
N-party BAR Transfer
(extended abstract of the MSc dissertation)

Xavier Vilaça
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—We introduce the N-party BAR transfer problem
(NBART) that consists in reliably transferring arbitrarily large
data from a set of NP producers to a set of NC consumers in the
BAR model, i.e., in the presence of Byzantine, Altruistic, and
Rational participants. We present an algorithm (ERA-NBART)
that solves the problem for NP , NC ≥ 2f + 1 and assuming
that there exists a trusted observer that gathers evidence to
testify that the producers and consumers have participated in
the transfer, where f is the maximum number of Byzantine
processes in each of the producer and consumer sets. We do not
impose limits on the number of Rational participants, although
they can deviate from the algorithm to improve their utility.
We show that ERA-NBART provides a Nash equilibrium. An
alternative algorithm (LRA-NBART) is proposed that has a
greater execution time and lower communication costs. We
prove that this algorithm also provides a Nash equilibrium. We
argue that a NBART algorithm is an important building block
to support fault-tolerant distributed computations in peer-to-
peer systems.

I. INTRODUCTION

Peer-to-peer systems may be used to provide temporary
or long-term storage services. Such services are useful in a
number of settings. For instance, peer-to-peer systems can be
used to process large volumes of data using volunteer com-
putation, as illustrated by projects such as SETI@home [1]
and, more recently, by the Boinc infrastructure that supports
several computationally intensive research projects [2]. If
such computations are performed using MapReduce [3],
information produced by mappers needs to be transferred
to the reducers or to intermediate storage. Volunteer storage
nodes may not be willing to store data indefinitely, so
they have to transfer data to other nodes after serving the
system for some time. In any case, volunteers expect to
be recognized for their contribution, for instance by being
awarded credits that make them appear in a chart with the
top contributors of the project.

In scenarios such as the ones listed above, a reliable
protocol to transfer data from a set of producers to a set
of consumers is an important building block. Any realistic
service for this environment has to consider the existence of
both Byzantine and Rational nodes, i.e., of nodes that deviate
from the protocol, respectively, in an arbitrary way (Byzan-
tine) and with the purpose of gaining some measurable
benefit like being listed as top contributors without really
executing jobs (Rational). A system model that captures

the existence of these different kinds of participants is the
Byzantine-Altruistic-Rational (BAR) model [4].

This work introduces the N-party BAR Transfer prob-
lem (NBART). This problem can be informally defined as
follows. There are N producers and N consumers, which
we generically call processes. Up to f processes of each
of these sets can be Byzantine; the remainder are either
Altruistic or Rational. All non-Byzantine producers have the
same piece of arbitrarily large data that they have to transfer
to all non-Byzantine consumers. Altruistic processes follow
the protocol, Byzantine processes deviate arbitrarily from
the protocol (e.g., omitting or sending modified messages),
and Rational processes deviate from the protocol following
a strategy to increase their utility. There is an abstract
trusted observer that is not involved in the transfer, but that
collects evidence about it. NBART is the problem of reliably
transferring data from the producers to the consumers, while
providing the trusted observer enough evidence to testify
which processes participated in the transfer.

Systems not designed to cope with Rational behaviour
may fall into the Tragedy of Commons [5]: the job is not
done because all participants are Rational and aim for profit
by not performing (part of) their role. To model Rational be-
haviour, we use an approach based on Game Theory [6]. The
protocol executed by the processes is modelled as a game,
in which each player (i.e., process) follows a strategy to
increase its utility. To contradict this behaviour, an algorithm
to solve NBART should provide a Nash equilibrium, so that
no Rational process has an incentive to deviate from the
protocol. We model the NBART problem as a strategic game,
in which players choose a strategy simultaneously, once and
for all [6], i.e., without knowledge of the others strategies
and without the ability of changing it during the algorithm
execution. This is not a restriction in our case as explained
later. We do the usual assumption [7] that processes are risk-
averse, i.e., that they do not follow a strategy that may put
their profit at risk.

More precisely, the thesis makes the following contribu-
tions:
• It introduces the NBART problem, defining its main

properties and challenges.
• It proposes two alternative synchronous algorithms that

solve the NBART problem in an environment where
processes are risk-averse:

1

– The first algorithm, named Eager Risk-Averse
NBART (ERA-NBART), has low execution time
and high bit/message complexity.

– The second algorithm, named Lazy Risk-Averse
NBART (LRA-NBART), has low bit/message
complexity and high time complexity.

The results of this work can be enumerated as follows:
• A proof that the ERA-NBART and LRA-NBART algo-

rithms are correct when up to f processes of each of
the sets of producers and consumers are Byzantine, as
long as NP , NC ≥ 2f + 1.

• A Game Theoretical analysis of ERA-NBART and
LRA-NBART that proves that both algorithms provide
a Nash equilibrium. We also claim that the algorithms
provide a dominant strategy, therefore all Rational
processes should follow them.

• A complexity analysis and a comparison between the
proposed solutions.

The remaining of this document is organized as follows.
Section II describes previous work related to the problems
that were introduced. Section III gives a description of
the NBART problem. The proposed solutions are presented
in Section IV and V, and a comparison in terms of the
complexity of the algorithms is performed in Section VI. We
extend these solutions in Section VII. Finally, Section VIII
concludes the extended abstract.

II. RELATED WORK

The NBART problem is related to classical distributed
systems problems such as Byzantine Agreement (BA), Reli-
able Broadcast (RB), Terminating Reliable Broadcast (TRB),
and Interactive Consistency (IC) [8], [9], [10]. A first and
major difference is that these algorithms are executed among
a single set of processes, while NBART is about communi-
cation and agreement between two sets: producers and con-
sumers. In that sense there is some resemblance with Paxos
with its three process roles – proposers, acceptors, learners –
but in NBART all producers are proposers of the same value,
a notion that does not exist in Paxos [11]. An algorithm
for solving NBART might be implemented by running N
instances of algorithms that solved these problems, or even
a single one in the case of IC. However, these solutions
would be very inefficient in terms of message, time, and bit
complexity because they would not exploit the fact that all
(non-Byzantine) producers send the same data. For instance,
in the case of IC the consumers would receive a vector with
N −f to N copies of the data sent by the producers, which
we assume is large, so it would be very inefficient, at least
in terms of bit complexity. Furthermore, these problems do
not consider the BAR model, only Byzantine and Altruistic
processes. If there were Rational processes, algorithms that
solved these problems would not satisfy their properties.
The same discussion applies to classic probabilistic reliable
broadcast algorithms [12], [13]. Although they reduce the
number of messages sent when compared with parallel
executions of BA, RB or TRB, these works do not tolerate

the BAR model. Besides, these algorithms only provide
probabilistic guarantees.

