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Abstract

The xAMp is a highly versatile group communications service aimed at supporting the

development of distributed applications, with di�erent dependability, functionality, and per-

formance requirements. This paper describes the services provided by xAMp and the pro-

tocols used to implement them. These range from unreliable and non-ordered to atomic

multicast, and are enhanced by e�cient group addressing and management support. The

basic protocols are synchronous, clock-less and designed to be used over broadcast local-area

networks, and portable to a number of them. The functionality provided yields a reasonably

complete solution to the problem of reliable group communication.

Whilst other protocols exist that o�er similar services, we follow a new engineering ap-

proach by deriving all qualities of service from a single basic procedure. Thus, their imple-

mentation shares data structures, procedures, failure-recovery algorithms and group monitor

services, resulting in an highly integrated package.

1 Introduction

Distributed systems are widely used today, encouraging the development of applications that
require progressively more of the distribution support. Well-known styles of distributed com-
puting such as RPC and client-servers, are very useful and mature. Its widespread use was in
fact necessary to show that its point-to-point and request-with-reply nature does not provide an
universal solution to the increasing demands of developers of distributed applications, requiring
complex and highly concurrent interactions between several participants, whose membership
may be largely dynamic. Striking examples are found in the domains of computer supported
cooperative work, and distributed computer control. These and other examples exempli�ed in
the literature [14,18,5], require complementing paradigms.

One such paradigm gaining increasing acceptance is reliable group communication (multi-
casting), concerning the dissemination of information to a group of participants in a system.
The implementation of this paradigm meets a number of problems, due to natural impairments
of the networking machinery: multicasted information can be lost or corrupted; may reach only
a subset of the intended recipients; partitions may occur, leaving the recipients isolated, at least
temporarily. Even when the information is not lost, it may be delivered in arbitrary order or at
an arbitrary time, whereas the user might have expected a given ordering or timeliness.

Algorithms and protocols to solve these problems have been presented in the last years.
They have been named after the several 
avors provided: atomic, ordered, causal, reliable, etc.

�A shorter version of this report was published in the Proceedings of the 11th Symposium On Reliable Dis-
tributed Systems, Oct, 1992 Houston, Texas, c
 1992 IEEE

yInstituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal,
Tel.+351-1-3155150, Fax+351-1-525843. This work has been partially supported by the CEC, through Esprit
Project 1226 - DELTA-4.
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There are systems built according to these principles, using one or more of these protocols,
such as the ISIS group toolbox [5], the group availability services of the IBM AAS [13], the
conversational group support of PSYNC [24], the group membership and replication management
services of the DELTA-4 distributed fault-tolerant architecture [25]. Under a system perspective,
a systematics of group-orientation is developing. It should lead, in a top-down approach, to the
de�nition of group communication and management services in response to pre-de�ned user
requirements: support of application (or problem) classes and group types; required properties
of agreement, order and synchronism; naming and addressing; time and value domain correctness
(fault-tolerance, real-time).

In this paper we present an attempt in that direction, the xAMp, a multi-primitive group
communications service. The xAMp is a complete redesign of its predecessor, the AMp [31],
used as the communications support of the DELTA-4 system1. xAMp is aimed at support-
ing the development of distributed applications, with di�erent dependability, functionality, and
performance requirements. xAMp attributes emerged from the lessons learnt by experimenting
with AMp in DELTA-4 in the past few years: versatility: a range of qualities of service; homo-
geneity: single core for a multi-protocol structure; e�cient name-to-address translation support:
logical group and sub-group addressing, selective physical addressing; knowledge about group
participants: separation of membership management (user-oriented) from monitoring (protocol-
oriented). The xAMp implementation consists of an integrated package, designed to be used
over broadcast local-area networks. We have reasonable con�dence on the utility of the several
xAMp functions, thanks to the scrutiny of the several DELTA-4 consortium partners2, who have
been demanding users of xAMp.

The paper is organized as follows: section 2 provides some comparison with related ap-
proaches and the following section discusses the requirements for group support. In section 4,
the architecture of xAMp is summarized and the protocols used to implement the di�eren-
t qualities of service are presented in Section 5. Section 6 presents the current state of the
implementation and provides some concluding remarks.

2 Related Work

There are quite a few good algorithms published, providing individual group communication
properties, like causal [27,24], total order [22], atomic [9,23,16,12], best-e�ort [10]. If a group
communication support is to be provided, it must supply a range of functionality | let us call
it quality of service or QOS, a terminology very used in the communications community |
including addressing modes, group management support, and delivery properties. There exist
a number of solutions providing varying degrees of order, such as [7,18,14,24]. Our subsystem,
besides a range of order properties, from total and causal to FIFO, provides di�erent agreement
and synchronism properties, such as best-e�ort and at-least, or loose and tight synchrony3.
Their combination, according to user requirements, yields the di�erent qualities of service that
xAMp o�ers.

We follow the approach, pioneered by Birman [4], of encapsulating in a group communication
subsystem a set of QOSs o�ered to users, alleviating them from the task of constructing such
functionality. The alternative approach of providing a single basic all-purpose primitive, as
followed in [24], allows �ne-tuning but leaves the responsibility of constructing the necessary

1The AMp provided only an atomic multicast service.
2Delta-4 is a consortium sponsored by the CEC Esprit II research programme, formed by Ferranti-CSL (GB),

Bull (F), Credit Agricole (F), IEI (I), IITB (D), INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR (GB),
Renault (F), SEMA (F), Un. of Newcastle (GB), designing an open, dependable distributed architecture.

3The de�nition of these and the rationale behind their utility is detailed ahead in the paper.
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services to the higher levels. We also try to keep the advantages of the latter, by providing a set
of primitives, well tested (correctness) and optimized (performance), rich enough to represent
most distributed application requirements.

