
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Sustaining Cooperation in Dependable Systems: A

Game Theoretical Approach

Xavier Araújo Morgado Vilaça

Supervisor: Doctor Lúıs Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor Lúıs Eduardo Teixeira Rodrigues
Doctor Chryssis Georgiou
Doctor Francisco João Duarte Cordeiro Correia dos Santos
Doctor José Orlando Roque Nascimento Pereira

2016

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Sustaining Cooperation in Dependable Systems: A

Game Theoretical Approach

Xavier Araújo Morgado Vilaça

Supervisor: Doctor Lúıs Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor Lúıs Eduardo Teixeira Rodrigues, Professor Catedrático do Instituto Superior
Técnico da Universidade de Lisboa

Doctor Chryssis Georgiou, Associate Professor, University of Cyprus, Cyprus

Doctor Francisco João Duarte Cordeiro Correia dos Santos, Professor Associado do
Instituto Superior Técnico da Universidade de Lisboa

Doctor José Orlando Roque Nascimento Pereira, Professor Auxiliar da Escola de En-
genharia da Universidade do Minho

Funding Institutions

Fundação para a Ciência e Tecnologia

2016

Acknowledgements

This thesis could not have been concluded without the support of many people. A special

mention goes to my advisor Lúıs Rodrigues, Professor Joe Halpern, my family, and the colleagues

with whom I regularly had lunch/coffee or shared an office for five long years, namely, Nuno

Machado, Nuno Diegues, Diego Didona, Oksana Denysyuk, Pedro Ruivo, Hugo Rodrigues, Pedro

Mota, Daniel Andrade, and Beatriz Ferreira.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) via

the individual Doctoral grant SFRH/BD/79822/2011, via the INESC-ID multi-annual funding

through the PIDDAC Program fund grant, under project PEst-OE/ EEI/ LA0021/ 2013, via the

project PEPITA (PTDC/EEI-SCR/2776/2012), via the project DependableCloud ERC-2012-

StG-307732, and via the project Abyss (PTDC/ EEI-SCR/ 1741/ 2014).

Lisboa, 2016

Xavier Araújo Morgado Vilaça

To the dawn breaker.

Resumo

Um sistema distribúıdo é constitúıdo por vários processos que executam um protocolo dis-

tribúıdo que providencia um serviço confiável. Tipicamente, considera-se que todos os processos

cooperam, executando o protocolo de acordo com a especificação, exceto quando ocorrem falhas;

se os processos não cooperarem, o serviço que o sistema deveria fornecer pode ser comprometido.

Infelizmente, a assunção de que os processos cooperam pode não ser válida em sistemas abertos,

em que cada processo é gerido por uma entidade distinta. Na realidade, se as entidades forem

egóıstas e beneficiarem de desvios do protocolo, estas podem alterar o protocolo executado pelos

processos. De forma a evitar este problema, protocolos distribúıdos devem fomentar cooperação,

isto é, devem providenciar incentivos que neguem qualquer benef́ıcio a entidades responsáveis

por desvios.

Uma forma de modelar comportamento egóısta consiste em adotar a abordagem de Teoria

de Jogos. Nesta abordagem, assume-se que cada processo é controlado por um agente racional

que visa maximizar uma função de utilidade pessoal, interações são modeladas como jogos e

protocolos correspondem a estratégias que definem as ações durante o jogo. O objetivo princi-

pal de Teoria de Jogos consiste em desenvolver equiĺıbrios, isto é, protocolos em que nenhum

agente racional obtém uma utilidade superior se o processo controlado por si se desviar do pro-

tocolo. Estes protocolos fomentam cooperação, sendo, portanto, extremamente relevantes para

o desenvolvimento de sistemas distribúıdos confiáveis.

Neste trabalho, aplicam-se conceitos de Teoria de Jogos na identificação e análise de proto-

colos que fomentam cooperação em três problemas distribúıdos fundamentais: (i) o problema de

disseminação epidémica, (ii) o problema das trocas de mensagens par-a-par em redes dinâmicas,

e (iii) o problema de consenso entre processos que podem falhar por paragem. Como principais

resultados, definem-se condições necessárias e suficientes para o desenvolvimento de protocolos

que resolvem os problemas em questão e que são equiĺıbrios. Deste modo, identificam-se os

requisitos necessários e suficientes para a construção de sistemas distribúıdos confiáveis robustos

a comportamento egóısta.

Abstract

A dependable distributed system is composed of different processes that execute a dis-

tributed protocol to provide some reliable distributed service. Typically, one assumes that all

processes cooperate by executing the specified protocol, unless faults occur; if the processes do

not cooperate, then the service that the system is intended to provide may be compromised.

Unfortunately, the assumption that processes do not deviate from the protocol may not hold

in open systems, where each process is under the control of a different entity. In fact, if the

entities are selfish and they benefit from deviations, then they may change the protocol run by

the processes. To avoid this problem, protocols must sustain cooperation, i.e., they must provide

incentives that deny any benefits to the entities responsible for deviations.

One way of modelling selfish behaviour is to adopt the approach of Game Theory. In this

approach, processes are seen as being under the control of rational agents that seek to maximize

individual utility functions, interactions are modelled as games, and protocols correspond to

strategies of the game that specify the actions taken at each point in time. The main goal is

to devise equilibria protocols, i.e., protocols such that no agent increases its utility by causing

a deviation. Equilibria protocols sustain cooperation, thus being extremely relevant to the

development of dependable distributed systems.

In this work, we apply Game Theory to identify and analyse protocols that sustain cooper-

ation in three fundamental distributed problems: (i) the problem gossip dissemination, (ii) the

problem of pairwise exchanges of messages over links of a dynamic network, and (i) the problem

of consensus with crash failures. Our main results identify necessary and sufficient conditions

for devising equilibria protocols that solve the aforementioned problems. These results unveil

the necessary and sufficient requirements for the construction of dependable distributed systems

robust to selfish behaviour.

Palavras Chave

Keywords

Palavras Chave

Comportamento Racional

Teoria de Jogos

Disseminação Epidémica

Trocas Par-a-par

Consenso

Keywords

Rational Behaviour

Game Theory

Gossip Dissemination

Pairwise Exchanges

Consensus

Acronyms

NE Nash Equilibrium

SPE Subgame Perfect Equilibrium

SE Sequential Equilibrium

G-OAPE G-Oblivious Adversary Perfect Equilibrium

WTP Weak Timely Punishments

STP Strong Timely Punishments

ED Eventual Distinguishability

CKD Connectivity with Knowledge of Degree

f-NE f -Nash Equilibrium

π-NE π-Nash Equilibrium

π-SE π-Sequential Equilibrium

Table of Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 3

1.2.1 Gossip Dissemination . 3

1.2.2 Pairwise Exchanges in Dynamic Networks 4

1.2.3 Fair Consensus with Crashes . 4

1.3 Publications . 5

1.4 Document Outline . 5

2 Background in Game Theory 7

2.1 Game Structure . 7

2.1.1 Game Tree . 8

2.1.2 Available Information . 9

2.1.2.1 Information Completeness . 9

2.1.2.2 Information Perfectness . 9

2.1.2.3 Information Recall . 10

2.1.3 Strategies . 10

2.1.4 Utilities . 10

2.2 Notions of Equilibrium . 12

2.2.1 Nash Equilibrium . 13

i

2.2.2 Subgame Perfect Equilibrium . 14

2.2.3 Sequential Equilibrium . 16

2.3 Existence and Multiplicity of Equilibria . 17

2.3.1 Finite Games . 18

2.3.2 Folk Theorems in Infinitely Repeated Games 18

2.3.2.1 Information . 20

2.3.2.2 Communication . 21

2.3.2.3 Monitoring Non-deterministic Behaviour 21

3 Related Work 23

3.1 Proofs of Folk Theorems . 23

3.1.1 Perfect Public Monitoring. 23

3.1.2 Imperfect Public Monitoring . 24

3.1.3 Perfect Private Monitoring . 24

3.1.4 Imperfect Private Monitoring . 25

3.1.5 Discussion . 25

3.2 Rational Behaviour in Gossip Dissemination . 28

3.3 Rational Behaviour in Pairwise Exchanges . 30

3.3.1 Game Theoretical Approaches to Distributed Pairwise Exchanges 30

3.3.2 Game Theoretical Approaches to Dynamic Networks 30

3.4 Rational Behaviour in Consensus . 31

3.5 Game Theoretical Approaches to Other Problems 32

4 Model 33

4.1 General Aspects . 33

4.1.1 Communication . 33

ii

4.1.2 Actions . 34

4.1.3 Information . 34

4.1.4 Histories and Runs . 35

4.1.5 Strategies and Protocols . 36

4.2 Gossip Dissemination . 36

4.2.1 Problem of Infinitely Repeated Gossip Dissemination 36

4.2.2 Utility . 37

4.2.3 Approximate Folk Theorem . 38

4.3 Pairwise Exchanges in Dynamic Networks . 39

4.3.1 Problem of Infinitely Repeated Pairwise Exchanges In Dynamic Networks 39

4.3.2 Utility . 39

4.3.3 Notion of Equilibrium . 40

4.4 Fair Consensus with Crashes . 41

4.4.1 Fair Consensus Problem . 41

4.4.2 Utility . 43

4.4.3 Notions of Equilibrium . 43

4.4.3.1 f -Nash equilibrium . 43

4.4.3.2 π-Nash Equilibrium . 44

4.4.3.3 π-Sequential Equilibrium . 44

5 Gossip Dissemination 47

5.1 Dissemination Protocol . 48

5.1.1 Algorithm . 52

5.1.2 Parametrising the Protocol . 58

5.2 Proof of Main Result . 60

iii

5.2.1 Cryptographic Assumptions . 60

5.2.2 Sequential Equilibrium Proof . 62

5.2.3 Average Utility . 79

5.3 Fully Distributed Protocol . 80

6 Pairwise Exchanges in Dynamic Networks 85

6.1 Key Concepts . 88

6.2 Sustaining Cooperation with Strongest Adversary 91

6.2.1 Need for Timely Punishments . 91

6.2.2 A Protocol for Valuable Pairwise Exchanges 95

6.2.3 Relaxing the Assumptions about the Utility 101

6.3 Sustaining Cooperation in General Pairwise Exchanges 102

6.3.1 Problems with Nonsymmetric Protocols 103

6.3.1.1 Problem of Omissions as Punishments 104

6.3.1.2 Problem of Punishments with Large Upload 106

6.3.2 Need for Eventual Distinguishability . 107

6.3.3 A Protocol for General One-shot Pairwise Exchanges 113

6.3.4 Avoiding Prior Knowledge of Degree . 119

6.3.5 Complexity . 121

7 Fair Consensus with Crashes 125

7.1 An Impossibility Result . 126

7.2 Obtaining a π-Nash equilibrium . 127

7.2.1 A Naive Protocol . 128

7.2.2 A π-Nash equilibrium . 130

7.2.3 Analysis . 133

iv

7.3 A π-Sequential Equilibrium for Fair Consensus 152

8 Conclusions 157

Bibliography 164

A One-shot Deviation Property for G∗-OAPE 165

v

vi

List of Figures

2.1 Game tree of the file transfer game. 15

6.1 Results for Valuable Pairwise Exchanges (Section 6.2). 87

6.2 Results for General One-shot Pairwise Exchanges (Section 6.3). 88

6.3 Ambiguous punishment. 106

6.4 Indistinguishable stage. 109

vii

viii

List of Tables

2.1 Prisoners’ Dilemma game. 13

2.2 Strategies of the file transfer game. 15

3.1 Comparison of folk theorems proofs. 27

5.1 Notation - gossip dissemination. 84

6.1 Notation - pairwise exchanges in dynamic networks. 89

7.1 Notation - consensus with crashes. 156

ix

x

1Introduction
A dependable distributed system is composed of different processes that execute a dis-

tributed protocol to provide some reliable distributed service. Typically, one assumes that all

processes cooperate by executing the protocol, unless faults occur; if the processes do not cooper-

ate, then the service that the system is intended to provide may be compromised. Unfortunately,

the assumption that processes do not deviate from the protocol may not hold in open systems,

where each process is under the control of a different entity. In fact, if the entities are selfish and

they benefit from deviations, then they may change the protocol run by the processes (Cohen

2003; Hughes et al. 2005; Piatek et al. 2007). For instance, in file-sharing, where uploading large

files is costly, selfish entities benefit from receiving files while not uploading data in return 1.

Another example is when processes have to collectively decide whether to commit or abort a

distributed transaction; the entities may manipulate the protocol to reach their most preferred

decision. To address the problem of selfish behaviour, protocols must sustain cooperation, i.e.,

they must provide incentives to deny any benefit to entities that cause deviations.

1.1 Problem Statement

This thesis takes a game theoretical approach (Osborne & Rubinstein 1994) to gain further

insight into how to sustain cooperation in dependable systems. In this approach, processes are

seen as being under the control of rational agents that strive to maximize individual utility

functions (henceforth, we use the designation agent to denote both the rational entities and

the processes (computing entities) controlled by the agents). Game theory models interactions

between agents as games: the messages that agents send correspond to actions in the game and

protocols correspond to strategies of the game that specify the actions taken at each point in

time. The aim is to devise equilibria protocols, i.e., protocols where no agent gains by deviating

1This type of behaviour is known as free-riding.

2 CHAPTER 1. INTRODUCTION

(increases its utility) given that others do not deviate. These protocols are guaranteed to sustain

cooperation, since no agent has incentives to deviate. Hence, they are extremely relevant to the

development of dependable distributed systems.

We apply game theory to three fundamental distributed problems: (1) gossip dissemina-

tion, (2) pairwise exchanges in dynamic networks, and (3) consensus with crashes. We briefly

introduce each of these problems below:

• Gossip dissemination is a method of disseminating data from a source to a set of agents.