There is a recent trend in Byzantine fault-tolerant al-
gorithms that has also some relation to our work. Several
papers presented implementations of registers with different
concurrency semantics based on Byzantine quorum systems
[14], [15]. Others presented algorithms to implement state
machine replication, a generic solution to implement fault-
tolerant distributed services [16], [17], [18]. In both cases
the objective is to ensure that Byzantine nodes are unable
to disrupt the consistency of the data stored in the servers
or the service provided by the servers. In contrast, our work
aims at ensuring the transference of a correct value from a
set of nodes that produce the data independently, although
following a deterministic function, to another set of nodes
which have to determine which is the correct data. A third
set of papers presented Byzantine fault-tolerant consensus
algorithms for asynchronous systems, which might also be
used as building blocks of less efficient solutions of NBART
[19], [20], [21]. Again, none of these works considers the
BAR model.

Some works applied Game Theory to problems involving
both Rational and Byzantine players. Eliaz introduced the
notion of k-Fault Tolerant Nash equilibrium (k-FNTE), as
an equilibrium in which no Rational participant has any
incentive to unilaterally deviate from the expected behaviour,
with up to k players whose strategy is arbitrary [22].
This concept was applied to auctions. A Byzantine Nash
equilibrium has also been studied in the context of a virus
inoculation game [23]. Neither of these works were extended
to more complex distributed games with communication
between participants. Abraham et al. extended the work of
[22] by introducing the notion of (k, t)-robustness, where k
is the maximum number of colluding Rational participants
and t is the upper limit to the number of Byzantine players
[24]. The authors propose a solution for secret sharing that
is (k, t)-robust. On the contrary to our work, they assumed
that the utility of each player depends only on the output of
the algorithm, i.e., on the successful delivery of the shared
secret, therefore ignoring communication costs. It has been
proved that no non-trivial distributed protocol for which
Rational nodes take into consideration communication costs
can be (k, t)-robust [7].

The Byzantine-Altruistic-Rational (BAR) model was pro-
posed by Aiyer et al. as an abstraction for capturing these
three distinct behaviours of processes [4]. The authors also
proposed a general three-tied architecture for developing
BAR-tolerant protocols, in cooperative distributed systems
that span Multiple Administrative Domains (MAD). The
first two levels of the proposed architecture implement
a Replicated State Machine using a BAR-tolerant TRB
protocol [7] and a mechanism than enforces periodic work
and guarantees responses. Although this architecture might
be used to solve the NBART problem, the use of the TRB
protocol for transferring arbitrarily large data is too costly
and the guaranteed response mechanism requires the active

2

participation of a witness, which must be either a centralized
entity or implemented through message broadcast to all the
remaining nodes. Furthermore, the proposed mechanisms are
based on the long-term cooperation between participants
modelled as a repeated game [6], which is not the case
of the NBART problem. Cost balancing mechanisms were
used to deny cost savings to processes that fail to send
expected messages, but the overhead of balancing the cost
of transferring an arbitrarily large value is too high.

The same authors [7] have shown that the Dolev and
Strong’s TRB protocol [9] can be changed to provide a Nash
equilibrium in the BAR model using ∞-tit-for-tat mecha-
nisms [25]. The problem is modelled as a repeated game
with an infinite number of rounds. Each round a different
participant runs an instance of the protocol to broadcast its
information to all the remaining non-Byzantine participants.
They proved that Rational participants cannot expect any
increase in their utility by omitting messages, even if a
fraction of the participants is Byzantine. In this work we
are interested in large peer-to-peer networks in which it is
unlikely that the same participants interact more than once.
For that reason we do not consider repeated executions, but
model the algorithm instead in terms of a strategic game in
which players interact only once. Therefore, in our case it is
not possible to apply the incentive mechanisms of [4], [26],
[27] based on tit-for-tat. Furthermore, none of these works
addresses the problem of transferring an arbitrarily large
value without using an active witness or direct reciprocity.

The BAR model has also been used with gossip peer-
to-peer data dissemination algorithms [26], [27]. These
algorithms are not directly applicable to solve NBART as
they assume that the source of the information is trusted
and provide no guarantee that the disseminated information
reaches its destination. Furthermore, data transfer between
each pair of nodes is performed using direct reciprocity in
a fair exchange process. This requires that each Rational
participant has incentives to transfer data if it expects to
receive an equivalent contribution from its peer. In addition,
the pestering mechanism of BAR Gossip [26] only provides
a Nash equilibrium if a certain fraction of the participants are
Altruistic [28]. In NBART, consumers do not possess any
data that may serve as currency to pay the producers for the
transfer, and no assumption is made about the presence of
Altruistic participants.

To the best of our knowledge, no previous work in the
literature addresses the problem of transferring an arbitrarily
large data from a set of producers to a set of consumers in
a non-repeated game, where processes can be Byzantine,
Rational, or Altruistic.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

The NBART problem involves a set of producers P of
cardinality NP and a set of consumers C of cardinality NC .
To simplify the description of our algorithms, in this thesis,
we start by assuming that the cardinality of both sets is

the same, i.e., NP = NC = N . Then, in Section VII, we
extend this work to the case where it may be true that
NP 6= NC . We do not address the problem of forming
these sets, in this paper. However, we assume that this
mechanism ensures with high probability that the number
of Byzantine processes is upper bounded and that processes
cannot influence this mechanism. There is also a special
abstract process called trusted observer (TO). We use the
words processes or participants to designate these entities.
Sometimes we use the word players to designate producers
and consumers, when we model their interaction as a game.

We assume that the system is synchronous (there are
maximum communication and processing delays) and that
all processes are fully connected by authenticated reliable
channels. This is a reasonable assumption as we require
that the transfer may terminate after a finite period of time
such that Rational processes may have some guarantees that
they will be eventually rewarded. However, it is not strictly
necessary for the communication and processing delays
to have a known upper bound. Nevertheless, in order to
simplify the description of our algorithms, we will make that
assumption. We also assume that each process has a public-
private key pair and that there is a public-key infrastructure
in place, so every process has access to the public key of all
others. Each process has access to a collision-resistant hash
function (hash) and a signature function based on public-key
cryptography (sign, verifysig).

