, protocol execution is carried on,
in the event of sender failure, by a termination protocol. This termina-
tion protocol is executed by an atomic monitorfunction. There is no
permanent monitor activity however – so to speak, a monitor only
exists when needed. The monitor impersonates the failed sender but
never re-transmits a data message on its behalf. It just collects infor-
mation about the state of the transmission and disseminates an decision
(reject or accept) accordingly [Ver90b].

7. Clock Synchronization
A number of classes of distributed applications require access to a glo-
bal time base, for implementation of coordinated decentralized actions
in the time domain, sensoring, performance measurement or times-
tamping of events.

It is possible to provide such a timebase by using a centralized time ser-
vice, resident in a single node of the system. This solution is not fault-
tolerant, exhibits poor performance if clocks need to be frequently
read, and errors are introduced due to variation of transmission delays.
The common solution for the clock synchronization problem lies on
using the processor hardware clock to create a virtual clock at each
node, which is locally read. All virtual clocks are synchronized by a
clock synchronization algorithm.Surveys of existing clock synchro-
nization algorithms can be found in [Sch87a, Ram90a, Kop89a]. Of
the available software algorithms the convergence-non-averaging algo-
rithms are attractive because they use the convergence function both to
generate the re-synchronization event and to adjust virtual clocks.

350 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

However, the existing algorithms of this class have a major disadvan-
tage: the precision of their convergence function is limited by the maxi-
mum message transmission delay in the system.

Verissimo and Rodrigues [Ver92b] have developed an algorithm which
overcomes the limitation caused by the uncertain message delays, by
using the properties of broadcast networks. The algorithm is imple-
mented within the Group Communication Service using dedicated ser-
vices available to the xAMp protocol suite [Rod91b].

The global time is available to the user through library functions that
read the virtual clock value.

8. Processor Management
To provide efficient management of stations, a low-level processor
membership protocol [Rod92b] is developed that deals with availability
information on the nodes in the network. This information is not static:
during the lifetime of the system, stations will join, leave and, possibly,
fail. The protocol runs directly on top of the LAN (Abstract Network)
to achieve improved performance and to offer a service that can be
used by other protocol layers.

The processor membership has two major goals:

g It keeps a complete, and updated, list of a selected group of sta-
tions, participating in the multicast traffic (target systems typi-
cally include up to 32 nodes). This group is called the Multicast
Group of Stationsor simply MGS. The MGS protocol assures
that the membership view is updated consistently in the presence
of joins, leaves and failures. Changes in the MGS membership
are indicated to the protocol users.

g It implements a mapping function that translates unique node
identifiers into short-addresses. To enable run-time
reconfiguration, the mapping is not statically pre-defined and
new stations are able to, at any time, obtain a short-address. This
mapping is universaland stable, meaning that, in all stations, the
same short-address corresponds to the same station and that cor-
respondence remains unchanged during the lifetime of the sys-
tem.

The use of short addresses, as also exploited in Autonet [Sch90a], is to
provide fast address manipulation based on bitmasking. These opera-
tions provide a significant performance improvement and, when the
maximum number of multicast stations is small, allows the recognition
of selective addresses to be implemented in hardware, by the chipset of
the underlying network.†

8.1. Protocol Service

Our group membership protocol provides the mapping function
referred above by maintaining a table with information about all sta-
tions participating in the multicast traffic. For efficiency and fault-
tolerance, the table is replicated at every group member. The table
includes an array of state entries, each entry storing information about a
given member of the group: an entry contains, at least, the node unique
identifier and a boolean stating if the node is alive. Additionally, the

hhhhhhhhhhhhhhhhhh
† For instance, the MC68824 token-bus controller has a group address maskwhich can be set to filter messages in function of a bit
value.

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 351

DIALOG

LSE / timers

input queuexAMp

abstract network

Figure 4: Interaction between several modules

entry may store user related data. The short-address associated with
each MGS member is stored implicitly: it corresponds to the index of
the associated entry in the table.