With regard to the engineering of these multi-primitive services, these are several approach-
es possible. The �rst ISIS protocol suite [4], had two di�erent protocols, which required a third,
special protocol to enforce consistency among them. The approach taken by Malley & Peter-
son [21], consists of providing "micro-protocols" providing basic properties, and interconnecting
them proceduraly, to obtain a given quality of service. While it is the most versatile idea, it
may prove di�cult to e�ciently implement and combine protocols with individual properties,
mainly if not only di�erent order but also agreement and synchronism properties are envisaged.
The xAMp approach consists of a core protocol, from which all combinations of properties are
derived. Most services follow common execution paths, and then branch to speci�c termination-
s. With this approach, code is re-used and structures are shared, it is easier to enforce group
monitoring and consistency among the information streams of the several services. In the most
recent ISIS group communication subsystem, all order properties are also built on top of a basic
causal protocol [7].

Looking at other protocols with more detail: Chang [9] describes an atomic broadcast pro-
tocol where requests pass through a centralized token holder. The degree of tolerance of node
failures can be parametrized, in a trade-o� with e�ciency. A signi�cant latency, which is not
bounded a priori, may build-up due to the method to tolerate failures of the token site. The work
of Navaratnam[23] is inspired on the method of Chang. Garcia-Molina gives a protocol in [14],
inspired on Chang's centralized ordering node, but instead of a node there is a forest of nodes,
in a graph-oriented scheme; their method does not fully take advantage of multicasting facili-
ties and e�ciency depends on groups being reasonably static. The protocol by Kaashoek [16]
is equivalent to the non-fault-tolerant protocol of Chang; it owes its e�ciency to this trade-o�
with dependability, and to the fact that it supposes a bare machine implementation, without the
overheads of an operation system. Among the few works that take advantage of the properties
of broadcast LANs, such as xAMp, we can cite [9,8,22,16].

3 Requirements for group support

The need for support of group activity is based on the assumption, shown correct by a number
of real examples, that in a distributed architecture processes frequently get together to achieve a
common goal. The set of such processes can be called a group. A communication service can be
said to support groups when it provides services that facilitate the design and the execution of
distributed software running on such a group of distributed processes in cooperation, competition
or replication.

The �rst services required in a group support service are, naturally, the group membership
services. A powerful support for groups should allow the dynamic creation { and recon�guration
{ of process groups. During the lifetime of a group, processes may join or leave the group and
the communications service should provide primitives to perform these operations. The failure
of a group member should also be detected and an indication of the event should be provided
to the remaining members.

The second goal of a group support service should be to provide an e�cient and versatile
support for exchange of information between group members. To start with, a multicast commu-
nication service should avoid the need to explicitly perform point-to-point transfers to execute
a multicast operation. Such a service should accept a list of addresses, what we call a selective
address, as a valid destination address for a multicast message and would { transparently {
deliver the message to the intended recipients. Additionally, a logical address can be associated
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Table 1: xAMp Properties.
|||||||||||||||||||||||||{

Consistent Group View

� Px1 - Each change to group membership is indicated by a message obeying total order, to
all correct group participants within a known and bounded time Tg .

Addressing

� Px2 - Selective addressing: The recipients of any message are identi�ed by a pair (g; sl),
where g is a group identi�cation and sl is a selective address (a list of physical addresses).

� Px3 - Logical addressing: For each group g there is a mapping between g and an address Ag,
such that Ag allows all correct members of g to be addressed without the knowledge by the
sender of their number or physical identi�cation.

Validity

� Px4 - Non-triviality: Any message delivered, was sent by a correct participant.

� Px5 - Accessibility: Any message delivered, was delivered to a participant correct and ac-
cessible for that message.

� Px6 - Delivery: Any message is delivered, unless the sender fails, or some participant(s)
is(are) inaccessible.

Synchronism

� Px7 - The time between any service invocation and the (eventual) subsequent indication at
any recipient (Te), as well as the time between any two such (eventual) indications (Ti), are:

{ Loose synchronism: �Te and �Ti may be not negligible, in relation to max Te.

{ Tight synchronism: �Te and �Ti are negligible, in relation to max Te.

Agreement

� Px8 - Unanimity: Any message delivered to a participant, is delivered to all correct addressed
participants.

� Px9 - At-least-N: Any message delivered to a recipient, is delivered to at least N correct
recipients.

� Px9.1 - At-least-To: Given a subset Pto of the recipients, any message delivered to a recipient,
is delivered to all correct recipients in Pto.

� Px10 - Best-e�ort-N: Any message delivered to a recipient, is delivered to at least N correct
recipients, in absence of sender failure.

� Px10.1 - Best-e�ort-To: Given a subset Pto of the recipients, any message delivered to a
recipient, is delivered to all correct recipients in Pto, in absence of sender failure.

Order

� Px11 - Total order: Any two messages delivered to any correct recipients, are delivered in
the same order to those recipients.

� Px12 - Causal order: Any two messages, delivered to any correct participants of any group,
are delivered in their "precedes" order.

� Px13 - FIFO order: If any two messages from the same participant, are delivered to any
correct recipient, they are delivered in the order they were sent.

|||||||||||||||||||||||||{
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with a multicast group, allowing all group members to be addressed through a logical name.
This frees the programmer from having to deal explicitly with selective address lists. Note that
a logical name can be seen as a pre-de�ned address list, containing the addresses of all group
members, and being constantly updated upon every group change.