Participants can be Byzantine, Altruistic, and Rational, in
accordance with the BAR model. We assume that up to f
elements of each of the P and C sets can be Byzantine.
In Section VII, we will extend this assumption to the case
where fP , the upper bound on the number of Byzantine
producers, is different from fC , the upper bound on the
number of Byzantine consumers. Any number of consumers
and producers can be Altruistic or Rational. The trusted
observer TO always follows its protocol.

An Altruistic process is one that follows the protocol. A
Byzantine process can deviate arbitrarily from its behaviour,
e.g., by sending or not sending certain messages, or by
sending messages in a format or with content that is not
according to the protocol. Byzantine processes however are
not able to break the cryptographic mechanisms used in the
algorithm (e.g., they are not able to generate signatures on
behalf of Altruistic or Rational processes).

A Rational process is one that aims at maximizing a
utility function, defined in terms of benefits and costs. A
producer has a benefit by proving to the TO that it has
contributed to the transfer; it incurs on the cost of sending
the data. Consumers send to the TO acknowledgements of
the reception of the data. A consumer benefits by obtaining
the data and proving its reception to the TO; it incurs the
costs of receiving and processing messages and sending the
acknowledgements to the TO. We assume that there is no
collusion among Rational processes.

3

B. The NBART Problem

The NBART problem can be defined as follows. Each
producer p has a value (or data) of arbitrary size vp such
that, for any two non-Byzantine producers pi and pj , vpi

=
vpj

= v̄. Sometimes we refer to this value as the correct
value, to denote that it is the value held by all non-Byzantine
producers.

The algorithm terminates successfully when every non-
Byzantine consumer consumes v̄. A consumer c is said
to consume value vc when the primitive consume(c, vc) is
called. All non-Byzantine producers start the algorithm by
producing value v̄. A producer p is said to produce value
vp by calling the primitive produce(p, vp). The TO is said
to produce evidence about the transfer by calling primitive
certify(TO, evidence). There are also two predicates hasPro-
duced(evidence, pi) and hasAcknowledged(evidence, cj) that
take as input the evidence produced by the TO to indicate,
respectively, if producer pi participated in the NBART and if
consumer cj notified the reception of the correct value. The
problem consists informally in i) transferring the value from
the producers to the consumers; and ii) providing evidence
about the transfer. More formally the problem is defined in
terms of the following properties:
• NBART 1 (Validity): If a non-Byzantine consumer con-

sumes v, then v was produced by some non-Byzantine
producer.

• NBART 2 (Integrity): No non-Byzantine consumer
consumes more than once.

• NBART 3 (Agreement): No two non-Byzantine con-
sumers consume different values.

• NBART 4 (Termination): Every non-Byzantine con-
sumer consumes a value.

• NBART 5 (Evidence): The trusted observer produces
evidence about the transfer.

• NBART 6 (Producer Certification): If producer p is
non-Byzantine, then hasProduced(evidence, p) is true.

• NBART 7 (Consumer Certification): If consumer c is
non-Byzantine, then hasAcknowledged(evidence, c) is
true.

With these definitions in mind, we can provide a more
precise characterization of the benefits that Rational nodes
aim to obtain. The benefit of a producer p is to have
hasProduced(evidence, p) true. The benefit of a consumer
c is twofold: i) to obtain the correct value and ii) to have
hasAcknowledged(evidence, c) true.

IV. ERA-NBART

We now present ERA-NBART. The part of the algorithm
executed by the producers, consumers, and trusted observer
is presented respectively in Alg. 1, Alg. 2, and Alg. 3. The
algorithm requires N ≥ 2f + 1 producers and consumers.

The algorithm aims at ensuring that each consumer re-
ceives the value and can decide which is the correct value,
in case it receives several different values (e.g., due to
Byzantine producers). To satisfy this goal, each producer
is not required to send a copy of the (possibly large) value

to every consumer. In fact, it is enough that it sends the
value to f + 1 consumers and a signed hash of the value to
the remaining N − f − 1 consumers.

We define a deterministic function that returns the set of
consumers that receive a copy of the value from producer pi,
denoted consumerseti, as: consumerseti = {cj |j ∈ [i...(i +
f) mod N]}. The intuition behind this function is that the
consumers are seen as a circular space where each producer
is responsible for sending the value it has computed to a
set of consecutive consumers of cardinality f + 1, which
are shifted from one another by one position. For instance,
with N = 3, the consumerset of p1, p2 and p3 are {c1, c2},
{c2, c3}, and {c3, c1}, respectively. It is also useful to define
the inverse of this function as: producersetj = {pi|cj ∈
consumerseti}.

A. Overview of the Algorithm
We model the operation of the algorithm in rounds. The

round of a process is increased as result of a nextRound
event. The system is synchronous, so non-Byzantine pro-
cesses have their clocks synchronized and the nextRound
event occurs simultaneously in all of them. The synchrony
of the system and reliability of the channels ensure that if
in response to event nextRound(n) a non-Byzantine process
sends a message to another non-Byzantine process, that mes-
sage is delivered to the destination before nextRound(n+1)
is triggered. This implies that nextround events are triggered
periodically with a period greater than the worst case latency
of communication channels.

The algorithm executes in three rounds. In the first round
(round 0), the producers send values or hashes to consumers.
In the second round, consumers send certificates of reception
to the trusted observer. In the third round, the trusted
observer produces the evidence.

B. Algorithm in Detail
In round 0, a producer computes the hash of the value

and signs it (Alg. 1, lines 6-8). When the first round starts,
it sends the value, its hash, and signature to the consumers in
consumerseti (lines 11-13), but only the hash and signature
to the remaining consumers (lines 14-16).

A consumer starts by waiting for signed values and hashes
from producers during round 1 (Alg. 2, lines 9 and 15).
Each value, hash, and signature received is stored in an array
named values (lines 14 and 19). If a process does not send
the message it was supposed to during this round, or if the
hash or signature are not valid, the entry in the values set
for that producer remains with the special value ⊥, which
will serve to build a proof of misbehaviour for the TO (if
f + 1 consumers provide similar certificates).