A station may be connected to the network without participating in the
group membership protocol. In order to join the MGS group it must
execute a MgsJoinoperation. The join operation requires exchange of
messages with the other MGS members to acquire the state table, insert
itself and obtain a short-address. Upon an insertion in the MGS, a sta-
tion is informed of any change in the MGS membership by an
MgsChangeindication. A station may leave the MGS by executing an
MgsLeaveoperation. The MGS membership is checked at every exe-
cution of a Join or Leave or when a specific MgsCheckoperation is
explicitly invoked. The MgsCheckcan be called periodically or upon
the detection of an event that raises suspicion about the failure of a
MGS member.

When a station joins the MGS, it acquires a short-address which will
remain associated with that station. Even if the station fails or leaves
the MGS group, the short-address remains assigned to the station, such
that the remaining stations can refer to it by the associated short-
address. If the station recovers and executes a new join, it obtains its
old short address. A dedicated operation, MgsDeleteis used to remove
a station from the MGS table and to release the associated short-
address. Since there is a local copy of the MGS table available at every
station, translation between unique identifiers and short-address is a
purely local operation.

Once the MGS protocol has inserted the station into the group it makes
use of the xAMp primitives to assure the detection of failed stations.
The MGS protocol joins an xAMp group that includes all available sta-
tions, within this group keep-alive message are sent to trigger the
Group Monitorin case of failure of a station. The Group Monitor will
automatically call the MGS protocol primitives to assure a consistent
view of the available stations.

9. Dialog
One of the goals in the design of the UNIX kernel version of the Group
Support Service was that the service should be available through the
standard UNIX network interfaces like streamsand sockets. Although

352 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

the structure of both BSD and System V style network protocols didn’t
match the structure of the xAMp protocol core we wanted to make an
effort of offering the service through these interfaces. The interface
between the xAMp and the socket and streams endpoint environment is
named Dialog.

The xAMp is structured as a state machine with an input channel on
which messages from user, network and synchronous timers arrive and
a collection of routines that are called as result of changes in the state
machine, resulting in confirmation and indication messages to the user,
interaction with the abstract network, including sending of messages,
and manipulation of timers (see Figure 4).

The xAMp runs as light weight process(thread) in the kernel, sleeping
on the input queue channel. If a message is placed in the input queue a
wakeup of the xAMp thread is generated. If the xAMp outputs mes-
sages to the user it calls a routine from a predefined collection of dia-
log routines. These routines handle the two types of user messages
generated by the xAMp:

g Confirmation: The requested operation has completed. A
confirmation can be positive or negative regarding the result of
the operation.

g Indication: data output is produced for the user, this could be a
new group or processor view, a time synchronization message or
data received for a group member.

The user can specify through control operations which types of
confirmations and indications he does want to receive.

Confirmations are necessary as the caller is not blocked in the submit-
ting routine until the operation is successful. For the socket version
this requires some additional mechanisms in the dialog module to
maintain the blocking semantics of the sendand write system calls.

The Dialog module for the streamsversion was expected to link up
better with the xAMp, as streams are also model after a submit/
confirmation/indication model. Already in the prototype phase it
became noticeable that using streams in SunOS is a very expensive
method of designing network software, it added almost a 80 msec over-
head for interaction with the abstract network driver. This scale of
delay was unacceptable for our goals, and we stopped with the devel-
opment of the streams driver.

As an alternative to the streams environment we built a Dialog inter-
face to a regular UNIX device driver that has the same user semantics
as a streams driver. This implementation turned out to have good per-
formance with low overhead, as all message handling is tuned for this
specific environment.

The driver, as well as the socket code, supports all UNIX type opera-
tions like select, signals, non-blocking read, etc.