This method achieves a good tradeoff between reliability of data delivery to all agents and

redundancy of data sent to each agent. In gossip dissemination, data is forwarded in an

epidemic fashion: starting from the source, each agent forwards the data once after its

first reception to a set of f fan randomly chosen agents, where f fan is a parameter known

as fanout. It has been shown that, for values of f fan of the order of log(n) (where n is the

number of agents), the probability of data delivery to all agents is close to 1 while redun-

dancy is minimized (Kermarrec et al. 2003). For this reason, gossip protocols are widely

used for disseminating large amounts of data, including in database replication (Birman

et al. 1999) and live streaming (Li et al. 2006; Li et al. 2008; Guerraoui et al. 2010).

In this work, we address the problem of sustaining cooperation in gossip dissemination in

synchronous systems. We assume that agents are rational, care about the disseminated

data but avoid communication costs, and do not fail. It is well known that it is not pos-

sible to sustain cooperation if agents only interact a finite number of times (Osborne &

Rubinstein 1994). However, if agents interact infinitely often, then results known as folk

theorems show that we can sustain cooperation by holding agents accountable for their

actions in the present with punishments in the future (Mailath & Samuelson 2007). In this

work, we aim at proving a Folk Theorem for infinitely repeated gossip dissemination.

• A variety of protocols requires pairs of neighbouring agents of a dynamic network to repeat-

edly interact in pairwise exchanges of messages that are of mutual interest to both parties.

Well known examples include file-sharing (Cohen 2003) and dissemination protocols such

as (Li et al. 2006; Li et al. 2008). These protocols can operate in very diverse settings,

e.g., wireless ad-hoc or peer-to-peer overlay networks. These settings possess three impor-

tant characteristics. First, networks are inherently dynamic, whether due to uncontrolled

mobility or maintenance of the overlay. Second, bandwidth is often scarce which implies

1.2. CONTRIBUTIONS 3

that communication is costly, and the amount of storage of each agent is limited. Third,

information about the network topology is incomplete. Pairwise exchanges are similar to

gossip dissemination in that we cannot sustain cooperation if agents interact only once.

We determine necessary and sufficient conditions for sustaining cooperation in infinitely

repeated pairwise exchanges over links of dynamic networks, assuming a synchronous sys-

tem, that agents do not fail, and that the utilities are functions of the messages that the

agents send and receive.

• In the consensus problem, each agent proposes a value and then outputs some proposed

value as the consensus decision; agents must reach consensus by deciding on the same

value. Consensus is a fundamental problem in distributed computing; it plays a key

role in state machine replication, transaction commitment, and many other tasks where

agreement among agents is required. In this work, we are also interested in the property of

fairness, which is the property that the value of each agent is chosen as the decision with

equal probability. Fairness seems critical in applications where the value proposed by each

agent reflects its preference for the final decision and where we do not want agents to be

able to influence the outcome of consensus unduly. We address the problem of sustaining

cooperation in fair consensus in synchronous systems. We assume that agents may fail by

crashing and care only about the decision of consensus, i.e., (a) an agent’s utility depends

only on the consensus value achieved (and not, for example, on the number of messages the

agent sends) and (b) agents strictly prefer reaching consensus to not reaching consensus.

1.2 Contributions

The thesis provides a better understanding on how to address each of the aforementioned

problems in distributed systems in the presence of rational agents. We enumerate the main

contributions for each of the problems addressed in the thesis.

1.2.1 Gossip Dissemination

• We prove a slightly weaker version of a Folk Theorem in infinitely repeated gossip dis-

semination that holds for the notion of sequential equilibrium, assuming the existence of

4 CHAPTER 1. INTRODUCTION

a trusted mediator and that agents are computationally bounded. We also show that the

role of the mediator can be distributed.

• To prove this result, we devise a protocol that disseminates data in a gossip fashion with

a wide range of fanouts f fan , and show that the protocol is a sequential equilibrium. At

the core of this protocol, there is a monitoring mechanism providing incentives for agents

to cooperate.

1.2.2 Pairwise Exchanges in Dynamic Networks

• We provide a new game theoretical model of repeated interactions in dynamic networks,

where agents have incomplete information of the topology.

• We define a new notion of equilibrium for this model that refines sequential equilibrium.

• We identify conditions that are necessary and sufficient to devise equilibria solutions that

sustain cooperation in the aforementioned model and require bounded memory.

1.2.3 Fair Consensus with Crashes

• We define a new notion of ex post Nash equilibrium appropriate for crash failures. We

show that even in synchronous systems, there is no fair consensus protocol that is an ex

post Nash equilibrium if there can be even one crash failure. This shows that we cannot

sustain cooperation with every possible beliefs that agents may have about crashes.

• To get around our impossibility result, we assume that there is some distribution π on the

failure pattern (i.e., a description of which agents fails and how they fail in terms of the

messages they send to other agents). We show that under some minimal assumptions about

π, if agents care only about consensus, then there is a Nash equilibrium that tolerates up

to f failures, as long as f + 1 < n, where n is the total number of agents and f is the

upper bound on the number of failures.

• We generalize sequential equilibrium to our setting, where there might be failures, and

show that the strategy that gives a Nash equilibrium can be slightly extended to give a

sequential equilibrium that tolerates up to f failures.

1.3. PUBLICATIONS 5

1.3 Publications

Some of the results presented in this thesis have been published as follows:

• X. Vilaça and L. Rodrigues. On the Effectiveness of Punishments in a Repeated Epidemic

Dissemination Game. In The 15th International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS 2013), Osaka, Japan.

• X. Vilaça and L. Rodrigues. On the Range of Equilibria Utilities of a Repeated Epidemic

Dissemination Game with a Mediator. In Proceedings of the 16th International Conference

on Distributed Computing and Networking (ICDCN 2015), Goa, India.

• J. Halpern and X. Vilaça. Rational Consensus: Proceedings of the 35th ACM Symposium

on Principles of Distributed Computing (PODC 2016), Chicago, Illinois, USA.

• X. Vilaça and L. Rodrigues. Accountability in Dynamic Networks Proceedings of the

18th International Conference on Distributed Computing and Networking (ICDCN 2017),

Hyderabad, India.

1.4 Document Outline

Chapter 2 provides some necessary background in Game Theory. Chapter 3 presents the

related work. Chapter 4 describes the system model. Chapters 5, 6, and 7 describe our contribu-

tions regarding the problems of gossip dissemination, pairwise exchanges in dynamic networks,

and fair consensus with crashes, respectively. Finally, Chapter 8 concludes the thesis.

6 CHAPTER 1. INTRODUCTION

2Background in Game

Theory

Game Theory provides a set of mathematical tools for studying strategic interactions among

agents. The core notion of Game Theory is that of a game, which describes the rules of interaction

and the information available to agents. Agents are the players of the game, that is, they follow

different strategies specifying which actions they take at each point in time. Agents are assumed

to be rational, in the sense that they have individual utilities and they follow the strategies that

provide them the highest possible utility. The aim is to devise equilibria strategies which, roughly

speaking, are strategies such that no agent can increase its utility by deviating.

In this section we introduce the key game theoretical concepts used in our work. We divide

these concepts into those related to the game structure and those related to notions of equilib-

ria strategies. We also provide a discussion about the existence and multiplicity of equilibria

strategies. A more thorough discussion of the subject is provided for instance by Fudenberg &

Tirole (1991), Osborne & Rubinstein (1994), and Nisan et al (2007).

2.1 Game Structure

In a game Γ, agents take one or more actions. A strategy for the game specifies the actions

that an agent takes at each point in time. Agents simultaneously choose strategies that maximize

their utilities at the beginning of the game, i.e., they choose a strategy before being informed of

the choices of other agents. The set of available strategies is determined by the game tree and

by the information available to agents at each point in time.

We now describe the concepts of game tree, available information, strategy, and utility in

more detail.

8 CHAPTER 2. BACKGROUND IN GAME THEORY

2.1.1 Game Tree

We consider games in the extensive form (Osborne & Rubinstein 1994). A game in the

extensive form is characterized by a game tree. At every node of the tree, each agent follows

one of multiple available actions. The actions followed by all agents determine the transition to

the next node. Therefore, a node n is completely determined by the history of actions that lead

to n. In our discussion, sometimes we distinguish between one-shot games, where agents take

actions at only one node, and sequential games, where agents take actions at multiple nodes.

Unless stated otherwise, we restrict the discussion to games where all agents simultaneously take

actions at every node (before being informed of the choices of other agents) and the number of

available actions is finite. Many games of interest that capture distributed interactions fall into

this category, including the games analysed in this thesis.

In some cases, the same game Γ is played repeatedly over time (Mailath & Samuelson 2007).

For instance, this is the case of repeated streaming sessions of sporting events. In the repeated

version of Γ, time is divided into stages. In each stage, the game Γ is played once; we call Γ the

stage game. Both models of finitely and infinitely repeated games have been considered in the

literature. While in most cases interactions are only finitely repeated, it has been argued that

a model of infinitely repeated games is appropriate for modelling games where the end-horizon

of interactions is unknown, that is, where agents are always uncertain of when the game will

end (Mailath & Samuelson 2007).

We now introduce some useful terminology of repeated games. We focus on stages games Γ

that can be characterized by a finite game tree. In these games, an outcome of Γ is a leaf node

of the game tree. The game tree of the repeated version of Γ consists in the repetition of the

game tree of Γ for each stage t and outcomes of the game trees from stages t′ < t. A node n of

the game tree of the repeated version of Γ is said to be from stage t if the actions that agents

take at n are taken in stage t. An outcome of stage t is a node from stage t+ 1 that corresponds

to an outcome of Γ. Finally, an outcome o of the repeated game is a function that maps each

stage t to an outcome o(t) of stage t.

2.1. GAME STRUCTURE 9

2.1.2 Available Information

A key notion in any game is that of common knowledge. Intuitively, a fact is common

knowledge if each agent (i) knows that fact, (ii) knows that every agent knows that fact, (iii)

knows that every agent knows every agent knows that fact, and so on (see (Osborne & Rubinstein

1994) for a formal definition). Prior to the start of the game or at any node in the game tree,

agents may acquire only partial information about the game structure and past actions of other

agents, thus some of the facts about the game are not common knowledge. Considering the facts

that are common knowledge, information available to agents can be modelled according to its

completeness, perfectness, and recall.

2.1.2.1 Information Completeness

Completeness refers to information regarding the rationality of agents, available actions,

and utilities. If the fact that all agents are rational, their utilities, and the available actions

are common knowledge, then the game is of complete information, otherwise the game is of

incomplete information. In this thesis, we consider both types of games, namely, we consider

games of complete information, games where the utility of agents is not known, and games

where the game tree is not known. In particular, we consider a well known class of games of

incomplete information called Bayesian games. In a Bayesian game, each agent i is of one of

multiple possible types. The type of the agent i completely determines its utility, and is not

known by other agents. We also consider classes of games where the game tree is not known. In

these games, an agent may not know the actions available to other agents at every node of the

game tree (note that agents must always know their available actions).

2.1.2.2 Information Perfectness

Perfectness concerns the information available to agents at every node n in the game tree

regarding the past actions of agents, i.e., the actions taken at nodes that precede n in the

game tree. Games can be of perfect or imperfect information, depending on whether agents are

informed of all the actions followed in the past or have only partial information about those

actions, respectively. All the results of this thesis are for games of imperfect information.

In a game of perfect information, at every point in time, agents may always know the node n

10 CHAPTER 2. BACKGROUND IN GAME THEORY

at which they are currently taking actions, by using their knowledge about past actions to trace

the path in the game tree from the root node to n. In a game of imperfect information, agents

cannot always be sure at which node they are taking actions. That is, there are sets of nodes

that provide the same information to i regarding the past actions of other agents. Formally, an

information set Ii of agent i is a set of histories corresponding to nodes that provide the same

information to i regarding past actions. Note that the set of actions available to an agent i is

the same for all histories h from the same information set Ii. In a repeated game, if all histories

from Ii are from the same stage t, then we say that Ii is from stage t.

2.1.2.3 Information Recall

Recall refers to the ability of agents to remember the actions they followed in the past.

Specifically, a game is of perfect recall if every agent i can distinguish between nodes n1 and

n2 from the game tree whenever n1 precedes n2, such that i always recalls the actions it took

at n1 when taking actions at n2; otherwise, the game is of imperfect recall. In this thesis, we

only consider games of perfect recall. In games of perfect recall, if history h1 precedes history

h2, then i can distinguish h2 from h1, hence h1 and h2 belong to separate information sets.

Consequently, in repeated game, all histories from any information set Ii are from the same

stage t and thus Ii is also from stage t.

2.1.3 Strategies

A strategy σi for agent i is a function mapping every information set Ii of i to a probability

distribution on actions available to i at Ii. That is, σi specifies a complete plan of actions for i.

In Bayesian games, the strategy is also a function of the type of each agent. A strategy profile

~σ specifies the strategies followed by all agents.

2.1.4 Utilities

We define the utility for non-repeated games and then generalize the definition to repeated

games. In a non-repeated game, the utility is a function of the outcome of the game. Specifically,

every agent i obtains a utility Ui(o) when the outcome o is reached. This captures the preferences

of i regarding the different outcomes. When selecting a strategy σi prior to the beginning of

2.1. GAME STRUCTURE 11

the game, i must compute the expected utility of following σi. (Notice that strategies can be

non-deterministic.) The definition of expected utility varies depending on whether agents have

complete information:

• In a game of complete information, the strategy profile ~σ defines a probability distribution

P~σ on outcomes of the game: the probability P~σ(o) of each outcome o is the probability

attributed by ~σ to agents taking the actions specified in o at each information set. The

expected utility ui(~σ) of i given that agents follow ~σ is the expected value of Ui(o), where

here o is a random variable representing the possible outcomes distributed according to

P~σ.

• In a game of incomplete information, the strategy profile ~σ does not suffice to compute the

expected utility; agents must also form expectations regarding the missing information.