When round 1 ends, the consumer picks the value v such
that hash(v) appears in more than f positions of the array
(lines 22-23). There are at most f faulty producers in the
system, thus there is at most one value that matches this
condition. Then, the consumer prepares the confirm array
to serve as a certificate that vouches for the correct or
incorrect behaviour of all producers, and that simultaneously

4

Algorithm 1: NBART Algorithm (producer pi)
01 upon init do
02 myvalue := ⊥;
03 myhash :=⊥;
04 myhashsig := ⊥;
05 round := 0;

06 upon produce(pi,myvalue) ∧ round = 0 do
07 myhash := hash(myvalue);
08 myhashsig := sign (pi, myhash);

09 upon nextRound ∧ round = 0 do // start of round 1
10 round := 1;
11 msgsig := sign (pi, VALUE || myvalue || myhash || myhashsig);
12 forall cj ∈ consumerseti do
13 send (pi, cj , [VALUE, myvalue, myhash, myhashsig, msgsig])
14 msgsig := sign (pi, SUMMARY || myhash || myhashsig);
15 forall cj ∈ C\consumerseti do
16 send (pi, cj , [SUMMARY, myhash, myhashsig, msgsig]);

Algorithm 2: NBART Algorithm (consumer cj)
01 upon init do
02 myvalue :=⊥;
03 myhash:=⊥;
04 confirm := [⊥]N ;
05 values := [⊥]N ;
06 round := 0;

07 upon nextRound ∧ round = 0 do // start of round 1
08 round := 1;

09 upon deliver (pi, cj , [VALUE, pvalue, phash, phashsig, msgsig]) ∧ round = 1 do
10 if (pi ∈ producersetj)then
11 if verifysig(pi, VALUE || pvalue || phash || phashsig, msgsig)then
12 if verifysig(pi,phash, phashsig) then
13 if verifyhash(pvalue, phash) then
14 values[pi] := 〈pvalue, phash, phashsig〉;

15 upon deliver (pi, cj , [SUMMARY, phash, phashsig, msgsig]) ∧ round = 1 do
16 if (pi 6∈ producersetj)then
17 if verifysig(pi, SUMMARY ||phash || phashsig, msgsig) then
18 if verifysig(pi, phash, phashsig) then
19 values[pi] := 〈⊥, phash, phashsig〉;

20 upon nextRound ∧ round = 1 do // start of round 2
21 round := 2;
22 myhash := h : #({p|value[p] = 〈∗, h, ∗〉}) > f .
23 myvalue := v : {p|value[p] = 〈v,myhash, ∗〉}.
24 forall pi: values[pi] = 〈*, myhash, *〉 do
25 confirm[pi] := 〈values[pi].hash, values[pi].signature〉;
26 confsig := sign (cj , confirm);
27 msgsig := sign (cj , CERTIFICATE||confirm||confsig);
28 send (cj , TO, [CERTIFICATE, confirm, confsig, msgsig]);
29 consume (cj , myvalue);

proves that it has received and picked the correct value as
described below (lines 24-25). For each producer pi, the
consumer either stores in confirm: i) the received hash and
corresponding signature (extracted from the values set) or
ii) the special value ⊥ when no data, or incorrect data, was
received from that producer. The consumer then signs this
data structure with its private key and sends it as a proof of
reception to the trusted observer (lines 26-28). The consumer
terminates its local execution of the algorithm by outputting
the value (line 29).

The trusted observer waits for a certificate from each
consumer in round 2 (Alg. 3, line 6). The certificates are
collected in an array called evidence (line 9). In the end, the
trusted observer produces the array as evidence (line 11).

Algorithm 3: NBART Algorithm (trusted observer TO)
01 upon init do
02 evidence:= [⊥]C ;
03 round := 0;

04 upon nextRound ∧ round < 2 do
05 round := round+1;

06 upon deliver (cj , TO, [CERTIFICATE, confirm, confsig, msgsig]) ∧ round = 2 do
07 if verifysig (cj , CERTIFICATE||confirm||confsig, msgsig) then
08 if verifysig (cj , confirm, confsig) then
09 evidence[cj] := 〈confirm, confsig〉;

10 upon nextRound ∧ round = 2 do // start of round 3
11 certify (TO, evidence);

Considering the data structure that is created by the trusted
observer as evidence, we can now define with more detail
the predicates hasProduced and hasAcknowledged. Let h(v)
denote the hash of the value v and let spk

(h(v)) denote the
hash of v signed by the producer pk:
• hasProduced(evidence, pi) is true if the following

condition holds: there are at least N − f consumers
ck ∈ C: evidence[ck][pi] = 〈h(v), spi(h(v))〉. It is false
otherwise.

• hasAcknowledged(evidence, cj) is true if the following
conditions hold: it exists a set of producers, named
correctsetj , such that #correctsetj ≥ N − f and for
∀pk ∈ correctsetj hasProduced(evidence, pk) is true
and evidence[cj][pk] = 〈h(v), spk

(h(v))〉. It is false
otherwise.

The algorithm does not require the observer to actively
participate in the execution of the algorithm. Furthermore,
the verification process performed by the trusted observer is
independent for each transfer. Therefore many instances of
NBART can be executed in parallel under the jurisdiction
of one or more trusted observers, without the trusted entity
being a single point of failure or a bottleneck.

C. Analysis

The analysis of the algorithm has three parts. First, we
prove its correctness. Then, we demonstrate that it is a Nash
equilibrium. Finally, we perform a complexity analysis in
terms of communication costs.

1) Correctness: To prove the correctness of the algo-
rithm, we start by assuming that all non-Byzantine processes
follow the specified behaviour. Then, we prove that ERA-
NBART fulfils each of the NBART properties in a sequence
of lemmas. Then, we derive the following theorem from
those lemmas, proving that ERA-NBART is correct in the
presence of Byzantine and Altruistic behaviour, as long as
N ≥ 2f + 1:

Theorem 4.1: (Correctness) If all non-Byzantine partici-
pants follow the protocol, then the provided algorithm solves
the NBART problem defined in terms of properties NBART
1-7.

2) Game Theoretical Analysis: To prove that the protocol
provides a Nash equilibrium, we model the NBART problem

5

as a strategic game [6], where each player (process) decides
its strategy (or plan of action) once and it remains valid
for all its actions during the execution of NBART. These
decisions about the strategy are made simultaneously and, as
Rational players do not collude among themselves, without
knowledge of the strategies selected by other players. The
profile of strategies, denoted by ~σ, is the correspondence
between each player and its strategy.