10. Formal Specification and Verification
There is now a general agreement that protocols must be validated. We
have chosen to do a formal design specification (as opposed to simula-
tion) because this will give you insight in possible errors in your proto-
col design. As an approach to formal verification we decided to use
model checking instead of deductive proof methods for the same rea-
son: it is of great help for the detection of errors. In order to apply
these techniques, one needs the description of a complete system con-

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 353

sisting of a fixed number of communicating entities and their interac-
tion environment. Such a complete system is called a scenarioPracti-
cally, validation comes down to the construction of a certain number of
critical scenarios and their formal verification by using a tool.

For the verification of AMp we have used the verification tool Xesar
[Ric87a, Gra89a]. This tool evaluates properties given by formulas of
temporal logic on a model generated from a scenario to be verified.
The model represents the complete state graph obtained automatically
from a scenario written in Estelle/R, a variant of Estelle (communica-
tion is modeled by rendez-vous). The basis for the verification is the
complete Estelle/R design specification of the AMp. Since a closed
system (for each message, the sender and the receiver must be
described) is needed for the verification, a description of the environ-
ment is also needed, i.e. the modeling of the adjacent protocol layers:
the network layer and the user layer.

The work on the verification of the AMp has been very successful, a
number of possible errors has been found, and the results of the
verification have given us great confidence in the correctness of the
protocol [Bap90a].

The implementation was also subject to a validation effort: a fault
injection campaign is in course, with the aim of forecasting faults and
assisting in its removal, with the help of a specialized tool [Arl90a].

11. Performance Measurement
Throughout this paper we have stated that achieving a responsive ser-
vice was one of the main goals to achieve. In this section we will
describe some of the performance measurements we have executed.
The next section will focus on comparing these results with those of
comparable systems.

The measurements have been performed in two different operating sys-
tem environments:

g SunOS 4.1.1 – running on SPARCstations I, IPC’s and SLC’s

g Mach2.5 – running on 33Mhz i486 machines of Taiwanese ori-
gin.

The environments differ most in the implementation of the Abstract
Network. We did not have the source code for the SunOS operating
system available and used the ether_familymechanism to insert are
protocols in the de-multiplexing process. For the Mach2.5 port we
were able to implement the Abstract Network exactly as we designed,
having access to all functionality of the lowest layers.

Measurements were done by using the special performance device
driver, which allows us to make timestamps at different stages of the
frame manipulation process, collecting these timestamps afterwards.

The main application of the Group Communication Service is in the
area of responsive and real-time systems. In this context we are more
interested in the timely execution of the primitives and in the excep-
tions in the execution times. We recognize the importance of through-
put of large batches of messages, but the protocols are tuned towards
single message handling and guaranteed timely termination of the pro-
tocols.

The first set of measurements are to determine the latency caused by
the Abstract Network and the physical transport over the network. Rel-
evant is the size of the buffer used. The number of stations used is not

354 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

xAMp: Reliable QOS

0

500

1000
2

3

4

5

6

1.5

2

2.5

3

3.5

message size

#stations

execution time (ms)

’rel.conf’
’rel.ind’

Figure 5: Performance of the reliable quality of service

of any influence as all message are transmitted using hardware multi-
cast.

When selecting only the i486 machines the latency dropped
significantly with 30 to 35%, this is caused by the more optimal
abstract network implementation.

The variance of the large buffer transfers is larger because of the colli-
sions on the network. When we repeated the tests on an isolated Ether-
net and the variance approaches that of the smaller buffers.

The second series of tests involved measurements of the bestEffort,
atLeastand reliable primitives. As these primitives involve exchanges
of acknowledgements the number of stations plays a role in the perfor-
mance of the protocols. Two points of measurement are taken:

1. The moment the data is indicated to the user.

2. The moment the sender is confirmed of the termination of the
protocol.

All three primitives are not concerned with ordering properties and
indicate the data as soon at it arrives at the Group Communication Ser-
vice. The protocols terminate after the requested number of the
specified subset of group members have acknowledged the message
(see Figure 5).