In particular, in Bayesian games, agents must form an expectation regarding the types

of other agents. In this thesis, we explore two different approaches for modelling this

expectation, namely the ex post and ex ante approaches. In the ex post approach, we fix

the types of agents, so that the agents essentially know what the types are when computing

their expected utility. Given the strategy profile ~σ and any vector of types ~θ specifying the

type θj of each agent j, there is a probability distribution P
~σ,~θ

on outcomes. The expected

utility of i when agents follow ~σ conditioned on the vector of types being ~θ, denoted by

ui(~σ | ~θ), is the expected value of Ui(o), where now o is distributed according to P
~σ,~θ

. In

the ex ante approach, we assume that there is a probability distribution π on vectors of

types. Given π and ~σ, there is a probability distribution π~σ on outcomes. The expected

utility ui(~σ) of agent i when agents follow ~σ is the expected value of Ui(o), where now

o is distributed according to π~σ. In part of our work, we also consider games where the

game tree is not known. We can also adopt the ex post (ex ante) approach to compute the

expected utility in these games, except that, instead of fixing the vector of types (resp.,

instead of assuming a distribution π on types), we fix the game tree (resp., we assume a

probability distribution on game trees).

More generally, when the game Γ is repeated in T ≥ 1 stages (where T may be infinite), the

expected utility is a function of the utility obtained in each stage. In this thesis, we consider the

standard definition of discounted utilities. In this definition, utilities obtained in future stages

12 CHAPTER 2. BACKGROUND IN GAME THEORY

are less valuable than present ones. That is, the utility obtained in a stage t as computed in

the present decays exponentially as t increases; the expected utility of i is then the sum of the

expected utilities obtained in all stages as computed in the present.

More precisely, we consider a discount factor δ ∈ (0, 1) which discounts future utilities

to the present. Given an outcome o of the repeated game, the utility Ui(o) of agent i is∑
1≤t≤T δ

t−1Ui(o(t)). In a game of complete information, a strategy profile ~σ defines a proba-

bility distribution P~σ on outcomes of the repeated game. The expected utility ui(~σ) of i is the

expected value of Ui(o), where o is a random variable distributed according to P~σ. In Bayesian

games, the expected utility is defined in the same way, except the probability distributions on

outcomes are P
~σ,~θ

and π~σ when using the ex post and ex ante approaches, respectively, where ~θ

is a vector of types and π is a probability distribution on vectors of types. Again, we can extend

these definitions to games where agents have incomplete information of the game tree.

In infinitely repeated games, we can see the discount factor δ as the probability of the

game ending in any given stage: agents interact repeatedly and are never sure of when the

interactions will end; interactions end in stage t with independent probability δ. The possibility

of interactions ending at any stage is what causes agents to value future utilities less than present

ones: agents may not be around in the future to receive those utilities.

2.2 Notions of Equilibrium

The main goal of Game Theory is to predict the strategies followed by agents. The usual

assumption is that agents follow equilibria strategy profiles 1. Multiple notions of equilibrium

have been proposed in the literature, which establish different criteria for identifying equilibria

strategy profiles. We now define the most relevant notions to our work, which are Nash equilib-

rium and sequential equilibrium. For the definition of sequential equilibrium, it is useful to first

define the related notion of subgame perfect equilibrium, which we also include here.

1When the game has multiple equilibria strategy profiles, agents must agree on some equilibria strategy profile.
In distributed systems, the usual assumption is that agents implicitly agree to follow the pre-defined protocol.

2.2. NOTIONS OF EQUILIBRIUM 13

C D

C 1, 1 −1, 2

D 2,−1 0, 0

Table 2.1: Prisoners’ Dilemma game.

2.2.1 Nash Equilibrium

We provide definitions of Nash equilibrium for the classes of games of complete and incom-

plete information considered in this thesis. In games of complete information, a Nash equilib-

rium (Nash 1950; Nash 1951) is a strategy profile ~σ such that, for every agent i and strategy σ′i,

we have ui(~σ) ≥ ui((σ
′
i, ~σ−i)), where (σ′i, ~σ−i) is the strategy profile where only i deviates from

~σ by following σ′i. Intuitively, ~σ is a Nash equilibrium if no agent i gains by deviating from the

strategy σi given that other agents do not deviate.

In Bayesian games, the definition of Nash equilibrium depends on the approach used to

model the expectation of agents regarding types. Namely, we define the notions of ex post Nash

equilibrium and ex ante Nash equilibrium, corresponding to the ex post and ex ante approaches

of modelling expectations about types, respectively. An ex post Nash equilibrium is a strategy

profile ~σ such that, for all vectors ~θ of types, ~σ is a Nash equilibrium that results from agents

computing their expected utility using the probability distribution P
~σ,~θ

defined on outcomes.

That is, no agent has incentives to deviate even if it knows what the types of other agents are.

An ex ante Nash equilibrium is a Nash equilibrium ~σ that results from agents using a probability

distribution π on vectors of types to compute their expected utility, where expectation is taken

relative to the probability distribution π~σ on outcomes. The definitions of ex post (ex ante)

Nash equilibrium for games where the game tree is not known is identical, except we fix (resp.,

consider distributions on) game trees instead of vectors of types.

The canonical example of a game that has a Nash equilibrium is the Prisoners’ Dilemma

with utilities depicted in Table 2.1. In this game, two agents 1 and 2 simultaneously decide

whether to cooperate (C) or defect (D). The utility of agents is a function of the benefits and

costs of cooperation. Specifically, if agent i cooperates, then agent i incurs a cost of 1 and agent

1− i obtains a benefit 2; if agent i defects, then agent i incurs no cost and agent 1− i obtains

no benefit. In this game, the only Nash equilibrium is the strategy profile (D,D), where both

agents defect. Since both agents would do better if they cooperated, this is considered to be a

social dilemma. We discuss this problem in more detail and possible solutions in Section 2.3.

14 CHAPTER 2. BACKGROUND IN GAME THEORY

2.2.2 Subgame Perfect Equilibrium

The notion of subgame perfect equilibrium (Selten 1965) (SPE) refines Nash equilibrium

for games of complete and perfect information; it addresses the problem of Nash equilibria

strategy profiles that rely on empty threats of punishment. Specifically, a strategy profile may

rely on empty threats if, for instance, whenever an agent i deviates and some agent j detects

the deviation, j punishes i by taking actions that decrease the utilities of both i and j; the

threat of punishment by j is empty, because j is never willing to carry such costly punishment.

The notion of SPE does not admit equilibria strategy profiles that rely on empty threats of

punishment.

More precisely, the problem with the definition of Nash equilibrium is that it does not

consider deviations at nodes off the equilibrium path. That is, an agent i decides whether it will

deviate from the equilibrium strategy profile ~σ at the beginning of the game, while expecting

other agents to follow ~σ−i; i does not expect to take actions at a node in the game tree that can

only be reached if someone else deviates from ~σ−i. Therefore, even if ~σ is a Nash equilibrium,

agent i may gain by deviating once some other agent deviates.

To better understand the issue, consider an example of a file transfer game with two agents

p1 and p2 and a trusted third party. The game tree is depicted in Fig. 2.1. In this game, agent

p1 is the first to move at node 1 by deciding whether to send (S) or not (N) a file to agent

p2. Then, agent p2 can complain (C) to a trusted third party about agent p2 not sending the

file or can say nothing (N). The utilities of all possible combinations of actions are included

in the pairs near the outcomes of the game tree (Fig. 2.1), where a pair (u1, u2) represents the

utility u1 of agent p1 and the utility u2 of agent p2: if agent p1 sends the file, then p1 incurs a

cost 1 and p2 obtains a benefit 1, otherwise, p1 incurs no cost and p2 obtains no benefit; if p2

complains, then the third party punishes both agents, causing a utility loss of 1. (Agent p2 may

be lying, so it is safer to punish both agents.)

The strategies and respective utilities are summarized in Table 2.2, where the lines represent

the strategies of agent p1, and the columns represent the strategies of agent p2. Specifically, agent

p1 may send (S) or not (N) the file. The strategy of agent p2 specifies whether p2 complains

(C) or not (N) at both the nodes 2 and 3 where agent p2 takes an action; this strategy takes

the form a1a2, where a1 and a2 are the actions taken by agent p2 after agent p1 follows S and

N , respectively. For instance, NC is the strategy where agent 2 complains iff agent p1 does not

2.2. NOTIONS OF EQUILIBRIUM 15

1

3

(0,0)

S N

N C

(-1,-1)

2

(-1,1)

N C

(-2,0)

p1

p2 p2

Figure 2.1: Game tree of the file transfer game.

NN NC CN CC

S −1, 1 −1, 1 −2, 0 −2, 0

N 0, 0 −1,−1 0, 0 −1,−1

Table 2.2: Strategies of the file transfer game.

send the file.

This game admits exactly one Nash equilibrium where agent p1 sends the file to agent p2,

which is (S,NC), i.e, agent p1 sends the file and agent p2 complains iff agent p1 does not send

the file. This equilibrium relies on an empty threat of punishment: the only incentive for agent

p1 to send the file is because it expects agent p2 to complain in case agent p1 does not send

the file; however, when agent p1 does not send the file, agent p2 gains by deviating and not

complaining. Hence, agent p2 may not follow the strategy NC.

The definition of SPE avoids this problem by requiring the strategy profile to be a Nash

equilibrium even when considering deviations off the equilibrium path. Specifically, for every

node n of the game tree, there is a subgame induced by n: the game defined by the subtree

starting at node n. A strategy profile ~σ is a SPE if, for every node n from the game tree, ~σ is a

Nash equilibrium of the subgame induced by n (Selten 1965). Under this definition, the strategy

profile (S,NC) is not an equilibrium in our example, since it is not a Nash equilibrium of the

subgame induced by node 3

We now provide the formal definition of SPE for repeated games, which can be easily

instantiated to non-repeated games. Given a history h from stage t and a strategy profile ~σ, let

ui(~σ | h) denote the expected utility of i conditioned on h being realized and agents following ~σ

at and after h, which we define as follows. Let O(h) be the set of outcomes o of the repeated

game compatible with h (i.e., h corresponds to a node n that precedes the outcome o(t) in the

16 CHAPTER 2. BACKGROUND IN GAME THEORY

game tree for some stage t). Note that ~σ defines a probability distribution P~σ,h on outcomes

in O(h). As in the definition of ui(~σ) for repeated games, the expected utility ui(~σ | h) is the

expected value of Ui(o), except now the expectation is taken relative to P~σ,h. A strategy profile

~σ is a SPE iff, for every history h, agent i, and strategy σ′i, we have ui(~σ | h) ≥ ui((σ′i, ~σ−i) | h).

Note that, even though this definition is appropriate only for games of both perfect and complete

information, we can directly extend it to games of incomplete information using both ex post

and ex ante approaches.

2.2.3 Sequential Equilibrium

The notion of sequential equilibrium (SE) is a refinement of SPE for games of imperfect

information, where agents are not perfectly informed of the actions of other agents (Kreps &

Wilson 1982). The main difference lies in the way agents compute their expected utility. Recall

that, in a game of imperfect information, agents take actions at information sets, where an

information set Ii of agent i is a set of histories that provide the same information to i about

past actions of other agents. Roughly speaking, a strategy profile ~σ is a SE if, for every agent

i and information set Ii, agent i does not gain by deviating from σi at and after Ii, given that

other agents also do not deviate. Hence, ~σ is essentially a SPE, except agents compute the

expected utility conditioning on information sets instead of histories.

Specifically, let ui(~σ | Ii) denote the expected utility of agent i conditioned on information

set Ii. To define ui(~σ | Ii), one needs a probability distribution P~σ,Ii on outcomes in O(Ii),

where O(Ii) is the set of outcomes of the repeated game such that the information set of i is Ii

(i.e., O(Ii) is the union of O(h) for all h ∈ Ii). The obvious way to define P~σ,Ii is to condition

on agents following ~σ from the beginning and on the outcome being in O(Ii). Unfortunately,

if Ii is inconsistent with ~σ in that the probability P~σ(o) of outcome o is 0 for every outcome

o ∈ O(Ii), then P~σ,Ii is not well defined. To address this problem, in the definition of SE, Kreps

& Wilson (1982) assume that agents form beliefs about the past behaviour of other agents, which

are captured by a belief system µ: for every information set Ii, µ defines a probability distribution

µIi on histories in Ii; thus, µIi(h) represents the belief by agent i that agents followed the actions

specified in h. A belief system µ and a strategy profile ~σ define a probability distribution µ~σ,Ii

on outcomes in O(Ii) in the obvious way. Given this, the expected utility ui(~σ | Ii) of agent i

conditioned on Ii is the expected value of Ui(o), where the expectation is taken relative to µ~σ,Ii .

2.3. EXISTENCE AND MULTIPLICITY OF EQUILIBRIA 17

According to the definition of SE by Kreps & Wilson, the belief system µ cannot be arbitrary.

More precisely, the authors require µ to be consistent with the equilibrium strategy profile, where

a belief system µ is said to be consistent with ~σ iff there exists a sequence ~σ1, ~σ2, . . . of completely

mixed strategy profiles (attribute positive probability to agents following all possible actions at

every information set) that converges to ~σ such that, for every history h ∈ Ii,

µIi(h) = lim
M→∞

P~σM (h)∑
h′∈Ii P~σM (h′)

,

where P~σ′(h
′′) is the probability of history h′′ being realized given that agents follow strategy

profile ~σ′. Intuitively, the definition of consistent belief states that, if the information set Ii

of agent i is consistent with all agents following ~σ in that there is an outcome o ∈ O(Ii) that

results from agents using ~σ (i.e., P~σ(o) > 0), then i should believe that no agent deviated from

~σ. In this case, the probability distribution µ~σ,Ii on outcomes in O(Ii) is defined by conditioning

on agents following ~σ from the beginning and on the outcome being in O(Ii). However, if Ii is

inconsistent with ~σ, then i has to believe that agents followed some alternative strategy profile

~σ′. In this case, µ~σ,Ii is defined by conditioning on agents following ~σ′ from the beginning and

the outcome being in O(Ii).