We considered the following possible behaviours. Altruis-
tic producers send hash(v) to all consumers and the value v
to the consumers of consumerseti. Rational producers send
hash(v) to any subset of C and the value to any subset
C′ ⊆ C. Altruistic consumers process all the information
received from producers, send it to the TO, and consume one
value. Rational consumers may or may not: consume a value,
process all the values or hashes received from producers,
and send the received information to the TO. Byzantine
players follow an arbitrary strategy. Notice that these are
pure strategies, that is, the decisions about which strategy to
follow is deterministic.

The main goal of this analysis is to prove that ERA-
NBART provides a Nash equilibrium. That is, for the profile
of strategies ~σ where all Rational processes follow the
algorithm, then no process can increase its expected benefit
by unilaterally deviating from the strategy specified by ~σ.

To provide a complete proof that neither the producers nor
the consumers benefit from deviating from the protocol, we
proved that the expected benefits obtained by each producer
pi are always equal to 0, whenever pi does not send the
signature of the correct value to all consumers and does not
send the value to all consumers of consumerseti This allows
us to prove the following theorem.

Theorem 4.2: No producer has any incentives to unilat-
erally deviate from the protocol.

We also prove that the expected benefit obtained by each
consumer cj is 0 whenever cj : does not process and stores
all the valid signatures sent by producers, and does not send
those signatures to TO. This allows us to prove the following
theorem.

Theorem 4.3: No consumer has any incentives to unilat-
erally deviate from the protocol.

The following Theorem concludes that the algorithm
provides a Nash equilibrium.

Theorem 4.4: (Nash equilibrium) The profile of strate-
gies ~σM where every player follows the protocol is a Nash
equilibrium.

V. LRA-NBART
In this section, we present a variant of ERA-NBART

that aims at minimizing the information exchanged in the
network at the cost of increasing the latency of the algorithm.
This algorithm is depicted for producers, consumers, and
TO, respectively, in Alg. 4, Alg. 5, and Alg. 6.

ERA-NBART forces each producer to send the value
to f + 1 consumers. One possible alternative consists in
requiring only one transfer per consumer. This minimizes the
overhead imposed by transferring the value. Unfortunately,

this change requires the algorithm to execute additional
rounds. Hence, there is a trade-off associated with this
choice.

A. Algorithm

We change the algorithm such that the producer, in the
first round, only sends the hash of the value and correspond-
ing signature to all consumers (Alg. 4, lines 11-13). This
allows all consumers to obtain the following information: i)
which is the hash of the correct value (Alg. 5, line 16) and
ii) which producers claim to have the correct value.

Then, the consumer selects a producer using a determin-
istic function and requests a copy of the value from that
producer (Alg. 5, lines 17-20 and 30-33). If the producer is
Rational, it should send the value to the consumer (Alg. 4,
lines 16-21), otherwise the corresponding consumer will
set the position of the array hashes, corresponding to the
producer, to the value ⊥ (Alg. 5, lines 28-29). However, if
the producer is faulty, it may not reply to the request from
the consumer. In the worst case, the consumer may have
to request the value to f + 1 different producers, which
delays the transfer. For load balancing, different consumers
will ask the values from different producers in different
orders. The sequences that map consumers to producers
and producers to consumers, in each round, are named
producerseq and consumerseq for consumers and producers,
respectively. Their definitions are similar to the definitions
of consumerset and producerset in ERA-NBART, with the
only difference that in LRA-NBART these functions map
each index between 0 and f to a process. With this, each
consumer should request the value in round r to the producer
identified by producerseq[r− 2], since round 2 corresponds
to the index 0. Likewise, each producer should only reply
to the consumer identified by consumerseq[r − 2], in round
r. The definitions of these data structures are the following:
producerseqj = [r → pi|r ∈ [0 . . . f], i = j+r mod N]; and
consumerseqi = [r → cj |r ∈ [0 . . . f], producerseqj [r] =
pi]

As a result of this strategy, after the round 1, all processes
execute f + 1 rounds where values may be potentially
transferred from producers to consumers. Consumers, stop
requesting the value as soon as they received it from a non-
Byzantine producer. However, they still wait for the round
f + 3 to send a certificate to the trusted observer. At round
f+3 all consumers send the certificates to TO and terminate
the protocol (Alg. 5, lines 36-39). As with ERA-NBART,
the trusted observer terminates the protocol one round later,
after receiving all the certificates (Alg. 6, lines 6-9) and after
certifying each participant (Alg. 6, line 11).

Note that a Byzantine consumer may pretend to not have
received the value, and request the value from a different
producer in all f + 1 rounds. Thus, in the worst case, a
non-Byzantine producer may still need to send f + 1 copies
of the data. Nevertheless, the total cost of transferring the
value, even in face of a worst case adversary, is still smaller
than in ERA-NBART, and much smaller in failure-free runs.

6

Algorithm 4: LRA-NBART (producer pi)
01 upon init do
02 myvalue := ⊥;
03 myhash := ⊥;
04 myhashsig := ⊥;
05 round := 0;

06 upon produce(pi,myvalue) ∧ round = 0 do
07 myhash := hash(myvalue);
08 myhashsig := sign (pi, myhash);

09 upon nextRound ∧ round = 0 do // start of round 1
10 round := 1;
11 msgsig := sign (pi, SUMMARY || myhash || myhashsig);
12 forall cj ∈ C do
13 send (pi, cj , [SUMMARY, myhash, myhashsig, msgsig])

14 upon nextRound ∧ round > 0 ∧ round < f + 3 do
15 round := round +1;

16 upon deliver (cj , pi, [REQUEST, rhash, reqsig]) ∧ round > 1 ∧ round ≤ f + 2 do
17 if verifysig (cj , REQUEST ||rhash, reqsig) then
18 if consumerseqi[round −2] = cj then
19 if rhash = myhash then
20 msgsig := sign (pi, VALUE || myvalue);
21 send (pi, cj , [VALUE, myvalue, msgsig])

B. Analysis

In this thesis, we also prove the correctness of LRA-
NBART, and we show that this algorithm provides a Nash
equilibrium. The proofs are very similar to the proofs
included in the analysis of ERA-NBART.

1) Correctness: As a basis for proving the correctness of
LRA-NBART, we prove the following Lemmas.