ii

Abstract network roundtrip time (msec)ii

frame size (bytes) i486 & SPARC stations i486 stationsii

1 1.04 0.78
100 1.13 0.82
200 1.27 0.87
500 1.32 0.93

1000 1.39 1.01
1450 1.48 1.12iicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

Table 3: Abstract network latency

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 355

iii

Group membership primitivesiii

stations 0 1 2 3 4 5iii

join 2.5 3.2 4.1 4.9 5.6 6.8
leave 1.2 2.0 2.4 2.6 2.9 3.2iiicc

c
c
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c
c
c

Table 4: group join performance

In case of the causal ordered primitive, there is a small overhead for
handling of the ordering protocol which resides on top of the reliable
primitive. But we have noticed that in the case when all related mes-
sages already have been received the overhead is in the order of 170
microseconds.

The atomic primitive is a two-phase accept protocol (see Figure 3)
that confirms the user about the result of the operating after the dissem-
ination phase and indicates the data after the decisionphase (see Fig-
ure 6).

As the last results we want to report on the performance of the group
membership primitives. In Table 4 the costs of joining and leaving a
group is presented.

12. Performance Comparison
From all published research in the area of group communication we
will discuss our results in comparison with the results of ISIS, Amoeba,
and Consul/Psync. We have chosen these three systems because they
all represent a different main stream in group communication.

The ISIS[Bir91b] toolkit offers a versatile set of communication primi-
tives combined with higher level implementations of distributed algo-
rithms. The ISIS protocols run in user space using the standard com-
munication channels. The authors have put the emphasis on throughput
sacrificing some of the responsive behavior. As the toolkit relies on the

xAMp: Atomic QOS

0 100 200 300 400 500 600 700 800 9001000
2

3

4

5

6

2.5

3

3.5

4

4.5

message size

#stations

execution time (ms)

’indication’
’confirmation’

Figure 6: Performance of the atomic quality of service

356 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

standard Internet protocols to transport their messages they are not
bound by the scope of a Local Area Network, but do have to deal with
the sometimes unpredictable behavior of the UDP/TCP/IP layers. Obvi-
ously these transport methods make the toolkit very portable but a
significant performance penalty is paid to achieve this.

The ISIS CBCAST primitive is comparable with the reliable/causal
primitive offered by the xAMp protocol suite. The ABCAST can be
compared with the atomic two phase accept protocol described earlier,
although ABCAST is not able to distinguish inaccessibilityfrom com-
munication or processor failure. Although the complexity of the proto-
cols is comparable the performance of the xAMp primitives is much
better, a 0 bytes CBCAST (6 stations) takes about 17.8 msec, while the
xAMp causal primitive takes 2.96 msec (confirmation). For 1K packet
the costs are 21.1 and 3.9 msec respectively.

The performance analyses given in [Bir91c] show that more than 75%
of the measured latency in the ISIS system is caused by the operating
system layers. Our Group Communication Service gains in perfor-
mance by locating its service as close to the network as possible,
bypassing as much system layers as possible. Another reason for the
improved performance is the use of hardware multicast by the abstract
network, minimizing the message traffic. At Cornell a total redesign of
ISIS is in progress which will result in a system that will approach the
perform of the xAMp primitives.

In Amoeba[Tan90a, Ren88a] the group communication service offers
only one primitive: total order within a group [Kaa89a]. The protocol
uses sequencer sites to regulate the order of the messages. The proto-
cols simpleness results in very high performance but lacks the ability to
be used in more complex environments with different application
requirements. Some of the major criticisms are the inability of the pro-
tocol to support overlapping groups and the lack of timely omission
detection. Recently the protocol has been adjusted to make use of the
Fast Local Internet Protocol (FLIP) [Kaa92a] which provides reliable
multicasting. Ongoing research at the Vrije Universiteit is focused on
extending the current protocols.