The third goal of a group support service is to provide an execution environment that applies
algorithms to ensure a given set of desirable properties. These properties are summarized in
table 1. Validity and synchronism properties (Px4, Px5, Px6 and Px7) are desirable in most
communication systems. They usually state that the user can trust the system in the sense that
messages are not corrupted, arbitrarily lost or spontaneously generated. Synchronism properties
assure that the service is provided within known time bounds. Timely behavior of the protocol
is of major relevance in real-time systems. Agreement properties describe when, and to whom,
a multicast message must be delivered. The strongest property in this set is unanimity (Px8).
Unanimity states that a message, if delivered to a correct participant, will be delivered to all
other correct participants despite the occurrence of faults. This may be stronger than usually
required. For instance, queries to replicated servers need only reach one of the replicas, since all
responses would be the same. Quorum-based protocols are another example where unanimity
is not required. This raised the need to provide di�erent agreement properties (Px9 and Px10).
Finally, order properties specify which ordering disciplines the protocol should impose on the
messages exchange between group members. The stronger property, total order (Px11) assures
that the messages are delivered in the same order to di�erent participants. Causal (Px12) and
FIFO (Px13) are weaker ordering disciplines that can provide better performance for those
applications not requiring total order.

Clearly, all these di�erent requirements cannot be provided in an e�cient manner by a single
communication primitive. That is why a versatile group communication service should be able
to provide several qualities of service.

4 Assumptions about the xAMp architecture

The algorithms and protocols to implement the services described in the previous section strongly
depend on the target architecture. The xAMp follows a low-level approach without compromis-
ing openness and portability, by using standard local area networks. LANs have architecture
and technology attributes which can be used for improved performance and dependability (eg.
broadcast/multicast, bounded number of omission errors, bounded transmission delay). Al-
though designed for LANs, xAMp does not depend on a given local area network in particular.
This was achieved by de�ning an abstract network interface, discussed with detail in [29]. We
recapitulate its properties here, in table 2. Having our protocols tuned for LANs does not mean
we have overlooked the problem of interconnected networks. We argue that in an interconnected
networking scenario protocols can be more e�cient if they rely on low-level "local" protocol-
s that recognize important properties of the local networks. Our work has provided e�cient
solutions for the local scope [29], that we are now extending to interconnected networks [34].

Protocol design assumes that communication components have a fail-silent behavior. When
high coverage is required, the use of self-checking components must substantiate this assumption.
Tests performed in the Delta-4 project have shown however that coverage of the assumption for
o�-the-shelf hardware is largely acceptable for applications requiring up to a moderate level of
fault-tolerance.

The xAMp architecture was designed in order to meet high expectancies with regard to fault-
tolerance and real-time. The highly reliable and timely environment yielded by a single LAN
used in a closed fashion had also to do with the LAN-based approach taken. We carefully devised
a dependability model and established its correctness in [29], for such an environment. The basic
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Table 2: Network Properties.

|||||||||||||||||||||||||{

� Pn1 - Broadcast: Destinations receiving an uncorrupted frame transmission, receive the same
frame.

� Pn2 - Error detection: Destinations detect any corruption by the network in a locally received
frame.

� Pn3 - Bounded omission degree : In a network with N nodes, in a known interval, corre-
sponding to (k + 1) series of unordered transmissions, such that each of the N access points
transmits one frame per series, all transmissions are indicated in all destination access points,
in at least one series.

� Pn4 - Full duplex : Indication, at a destination access point, of frame reception, during
transmission by the local source access point, may be provided, on request.

� Pn5 - Network order : Any two frames indicated in two di�erent destination access points,
are indicated in the same order.

� Pn6 - Bounded transmission delay : Every frame queued at a source access point, is trans-
mitted by the network within a bounded delay.

|||||||||||||||||||||||||{

protocols of our system, although clock-less (they do not require clocks), are synchronous, in
the sense that known and bounded execution times are enforced, using the techniques described
in [32]. Our subsystem comprises a global time service, made of approximately synchronized local
clocks. Since clock synchronization is a complex issue on its own, it will not be dealt with detail
in this paper. The interested reader may refer to [30], where the xAMp clock synchronization
service is described in detail. With the help of this time service, a clock-driven protocol is built,
exhibiting the tight-synchrony o�ered by protocols like those in [12,17]. In that sense, our system
o�ers a more complete solution than either the asynchronous systems, or the latter synchronous
systems that are only clock-driven4 .

5 Protocols: from unreliable to tight multicast

This section describes protocols which combine properties of table 1 in order to achieve a number
of qualities of service. The selection of the latter was driven by user requirements put by diverse
classes of distributed applications. These requirements arisen from the literature and largely
from the needs of the group replication and membership protocols of Delta-4 architecture.

5.1 The transmission with response procedure

The abstract network service, upon which xAMp relies, o�ers an unreliable multicast service,
presenting a set of properties which are most useful to implement reliable multicast primitives.
In absence of faults, the broadcast (Pn1) and full duplex (Pn4) properties provide message de-
livered to any processor connected to the network. However, although errors can be considered
rare in LANs, the occasional loss of messages { or omissions { cannot be prevented. Thus, the
communication service must be able to recover from such errors. In the xAMp, omission errors
are detected and recovered using a transmission with response procedure: it uses acknowledg-

4Although our clock-driven solution is not as e�cient, partly because these systems use space redundancy, i.e.
replicated networks, making a comparison di�cult anyway.
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ments to con�rm the reception of the message and detects omission errors based on the bounded
omission degree property of the abstract network5.

Figure 1:

||||||||||||||||||||||||{
tr-w-resp (hmi; ord; send;Mr;Pr; nr)

01 // hmi is a message to be sent (Dhmi is the set of recipients).
02 // \ord" is a boolean specifying if network order is relevant.
03 // \send" is a boolean that allows the �rst transmission to be skipped.
04 // Mr is a bag of responses.
05 // Pr is a set of processor from which a response is expected (usually Pr = Dhmi).
06 // nr is the number of responses expected (usually nr = #Pr).
07
08 retries := 0;
09 do // while
10 if (retries = 0 _ ord) then Pw := Pr; nw := nr ; Mr := 0; �
11 if (retries > 0 _ send) then send (hmi); �
12 timeout := 0; start a timer; // wait responses ...
13 while (nw > 0 ^ :timeout) do
14 when response hrmi received from processor p ^ p 2 Pw do
15 add hrmi to Mr . nw := nw � 1; remove p from Pw. od
16 when timer expires do
17 timeout := 1; od
18 od
19 retries := retries+ 1;
20 while (retries < MAX ^ nw > 0) // do
21 if (nw > 0) then check membership �

The tr-w-resp procedure6 is depicted in �gure 1. It consists of a loop, where the data message
is sent over the network and responses are awaited for. The procedure waits during a pre-de�ned
time interval for the responses, which are then inserted in a response bag and exits when the
desired number of responses is collected. If some responses are missing, the response bag is
re-initialized and the message re-transmitted. The main loop �nishes when all the intended
responses are received or when a pre-de�ned retry value is reached.