Lemma 5.1: At the beginning of round 2, every non-
Byzantine consumer possesses at least f + 1 hashes of the
correct value v.

Lemma 5.2: Every non-Byzantine consumer obtains the
value v until the beginning of round f + 3.

Then, as in ERA-NBART, we prove that the algorithm
fulfils the NBART properties, one by one in different lem-
mas, and we conclude the following theorem.

Theorem 5.3: (Correctness) If all non-Byzantine partici-
pants obey the protocol, then the variant algorithm solves
the NBART problem defined in terms of properties NBART
1-7.

2) Game Theoretical Analysis: To prove that it is in every
Rational player best interest to obey the protocol, for LRA-
NBART, we use the same notation as in ERA-NBART and
the same definition of the utility function for a strategic
game.

To show that LRA-NBART is a Nash equilibrium for
risk-averse players, the provided proofs are almost iden-
tical to the proofs provided in ERA-NBART. The only
significant difference is on showing that producers do not
refuse requests from consumers instead of proving that they
send v to their consumerset. More precisely, it is proved
that each producer pi does not obtain any benefits if it
does not send the signature of the correct value to all
consumers, or if it does not reply with the correct value
to some request performed by a consumer cj in round r,

Algorithm 5: LRA-NBART (consumer cj)
01 upon init do
02 myhash :=⊥;
03 myvalue :=⊥;
04 hashes := [⊥]P ;
05 targets := producerseqj ;
06 source :=⊥;
07 round := 0;

08 upon nextRound ∧ round = 0 do // start of round 1
09 round := 1;

10 upon deliver (pi, cj , [SUMMARY, phash, phashsig, msgsig]) ∧ round = 1 do
11 if verifysig(pi, SUMMARY || phash || phashsig, msgsig)then
12 if verifysig (pi, phash, phashsig) then
13 hashes[pi] := 〈phash, phashsig〉;

14 upon nextRound ∧ round = 1 do // start of round 2
15 round := 2;
16 myhash := h : #({p|hashes[p] = 〈h, ∗〉}) > f .
17 source := removefirst(targets);
18 if hashes[source] = 〈myhash, ∗〉 then
19 msgsig := sign (cj ,REQUEST || myhash);
20 send(cj , source, [REQUEST, myhash, msgsig])

21 upon deliver (pi, cj , [VALUE, pvalue, msgsig]) ∧ round ≥ 2 ∧ round ≤ f + 2 do
22 if pi = source then
23 if verifysig (pi, VALUE || pvalue, msgsig) then
24 if hash(pvalue) = myhash then
25 myvalue := pvalue;

26 upon nextRound ∧ round ≥ 2 ∧ round < f + 2 do
27 round := round + 1;
28 if myvalue = ⊥ then
29 hashes[source] := ⊥;
30 source := removefirst(targets);
31 if hashes[source] = 〈myhash, ∗〉 then
32 msgsig := sign (cj ,REQUEST || myhash);
33 send(cj , source, [REQUEST, myhash, msgsig])

34 upon nextRound ∧ round = f + 2 do // start of round f + 3
35 round := round + 1;
36 confsig := sign (cj , hashes);
37 msgsig := sign (cj , CERTIFICATE ||hashes||confsig);
38 send (cj , TO, [CERTIFICATE, hashes, confsig, msgsig])
39 consume (cj , myvalue);

Algorithm 6: LRA-NBART (trusted observer TO)
01 upon init do
02 evidence:= [⊥]C ;
03 round := 0;

04 upon nextRound ∧ round < f + 3 do
05 round := round+1;

06 upon deliver (cj , TO, [CERTIFICATE, confirm, confsig, msgsig]) ∧ round = f + 3 do
07 if verifysig (cj , CERTIFICATE ||confirm||confsig, msgsig) then
08 if verifysig (cj , confirm, confsig) then
09 evidence[cj] := 〈confirm, confsig〉;

10 upon nextRound ∧ round = f + 3 do // start of round f + 4
11 certify (TO, evidence);

when producerseti[r] = cj . It is also proved that if pi
replies to a request performed by a consumer cj when
producerseti[r] 6= cj , its expected utility is lower than the
expected utility of following the algorithm.

Regarding consumers, it is proved for each consumer cj
that the expected benefits are equal to 0 whenever cj does not
process and store all the valid signatures sent by producer,
and does not send those signatures to TO.

7

VI. COMPLEXITY ANALYSIS

This section compares the algorithms in terms of the
following parameters:
• Time complexity (TC): Total number of rounds.
• Message complexity (MC): Total number of messages

sent by non-Byzantine producers. We do not consider
messages sent by Byzantine processes because their
number cannot be upper bounded.

• Bit complexity (BC): Total number of bits sent by
non-Byzantine producers. We also do not take into
consideration bits sent by Byzantine processes for the
same reasons stated previously.

• Processing complexity (PC): Maximum processing ef-
fort per producer, per consumer and per TO, performed
by a non-Byzantine process, that includes the costs of
verifying and computing signatures and hashes. This
complexity represents the computational effort, which
can be measured, for instance, in CPU cycles. We ig-
nore the costs of simple operations, such as attributions,
simple arithmetic operations, and counting operations.

• Storage complexity (SC): Maximum cost of storing the
value, signatures, and hashes, per producer, consumer,
and TO, during the execution of the algorithm. This
takes into consideration not only the total number of
stored bytes, but also the time during which processes
must store that information. Therefore, we assume that
there are fixed costs for storing a value, and a pair hash
signature, per round. The SC is given by: i) the total
number of stored values times the number of rounds
each process stores those values times the fixed cost of
storing the value per round; and ii) the total number of
pairs with an hash and signature times the number of
rounds times the cost of storing a single pair during a
round.

• Packet Transmission Complexity (PTC): Cost of
sending and receiving information. This is the total
cost of transmitting or receiving all the data packets
of the messages. We assume that there is a fixed cost
for sending or receiving a single data packet, that
includes all the underlying costs to this operation, such
as storage in local buffers, CPU cycles for transferring
the data, energy consumption, among others.

We compare ERA-NBART and LRA-NBART in the fol-
lowing three scenarios:
• Optimistic Scenario: bP = bC = 0 - provides evalua-

tion for an environment where there are no Byzantine
processes.