When comparing performance figures it is clear that the complexness
of our service makes it not competitive with the less versatile service of
Amoeba. On a lightly loaded Ethernet the Amoeba protocol makes an
atomic broadcast to 10 station within 1.5 msec. There are no acknowl-
edgements involved, and there is little overhead from the network
interface modules.

Consul [Mis92a] is a communication substrate for building fault-
tolerant systems, the system relies heavily on the services offered by
Psync, a group communication protocol designed to preserve causality
based on the use of a context graph. The systems are build within the
x-kernel [Hut90a], a protocol development environment from the Uni-
versity of Arizona. The performance of this dedicated environment is
almost comparable to our implementation, both causal and total order
service have a latency that is 0.5 to 1.5 msec higher than the xAMp
protocols. We believe the slightly worse performance of the total order
service can be related to the fact that this service is build on top of the
causal order primitive.

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 357

13. Lessons Learned

Some conclusion from the practical side are:

g Having multiple qualities of service helps the builder of dis-
tributed applications to minimize communication cost.

g Exploiting network properties makes building of group commu-
nication easier and more responsive.

g Integration inside the operating system has yielded good per-
forming service.

g Integration into a operating system without having access to the
source code should be avoided.

g Implementing responsive protocols using SunOS streams is not
possible.

g Using formal verification techniques has improved the
confidence in the correctness of the protocols.

g The different addressing modes have improved the usefulness of
the service.

g The short addresses have improved the address manipulation
enormously but do not scale well.

g Portability is possible even within between operating system
code if at design time an effort has been made to locate system
dependencies.

The experiences with the design of the group support service form the
basis of a report on requirements for building group support systems,
see [Vog92a].

14. Future Directions

Our current research continues to focus on integration of the group
concept in different areas of distributed computing. Our main goal is to
achieve a high performance group service that can be used in real-time
and responsive systems. We will also focus on how to build responsive
group support for large scale distributed systems, especially in the area
of CSCW. Another main line is the development of group management
protocols [Ver92a].

In the Navigators project we are focusing on a total redesign of the
xAMp protocol suite to to incorporate new ideas on responsive sys-
tems, dedicated support by micro-kernels, low-level high-performance
transport mechanisms, multi-level failure detectors, etc. In the same
environment we try to incorporate internetworking support for group
communication at MAN and WAN scale [Vog91b].

Our new environment is being developed for the Mach 3.0 microkernel
and a prototype is planned for the end of 1992. Also cooperation
between newly designed ISIS modules and Navigators protocols are
foreseen.

Formal verification and specification techniques will be more inte-
grated into the design process as they have shown in our case to
improve the quality of the protocols built.

358 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

15. Summary
In this paper we have presented the implementation of a Group Com-
munication Service aimed at achieving high-performance to support
distributed applications that have responsive requirements. Scalability
has been traded for timely protocol execution of the protocols.

The main concepts are described as well as the actual implementation,
and design decisions have been motivated. For more details on specific
parts of the service the reader is referred to [Ver90b, Rod92a].

We have described the performance of our protocols and compared
these to three other popular group communication services. When
looking at the performance figures is becomes clear that the different
protocols that form the core of our service can compete with any other
know group communication system in both performance and quality of
the offered services.

Acknowledgements

Most of this work has been developed in the scope of the Delta-4 archi-
tecture. We wish to thank M. Baptista, A. Casimiro, M. Chereque,
J. Etheringhton, H. Fonseca, B. Guilmore, R. Ribot, C. Rodriguez,
and J. Rufino for their valuable contribution to the evolution and engi-
neering of xAMp. The authors are indebted to several other people in
the Delta-4 project for the many criticisms and suggestions made dur-
ing the design and implementation of xAMp, particularly to P. Bond,
D. Powell, JL. Richier, D. Seaton and J. Voiron. We also thank the
fruitful exchanges of ideas with Ken Birman, Larry Peterson and Rick
Schlichting.