To preserve network order, the procedure re-transmits the message until it is acknowledged
by all recipients in a same transmission. When order is not required, the procedure can be
optimized by keeping responses in the bag from one re-transmission to the other (response
messages are inserted only once in the response bag) . For some omission patterns, this would
allow the bag to be �lled faster. To activate this mode, the 
ag \ord" must be set to false.
Finally, the boolean variable \send" allows the user to specify that the message should be sent
over the network on the �rst cycle of the procedure. This parameter is useful to allow another
processors to collect responses { and execute the procedure { on behalf of the sender without
immediately re-transmitting the message (by setting the 
ag to false). Section 5.3 explains how
this feature is used to provide some of xAMp qualities of service.

Several transmissions with response can be executing simultaneously, on the same or on dif-
ferent machines. We assume that messages can be uniquely identi�ed. Di�erent re-transmissions
of the same message can also be distinguished. It is thus possible to route any response to the

5The detailed technique, as well as its advantages over other approaches such as di�usion based masking is
discussed in detail in [32].

6It is a modi�ed version of the procedure given in [29].

7



appropriate tr-w-resp instantiation (also called an emitter-machine)7. To make a protocol tol-
erant to sender crashes, several emitter-machines may be activated concurrently, at recipients
sites, for a same message transmission (in this case, responses must be also broadcasted). See
atLeast agreement for an example. The unique message identi�cation is disseminated with the
message within an xAMp protocol header common to all xAMp frames. The protocol header
contains the identi�cation of the sender, the destination selective list, a frame type �eld and the
message identi�cation among other information8.

5.2 Best-e�ort agreement

The tr-w-resp procedure is used in xAMp to provide reliable frame delivery9. Activated by
the sender of a message, the latter must remain correct during the execution of the protocol,
otherwise the number of recipients of the message cannot be determined a priori. A very e�cient
communication primitive is o�ered this way by the xAMp, under the name of bestE�ort. From
the point of view of the sender, bestE�ort is just a call to tr-w-resp. The appropriate choice
of Pr and nr allows an early return in case of omissions, when not all the addressed recipients
need to receive the message. For instance, when nr = 0, the procedure immediately exits
after sending the message without waiting for replies, being equivalent to unreliable multicast.
The recipients are only required to provide an acknowledgment to the sender and to discard
duplicates. The protocol is depicted in �g. 2. This primitive and the next one are helpful
in a number of distributed applications where high-level functionality reduces the order and
agreement requirements, but the need for e�cient dissemination on group is retained.

Figure 2:

||||||||||||||||||||||||{
bestE�ort quality of service

01 // sender // receiver
02 // Pr 2 Dhmi ^ nr < #Pr

03 when user requests to send hmi do
04 tr-w-resp (hmi;0; 1;Mr;Pr; nr); when message hmi received from processor p do
05 send ( hokmi );
06 if (#Mr 6= #Dhmi) then check membership � if ( : acceptedhmi ) then acceptedhmi:=1; �
07 od od;

5.3 AtLeast agreement

The bestE�ort quality of service is not able to assure delivery in case of sender failure. In order to
provide assured delivery, in the presence of sender failures, what we call atLeast quality of service,
we make every recipient responsible for the termination of the protocol. In consequence, tr-w-
resp is invoked both at the sender and at the recipients, as depicted in �g. 3. However, to avoid
super
uous re-transmissions of the data message, recipients skip the �rst step of the tr-w-resp

7Since several emitter-machines can run in parallel, the protocol implementation is able to execute several
user requests at the same time. However, since a node usually has limited resources (memory and cpu), the
implementation may restrict the number of simultaneous transmissions, for instance keeping a �xed size pool of
emitter machines. Some qualities of service may impose additional restrictions on parallelism.

8The interested reader can refer to [26]
9A frame is a piece of information in transit in the LAN. It may encapsulate a message or protocol control

information.
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procedure, using the \send" boolean parameter (see section 5.1). In the no fault case, the data
message will be acknowledged by all intended recipients, these acknowledgments will be seen
by the all the participants and no retransmission takes place. This algorithm can be improved
to avoid multiple retransmissions when a single omission occurs, by making the recipients use
slightly di�erent timeout values, and making the protocol refraining from re-sending when a
retransmission from other participant is detected before the timeout expires.

Figure 3:

||||||||||||||||||||||||{
atLeast/reliable quality of service

01 // sender // receiver
02 // Pr 2 Dhmi ^ nr < #Pr

03 when user requests to send hmi do
04 tr-w-resp (hmi;0; 1;Mr;Dhmi;#Dhmi); when message hmi received from processor p do
05 send ( hokmi );
06 if (#Mr 6= #Dhmi) then check membership � if ( : acceptedhmi ) then
07 od acceptedhmi:=1;
08 tr-w-resp (hmi;0; 0;Mr;Dhmi;#Dhmi);
09 if (#Mr 6= #Dhmi) then check membership �
10 �
11 od

As with bestE�ort, several agreement variants of atLeast are obtained by an appropriate
choice of the Pr and nr parameters. For instance, if nr is chosen such that nr < Dhmi, the
primitive will assure that at least nr of the addressed processors will receive the frame. This
might be satisfactory to implement quorum based protocols. In certain passive or semi-active
replication management protocols, one may wish, for performance reasons, that the message
reaches all replicas, whereas is mandatory for consistency that it reaches at least the active
replica. In this case Pr is set with the host identi�cation of the active replica. When Pr = Dhmi

(that is, when all group members do receive the message), this primitive is also called reliable
multicast. Reliable multicast will be used as the base of two other qualities of service: causal
and delta.