• Crash-Faults Scenario: bP = tP , bC = tC , and
bP , bC ≥ 0 - provides evaluation for an environment
where completely arbitrary faults are rare.

• Arbitrary-Faults Scenario: bP = aP , bC = aC and
bP , bC ≥ 0 - provides evaluation for an hostile en-
vironment.

We show that the time complexities are 4 and f + 5
rounds in ERA-NBART and LRA-NBART, respectively. The
total number of messages is asymptotically identical in all

scenarios and is O(N2). Also the PC, PTC, and SC of
TO are identical in both algorithms and are also O(N2). A
comparison of the algorithms regarding BC, PC, and PTC
are summarized in Tables I, II, and III. We do not include the
comparison of the SC, since the results are as expected. That
is, both algorithms store the same amount of information,
but since LRA-NBART has greater time complexity, then it
also has greater SC.

Scenario Conditions ERA-
NBART

vs LRA-
NBART

Optimistic lv � ls O(Nf) > O(N)
Scenario lv ' ls O(N2) = O(N2)

Crash-Faults lv � ls O(Nf) > O(N)
Scenario lv ' ls O(N2) = O(N2)

Arbitrary-
Faults

lv � ls and
N ≥ f2

O(Nf) > O(N)

Scenario lv � ls and
N < f2

O(Nf) > O(f2)

lv ' ls O(N2) = O(N2)

Table I
COMPARISON OF THE BIT COMPLEXITY.

Scenario Conditions ERA-
NBART

vs LRA-
NBART

Optimistic
Scenario

O(1) = O(1)

Producers Crash-
Faults
Scenario

kv � ks O(1) = O(1)

kv ' ks O(1) < O(f)
Arbitrary-
Faults
Scenario

kv � ks O(1) = O(1)

kv ' ks O(1) < O(f)

Optimistic
Scenario

O(N) = O(N)

Consumers Crash-
Faults
Scenario

O(N) = O(N)

Arbitrary-
Faults
Scenario

O(N) = O(N)

Table II
COMPARISON OF THE PROCESSING COMPLEXITY.

This analysis leads to the conclusion that ERA-NBART
is more suited for systems where the execution time is
more relevant than communication costs, specially when the
value is not very large. However, when participants strive
to minimize bandwidth costs and the value is large, LRA-
NBART presents interesting properties since it always incurs
lower communication costs in most scenarios. Moreover,
although LRA-NBART has greater costs for storing the
value, in some cases, the storage complexity is less critical
than the bit complexity, since the memory may be cheaper
than fast Internet connections. In addition, the worst case
scenario is a pessimistic analysis; in practice the number of
Byzantine participants might be significantly lower than f .

8

Scenario Conditions ERA-
NBART

vs LRA-
NBART

Optimistic
Scenario

lv � ls O(f) > O(1)

lv ' ls O(N) = O(N)
Producers Crash-

Faults
Scenario

lv � ls O(f) = O(f)

lv ' ls O(N) = O(N)
Arbitrary-
Faults
Scenario

lv � ls O(f) = O(f)

lv ' ls O(N) = O(N)

Optimistic
Scenario

lv � ls O(f) > O(1)

lv ' ls O(N) = O(N)
Consumers Crash-

Faults
Scenario

lv � ls O(f) > O(1)

lv ' ls O(N) = O(N)
Arbitrary-
Faults
Scenario

lv � ls O(f) > O(1)

lv ' ls O(N) = O(N)

Table III
COMPARISON OF THE PACKET TRANSMISSION COMPLEXITY.

Also, it is unlikely for most of the Byzantine participants
to follow a purely malicious behaviour. Therefore, in many
practical situations the average case is closer to the best case,
for which there is a single value transfer per consumer.

VII. SOLUTIONS FOR A MODEL WHERE NP 6= NC

In this section, we extend the previous solutions for an
environment where the number of producers (NP) may be
different than the number of consumers (NC). We state that
it must be true that NP ≥ 2fP + 1, where NP is the upper
bound on the number of Byzantine producers. Otherwise,
consumers cannot determine which of the possible multiple
received values is correct. Concerning consumers, the only
restriction on NC is that there must exist at least one non-
Byzantine consumer to acknowledge the receipt of the cor-
rect value and therefore to certify the behaviour of producers.
Hence, NC ≥ fC + 1.

In order to ensure that the ERA-NBART algorithm is
correct in this new scenario, it is only necessary to change
the definition of consumerseti and producersetj for each pro-
ducer pi and consumer cj , respectively. More precisely, each
consumer must be associated by producersetj with exactly
fP+1 producers, ensuring that at least a non-Byzantine pro-
ducer transfers the value to each non-Byzantine consumer.
In addition, it is desirable to optimize load balance among
all producers, that is:

∀pi,pk∈P |#consumerseti −#consumersetk| ≤ 1 (1)

Regarding LRA-NBART, besides ensuring that the re-
quests performed by consumers are distributed to all pro-
ducers, it is also desirable to distribute the load in each
round. For instance, we do not want a producer to be idle

in a given round while another producer receives requests
from two or more consumers. These new rules can be more
precisely defined as follows:

∀pi,pk∈P |#consumerseqi −#consumerseqk| ≤ 1 (2)

∀pi,pk∈P∀r∈[0...f]|#consumerseqi[r]−#consumerseqk[r]| ≤ 1
(3)

In the thesis, we provide new definitions for the producer-
set and consumerset data structures that fulfil Inequality 1.
We also provide new definitions for the producerseq and
consumerseq data structures that, simultaneously, fulfil In-
equalities 2 and 3.

New definitions of the predicates hasProduced and ha-
sAcknowledged must be provided as follows:
• hasProduced(evidence, pi) is true if the following con-

dition holds: there are at least NC − fC consumers
ck ∈ C: evidence[ck][pi] = 〈h(v), spi

(h(v))〉. It is false
otherwise.

• hasAcknowledged(evidence, cj) is true if the following
conditions hold: it exists a set of producers, named
correctsetj , such that #correctsetj ≥ NP −fP and for
∀pk ∈ correctsetj hasProduced(evidence, pk) is true
and evidence[cj][pk] = 〈h(v), spk

(h(v))〉. It is false
otherwise.

In this new scenario, the proofs of correctness of ERA-
NBART and LRA-NBART are identical to the proofs pro-
vided for the scenario where NP = NC . Furthermore,
the principles used to prove that ERA-NBART and LRA-
NBART provide a Nash-equilibrium also hold in this new
scenario.