Having defined expected utilities conditioned on information sets and consistent beliefs, we

can now provide the formal definition of SE. A strategy profile ~σ is a SE iff there exists a belief

system µ consistent with ~σ such that, for every agent i, information set Ii, and strategy σ′i, we

have ui(~σ | Ii) ≥ ui((σ′i, ~σ−i) | Ii). Intuitively, a strategy profile is an SE if there is a consistent

belief system µ such that no agent i gains by deviating at any information set Ii, given that i’s

beliefs at Ii about past behaviour of other agents are captured by µ.

2.3 Existence and Multiplicity of Equilibria

The most important results in game theory pertain the number of equilibria strategy profiles

that a game admits. We discuss the most relevant results in finite and infinitely repeated games.

18 CHAPTER 2. BACKGROUND IN GAME THEORY

2.3.1 Finite Games

Nash (1950, 1951) proved that every finite one-shot game admits at least one Nash equilib-

rium. Using backwards induction, it follows that every finite game in the extensive form admits

a sequential equilibrium (and in particular admits a subgame perfect equilibrium) (Osborne &

Rubinstein 1994): starting at nodes of the game tree that immediately precede only outcomes,

agents follow Nash equilibria strategy profiles for the subgames defined by those nodes (which

exist according to Nash’s result); the same reasoning is applied backwards to define a strategy

profile that is a Nash equilibrium at every subgame and thus is a sequential equilibrium.

The backwards induction result implies that every finitely repeated game has a sequential

equilibrium, where agents follow a Nash equilibrium strategy profile in every stage. Unfortu-

nately, this is the only type of sequential equilibria that exists (Osborne & Rubinstein 1994).

In some games, such equilibria result in undesirable outcomes. For instance, in the finitely

repeated Prisoners’ Dilemma game (Table 2.1), the only subgame perfect equilibrium consists

in agents always defecting. Since agents would obtain a higher utility if both agents cooper-

ated, this situation is seen as a social dilemma. In fact, many distributed interactions such as

pairwise exchanges have the structure of a Prisoners’ Dilemma game. In those interactions, the

social dilemma is an obstacle to sustaining cooperation. Solutions to this dilemma for finitely

repeated games include the assumption that agents can sometimes be irrational by not always

following the strategy that maximizes their utility (Fudenberg & Maskin 1986). As discussed in

the next section, in infinitely repeated games the aforementioned dilemma does not arise, so we

can sustain cooperation in these games even if all agents are rational.

2.3.2 Folk Theorems in Infinitely Repeated Games

In infinitely repeated games, results known as folk theorems show that the number of se-

quential equilibria strategy profiles of many infinitely repeated games is infinite (Mailath &

Samuelson 2007). In particular, we can attain desirable outcomes in equilibria strategy profiles,

e.g., we may persuade agents to always cooperate in the infinitely repeated Prisoners’ Dilemma

game. Roughly speaking, a folk theorem states that, for every possible utility u that an agent

i may obtain in a single stage of a game Γ, there is an equilibrium strategy profile ~σ for the

infinitely repeated version of Γ such that if agents use ~σ, then u is the average utility of i per

2.3. EXISTENCE AND MULTIPLICITY OF EQUILIBRIA 19

stage in the infinitely repeated version of Γ.

More precisely, a folk theorem is defined in terms of feasible and individually rational vectors

of utilities, notions that we now define. Let ~η denote a vector of utilities, which specifies the

utility ηi of every agent i. A vector ~η is said to be feasible if there exists a strategy profile ~τ

for Γ such that ηi is the expected utility of i in Γ when agents follow ~τ . A vector ~η is said to

be individually rational if ηi ≥ u∗i for all agents i, where u∗i is the minimax utility of i, defined

as u∗i = min~τ−i maxτi ui(~τ). Intuitively, u∗i is the utility of i when other agents apply the worst

possible punishment to i. The average utility of agent i when agents follow a strategy profile ~σ

in the infinitely repeated version of Γ, which we denote by ūi(~σ), is given by ūi(~σ) = (1−δ)ui(~σ),

where ui(~σ) is the expected utility of i in the infinitely repeated game. An approximate folk

theorem for the infinitely repeated game Γ states that, for all constants ε > 0 and all feasible and

individually rational vectors ~η of utilities of Γ, there exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1)

there is a strategy profile ~σ for the infinitely repeated game such that ~σ is an equilibrium

and |ūi(~σ) − ηi| ≤ ε for all agents i; an (exact) folk theorem states that the above holds for

ε = 0 (Fudenberg & Maskin 1986; Fudenberg & Maskin 1991).

A vast literature proves folk theorems in a variety of models (see (Mailath & Samuelson

2007) for a complete survey). Usually, the proof of a folk theorem is by construction: for each

feasible and individually rational vector of utilities ~η, we define a strategy profile ~σ∗ and show

that if δ is sufficiently close to 1, then ~σ∗ is an equilibrium and the average utility of every

agent i is exactly ηi (or arbitrarily close to ηi in an approximate folk theorem). Normally, the

structure of ~σ∗ is as follows. Agents monitor the behaviour of every agent i to see if i is following

~σ∗. If agents detect that some agent i deviates, then they trigger a punishment of i, where they

take actions in multiple stages that decrease the utility of i to the minimax value. Note that for

all feasible and individually rational utilities ηi the value ηi is larger than the minimax value,

hence the utility of agent i decreases during a punishment. Proofs of folk theorems show that,

if i deviates at stage t, then the deviation is detected with high probability. It follows that, if δ

is sufficiently close to 1, then the (expected) utility loss of i for being punished in stages t′ > t

is greater than the immediate gain of deviating at stage t, so i does not gain by deviating at

stage t.

Existing proofs of folk theorems differ in how they model the information that agents acquire

about other agents’ actions, the model of communication between agents, and the approach used

20 CHAPTER 2. BACKGROUND IN GAME THEORY

to monitor non-deterministic behaviour. We now present a taxonomy of the different types of

models and approaches considered in existing work. In Chapter 3, we discuss existing proofs of

folk theorems in light of this taxonomy.

2.3.2.1 Information

Information about the agents’ actions is captured by a monitoring infrastructure, which

provides a signal ωi to every agent i every time a node in the game tree is reached. The signal

ωi gives (at least partial) information to i about the actions of other agents. For instance, if i can

perfectly observe the actions of other agents such that i always knows the node at which agents

are taking actions, then ωi represents the current node in the game tree. In some models, the

monitoring infrastructure is restricted by an underlying network, such that an agent i obtains

information about the actions of agent j only if j is a neighbour of i in the network. In these

models, the signal ωi consists in a vector of independent signals ωij for each neighbour j of i.

Given a node x of the game tree, a monitoring infrastructure is characterized by a probabil-

ity distribution Px on vectors ~ω of signals, where Px(~ω) is the probability that the monitoring

infrastructure provides the signals given by ~ω when the node x is reached. A monitoring infras-

tructure can be classified according to the accuracy and symmetry of the signals it provides to

the agents:

• Signal accuracy: monitoring is said to be globally perfect if every agent i learns the actions

of other agents at every node x, i.e., Px(~ω∗) = 1, where ω∗i corresponds to x for all agents

i; monitoring is said to be locally perfect if the monitoring infrastructure is restricted

by a network, and i can perfectly observe the actions of every neighbour j; otherwise,

monitoring is said to be imperfect.

• Signal symmetry: monitoring is said to be public if ωi = ωj for all agents i and j and

vectors of signals ~ω that the monitoring infrastructure provides with positive probability;

otherwise monitoring is said to be private.

Henceforth, we say that monitoring is perfect if it is either globally or locally perfect.

2.3. EXISTENCE AND MULTIPLICITY OF EQUILIBRIA 21

2.3.2.2 Communication

Existing work consider three main types of models of communication, namely, models where

there is no communication, models where agents can communicate via cheap talk, and models

where communication is costly :

• No communication: there is no communication between agents, so all the information

that agents have about other agents’ actions comes from the signals that the monitoring

structure provides to agents.

• Cheap talk: in addition to taking actions, agents can send messages containing information

about the signals they receive from the monitoring infrastructure; agents do not incur costs

for sending messages.

• Costly communication: agents can send messages and they incur costs for doing so.

2.3.2.3 Monitoring Non-deterministic Behaviour

In most stage games Γ, the set of feasible and individually rational utilities contains utilities

ui for agent i that correspond to non-deterministic strategy profiles of Γ. For instance, in the

Prisoners’ Dilemma, the pair of feasible and individually rational utilities (1/2, 1/2) corresponds

to the strategy where agents cooperate with probability 1/2 (note that the minimax utility of

both agents is 0 in this game). In these games, to prove a folk theorem by construction one must

define a strategy profile where the average utility of agent i is ui even if ui corresponds to a

non-deterministic strategy ~τ profile for the stage game. The obvious way to do this is to require

agents to follow ~τ in every stage. However, if the only information that agents have about

other agents’ actions are the signals that the monitoring infrastructure provides, then an agent

i cannot tell whether some other agent j is following ~τ in every stage: agent i may know that

j took action aj at information set Ij , but i does not know whether j took aj with probability

τj(aj | Ij). Therefore, agents cannot persuade agent j to follow ~τ in every stage. Different

proofs of folk theorems address this difficulty using one of three main approaches, namely, they

assume public randomization, they replace non-deterministic actions with deterministic streams

of actions, or they make agents indifferent between actions at every information set:

22 CHAPTER 2. BACKGROUND IN GAME THEORY

• Public randomization: at every information set Ii, a public randomization device outputs

random numbers that determine the action ai that i should follow with probability τi(ai |

Ii); since the device is public, all agents can consult the device to check if i is following

τi, thus they can detect a deviation and trigger a punishment of i if i deviates from τi in

some stage.

• Deterministic stream of actions: in this approach, the strategy σ∗i for the repeated game

defines a deterministic stream of actions for agent i that yields an average utility to i that

is at least arbitrarily close to the utility of i when agents follow ~τ in a stage; for instance,

if τi requires that i takes action a1
i or a2

i with equal probability 1/2, then σ∗i requires i to

take a1
i in half of the stages and to take action a2

i in the remaining stages.

• Indifference between actions: in this approach, at every information set Ii, agent i obtains

the same expected utility for taking each action ai in the support of τi at Ii (i.e., τi(ai |

Ii) > 0), so i does not gain from not selecting those actions at random according to the

distribution defined by τi, and other agents do not have to punish i for taking any of those

actions.

Summary

In this chapter we have presented the key game theoretical concepts used in our work. In the

next chapter, we will survey some of the most relevant proofs of folk theorems and applications

of game theory to dependable distributed systems.

3Related Work
In this chapter, we discuss the most relevant literature that proves folk theorems and that

addresses rational behaviour in the problems of gossip dissemination, pairwise exchanges in

dynamic networks, and consensus. We conclude the chapter with a brief mention of relevant

work that applies game theory to other distributed problems.

3.1 Proofs of Folk Theorems

We start with a discussion of the proofs of folk theorems that are more relevant to our work.

We characterize these proofs according to the models of information, models of communication,

and the type of games that they consider, and according to the approach that these proofs use

to monitor non-deterministic behaviour. We discuss proofs that consider the four main types

of monitoring in turn, namely, perfect public, perfect private, imperfect public, and imperfect

private monitoring.

3.1.1 Perfect Public Monitoring.

Fudenberg & Maskin (1986, 1991) and Abreu et al. (1994) were the first prove a folk theorem

in one-shot games with n agents for the notion of subgame perfect equilibrium, assuming that

monitoring is perfect and public and that agents do not communicate. Fudenberg & Maskin first

showed (1986) that a restriction on the utilities named full dimensionality is sufficient to prove a

folk theorem assuming public randomization; later (1991), they proved an identical result except

in the equilibrium strategy profile agents follow deterministic streams of actions that yield any

feasible and individually rational utility. Abreu et al. (1994) showed that in one-shot games with

n agents the condition of full dimensionality is not necessary and derived a weaker condition

known as NEU that is still sufficient to prove a folk theorem; the authors also use the approach

of generating deterministic streams of actions to yield any feasible and individually rational

24 CHAPTER 3. RELATED WORK

average utility to agents.

Other relevant proofs were provided in the work of Dolev et al. (2011), Rubinstein & Wolin-

sky (1995), and Mailath & Samuelson (2007). Dolev et al. approached the problem of devising

equilibria strategy profiles that correspond to self-stabilizing protocols (Dolev 2000) with opti-

mal complexity in systems that may be temporarily controlled by malicious agents. The authors

prove a folk theorem for the notion of subgame perfect equilibrium assuming that monitoring is

public and perfect. Rubinstein & Wolinsky and Mailath & Samuelson discussed how to extend

the result by Fudenberg & Maskin (1991) to sequential games under the assumption that agents

can apply punishments that discriminate agents, i.e., it is possible to punish any given agent i

by following a Nash equilibrium of the stage game.

3.1.2 Imperfect Public Monitoring

The main result for models of imperfect public monitoring is due to Fudenberg et al. (1994).

The authors prove folk theorems in one-shot games with n agents for the notion of subgame

perfect equilibrium, assuming that there is no communication between agents. In their proof,

they define a strategy profile ~σ∗ such that agents are indifferent between actions in the support

of ~σ∗ at every information set.

3.1.3 Perfect Private Monitoring

Existing work proves folk theorems with perfect private monitoring assuming that the ob-

servations of agents are conditioned by an underlying network. Kinateder (2008) proves a folk

theorem for sequential equilibrium in one-shot games with n agents, in a model where agents

cannot communicate and the network restricts the observations of agents but not the actions.

Their equilibrium strategy profile generates deterministic streams of actions that yields any fea-

sible and individually rational utility. Laclau (2012) proves a similar result in a model where

agents can communicate via cheap talk and the network restricts both the actions and observa-

tions of agents. Laclau also defines a strategy profile where agents take deterministic streams of

actions.