5.4 Causal multicast

The reliable quality of service does not try to impose any ordering constraints on the messages
exchanged. However, in many systems the relative order of messages has a special relevance.
A particular example is the FIFO order: if a given processor sends two messages there is a
probability of the second message being causally related with the �rst one. Due to this reason,
most point-to-point systems deliver messages in the order they were sent. When the interactions
between participants extend across several nodes a similar reasoning can be applied. In e�ect,
causal relations in a distributed system can be subtle and di�cult to identify, specially when there
are several communication paths between participants, including real world interactions (eg.
sensors and actuators). For simplicity, we limit our analysis here to systems where participants
only interact through message exchange using xAMp. The protocol itself restrains the sources
of causal relations. Generalizing, if a processor sends a message after having received one, there
is a potential causal relation [19] between the message sent and the message received. Several
authors discussed the advantages of respecting this kind of order in a system [4,24,14]. We look
for a protocol that preserves this implementation of causal order, which has also been called
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logical order:

Logical Order (
l
!): m2 is delivered after m1 if: 1) m2 is sent after m1 by the same

processor or 2) m1 is delivered to the sender of m2 before m2 being sent or 3) m1
l
!m3 ^

m3
l
!m2.

Figure 4:

||||||||||||||||||||||||{
causal quality of service

01 // sender // receiver
02 when user requests to send hmi do
03 let hm := Hlocal;
04 xAMp ( reliable, hhm;mi ); when hhm;mi message received do
05 add hmi to Hlocal; keep hmi until hm is stable; od
06 od when hm becomes stable do
07 add hm to Hlocal; add hmi to Hlocal;
08 deliver hmi; deliveredm :=1; od

In order to provide a causal quality of service, in addition to the assured delivery provided
by the reliable quality of service, we need to develop a mechanism allowing logical order to be
preserved. There are several implementations of logical order: using logical clocks [19], using
message serialization [9], exchanging histories [4,24] or the more recent vector clocks [27,6]. In
the xAMp, logical order is obtained using causal histories, that is, keeping a record of the
messages sent and received and exchanging this information along with the data messages. A
causal history is a list of causal pairs \(idhmi;Dhmi)", where idhmi is the message identi�er and
Dhmi is the set of message recipients. A message sent through causal quality of service always
carries the causal history of its sender. A causal history is updated every time a message is sent
or delivered. When a message is sent, its causal pair is added to the sender's causal history.
When a message is delivered, the message's pair and the associated causal history, hm are added
to the recipient's causal history (see �g 4).

In order to be delivered a message must become stable. A given message hmi is stable, in a
given processor k, as soon as all messages in hm have already been delivered. More precisely, and
since some messages in hm could be not addressed to k, hmi becomes stable in k when, for all
precedent messages n, such that (idhni;Dhni) 2 hm ^ p 2 Dhni, the 
ag deliveredn is already true
in k. To prevent the in�nite growth of causal histories we use the synchronism of the underlying
reliable quality of service. Let � be the maximum execution time for this quality of service. By
de�nition, any message hmi becomes stable within � real time after being sent: thus, � can be
used to periodically remove stable identi�ers from causal histories.

Our approach is similar to that of PSYNC [24] but extended to cope with non-uniform
addressing. Note that while vector clocks seem to be pretty e�cient at eliminating unnecessary
logical orderings sometimes enforced by the other approaches, we do not use them because our
addressing scheme is too 
exible to adequately support them: two consecutive messages can be
sent to totally disjoint destination sets, thus a single clock is not able to represent all causal
relationships. Recent implementations of ISIS [7], suggest extensions to vector clocks for several
groups, but these are di�cult to implement in a system as ours, where the number of di�erent
destination sets can be very large.
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5.5 The atomic and tight qualities of service

The atomic quality of service, in relation to the other qualities of service previously described,
introduces the assurance of total order. This can be achieved exploiting the properties of the
abstract network: in fact messages are naturally ordered as they cross the LAN media (abstract
network property Pn5). However, the occurrence of omission faults, forcing the re-transmission
of messages, may disturb this natural serialization. To preserve network order, a mechanism
must be implemented to ensure that the messages are delivered to the user respecting the order
they have crossed the network and, when a message crosses the network several times, that a
unique re-transmission is used to establish this order. This requires extra work both at the
sender and at the recipient sides, as described below.

In each recipient, is maintained a reception queue, where messages are inserted by the order
they cross the network. Since at the moment of reception, a recipient as no way to know if the
message was also received by the other recipients, the message cannot be delivered immediately to
the user. Instead, it is stamped as unnaccepted and kept in the queue until there is an assurance
that it was inserted in the same relative position in all recipient's queues. If meanwhile, a re-
transmission is received, the message is moved to the end of the queue. On its side, the sender
invokes tr-w-resp activating the \ord" 
ag, thus requiring the re-transmission of the message
until all recipients acknowledge the same retry. When a successful re-transmission is detected,
the sender issues an accept frame, committing the message. When the accept frame is received,
the recipients mark the associated message as accepted and deliver it as soon as it reaches the
top of the queue.

Since the message cannot be delivered until the accept frame is received, the protocol can be
further enhanced to tolerate temporarily inaccessibility of a recipient, that is, to allow a receiver
to discard a incoming message due to a temporary lack of resources like bu�er over
ow. It that
case the recipient should return a negative acknowledge hnokmi to the sender. If, upon collecting
all responses, the sender receives some negative acknowledgments, it issues a reject instead of
the accept. Upon reception of the reject, all recipients discard the correspondent message.