References

[Arl90a] J. Arlat, M. Aguera, Y. Crouzet, J. Fabre, E. Martins, and
D. Powell, “Fault Injection for Dependability Validation: a
Methodology and some Applications,” IEEE Transactions
on Software Engineering, IEEE (February 1990). Special
Issue of Experimental C.Sc.

[Bap90a] M. Baptista, L. Rodrigues, P. Verı́ssimo, S. Graf, J. L.
Richier, C. Rodriguez, and J. Voiron, “Formal
Specification and Verification of a Network Independent
Atomic Multicast Protocol,” Third International Confer-
ence on Formal Description Techniques (FORTE 90),
Madrid, Spain, IFIP (November 1990).

[Ber89a] Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy, “Lightweight Remote Pro-
cedure Call,” Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pp. 102-113, ACM (1989).

[Bir91c] Kenneth Birman, Andre Schiper, and Pat Stephenson,
“Lightweight causal and Atomic Group Multicast,” ACM
Transactions on Computer Systems9(3) (August 1991).

[Bir91a] Kenneth P. Birman, “The Process Group Approach to
Reliable Distributed Computing.,” TR 91-1216, Cornell
University, Ithaca, USA (July 1991).

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 359

[Bir91b] Kenneth P. Birman, R. Cooper, and B. Gleeson, “Design
Alternatives for Process Group Membership and Multi-
cast,” TR91-1185, Cornell University, Ithaca, USA
(december 1991).

[Bir84a] Andrew D. Birrell and Bruce Jay Nelson, “Implementing
Remote Procedure Calls,” ACM Transactions on Computer
Systems2(1) (February 1984).

[Che85a] D. Cheriton and W. Zwaenepoel, “Distributed Process
Groups in the V-Kernel,” ACM Transactions on Computer
Systems3(2) (May 1985).

[Che88a] Greg Chesson, “XTP/PE Overview,” 13th Local Computer
Network Conference, Minneapolis-USA (October 1988).

[Coo85a] Eric C. Cooper, “Replicated Distributed Programs,” 10th
ACM Symposium on Operating Systems Principles, Berke-
ley, California 94720, USA, ACM (November 1985).

[Cri90a] Flaviu Cristian, Robert D. Dancey, and Jon Dehn, “Fault-
Tolerance in the Advanced Automation System,” Digest of
Papers, The 20th International Symposium on Fault-
Tolerant Computing, Newcastle-UK, IEEE (June 1990).

[Dru92a] Peter Druschel and Larry L. Peterson, “High-Performance
Cross-Domain Data Transfer,” TR 92-11, University of
Arizona, Tucson, USA (March 1992).

[Fon90a] H. Fonseca, L. Rodrigues, J. Rufino, and P. Verı́ssimo,
“Local Support Environment: User Specification,” RT/50-
90, INESC, Lisboa, Portugal (August 1990).

[Gar89a] H. Garcia-Molina and Annemarie Spauste, “Message
Ordering in a Multicast Environment,” 9th Internacional
Conference on Distributed Computing Systems, pp. 354-
361, IEEE (June 1989).

[Gra89a] S. Graf, J. L. Richier, C. Rodriguez, and J. Voiron, “What
are the Limits of Model Checking Methods for the
Verification of Real Life Protocols?,” pp. 275-285 in Auto-
matic Verification Methods for Finite State Systems, ed. J.
Sifakis, Springer-Verlag (June 1989).

[Her89a] A. J. Herbert, J. Monk, and R. van der Linden, The ANSA
Reference Manual,Architecture Projects Management,
Ltd, Cambridge, UK (July 1989).

[Hut89a] Norman C. Hutchinson, Shivakant Mishra, LArry L. Peter-
son, and Vicraj T. Thomas, “Tools for Implementing Net-
work Protocols,” Software – Practice and Experience
(September 1989).

[Hut90a] Norman C. Hutchinson and Larry L. Peterson, The x-
Kernel: An Architecture for Implementing Network Proto-
cols,University of Arizona, Tucson, USA (1990).