3.1. PROOFS OF FOLK THEOREMS 25

3.1.4 Imperfect Private Monitoring

In models of imperfect private monitoring, existing work proved folk theorems for the notion

of sequential equilibrium for the three models of communication, i.e., models with no commu-

nication, models with cheap talk, and models with costly communication. To the best of our

knowledge, no existing proofs consider restrictions imposed by the network.

No Communication. Sekiguchi (1997), Piccione (2002), Ely & Välimäki (2002), and Ma-

tushima (2004) prove folk theorems in one-shot games with two agents. The authors devise

equilibria strategy profiles ~σ∗ where agents are indifferent between actions in the support of ~σ∗

at all information sets. Bhaskar & Obara (2002) prove a folk theorem in one-shot games with

two agents, assuming that agents have access to a public randomization device.

Cheap Talk. Proofs by Compte (1998), Kandori et al. (1998), Fudenberg & Levine (2007),

and Obara (2009) show that folk theorems hold in one-shot games with n agents. The authors

devise strategy profiles where agents take deterministic streams of actions.

Costly Communication. Sugaya (2011) proves a folk theorem in one-shot games with

two agents assuming that agents can send costly messages. In the equilibrium strategy profile

that they define, agents are indifferent between actions at every information set.

3.1.5 Discussion

Table 3.1 summarizes the above discussion. As discussed in Chapter 4, we consider a model

where monitoring is locally perfect, agents can communicate via costly messages, and both the

actions and observations of agents are restricted by a network: the action of agent i consists in

the messages that i sends to each neighbour j of i in the network and the message that i sends

to j is observed by both i and j and only by these two agents. In addition, we consider infinitely

repeated sequential games with n ≥ 2 agents, and we do not assume that there is a public

randomization device. In our results about pairwise exchanges, we also consider a dynamic

network where agents have incomplete information of the network topology. Therefore, the

models of existing proofs of folk theorems differ from our model in the considered game type,

26 CHAPTER 3. RELATED WORK

communication model, and network restrictions.

In more detail, as we can see from Table 3.1, very few works consider sequential games.

Rubinstein & Wolinski (1995) and Mailath & Samuelson (2007) discuss how to prove a folk

theorem in games with perfect public monitoring. Sorin (1995) analyses infinitely repeated

sequential games with imperfect monitoring, but he does not prove a folk theorem and assumes

that signals are public, so he does not consider network restrictions.

Even in one-shot games, most proofs of folk theorems do not model network restrictions.

The exceptions are the proofs by Kinateder (2008) and Laclau (2012), which consider a model of

perfect private monitoring where observations are restricted by a network. Since these results

are for one-shot games, they do not apply to gossip dissemination. Moreover, Kinateder and

Laclau assume that the networks are static and that agents have complete information of the

network topology, hence their results do not apply to pairwise exchanges in dynamic networks

either. Finally, only Laclau models communication between agents, but he assumes that agents

can communicate via cheap talk. As shown by our work, sustaining cooperation with costly

communication is not trivial. Sugaya (2011) proves a folk theorem with costly communication

in a model stronger than ours in that he considers imperfect monitoring. However, he does not

consider network restrictions, and his result is restricted to one-shot games with two agents.

3.1.
P
R
O
O
F
S
O
F
F
O
L
K

T
H
E
O
R
E
M
S

27

Monitoring Type References Game type N. agents Non-determ.
Monitoring

Communication Network Re-
strictions

Public Perfect

(Fudenberg & Maskin 1986) One-shot n Public Ran-
domization

None None

(Fudenberg & Maskin 1991; Abreu
et al. 1994; Dolev et al. 2011)

One-shot n Stream None None

(Rubinstein & Wolinsky 1995; Mailath
& Samuelson 2007)

Sequential n Stream None None

Public Imperfect (Fudenberg et al. 1994) One-shot n Indifference None None

Private Perfect
(Kinateder 2008) One-shot n Stream Cheap-talk Communication

(Laclau 2012) One-shot n Stream Cheap-talk Communication
& Actions

Private Imperfect

(Sekiguchi 1997; Piccione 2002; Ely &
Välimäki 2002; Matsushima 2004)

One-shot 2 Indifference None None

(Compte 1998; Kandori & Matsushima
1998; Fudenberg & Levine 2007; Obara
2009)

One-shot n Stream Cheap-talk None

(Sugaya 2011) One-shot 2 Indifference Costly None

Table 3.1: Comparison of folk theorems proofs.

28 CHAPTER 3. RELATED WORK

3.2 Rational Behaviour in Gossip Dissemination

We now discuss work that addresses rational behaviour in gossip dissemination. Existing

literature considers two main approaches for gossip dissemination, namely, symmetric (or bal-

anced) exchanges and pushed-based gossip dissemination (Vilaca & Rodrigues 2013; Li et al.

2006; Li et al. 2008; Guerraoui et al. 2010; Mokhtar et al. 2014). In both approaches, a

source disseminates a stream of blocks of data. For each block, the source sends the block

to a set of f fan randomly selected agents, where f fan is the fanout. The two models differ in

how agents then disseminate the blocks among themselves after receiving the blocks from the

source. In symmetric exchanges, pairs of agents periodically exchange an equivalent number of

missing blocks. In push-based gossip dissemination, upon receiving each block for the first time,

each agent forwards the block to f fan randomly selected agents. Existing work adopted both

game theoretical and practical approaches to deal with rational behaviour in the two considered

models.

Vilaça & Rodrigues (2013) perform a game theoretical analysis of infinitely repeated push-

based gossip dissemination. The authors show that incentives based on direct reciprocity such

as tit-for-tat are not effective at deterring deviations in gossip dissemination if the reliability is

too high. As a result, in a proof by construction of a folk theorem in gossip dissemination, we

must devise a strategy profile where agents send messages containing information about their

private observations. Even though Vilaça & Rodrigues do not prove a folk theorem, their result

justifies our choice of devising a distributed monitoring mechanism to prove a variant of a folk

theorem in gossip dissemination.

Guerraoui et al. (2010) and Mokhtar et al. (2014) propose LifTinG and AcTinG, respectively,

which are push-based gossip dissemination systems. Both systems use monitoring to persuade

agents to disseminate blocks of data; they differ in the techniques used to monitor the behaviour

of agents. In LifTinG, agents perform direct verifications of the messages that other agents send

to see if they forward every received block of data to f fan agents. Moreover, agents periodically

cross-check the histories of blocks that they received to check if some agent did not forward

blocks at random. If a deviation is detected, then the deviating agent is evicted from the system

as a punishment. In AcTinG, agents send in each message an unforgeable log of operations.

Each operation registers a message that an agent sends (receives) and the respective destination

(source). Whenever an agent sends or receives a message, he must append the corresponding

3.2. RATIONAL BEHAVIOUR IN GOSSIP DISSEMINATION 29

operation to the log and send it to other agents, or else a deviation is detected. The logs included

in messages allow agents to detect, with high probability, deviations in which an agent does not

forward an event according to the protocol. As in LifTing, if a deviation is detected, then the

deviating agent is evicted from the system. Neither Guerraoui et al. nor Mokhtar et al. used

game theory to analyse gossip dissemination games.

Li et al. proposed BAR Gossip (2006) and FlightPath (2008), which are gossip dissemination

protocols that enforce symmetric exchanges between rational agents. Specifically, agents are

organized into an overlay that is deterministically defined by pseudo-random number generators.

Periodically, every two neighbouring agents engage in a symmetric exchange by taking the

following steps: (1) they exchange a list of blocks that they received, (2) they send a list of

the identifiers of the blocks they miss, and (3) they exchange an equivalent number of missing

blocks. Li et al. show that this strategy is a Nash equilibrium strategy for pairwise exchanges of

blocks. However, their analysis is limited to one-shot pairwise interactions, so the authors do not

prove a folk theorem in infinitely repeated gossip dissemination. Their experiments show that

agents also do not gain by deviating in repeated interactions. This shows that the approach

of Li et al. avoids the problem identified by Vilaça & Rodrigues (2013). However, this also

comes at a cost: if two agents do not have enough blocks to exchange, then some agents may

fall behind in terms of the number of blocks they receive. In the worst case, some agents never

have enough blocks to exchange with other agents, and they end up never receiving a large

number of blocks. BAR Gossip addresses this problem by requiring agents to always exchange a

minimum number of blocks in every interaction; if an agent does not have enough new blocks to

share with its neighbour, then the agent must send garbage blocks to fill the minimum required

number of blocks. The overhead of this approach makes it impossible to prove an approximate

folk theorem. This is because the communication cost imposed by such overhead decreases the

average utility of every agent by a constant factor, so the average utility cannot be arbitrarily

close to any feasible and individually rational utility. FlightPath does not require agents to

exchange garbage. Instead, exchanges can be slightly asymmetric. However, the strategy profile

defined by FlightPath for pairwise exchanges is only an approximate Nash equilibrium, whereas

we devise strategy profiles that are exact sequential equilibria.

30 CHAPTER 3. RELATED WORK

3.3 Rational Behaviour in Pairwise Exchanges

In the literature, there is work that adopted a game theoretical approach to pairwise ex-

changes in distributed systems and work that used game theory to model dynamic networks.

3.3.1 Game Theoretical Approaches to Distributed Pairwise Exchanges

Some authors used game theory to analyse pairwise exchanges in file sharing and gossip

dissemination protocols. In file sharing, the focus has been on the analysis of the incentives used

by BitTorrent (Feldman et al. 2004; Jun & Ahamad 2005; Rahman et al. 2011). Specifically,

the authors identify vulnerabilities with these incentives and propose more robust incentives. In

gossip dissemination, Li et al. (2006, 2008) propose a Nash equilibrium protocol that enforces

balanced exchanges between agents in a gossip dissemination protocol. Unlike these works, we

do not limit our analysis to one-shot pairwise exchanges.

3.3.2 Game Theoretical Approaches to Dynamic Networks

Work in network formation games and dynamic games has proposed game theoretical models

akin to our model of dynamic networks.

In network formation games, the network topology is the outcome of the agents’ ac-

tions (Fabrikant et al. 2003; Moscibroda et al. 2006a). A model of network formation games

is appropriate for modelling overlays where the topology is built and maintained by the agents

(e.g., BitTorrent (Cohen 2003) and HyParView (Leitão et al. 2007)). This model is inappropri-

ate for modelling the type of dynamic networks that we consider in this thesis. Specifically, we

consider that the changes in the topology are not controlled by the agents but instead are caused

by exogenous factors such as uncontrolled mobility. For instance, this is true in wireless-ad hoc

networks (Srinivasan et al. 2003), and distributed overlays such as (Li et al. 2006; Li et al.

2008), among other dynamic networks.

In dynamic games, the structure of the game being repeated varies in each repetition ac-

cording to a known probability distribution (Mailath & Samuelson 2007). This model captures

stochastic variations in the network topology over time. We believe that this model is unre-

alistic in our setting, since in a distributed system agents may not know an exact probability

3.4. RATIONAL BEHAVIOUR IN CONSENSUS 31

distribution on topologies; the only information agents may have is that the topologies satisfy

minimum properties. For instance, in BAR Gossip (Li et al. 2006) agents know that the overlay

is always connected, but the way in which the overlay is built does not guarantee that agents

know the probability distribution on topologies at every point in time 1. We argue that a more

appropriate model is to adopt an ex post approach: we restrict the set of possible networks to

include only networks that satisfy some minimum properties, and require the protocol to be an

equilibrium for all networks that satisfy those properties.

3.4 Rational Behaviour in Consensus

Recently, there has been some interest in solving problems related to consensus in a model

where agents are rational (Bei et al. 2012; Abraham et al. 2013; Afek et al. 2014).

Abraham et al. (2013) address rational behaviour in the problem of leader election in asyn-

chronous systems, under the assumption that agents do not fail. The authors propose a leader

election protocol that is fair in the sense that each agent has equal chance of being elected the

leader, and they show that the protocol is a sequential equilibrium even if agents can collude.

This protocol can be used to solve fair consensus in the absence of failures: agents elect a leader

and let its input dictate the final decision. Unfortunately, the protocol is not an equilibrium

if agents may crash, because it is not resilient to deviations masked by crash-fault behaviour

(e.g., if an agent pretends to crash, then its behaviour is indistinguishable from that of a faulty

agent). Our work shows that these are the hardest type of deviations to deal with in a setting

where agents are rational and may crash.

Bei et al. (2012) and Afek et al. (2014) propose consensus protocols resilient to rational

behaviour and crashes. However, these protocols work only under strong assumptions about

agents’ utilities. Specifically, Afek et al. assume that every agent has a strict preference for

outcomes where it learns the input of other agents, while Bei et al. require that their protocol be

robust to deviations (that is, it achieves agreement even if rational agents deviate), a requirement

that we view as unreasonably strong, since it implies that agents never pretend to crash. Neither

of these protocols satisfy the fairness requirement. Moreover, the protocol proposed by Afek

1The overlay is built with pseudo-random number generators seeded by information signed with a private key.
Although the network topology of such overlay is likely to be approximately random, agents do not know an exact
probability distribution on network topologies.

32 CHAPTER 3. RELATED WORK

et al. is not even an equilibrium if some agent knows the input of other agents. Finally, these

protocols are not sequential equilibria. In contrast, our protocol solves fair consensus with

crashes assuming only that agents care about consensus, and is a sequential equilibrium even if

agents know the inputs of other agents.

3.5 Game Theoretical Approaches to Other Problems

We now mention other relevant work that applies game theory to distributed problems.