The operation of the protocol is depicted in �g. 5. To save space, the extended tight quality
of service is presented in the �gure: atomic service can be obtained simply by removing lines 8,
11, 14 and 18. It consists of a two-phase accept protocol that resembles a commit protocol
where the sender coordinates the protocol: it sends a message, implicitly querying about the
possibility of its acceptance, to which recipients reply (dissemination phase). In the second
phase (decision phase), the sender checks whether responses are all a�rmative, in which case
it issues an accept { or reject, if otherwise. To ensure the reception of the decision, by all
correct recipients, the accept and reject frames are also sent using the tr-w-resp procedure. The
two-phase accept protocol has a variant that is also depicted in �g. 5. This variant, known as
the negatively acknowledged accept, consists in avoiding the second series of acknowledgments
for improved performance. In this variant the sender transmits the accept only once and no
acknowledgment is generated. If an omission a�ects the dissemination of the accept message,
this will be recovered by the \request-decision" procedure. In the latter scenario, termination of
the protocol is delayed but due to the low error rate expected in local area networks, throutput
is signi�cantly improved.

Since in the two-phase accept the sender coordinates the protocol, some exception mecha-
nism must be implemented to overcome its failure. In the atomic quality of service, protocol
execution is carried on, in the event of sender failure, by a termination protocol. This termi-
nation protocol is executed by an atomic monitor function. There is no permanent monitor
activity however { so to speak, a monitor only exists when needed. The monitor impersonates
the failed sender but never re-transmits a data message on its behalf. It just collects information
about the state of the transmission and disseminates an decision (reject or accept) according-
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Figure 5:

||||||||||||||||||||||||{
two-phase accept (used in atomic and tight qualities of service)

01 // sender // receiver
02
03 when user request to send hmi do
04 tr-w-resp (hmi;1; 1;Mr;Dhmi;#Dhmi); when message hmi received from processor p do
05 remove hmi from Q;
06 if ( I am accessible for hmi ) then
07 add hmi to Q; send ( hokm;Qi ); start ( wdTimerhmi );
08 lock Q; // (Tight only: no message can be consumed)
09 else
10 if (8r 2Mr; r is of type hokm;Qi) then send ( hnokmi );
11 choose ipQ; // (Tight only) �; od
12 tr-w-resp (haccm; ipQi; 0; 1;Mr ;Dhmi;#Dhmi); when message haccm; ipQi received from processor p do
13 // if neg. ack: just send haccmi once stop ( wdTimerhmi); send ( hokacci ); acceptedhmi=1;
14 re-order Q; unlock Q; od // (Tight only)
15 else // if neg. ack: no need to send hokacci
16 tr-w-resp (hrejmi; 0; 1;Mr;Dhmi;#Dhmi); when message hrejmi received from processor p do
17 senthmi := 1; stop ( wdTimerhmi); send ( hokreji ); remove hmi from Q;
18 unlock Q; od // (Tight only)
19 when wdTimerhmi expires do
20 when receives hrdmi ^ senthmi do tr-w-resp (hrdmi; 0; 1;Mr ; p; 1);
21 send (haccmi); if ( haccmi 62 Mr ) then monitor must be called � od
22 when hmi is on top of Q do
23 deliver hmi; od

ly. The information required to perform a monitor action on a group is supplied by the active
recipients of that group. Once activated, the action of the monitor is structured recursively in
two-phased transmissions, like the normal atomic multicast. This solves the problem of monitor
failure recovery, introduced by centralizing monitoring functions: if an active monitor fails, it is
replaced by another monitor, invoked, in the same way as for a normal transmission, by a recip-
ient that detects the failure. The action starts with an investigation phase, where information
about the local contexts of group members is gathered, and ends with a decision, disseminated
to those members. The decision contains the new group view, after insertion of new members,
or elimination of members leaving or having failed. The recovering algorithm was described in
detail in [31] and formally validated [2], so we will omit here the details of the algorithm.

For real-time applications, the major disadvantage of the atomic service is its inability
to deal with message priorities: since incoming messages are always inserted at the end of
the receive queue, a message of high priority can be a�ected by a possibly long queue delay
until delivery. This is clearly incompatible with the real-time requirements for preemption
and to respect message priorities (emphasized by the design of the real-time variant of the
Delta-4 architecture, also known as XPA [3]). To avoid this problem, the two-phase accept
procedure must be extended to allow the negotiation of the �nal position of a given message:
during the dissemination phase the coordinator reads the state of the queue in all recipients,
using information inserted in the acknowledgment messages. After, in the decision phase it
disseminates an insertion point along with the decision. The method is similar to the algorithm
proposed by Skeen which inspired the ABCAST protocol [4]. The �nal position of the message
in the queue is chosen by the sender based on the information gathered during the �rst phase
of the protocol.
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To support lock-step synchronous distributed algorithms (and certain input/output activi-
ties in real-time settings) one needs messages to be delivered periodically and simultaneously to
every recipient. Protocols that simulate this abstraction try to be steady (display a constant ex-
ecution time) and tight (deliver a message at the same time) [33]. Besides allowing preemption,
the tight quality of service only does a best e�ort to improve tightness of the protocol. Better
can only be done by taking a clock-driven approach. xAMp has the delta quality of service,
which provides a global total and causal order. The protocol is not described here due to lack
of space, being described in [26]. It is based on the reliable quality of service to assure delivery,
and on the xAMp time service, to ensure order. The protocol follows the method established
by Lamport [20].