[ISO85a] ISO, “Token Passing Bus Access Method,” DIS 8802/4-85
(1985).

[ISO85b] ISO, “Token Ring Access Method,” DP 8802/5-85 (1985).

[ISO85c] ISO, “Carrier Sense Multiple Access with Collision Detec-
tion,” DIS 8802/3-85, ISO (1985).

[ISO85d] ISO, “Logical Link Control,” DIS 8802/2-85, ISO (1985).

[Kaa89a] Frans M. Kaashoek, Andrew S. Tanenbaum, Susan Flynn
Hummel, and Henri E. Bal, “An Efficient Reliable Broad-

360 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

cast Protocol,” ACM Operatings Systems Review, pp. 5-19
(October 1989).

[Kaa92a] Frans M. Kaashoek, Robert van Renesse, Hans van
Staveren, and Andrew S. Tanenbaum, “FLIP: an Internet-
work Protocol for Supporting Distributed Systems,” ACM
Transactions on Computer Systems(1992).

[Kop89a] H. Kopetz, G. Grunsteidl, and J. Reisinger, “Fault-tolerant
Membership Service in a Synchronous Distributed Real-
time System,” Int. Working Conference on Dependable
Computing for Critical Applications, Sta Barbara – USA,
IFIP WG10.4 (August 1989).

[Mis92a] Shivakant Mishra, Larry L. Peterson, and Richard
Schlichting, Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs,University of Ari-
zona, Tucson, USA (1992).

[Pet89a] Larry L. Peterson, Nick C. Buchholdz, and Richard D.
Schlichting, “Preserving and Using Context Information in
Interprocess Communication,” ACM Transactions on
Computer Systems7(3) (August 1989).

[Pow91a] D. Powell, Delta-4 – A Generic Architecture for Depend-
able Distributed Computing,Springer Verlag (November
1991).

[Ram90a] Parameswaran Ramanathan, Kang G. Shin, and Ricky W.
Butler, “Fault-Tolerant Clock Synchronization in Dis-
tributed Systems,” Computer, pp. 33-42, IEEE (October
1990).

[Ren88a] Robert van Renesse, Hans van Staveren, and Andrew S.
Tanenbaum, “The Performance of the Worlds’s Fastest
Distributed Operating System,” ACM Operatings Systems
Review, pp. 25-34 (October 1988).

[Ric87a] J. L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron,
XESAR: a Tool for Protocol Validation – User Manual,
Laboratoire de Genie Informatique, Grenoble, France
(1987).

[Rod91b] L. Rodrigues, P. Verı́ssimo, and A. Casimiro, “xAMp
Time Service Implementation Specification,” RT/-91,
Delta-4 Project, INESC, Lisboa, Portugal (October 1991).

[Rod92a] L. Rodrigues and P. Verı́ssimo, “xAMp: a Multi-primitive
Group Communications Service,” 11th Symposium on
Reliable Distributed Systems, Houston, Texas, IEEE
(October 1992).

[Rod92b] L. Rodrigues, P. Verı́ssimo, and J. Rufino, “A low-level
processor group membership protocol for LANS,” RT/-92,
INESC, Lisboa, Portugal (1992).

[Rod91a] Luı́s Rodrigues and Paulo Verı́ssimo, “xAMp: A Versatile
Group Communications Service,” ERCIM Workshop on
Distributed Systems, Lisboa, Portugal (November 1991).

[Ruf92b] Jose Rufino and Paulo Verı́ssimo, “Minimizing token-bus
inaccessibility through network planning and parameteriz-
ing,” EFOC/LAN92 Conference, Paris, France, IGI (June
1992).

[Ruf91a] J. Rufino, P. Verı́ssimo, and L. Rodrigues, “Abstract Net-
work Specification,” RT/-91, INESC, Lisboa, Portugal
(October 1991).

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 361

[Ruf91b] J. Rufino and P. Verı́ssimo., “Design Requirements of the
Abstract Network User Interface,” RT/-91, INESC, Lis-
boa, Portugal (January 1991).