Halpern & Teague (2004) were perhaps the first to apply game theory to distributed systems. In

this work, the authors address rational behaviour in the problem of secret-sharing and multiparty

computation considering that agents may collude. This work was later extended by Abraham

et al. (Abraham et al. 2006) to deal with both malicious and rational behaviour. Aiyer et

al (2005) proposed the Byzantine-Altruistic-Rational (BAR) model, and they used game theory

to implement and analyse a protocol for state machine replication in the BAR model. Moscibroda

et al.(2006b) analysed rational and malicious behaviour in a virus inoculation game. Dolev et

al.(2010) proposed the abstraction of a game authority and a corresponding self-stabilizing

implementation as an approach to ensure that rational agents follow equilibria strategy profiles

in systems where some agents may be malicious, even if those strategy profiles were devised for

models where all agents are rational. Wong et al. (2011) showed how the presence of altruistic and

Byzantine agents can help solving the social dilemma of the finitely repeated Prisoners’ Dilemma

game. Finally, Wong et al (2013) proposed a new approach to devise equilibria strategy profiles

resilient to collusion.

Summary

We have discussed the most relevant work that proves folk theorems and addresses rational

behaviour in the problems of gossip dissemination, pairwise exchanges in dynamic networks,

consensus, and other related problems. In the next chapter, we describe our model.

4Model
This section describes the model considered in the thesis. First, we introduce the general

aspects of this model that are common to all considered problems. Then, we describe the aspects

specific to the problems of gossip dissemination, pairwise exchanges in dynamic networks, and

fair consensus with crashes.

4.1 General Aspects

We consider a synchronous message-passing system with n agents. Time is divided into

synchronous stages. Stages are further divided into a sequence of τ synchronous rounds. Each

round is divided into a send phase, where agents send messages to other agents, a receive phase,

where agents receive messages sent by other agents in the send phase of that round, and an

update phase, where agents perform a final update of the value of local variables based on what

they have sent and received. We denote by N the set of agents and assume that they have

commonly-known identifiers in {0, . . . , n− 1}.

In each stage, some stage game Γ is played by the agents. The game Γ represents the

problem being addressed. We now define the general aspects of Γ related to communication, the

actions and information available to agents, strategies, and protocols. Other relevant aspects

like utility and notions of equilibrium are specific to each problem, and we discuss them in the

sections relative to each problem.

4.1.1 Communication

In each stage t, an undirected graph Gt restricts communication between agents, such that

agent i can send messages in stage t to agent j iff j is a neighbour of i in Gt. We assume reliable

and authenticated communication channels between agents. In some of our results, we consider

that the communication graph may vary between stages. Formally, an evolving graph G is a

34 CHAPTER 4. MODEL

sequence G1, G2, . . . of graphs with one graph per stage, where Gt is the communication graph

of stage t. Let G be the set of all evolving graphs. We consider that an adversary selects an

evolving graph G drawn from a subset G∗ ⊆ G 1. The subset G∗ represents restrictions on the

behaviour of the adversary that are common knowledge. For instance, if the network is formed

by an overlay designed for data dissemination, then G∗ contains only evolving graphs where the

communication graphs are connected.

We assume that the adversary is oblivious to the actions of agents, that is, the adversary

selects some evolving graph G ∈ G∗ at the start of the game, without being informed of the

strategies followed by agents. An oblivious adversary is an appropriate abstraction for modelling

networks where the changes in the network topology are caused by factors exogenous to the

game theoretical model (Kuhn et al. 2010), e.g., physical topological changes in wireless ad-

hoc networks (Srinivasan et al. 2003), deterministic changes in overlays resilient to rational

behaviour such as (Li et al. 2006; Li et al. 2008), among others.

4.1.2 Actions

In every stage t, agent i has an input value vti . In each round m of stage t, i sends messages

to other agents and outputs values to the application. Specifically, fix an evolving graph G ∈ G∗

selected by the adversary. A round-m action ai of agent i is a pair (tmi , d
m
i), where tmi is a

function that maps every agent j to the message tmi (j) that i sends to j (if i omits a message

or j is not a neighbour of i in Gt, then tmi (j) takes the null value ⊥), and dmi is the value that i

outputs to the application (again, if i does not output a value, then dmi takes the null value ⊥).

We assume that all messages sent are received in the round in which they are sent.

4.1.3 Information

We consider that agents have perfect recall, have imperfect information, and may or may

not have incomplete information.

Agents have imperfect information regarding the actions of other agents. Specifically, if

agent i follows round-m action ami = (tmi , d
m
i), then an agent j observes the message tmi (j) that

1This model is based on the model proposed by Kuhn & Ohsman (2010). The only difference is that they
assume that the graph may change in every round

4.1. GENERAL ASPECTS 35

i sends to j, and this is the only information about i’s action that j obtains until the end of

round m. Therefore, if j is not a neighbour of i in Gt, then j acquires no information about the

round-m action of j.

Agents have incomplete information regarding the inputs. In the problem of consensus with

crashes, agents also have incomplete information about crashes. Since the inputs determine

the utilities of agents and crashes restrict the behaviour of agents, consensus corresponds to a

Bayesian game where the types of agents are defined by their inputs and the way they crash

(i.e., the messages they send before crashing).

Agents may also have incomplete information about the evolving graph G ∈ G∗ selected

by the adversary. Formally, at the beginning of every stage t, agent i acquires information

regarding the communication graph Gt (we assume that agents always know their neighbours).

We represent this information as a set Gti (Gt) of graphs, such that Gt ∈ Gti (Gt) and, in every

graph Ḡ in Gti (Gt), agent i obtains the same information about the communication graph in

Ḡt and Gt. For instance, if the only information agents have about Gt is the identity of their

neighbours, then Gti (Gt) is the set of graphs where i has the same set of neighbours as in Gt.

4.1.4 Histories and Runs

Fix G ∈ G∗ selected by the adversary. We take a round-m history hi from stage t for agent

i to be a sequence of tuples of the form (Gt′i (Gt
′
), vt

′
i , s

t′
1 , . . . , s

t′

mt′
) for each stage t′ ≤ t, where

Gt′i (Gt
′
) represents information about Gt

′
as described before, mt′ = τ if t′ < t, mt = m − 1,

vt
′
i is agent i’s initial input in stage t′, and st

′
m′ is a tuple of the form (tm

′
i , dm

′
i , rm

′
i), where tm

′
i

specifies the messages that i sends in round m′, dm
′

i is i’s output in round m′, and rm
′

i is a

function specifying the round-m message rm
′

i (j) sent by agent j to i (if j is not a neighbour of i,

then rm
′

i (j) = ⊥). Let Hi(G) be the set of histories for i compatible with G (i.e., the information

that hi provides to i regarding the communication graph of stage t is given by Gi(Gt) for all

stages t). A global (round-m) history from stage t has the form (G, h1, . . . , hn) where hi ∈ Hi(G)

is a round-m history from stage t for agent i. Let H(G) be the set of histories with evolving

graph G. A run r is a function from a stage number t and a round number m to global histories

such that (a) r(t,m) is a global round-m history from stage t and (b) if t = t′ and m < m′ or

t < t′, then for each agent i, i’s history in r(t,m) is a prefix of i’s history in r(t′,m′).

36 CHAPTER 4. MODEL

As discussed in Section 2, a game Γ is defined by a game tree, where an outcome of Γ is a

leaf node of the game tree and an outcome o of the repeated version of Γ is a function mapping

each stage t to an outcome o(t) of stage t. In our distributed setting, the nodes in the game

tree correspond to global histories and an outcome of the repeated game corresponds to a run.

Since we consider games of imperfect information, agents take actions at information sets, where

now a round-m information set Ii from stage t for agent i is a set of round-m (global) histories

from stage t that provide the same information to i about the actions of other agents and the

communication graphs. We denote by Ai(Ii) the set of actions available to i at Ii. An agent i’s

information set Ii at a global history is determined by i’s history in that global history. Thus,

we identify a round-m information set Ii from stage t for agent i with a history hi for agent i. If

Ii is the information set associated with history hi, we denote by R(Ii) the set of runs r where

i has history hi in r(t,m).

4.1.5 Strategies and Protocols

In game theory, a strategy for agent i is a function that associates with each information set

Ii for agent i a distribution over the actions that i can take at Ii. In distributed computing, a

protocol for agent i is a function that associates with each history hi for agent i a distribution

over the actions that i can take at hi. Since we are identifying histories for agent i with

information sets, it is clear that a protocol for agent i can be identified with a strategy for agent

i. Henceforth, we use the designations protocol and strategy interchangeably.

4.2 Gossip Dissemination

We consider the problem of infinitely repeated gossip dissemination.

4.2.1 Problem of Infinitely Repeated Gossip Dissemination

In every stage t, a source inputs a value vt to be disseminated across all agents. The source

is not part of the set of agents and can be trusted to always follows the protocol. In Section 5.3,

we discuss how to drop this assumption. We assume that agents do not crash and that the

4.2. GOSSIP DISSEMINATION 37

communication graph is always complete. We also assume that vt is random, such that agents

cannot guess vt beforehand,

We focus on protocols that disseminate v in an epidemic fashion using an eager-push ap-

proach (Birman et al. 1999). This approach achieves a good tradeoff between communication

overhead, reliability of data delivery, and simplicity of the analysis 2. Specifically, a stage t is

divided into τD rounds of dissemination. The source splits the disseminated value vt into a

number ν of blocks of fixed size named events. Let ety denote the yth event from stage t. For

each y between 1 and ν, the source sends the tuple (y, ety, [e
t
y]) to all agents from a random set

of f fan agents, where f fan is a parameter known as fanout and [ety] is a signature of ety. This

procedure is repeated by every agent that receives ety, i.e., upon receiving (y, ety, [e
t
y]) for the first

time (either from the source or from some other agent), each agent i outputs the tuple to the

application and forwards it to f fan agents chosen at random. We consider that τD ≥ ν+n, such

that agents never receive an event for the first time in round τ , and hence always have time to

forward every event after its first reception. We also assume that it is computationally hard for

agents to replicate the signature of the source.

4.2.2 Utility

The utility Ui of agent i in a stage t is the difference between the benefits of i receiving

events and the costs of sending messages during stage t. Specifically, agent i obtains a benefit

βi for receiving the yth event in stage t if and only agent i outputs the tuple (y, ezty , [e
zt
y]) to the

application, and i incurs a communication cost αi per bit sent in a message. Therefore, given

a global history h that corresponds to an outcome of stage t, the total utility Ui(h) of i is then

given by

Ui(h) =
∑

1≤y≤ν
qi(h, y)βi −

∑
m∈Mi(h)

αi|m|,

where qi(h, y) is 1 if i outputs (y, ezty , [e
zt
y]) or 0 otherwise, andMi(h) is the set of messages that

i sends in stage t. For the sake of simplicity, we assume that αi and βi are normalized so that the

cost of sending a tuple is 1, that the costs of receiving messages are negligible, and that ν and

βi are constant for all stages. Our results can be easily generalized to drop these assumptions.

2Other more efficient approaches that use epidemic dissemination could be considered (e.g., lazy-push ap-
proach (Guerraoui et al. 2010)). However, the analysis of such approaches would be more complex, while still
providing the same insight regarding how to sustain cooperation in push-based gossip dissemination.

38 CHAPTER 4. MODEL

The definition of expected utility of the repeated game is similar to the definitions included

in Chapter 2 for games of imperfect and complete information, except we define the utility in

terms of runs instead of outcomes of the repeated game. We assume that a discount factor

δ ∈ (0, 1) discounts future utilities to the present. Given a run r, stage t and agent i, let Ui(r | t)

denote the utility of i as computed in stage t when the run is r, which is given by the sum∑
t′≥1 δ

t′−tUi(r(t)). Given an information set Ii from stage t, a strategy profile ~σ, and a belief

system µ consistent with ~σ, µ and ~σ define a probability distribution µ~σ,Ii on runs in R(Ii).

The expected utility ui(~σ | Ii) of i conditioned on the run being in R(Ii) is the expected value

of Ui(r | t), where the expectation is taken relative to µ~σ,Ii . We denote by ui(~σ) the expected

utility of i conditioning on the initial information set.

4.2.3 Approximate Folk Theorem

We aim to prove a slightly weaker version of an approximate Folk Theorem for the notion

of sequential equilibrium. We focus on protocols that disseminate data using an eager-push

approach. In these protocols, the set of feasible and individually rational vectors of utilities

is determined by the value of the fanout f fan . Specifically, if agents disseminate events in an

eager-push fashion with fanout f fan and every message only include tuples containing events,

then the expected utility of agent i in a single stage is xi(f
fan) = νq(f fan)(βi − f fan), where

q(f fan) is the probability of i receiving an event. Intuitively, agent i receives each event with

probability q(f fan); if i receives the event, then i obtains a benefit βi and then forwards the

event to f fan agents, thus incurring a cost f fan for sending those messages. Say that a fanout

f fan is individually rational if xi(f
fan) ≥ 0, which is true iff βi > f fan . Since the minimax utility

of any agent in gossip dissemination is 0, the set feasible and individually rational utilities is the

set of vectors (x1(f fan), x2(f fan), . . . , xn(f fan)) for all individually rational fanouts f fan . Hence,

an approximate folk theorem for eager-push gossip dissemination states that for all individually

rational fanouts, there exists a strategy profile ~σ such that, if agents are sufficiently patient (i.e.,

δ is sufficiently close to 1), then ~σ is a sequential equilibrium and the average utility of every

agent i is close to xi(f
fan). In this thesis, we prove a slightly weaker result: we show that the

above holds if βi is sufficiently larger than f fan .

Formally, given a constant c, say that a fanout f fan is c-individually rational if βi > cf fan

for all agents i. Theorem 1 formalizes the main result proved in this part of the thesis.

4.3. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS 39

Theorem 1. There is a constant c > 0 such that, for every constant ε > 0 and c-individually

rational fanout f fan , there exists a protocol ~σ and δ∗ ∈ (0, 1), such that, for all δ ∈ (δ∗, 1), ~σ is

a sequential equilibrium and |ūi(~σ)− xi(f fan)| ≤ ε for every agent i.

Note that, if βi > nc for every agent i, then our result implies that an approximate Folk

Theorem holds, since in this case every fanout f fan is c-individually rational 3.