Note that this mechanism does not satis�es the requirement of short preemption latency
without extra architectural support. In fact, even if an urgent message is inserted on top of the
receive queue, it still has to wait for the processing of the previous message. Suppose that the
application is structured as a state-machine [28]. Each message could then be associated with
a state-machine command. Since commands must be processed in an atomic manner, a new
command can only be processed after completion of the previous command. If a command has a
very long execution time a high-priority message can be strongly delayed. This behavior can only
be bypassed, if commands are splitted in several sub-commands: high-priority commands could
then be inserted between two sub-commands, emulating the preemption of the long envelope
command. In order to facilitate this kind of programming, xAMp possess a facility that allows
the user to send several messages as a whole. These messages are seen by xAMp as a single
message containing several \slots" or pieces. Slotted messages require just one execution of the
protocol to be disseminated and the several slots are automatically inserted in the receive queue
as individual units as soon as the envelope message is accepted.

5.6 Delta QOS

The delta quality of service provides total global order based on virtual synchronized clocks.
It can be easily implemented using the reliable multicast service and a clock synchronization
service. Before being sent, the message is timestamped with the value of the local virtual clock.
Upon reception, messages are ordered by the values of their timestamps. Messages with the same
timestamp are ordered using the identi�cation of its sender (we assume that it is possible to
establish an order relation between processor identi�ers). To assure that timestamp order is not
violated, no message can be delivered before the arrival of all messages with a smaller, or same,
timestamp. That is, any message must wait a worst-case time � for all the potentially precedent
messages. Naturally, this time � is given by the execution time of the reliable multicast QOS
plus the maximum desynchronization between virtual clocks �. This protocol is a variant of
that of [11] but using the \tr-w-resp" procedure to avoid massive retransmission. However, our
protocol can exhibit higher values for the delay � since acknowledgments are awaited before a
message is retransmitted. On the other hand, on absence of faults, our protocol sends the data
message only once over the network, thus saving network bandwidth.

5.7 Group Addressing

In xAMp, we have not imposed any restriction on the destination sets, Dhmi, of a given message
hmi. In fact, our protocols are quite generic and are able to accept any list of nodes as a
destination set. This means that the user is able to address any sub-set of nodes in the system,
listing explicitly the desired recipients. This is also called selective addressing.

In addition, the user is able to create groups to which a logical address is automatically
assigned. When using a logical address, the user relies on the protocol to deliver the message
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Figure 6:

||||||||||||||||||||||||{
delta QOS

01 // sender // receiver
02 when user requests to send hmi do
03 let tm := timenow;
04 xAMp ( reliable, htm;mi ); when htm;mi message received do
05 od keep hmi until tm +�+ � is reached; od
06 when localtime is tm +�+ � do
07 deliver hmi; od

to all group members. That is, the protocol must assure that the group view, i.e. the list of
members of a given group, is maintained and used in a correct manner. For this reason, all
actions that are bound to modify this view must be performed through specialized functions.
There are three operations that can be performed on a group: join, leave (voluntary departure)
and failure (involuntary departure).

The most complex function is the one that performs the join and leave operations. The
complexity comes from the use of logical addresses: immediately after the end of the operation,
the new member must start to receive messages logically addressed to the group10 (and an old
member must stop receiving them). To avoid inconsistent uses of group views, these operations
must be executed as an atomic action: in the xAMp, this is obtained making all members of the
group inaccessible during the join and leave operations. In the LAN context, these operations
are short lasting and bounded in duration.

On the other hand, keeping failed members in the group view does not compromise pro-
tocol correctness but may imply a performance degradation since messages will always be re-
transmitted up toMAX retries. It is then desirable to remove failed stations from group views as
soon as possible. In the xAMp, failures are detected during message exchange: a sender detects
the failure of a recipient during the execution of the tr-w-resp procedure; in atomic and tight
qualities of service a recipient may detect the failure of a sender by the absence of a decision
frame. Upon detection of a failure, the identity of the failed station is quickly disseminated to
all nodes. A special atomic message is sent, on each group whose membership was a�ected by
the failure, providing to the user a failure indication obeying total order.

5.8 The cost of xAMp qualities of service

The xAMp protocol provides the user with di�erent qualities of service (QOS), as shown
in table 3, ranging from unreliable multicast to atomic multicast. Di�erent tradeo�s between
functionality and performance are provided, assuring only a number of the properties depicted
in table 1. To make these tradeo�s clear, we present a short analysis of xAMp performance.
Results are summarized in tables 4. The �rst table presents the number of rounds required to
execute the protocol for best and worst case scenarios. This table also presents the number
of frames exchanged during protocol execution. These results are functions of the maximum
number of faults and of the number of message recipients. The second table presents the best
and worst execution time { Te { of each QOS. These results are functions of �, the worst case

10Note that the tr-w-resp procedure assures recovery from omission faults relying on the number of acknowl-
edgments collected. This means that if some group member is missing from the group view, message delivery is
not assured to it.
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QOS agreement total order. causal queue reord.

bestE�ortN no (best e�ort N) no FIFO no queue

bestE�ortTo no (best e�ort To) no FIFO no queue

atLeastN no (assured N) no FIFO no queue

atLeastTo no (assured To) no FIFO no queue
reliable all no FIFO no queue
causal all no yes no queue

atomic all or none yes yes no
tight all or none yes yes yes

delta all or none timestamp timestamp timestamp

Table 3: The xAMp multi-primitive communication service

network delay, and Tr, the time required to execute a round, that is, to send a message and
collect the correspondent responses. We now deduct and discuss these values.

We start by analyzing the tr-w-resp procedure. This procedure executes a given number
of transmission with response rounds until the message is delivered with success. In the best
case the message is received by all intended recipients on the �rst transmission, with a worst
case delay given by the network transmission delay, �. Note that the sender has an extra delay
consisting of the time required to gather the acknowledgments, Tr�(d). In this case the data
message is transmitted once and d responses are collected. When an omissions occur, responses
are awaited until the timer expires. There is then a worst case time to execute a round, Tr+(d)
that is roughly given by the value of this timer plus some processing time. If a worst case of k
omissions occur, a delay of kTr+(d) + � is incurred. In the latter scenario, the data message
is transmitted k + 1 times and at most d(k + 1) responses are generated. Also note that since
the protocol is activated at all participants, the number of crash faults does not increase the
number of rounds over the minimum required to mask the network omission degree.