[Ruf92a] J. Rufino and P. Verı́ssimo, “A study on the inaccessibility
characteristics of ISO 8802/4 Token-Bus LANs,” IEEE
INFOCOM’92 Conference on Computer Communications,
Florence, Italy, IEEE (May 1992).

[Sch87a] Fred B. Schneider, Understanding Protocols for Byzantine
Clock Synchronization,Cornell University, Ithaca, New
York (October 1987).

[Sch89a] Michael D. Schroeder and Micheal Burrows, “Perfor-
mance of Firefly RPC,” Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pp. 83-90,
ACM (1989).

[Sch90a] Michael D. Schroeder, Andrew D. Birrell, Micheal Bur-
rows, Edwin H. Satterthwaite, and Charles P. Thacker,
“Autonet: a High-Speed, Self-configuring, Local Area
Network Using Point-to-point Links,” 59, Digital, Sys-
tems Research Center, Palo Alto, California (April 1990).

[Tan90a] Andrew S. Tanenbaum, Robert van Renesse, Hans van
Staveren, G. J. Sharp, Sape J. Mullender, Jack Jansen, and
Guido van Rossum, “Experiences with the Amoeba Dis-
tributed Operating System,” Communications of the ACM
(December 1990).

[Ver90b] Paulo Verı́ssimo, “Group Communications Support,” in
Delta-4 A Generic Architecture for Dependable Dis-
tributed Computing, ed. D. Powell, Springer Verlag
(1990).

[Ver89a] P. Verı́ssimo and L. Rodrigues, “Order and Synchronism
Properties of Reliable Broadcast Protocols,” RT/66-89,
INESC, Lisboa, Portugal (December 1989).

[Ver90a] P. Verı́ssimo and J. A. Marques, “Reliable Broadcast for
Fault-Tolerance on Local Computer Networks,” Ninth
Symposium on Reliable Distributed Systems, Huntsville,
Alabama, USA, IEEE (Oct 1990).

[Ver91a] P. Verı́ssimo, J. Rufino, and L. Rodrigues, “Enforcing
Real-Time behaviour of LAN-based protocols,” 10th IFAC
Workshop on Distributed Computer Control Systems, Sem-
mering, Austria, IFAC (September 1991).

[Ver92a] P. Verı́ssimo and L. Rodrigues, “Group Orientation: a
Paradigm for Distributed Systems of the Nineties,” 3rd
Workshop on Future Trends of Distributed Computing Sys-
tems, Taipe, Taiwan (April 1992).

[Ver92b] P. Verı́ssimo and L. Rodrigues, “A posteriori Agreement
for Fault-Tolerant Clock Synchronization on Broadcast
Networks,” in Digest of Papers, The 22th International
Symposium on Fault-Tolerant Computing(July 1992).

[Vog91a] Werner Vogels and Paulo Verı́ssimo, “Process Groups and
reliable multicast communication in extended LANs,
MANs and Internetworks,” RT/-91, INESC, Lisboa, Por-
tugal (August 1991).

[Vog91b] Werner Vogels and Paulo Verı́ssimo, “Supporting Process
Groups in Internetworks with Lightweight Reliable Multi-

362 Technical − OpenForum ´ 92 − Utrecht, 23-27 November

cast Protocols,” ERCIM Workshop on Distributed Systems,
Lisboa, Portugal (November 1991).

[Vog92a] Werner Vogels, Luı́s Rodrigues, and Paulo Verı́ssimo,
“Requirments for High-Performance Group Support.,” 5th
ACM SIGOPS European workshop, Mont Saint-Michel,
ACM (September 1992).

[X3T86a] X3T9.5, “FDDI documents: Media Access Layer, Physical
and Medium Dependent Layer, Station Mgt.,” FDDI,
X3T9.5 (1986).

Technical − OpenForum ´ 92 − Utrecht, 23-27 November 363