4.3 Pairwise Exchanges in Dynamic Networks

We consider the problem of infinitely repeated pairwise exchanges over links of a dynamic

network.

4.3.1 Problem of Infinitely Repeated Pairwise Exchanges In Dynamic Net-

works

In every stage t, every two agents i and j that are neighbours in the communication graph Gt

exchange their inputs vi and vj , respectively, and output the received values to the application.

Unlike gossip dissemination, we consider that the set G∗ (from which the adversary selects

the evolving graph) may contain arbitrary evolving graphs. However, we show that G∗ must

necessarily be restricted in order to sustain cooperation in pairwise exchanges.

4.3.2 Utility

We associate to every agent a utility Ui that maps each outcome of a given stage to the

difference between the benefits of i receiving values from its neighbours and the costs of i sending

and receiving messages. This utility is identical to the utility of gossip dissemination, except

agents incur costs for receiving messages; these costs are now relevant to our results. Specifically,

we assume that i obtains a benefit βi for receiving a value from some neighbour, incurs a cost

αi per bit sent in a message, and incurs a cost γi per bit received in a message. The utility of i

3 In the proof of the theorem, we show that the result holds for all c ≥ e, where here e is the base of the
natural logarithm.

40 CHAPTER 4. MODEL

for an outcome of stage t that corresponds to global history h is thus

Ui(h) = βi|Ri(h)| −
∑

m∈Msent
i (h)

αi|m| −
∑

m∈Mrec
i (h)

γi|m|,

where Ri(h) is the set of values received by i in h, and Msent
i (h) and Mrec

i (h) are the set of

messages sent and received by i in h, respectively.

We now define the expected utility for the repeated game. Agents have incomplete infor-

mation of the game tree, hence we need to model agents’ expectations regarding the evolving

graph selected by the adversary. We adopt an ex post approach, i.e., we fix the evolving graph

G ∈ G∗ and assume that agents know that the adversary selected G when computing their

expected utility. Specifically, given G ∈ G∗ and information set Ii ∈ Ii(G), let R(G, Ii) be the

set of runs in R(Ii) where the evolving graph is G. In this context, a belief system µ defines for

each G ∈ G∗ and Ii ∈ Ii(G), a probability distribution µG,Ii over global histories in Ii. As in

gossip dissemination, a belief system µ and a strategy profile ~σ define a probability distribution

µ~σ,G,Ii on runs in R(G, Ii); the expected utility ui(~σ | G, Ii) of agent i conditioned on G and

information set Ii is the expected value of Ui(r), where now the expectation is taken relative

to µ~σ,G,Ii . The expected utility ui(~σ | G) of i conditioned on evolving graph G is the expected

utility of i conditioned on G and the initial information set.

4.3.3 Notion of Equilibrium

We define a new notion of equilibrium for our model that we call G∗-Oblivious Adversary

Perfect Equilibrium (G∗-OAPE). This notion refines the notions of consistent belief and sequen-

tial equilibrium by taking an ex post approach to modelling incomplete information about the

evolving graph.

Formally, a belief system µ is said to be consistent with the strategy profile ~σ∗ and set G∗

iff there is a sequence ~σ1, ~σ2, . . . of completely mixed protocols converging to ~σ∗ such that for

every G ∈ G∗, agent i, information set Ii ∈ Ii(G), and global history h ∈ Ii,

µG,Ii(h) = lim
M→∞

PG,~σM (h)∑
h′∈Ii PG,~σM (h′)

,

where PG,~σ′′(h
′′) is the probability of history h′′ being realized given that agents follow strategy

4.4. FAIR CONSENSUS WITH CRASHES 41

profile ~σ′′ and the evolving graph is G.

A strategy profile ~σ is a G∗-OAPE iff there exists a belief system µ consistent with ~σ and G∗

such that, for all evolving graphs G ∈ G∗, agents i, information sets Ii ∈ Ii(G), and strategies σ′i,

ui(~σ | G, Ii) ≥ ui((σ
′
i, ~σ−i) | G, Ii). Intuitively, no agent gains by deviating at any information

set, given that other agents do not deviate, even if agents know the evolving graph generated

by the adversary. If G∗ is a singleton set, then a G∗-OAPE strategy profile is a sequential

equilibrium.

4.4 Fair Consensus with Crashes

We analyse a single stage of the fair consensus problem. Throughout this section and in the

chapter that presents our main results relative to consensus, we simplify the notation wherever

we can by omitting the stage number.

4.4.1 Fair Consensus Problem

In the fair consensus problem, every agent i proposes its input vi to other agents. Agents

must then agree on some proposed value v, which they output to the application. We call v the

decided value. Agents must agree on v despite some agents crashing. In addition, the agreement

must be fair, in the sense that the probability of agreeing on each value v is proportional to the

number of agents with input v.

Formally, we assume a complete communication graph. Agents are either correct or faulty

in a run. An agent fails only by crashing. If it crashes in round m of run r, then it may send a

message to some subset of agents in round m, but from then on, it sends no further messages.

Thus, we take a failure f of agent i to be a tuple (i,m,A), where m is a round number (intuitively,

the round at which i crashes) and A is a set of agents (intuitively, the set of agents j to whom

i can send a message before it fails). We assume that if m > 1, then A is non-empty, so that i

sends a message to at least one agent in round m if i fails in round m. (Intuitively, if m > 1, we

are identifying the failure pattern where i crashes in round m and sends no message with the

failure pattern where i crashes in round m− 1 and sends messages to all the agents.) A failure

pattern F is a set of failures of distinct agents i. A run r has context (F,~v) if (a) ~v describes the

42 CHAPTER 4. MODEL

initial inputs of the agents in r, (b) if (i,m,A) ∈ F , then i sends all messages according to its

protocol in each round m′ < m, sends no messages in each round m′ > m, and sends messages

according to its protocol only to the agents in A in round m, and (c) all messages sent in r are

received in the round that they are sent. Let R(F,~v) consist of all runs r that have context

(F,~v). Let R(F) consist of all runs that have F as the set of failures.

A protocol achieves consensus if it satisfies the following properties (Fischer et al. 1985):

• Agreement: No two correct agents decide different values.

• Termination: Every correct agent eventually decides.

• Integrity: All agents decide at most once.

• Validity: If an agent decides v, then v was the initial input of some agent.

We are interested in one other property: fairness. Note that, once we fix a context, a

protocol for the agents generates a probability on runs, and hence on outcomes, in the obvious

way. Fairness just says that each agent has probability at least 1/n of having its value be the

consensus decision, no matter what the context. More precisely, we have the following condition:

• Fairness: For each context (F,~v), if c of the nonfaulty agents in F have initial preference

v, then the probability of v being the consensus decision conditional on R(F,~v) is at least

c/n.

Intuitively, in the absence of failures, fairness is the requirement that every input is decided

with equal probability, i.e., with probability 1/n. If some agents fail, then fairness requires that

failures do not negatively impact the probability of deciding on the input vi of any nonfaulty

agent i, so that vi is decided with probability at least as high as the probability of deciding on

vi when there are no failures (i.e., at least 1/n).

For ease of exposition, we take the set of possible inputs to be {0, 1}. (Our results can easily

be extended to deal with larger sets of possible values.) We also assume that there is a special

value Ψ that an agent can decide on. By deciding on Ψ, an agent guarantees that there is no

consensus (by violating Validity). If we assume that all agents prefer to reach consensus on some

value to not reaching consensus at all, in the language of Ben Porath (2003), this means that

each agent has a punishment strategy.

4.4. FAIR CONSENSUS WITH CRASHES 43

4.4.2 Utility

We focus on the case where agents care only about consensus, since this type of utility

function seems to capture many situations of interest. In this type of utility, the utility Ui

of every agent i captures the preferences of i for the decided value (and does not depend for

instance on the messages that i sends), and the input vi is i’s most preferred value. Specifically,

we consider that i’s utility is either (1) β0i if consensus is reached on i’s initial input, (2) β1i if

there is consensus but not on i’s initial input, or (3) β2i if there is no consensus. The assumption

that agents care only about consensus means that, for all i, β0i > β1i > β2i.

4.4.3 Notions of Equilibrium

We are interested in equilibria protocols that solve fair consensus. Since existing notions

of equilibrium do not take into account crashes, we have to define new notions of equilibrium

appropriate for our setting.

Specifically, we can see the consensus problem as a Bayesian game, where the type of an

agent is defined by its input and failure, so the types of all agents are defined by the context.

Agents have incomplete information about the context. To model expectations regarding this

information, we adopt both ex post and ex ante approaches. First, we define a new notion

named f -Nash equilibrium that refines the notion of ex post Nash equilibrium, where f is the

upper bound on the number of failures. Then, we define the notions of π-Nash equilibrium

and π-sequential equilibrium that refine the notions of ex ante Nash equilibrium and sequential

equilibrium, respectively, where π is a probability distribution on contexts.

4.4.3.1 f-Nash equilibrium

A strategy profile ~σ is an f -Nash equilibrium if, for each fixed context (F,~v) where there

are at most f faulty agents in F , and all agents i, there is no strategy σ′i for agent i such that

i can increase its expected utility by following σ′i. Formally, if ui(~σ
′ | F,~v) denotes i’s expected

utility if strategy profile ~σ′ is played, conditional on the run being in R(F,~v), we require that

for all strategies σ′i for i, ui((σ
′
i, ~σ−i) | F,~v) ≤ ui(~σ | F,~v). The notion of f -Nash equilibrium

44 CHAPTER 4. MODEL

extends the notion of ex post Nash equilibrium by allowing up to f faulty agents 4; a 0-Nash

equilibrium is an ex post Nash equilibrium. Note that the definition of ui admits the possibility

of agent i crashing (this assumption has no impact on our results).

4.4.3.2 π-Nash Equilibrium

Given a distribution π on contexts and a strategy profile ~σ, π and ~σ determine a probability

on runs denoted π~σ in the obvious way. We say that ~σ is a π-Nash equilibrium if, for all agents i

and all strategies σ′i for i, we have ui(σ
′
i, ~σ−i) ≤ ui(~σ), where now the expectation is taken with

respect to the probability π~σ. If π puts probability 1 on there being no failures, then we get the

standard notion of ex ante Nash equilibrium.

4.4.3.3 π-Sequential Equilibrium

According to the original definition of sequential equilibrium (Kreps & Wilson 1982), a

strategy profile ~σ is a sequential equilibrium if there is a belief system µ consistent with ~σ such

that no agent has incentives to deviate from ~σ. To incorporate crashes in this definition, we

have to first redefine the notion of consistent belief system.

Say that a belief system µ is consistent with ~σ and π if there exists a sequence of completely

mixed strategy profiles ~σ1, ~σ2, . . . converging to ~σ such that

µIi(h) = lim
M→∞

π~σM (h)∑
h′∈Ii π~σM (h)

,

where π~σ′′(h
′′) is the probability of global history h being realized, given that agents follow the

strategy profile ~σ′′ and the probability distribution over contexts is π. Note that µIi , π, and ~σ

together define a probability distribution over runs in R(Ii). Let µIi,π,~σ denote this probability

distribution, and let ui(~σ | Ii) be the expected utility of i when agents follow ~σ conditioned on

the run being in R(Ii), where the expectation is taken relative to µIi,π,~σ.

A strategy profile ~σ is a π-sequential equilibrium if there exists a belief system µ consistent

with ~σ and π such that, for every agent i, information set Ii, and strategy σ′i, ui((σi, ~σ−i) | Ii) ≥

4This definition is in the spirit of the notion of (k, t)-robustness as defined by Abraham et al. (2006), where
coalitions of size k are allowed in addition to t “faulty” agents, but here we restrict the behaviour of the faulty
agents to crash failures rather than allowing the faulty agents to follow an arbitrary protocol, and take k = 1.

4.4. FAIR CONSENSUS WITH CRASHES 45

ui((σ
′
i, ~σ−i) | Ii).

Summary

We described the general aspects of our model and the aspects specific to the problems of

gossip dissemination, pairwise exchanges in dynamic networks, and fair consensus with crashes.

In the next chapter, we present the results obtained in the problem of gossip dissemination.

46 CHAPTER 4. MODEL

5Gossip Dissemination

In this section, we prove Theorem 1, i.e., we prove a variant of an approximate Folk Theorem

for eager-push gossip dissemination protocols. We reinstate the theorem here.

Theorem 1. There is a constant c > 0 such that, for every constant ε > 0 and c-individually

rational fanout f fan , there exists a protocol ~σ and δ∗ ∈ (0, 1), such that, for all δ ∈ (δ∗, 1), ~σ is

a sequential equilibrium and |ūi(~σ)− xi(f fan)| ≤ ε for every agent i.

To prove Theorem 1, we show that, for every fanout f fan , there is a protocol ~σf
fan

where

agents use fanout f fan to disseminate data, which satisfies the following two properties if agents

are sufficiently patient (i.e., if δ is sufficiently close to 1) and the benefit/cost ratio is sufficiently

high: (1) ~σf
fan

is a sequential equilibrium and (2) the average utility of every agent i can be as

close to xi(f
fan) as we want.

We assume that the source can perform the role of a trusted mediator. In the protocol

~σf
fan

, agents disseminate events using fanout f fan . Periodically, they also exchange monitoring

information with the source regarding the events that they sent to and received from other

agents. The source uses this information to detect deviations; if the source detects a deviation

of agent i (e.g., if i did not forward an event to f fan agents), it triggers a punishment of i. In a

punishment of agent i, other agents do not forward events to i.