VIII. CONCLUSIONS

In this work, we have introduced the NBART problem
that abstracts the problem of transferring data from a set
of producers to a set of consumers under the BAR system
model.

We have presented an algorithm named ERA-NBART that
solves the NBART problem for N ≥ 2f+1, where N is the
number of producers and consumers. We have shown that
our algorithm is a Nash equilibrium, so Rational participants
are unable to extract any benefit from deviating from the
algorithm. We also presented an alternative algorithm named
LRA-NBART that also solves the NBART problem and
provides a Nash equilibrium. A comparison between the
two algorithms allowed to conclude that ERA-NBART is
more appropriate for scenarios where the execution time
is more critical than the communication costs. Otherwise,
LRA-NBART presents a lower complexity, because in most
scenarios it only requires one transfer of the value per
consumer.

NBART is a powerful construct to build peer-to-peer sys-
tems that support distributed storage and parallel processing
based on volunteer processes. One of the main motivations
of this work was to build such a system based on a P2P
architecture, named BARRAGE, which aimed at supporting

9

distributed computations using the MapReduce model. An-
other application of NBART could be a data backup system,
where volunteers would provide their resources to backup
the data of other users, in trade of a payment that would
allow them to backup up their own data. In this scenario,
NBART could be used to prevent volunteers from storing
the data for long periods of time. Considering these two
possible applications, the ERA-NBART algorithm would
be more appropriate for BARRAGE, since this system is
more demanding in terms of execution time. LRA-NBART
would be more appropriate for the data backup system, since
the main requirement of these systems is data availability
instead of performance, and LRA-NBART incurs lower
communication costs.

ACKNOWLEDGMENTS

This work was partially supported by the FCT (INESC-
ID multi annual funding through the PIDDAC Program
fund grant and by the project PTDC/EIA-EIA/102212/2008).
Parts of this work have been performed in collaboration
with other members of the Distributed Systems Group
at INESC-ID, namely, João Leitão, Miguel Correia, and
Oksana Denysyuk.

REFERENCES

[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “SETI@home: an experiment in public-
resource computing,” Communications of the ACM, vol. 45,
no. 11, pp. 56–61, Nov. 2002.

[2] D. Anderson, “Boinc: A system for public-resource comput-
ing and storage,” in GRID’04, Pittsburgh, USA, Nov. 2004,
pp. 4–10.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” in OSDI’04, San Francisco,
USA, 2004.

[4] S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth, “BAR fault tolerance for cooperative services,” in
SOSP’05, Brighton, United Kingdom, Oct. 2005, pp. 45–58.

[5] G. Hardin, “The tragedy of the commons,” Science, vol. 162,
no. 3859, pp. 1243–47, 1968.

[6] O. Martin and R. Ariel, A Course in Game Theory. MIT
Press, 1994.

[7] A. Clement, J. Napper, H. Li, J.-P. Martin, L. Alvisi, and
M. Dahlin, “Theory of bar games,” in PODC’07, Portland,
USA, Aug. 2007, pp. 358–359.

[8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol. 4,
pp. 382–401, Jul. 1982.

[9] D. Dolev and H. Strong, “Authenticated algorithms for Byzan-
tine agreement.” SIAM J. Comput., vol. 12, no. 4, pp. 656–
666, 1983.

[10] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agree-
ment with optimal resilience,” in STOC’93, New York, USA,
1993, pp. 42–51.

[11] L. Lamport, “The part-time parliament,” ACM Trans. on
Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[12] S. Lee and K. Shin, “Interleaved all-to-all reliable broadcast
on meshes and hypercubes,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 5, no. 5, pp. 449–458, May 1994.

[13] P. Fraigniaud, “Asymptotically optimal broadcasting and gos-
siping in faulty hypercube multicomputers,” Computers, IEEE
Transactions on, vol. 41, no. 11, pp. 1410–1419, Nov. 1992.

[14] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in
STOC’97, El Paso, USA, 1997, pp. 569–578.

[15] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal Byzantine
storage,” in DISC’02, Toulouse, France, Oct. 2002, pp. 311–
325.

[16] M. Castro and B. Liskov, “Practical Byzantine fault tolerance
and proactive recovery,” ACM Transactions on Computer
Systems, vol. 20, no. 4, pp. 398–461, 2002.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative Byzantine fault tolerance,” in SOSP’07,
Stevenson, USA, Oct. 2007, pp. 45–58.

[18] G. S. Veronese, M. Correia, A. N. Bessani, and L. C.
Lung, “EBAWA: efficient byzantine agreement for wide-area
networks,” in HASE’10, San Jose, USA, Nov. 2010.

[19] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. of ACM, vol. 35, pp. 288–
323, April 1988.

[20] R. Baldoni, J.-M. Helary, M. Raynal, and L. Tanguy, “Con-
sensus in Byzantine asynchronous systems,” J. Discrete Al-
gorithms, vol. 1, no. 2, pp. 185–210, 2003.

[21] M. Correia, N. F. Neves, L. C. Lung, and P. Verissimo,
“Low complexity Byzantine-resilient consensus,” Distributed
Computing, vol. 17, no. 3, pp. 237–249, 2005.

[22] K. Eliaz, “Fault tolerant implementation,” Review of Eco-
nomic Studies, vol. 69, no. 3, pp. 589–610, 2002.

[23] T. Moscibroda, S. Schmid, and R. Wattenhofer, “On the
topologies formed by selfish peers,” in PODC’06, Denver,
USA, Jul. 2006, pp. 133–142.

[24] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed
computing meets game theory: robust mechanisms for rational
secret sharing and multiparty computation,” in PODC’06,
Denver, USA, Jul. 2006, pp. 53–62.

[25] R. Axelrod, The Evolution of Cooperation. New York: Basic
Books, 1984.

[26] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “BAR gossip,” in OSDI’06, Seattle, USA, Nov.
2006, pp. 191–204.

[27] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison,
L. Alvisi, and M. Dahlin, “Flightpath: Obedience vs choice
in cooperative services,” in OSDI’08, San Diego, USA, Dec.
2008.

[28] E. L. Wong, J. B. Leners, and L. Alvisi, “It’s on me!
the benefit of altruism in BAR environment,” in DISC’10,
Cambridge, USA, Sep. 2010, pp. 406–420.

10