Note that although bestE�ort, atLeast and causal QOSs share the same values, the processing
overhead is signi�cantly di�erent. The procedure tr-w-resp is only required to be executed at
the sender for the bestE�ort QOS. On the other hand, for atLeast QOS, this procedure must be
executed both at the sender and recipients. The causal quality of service incurres in an extra
processing overhead related to the update and comparison of causal histories. Similarly, the
delta QOS being based on the atLeast service, it has the same costs in terms of tra�c generated.
However, there is a �xed delay that must be observed before a message can be delivered, thus
presenting the poorest best case performance.

The atomic QOS involves longer termination times since acknowledgments must be awaited
before the decision is disseminated. In the best case, the data message is sent, acknowledgments
are gathered and an accept is disseminated (without acknowledgments). There is one round of
message exchange (generating one data message and d responses) plus one decision sent. The
tight QOS is very similar to atomic except that the decision must be always acknowledged, thus
involving the exchange of d responses in an extra round. In both services, the message becomes
ready to be delivered as soon as the decision arrives, that is Tr�(d) + � after the beginning of
the transfer. Worst case values for these qualities of service occur when the sender fails. These
scenarios are slightly more di�cult to analyze since they involve the execution of the monitor
function. The results are shown in the table 4 but, for sake of brevity, the justi�cation is omitted.

Numerical results strongly depend on the actual architecture used to support the xAMp
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QOS rounds rounds frames frames
(best) (worst) (best) (worst)

data ctl data ctl
bestE�ort
atLeast 1 k + 1 1 d k + 1 (k + 1)d
causal
delta
atomic 1 2k + f + 3 1 d+ 1 k + 1 (d+ 1)(k+ f + 2)
tight 2 k + f + 2 1 2d+ 1 k + 1 d(k + f + 2) + (f + 1)

data: data message.
ctl: control packet.

f : crash faults. k: omission faults.
d: number of recipients.

QOS Te Te
(best) (worst)

bestE�ort
atLeast �(sz) kTr+(d) + �(sz)
causal
delta � = kTr+(d) + �(sz) � = kTr+(d) + �(sz) + �

atomic Tr�(d) + �(sz) k[Tr+(d) + Tr+(1)] + Twd
out + f [Tr+(d) + Tmon

out ] + 2�(sz)

tight Tr�(d) + �(sz) kTr+(d) + Twd
out + f [Tr+(d) + Tmon

out ] + 2�(sz)

Te: Execution time. Ti: Inconsistency time.
�(sz): Abstract Network Transmit Delay (function of message size).

Tr(d): Execution time of a round (send a message and to collect d responses).
Twd
out : wait decision timeout.

Tmon
out : timeout to activate a new monitor upon active monitor failure.

Table 4: Cost of xAMp's QOS (in frames and time)

implementation. We will focus on a port of xAMp that runs as an Unix11 device driver. We
have made our measurements on a version running on SUN Sparc-Stations 1. Figure 7 presents
the results for reliable QOS and �g. 8 for atomic QOS for di�erent message sizes and number
of stations. A more complete three-dimensional plot is given in �g. 9. In the �g. 7 a single
line is displayed for message indication since, as shown in table 4, the reliable QOS best-case
execution time is independent of the number of recipients. As the message is indicated as soon
as it is received from the network, the execution time is close to �(sz) (plus some processing
overhead). The con�rmation is only provided when all responses are collected, being provided
approximately Tr(d) after the indication. Naturally, the atomic QOS is more expensive since it
requires all responses to be collected and the dissemination of a decision. Whilst the con�rmation
is given to the user as soon as the decision is taken, being the time proportional to �(sz)+Tr(d),
the indication is only provided when this decision is received, that is, roughly � after.

6 Current State and conclusions

We have presented the xAMp, a multi-primitive group communications service. The provision
of di�erent qualities of service gives the user the possibility of choosing the compromise between
performance and reliability that best �ts his/her requirements. The xAMp architecture exploits
the fail-silent assumption and the properties of local area networks to provide services that are
highly e�cient on LANS. During the design of xAMp we have traded portability over arbitrary
networks by e�ciency and timeliness in a local scope. xAMp cannot thus be ported to inter-
connected networks. Although we are studying that problem currently, it is important to signal
that as it is, xAMp is very suitable for dependable real-time applications, often based on LANs.

11UNIX is a Registered Trademark of AT&T.
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The xAMp is available as a software component consisting of a highly portable kernel and
a set of interfaces to several environments and networks. Integration is a key feature of xAMp
engineering. Most qualities of service are implemented as by-products of a basic core of the
protocol, sharing data structures, procedures, failure-recovery algorithms and group monitor
services. xAMp was easily ported to several LANs and environments, thanks to the decompo-
sition between kernel and abstract network, and a detailed and non-ambiguous speci�cation of
all xAMp interfaces. There are currently ports to the ISO 8802 token-ring and token-bus LANs,
and an FDDI port is envisaged. The performability of xAMp over each of these LANs has slight
di�erences, depending on technology particularities. Real-time performance, net reliability and
built-in fault tolerance, sheer speed and throughput, are examples of factors of choice among
them. An experimental Ethernet port has also been made. Coverage of an Ethernet implemen-
tation may not be as high as over the other LANs mentioned, but it is perfectly acceptable for
some non-real-time business and o�ce segments.

The AMp speci�cation was veri�ed and the implementation validated. The veri�cation tool
used was Xesar [15]. The basis for the veri�cation was an Estelle/R formal speci�cation of the
original AMp [2], forming the core of what is xAMp now. However, the veri�cation covered
most of the basic procedures, including the atomic monitor and the \tr-with-resp" procedure
upon which most QOS are based, thus increasing con�dence in the protocol design. The xAMp
implementation was also subject to a fault injection campaign, with the help of a specialized
tool [1]12.
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