We show that ~σf
fan

is a sequential equilibrium if agents are sufficiently patient and f fan

is c-individually rational for some constant c. In the proof, we apply the one-shot deviation

property (Hendon et al. 1996): we show that for all agents i, stages t, and round-m information

set Ii from t, i does not gain by performing a one-shot deviation at Ii, where a one-shot deviation

of i consists in i taking an action ai at Ii such that σf
fan

i (ai | Ii) = 0 and then following the

protocol at every other information set. We show that if agent i performs a one-shot deviation

at Ii, then either (i) the utility of i does not increase or (ii) i gains by not sending some messages

in stage t, but the source detects the deviation and triggers a punishment of i in a stage t′ > t,

48 CHAPTER 5. GOSSIP DISSEMINATION

which causes the utility of i in stage t′ to decrease. If agents are sufficiently patient, then the

future utility loss in stage t′ > t outweighs the immediate gain in stage t, so i does not gain

from performing a one-shot deviation at Ii. It follows by the one-shot deviation property that

~σf
fan

is a sequential equilibrium.

We also show that the average utility ūi(~σ
f fan) of agent i when all agents follow the protocol

~σf
fan

is the difference between xi(f
fan) and the average cost per stage of sending monitoring

information. We prove that the average cost of monitoring can be arbitrarily small if agents are

sufficiently patient. It follows that ūi(~σ
f fan) can be arbitrarily close to xi(f

fan).

We now discuss the protocol ~σf
fan

and prove the main result. Table 5.1 summarizes the

notation used in this chapter.

5.1 Dissemination Protocol

We start by describing a simpler naive protocol, which helps us identifying the main chal-

lenges addressed in the definition of ~σf
fan

, before describing the algorithm of ~σf
fan

in detail.

Consider the following naive protocol. In every stage t, agents send messages in τ rounds,

where the first τM rounds are used for exchanging monitoring information with the source and

the last τD rounds are used for disseminating events using an eager-push approach. In monitoring

rounds, every agent i sends information to the mediator regarding the behaviour of each agent

j 6= i in stage t−1 (if t = 1, then agents do not send monitoring information). Specifically, i first

checks whether j sent only correctly formatted messages. If j sent an incorrect message, then

i sends an accusation against j to the source. Otherwise, for each event et−1
y disseminated in

stage t− 1, i reports to the source whether j sent to or received from i the tuple (y, et−1
y , [et−1

y]).

The source collects accusations and reports from all agents and then gives a final verdict on

whether each agent j should be punished in stage t. Namely, the source triggers a punishment

of j if the source receives an accusation against j, does not receive a monitoring message from

j, or the source detects that j received event et−1
y but did not forward it to f fan agents. Agents

punish j by not forwarding events to j during stage t.

It is easy to see that, if an agent i sends fewer messages than required in stage t by forwarding

an event to fewer than f fan agents or by not sending monitoring messages to the source, then

the deviation of i is detected and i is punished in stage t + 1. In this punishment, i loses the

5.1. DISSEMINATION PROTOCOL 49

benefit δβiν of receiving the events disseminated in stage t+ 1. If βiν is larger than the costs of

sending messages in stage t and i is sufficiently patient, then the loss outweighs the gain of not

sending messages in stage t, so i has no incentives to deviate by sending fewer messages.

Unfortunately, the naive protocol fails to meet the necessary requirements to prove The-

orem 1. First, it is not a sequential equilibrium, because rational agents can increase their

expected utility by lying about monitoring information and by not selecting the sets of agents

to which they forward events at random. Second, the overhead incurred by agent i for reporting

on the events sent and received by other agents is too high, such that the average utility of i is

lower than xi(f
fan) by a constant factor.

More precisely, in the definition of ~σf
fan

, we address the following problems of the naive

protocol:

1. Problem: Agents gain by lying about monitoring information. If agent i is punished in

stage t, then agents do not forward events through i, so the probability of an agent receiving

events in stage t decreases. Hence, agents increase their expected benefits of receiving

events by lying about i’s behaviour in previous stages and avoiding the punishment of i.

Solution: We enforce the following two properties. First, each agent i is only allowed to

send monitoring information relative to other agents; information sent by i has no effect

on the probability of i being punished. Second, the probability of each event reaching an

agent i that is not punished is constant, regardless of the punishments applied to other

agents. To achieve this, we use commutative symmetric ciphers, which are symmetric

ciphers that satisfy the property of commutativity of the cipher operation. Specifically, let

(e)κ denote the cipher of event e with key κ. Commutativity of ciphers is the property that

for all events e and keys κ and κ′, we have ((e)κ)κ′ = ((e)κ′)κ
1. In symmetric commutative

ciphers, the cipher operation is identical to the decipher operation, so ((e)κ)κ = e.

Agents punish other agents that deviated in previous stages using commutative ciphers

instead of omitting events. More precisely, the mediator generates a unique random key

κi for each agent i that is revealed to all agents but i prior to dissemination. All agents

forward events in an eager-push fashion regardless of punishments. However, when for-

1This property is satisfied by any symmetric cipher algorithm that uses block ciphering algorithm with the CTR
mode of operation (Bellare et al. 1997; ISO/IEC 2006). In these algorithms, the cipher operation is performed by
xoring data with a stream of bits generated from κ.

50 CHAPTER 5. GOSSIP DISSEMINATION

warding an event e to an agent i that is being punished, agents cipher e with κi so that

i cannot decipher the event (thus, they effectively deny i the benefit βi of receiving e).

Similarly, after receiving an event e from agent i that is being punished, agents decipher

the event with κi. The commutativity property guarantees that agents obtain each event

disseminated by the source if (and only if) they are not being punished. Therefore, unpun-

ished agents receive each event with the same probability as they would if no agent were

being punished (so they are not affected by the punishment of other agents) 2, whereas

agents being punished are denied the benefits of receiving events.

2. Problem: Agents gain by not selecting f fan agents at random when forwarding an event.

Consider a history hi for agent i from stage t where i has just received a (possibly ciphered)

event e in hi from some agent j and is about to forward the event to f fan agents. Note

that, when i forwards e, there is the possibility that the dissemination of e loops back to

i. This probability may depend on to which agents i forwards the event. So, there may be

a set Sty of f fan agents such that, if i forwards e to agents in Sty, then the probability of e

looping back is minimal (e.g., i may have already received e from those agents in hi and

thus knows that they will not forward the event again). As it will become clearer later,

agent i always has to forward event e upon its first reception to f fan agents, even if e does

not correspond to the event sent by the source; if i forwards e to the agents in Sty, then

the probability of e looping back to i is minimal and thus the probability of other agents

sending to i the event actually disseminated by the source is maximal. Therefore, i gains

by deterministically sending e to the agents in Sty.

Solution: The set of agents Sty to which agent i forwards ety is defined deterministically by

a pseudo-random number generator (PRNG) that is seeded by a random seed sdi. Given

sdi, the source can verify whether i forwards events according to the protocol. For reasons

that will become clearer in the proof of Theorem 1, other agents must not be able to

predict to which agents i will forward events throughout stage t. Therefore, we trust the

source to generate sdi at random and to reveal it only to i, prior to dissemination.

3. Problem: The overhead of monitoring is too large. The average utility of agent i is

xi(f
fan)− c, where c is the average cost of monitoring per stage. If agents report on every

2 This is true because we assume that agents do not incur costs for computing the ciphers. We believe that
this is a reasonable assumption, since symmetric ciphers are computationally cheap.

5.1. DISSEMINATION PROTOCOL 51

event sent to or received from other agents with probability 1, then c is constant and the

average utility cannot be as close as we want to xi(f
fan). Hence, agents can only report

on a subset of events. However, if agents report on too few events and an agent i deviates

by forwarding an event to fewer than f fan events, then the probability of detecting the

deviation is low, such that i gains by deviating.

Solution. In ~σf
fan

, time is divided into epochs, where an epoch is a sequence of nspe

stages. Agents only send monitoring information to the source in the monitoring rounds

of the first stage of each epoch. Punishments are performed in an epoch basis: if agent i

deviates in a stage from epoch z, then i is punished in all stages from epoch z+ 1; if agent

i deviates again during epoch z+ 1, then i is punished in epoch z+ 2, and so on. In stage

1 of every epoch z > 1, agents send accusations against other agents that deviated in a

stage from epoch z−1, and they report on a subset of events sent to or received from each

agent i in epoch z − 1. Specifically, we split the sequence of events disseminated during

epoch z − 1 into nseq subsequences of equal size. We denote by E(z′, s) the set of events

from the sth subsequence from epoch z′, and we denote by sub(t, y) the subsequence that

contains the yth event of stage t. For every epoch z > 1 and subsequence 1 ≤ s ≤ nseq,

the source requests with independent probability pseq a report from all agents i saying, for

all events e ∈ E(z, s), the stage and round numbers when i first received and sent e to

other agents; i sends those reports relative to each subsequence if and only if the source

requests them. The source then uses accusations and reports to determine whether each

agent should be punished in epoch z. In Section 5.1.2, we discus how to carefully select

the parameters pseq and nseq to achieve a good tradeoff between the overhead of monitoring

and the probability of detecting deviations. We identify values for those parameters such

that (1) the probability of detecting deviations is high, such that agents do not gain by

deviating, and (2) the average overhead of monitoring per stage decreases with the number

nspe of stages per epoch, such that we can arbitrarily minimize the average overhead by

increasing nspe.

Therefore, the protocol runs in an infinite number of epochs, where each epoch is divided

into nspe stages. Every stage is further divided into τ = 2nseq+2+τD rounds. In the first 2nseq+1

rounds of stage 1 of every epoch z > 1, the source collects reports of events and accusations

regarding epoch z−1; agents send no messages in the first 2nseq + 1 rounds of every other stage.

52 CHAPTER 5. GOSSIP DISSEMINATION

In round 2nseq + 2 of stage 1 of every epoch z, the source sends the seeds, keys, and verdicts on

whether each agent should be punished during epoch z. In the last τD rounds of every stage,

agents disseminate events using the PRNG.

5.1.1 Algorithm

We now describe the algorithm of ~σf
fan

in more detail. Let sdzi and κzi be the seed and key

of agent i in epoch z, respectively. Given an epoch number z ≥ 1, a stage number 1 ≤ t ≤ nspe,

and a number 1 ≤ y ≤ ν, let ezty denote the yth event disseminated in stage t from epoch z.

For every agent i, there is a set generator SGi that, given sdzi , 1 ≤ t ≤ nspe, and 1 ≤ y ≤ ν,

returns a set SGi(sdzi , t, y) of f fan agents to which i must forward the yth event from stage t.

We assume that the sequence of sets that SGi generates is pseudo-random. We discuss this and

other cryptographic assumptions in Section 5.2.1.

In every epoch z, agent i uses three variables that keep track of the behaviour of every agent

j, namely, (i) a vector vsz representing the validity of the messages sent by j, where vsz(j) = True

iff j sent all messages requested by the source and sent only valid (i.e., correctly formatted)

messages during epoch z, (ii) a vector of reports rez, where, for all events ezty disseminated in

epoch z, rez(i, j, t, y) is either ⊥ if i did not receive ezty from j or is the first round when i

received ezty from j, and (iii) a vector of reports sez defined identically to rez except it represents

the rounds when i first sent each event to j or takes the value ⊥ if i did not forward the event

to j. At the end of every epoch z, the source decides, with independent probability pseq for

each subsequence of events numbered 1 ≤ s ≤ nseq, whether to request reports on events from

s. We use a variable resz to represent this decision, where resz(s) = True if and only if the

source decides to request reports from s. In every odd round m in {1, 3, . . . , 2nseq − 1}, where

m = 2s + 1 with 0 ≤ s ≤ nseq − 1, the source sends a message containing resz(s); in round

m + 1, every agent i sends a reply iff resz(s) = True; this reply contains all the entries in the

vectors rez−1 and sez−1 regarding the rounds when i first sent an received events from E(z, s)

during epoch z − 1, respectively. In round 2nseq + 1, agents also send the vectors vsz−1, where

vsz−1(j) = False represents an accusation against j saying that j did not send only correct

messages. At this point, the source generates the keys κzi and the seeds sdzi for all agents i.

The source also generates a vector bpz of verdicts such that bpz(i) = True iff agent i is to be

punished in epoch z, where agent i is to be punished in z if (i) the source receives an accusation

5.1. DISSEMINATION PROTOCOL 53

against i or (ii) the source detects that i first received an event ezty in round m′ but did not

forward ezty in round m′ + 1 to exactly the agents in SGi(sdz−1
i , t, y). In round 2nseq + 2, the

source sends to agent i the seed sdzi , the vector bpz, and the keys κzj for every agent j 6= i. In

all rounds m > 2nseq + 2 of every stage t from epoch z, the source and the agents disseminate

events. More precisely, for each round m = 2nseq + 2 + y with 1 ≤ y ≤ ν, the source selects

a set S of f fan agents at random, and sends to every agent j ∈ S the tuple (y, e, [ezty]), where

e is either ezty if i is not being punished (bpz(i) = False) or the ciphered event (ezty)κzi if i is

being punished (bpz(i) = True). Upon receiving a tuple (y, e, s) for the first time in round m,

agent i first deciphers e with κzj if i receives the pair from an agent j that is being punished;

let e∗ be either (e)κzj if bpz(j) = True or e otherwise; i then forwards (y, e′, s) to every agent

l ∈ SGi(sdzi , t, y), where again e′ is either (e∗)κzl if l is being punished or e∗ otherwise.

If all agents follow the protocol and agent i receives (y, e, [ezty]), then, by the commutativity

of ciphers, e = (ezty)κzi if i is being punished or e = ezty otherwise. Therefore, if some agent

deviates and i is being punished, then there is no way for i to determine whether e corresponds

to ezty ciphered with κzi . For this reason, we do not require agents to always forward valid events,

i.e., events that always correspond to either ezty or to ezty ciphered with some key. Nevertheless,

we show that agents do not gain from not forwarding events correctly.

Every agent i has incentives to send valid messages in epoch z due to the threat of pun-

ishment in epoch z + 1: if i sends an invalid message or omits a message containing reports or

accusations to the mediator, then the mediator sets vsz(i) = False and i is punished in epoch

z + 1; similarly, if i sends an invalid message to an agent j, then j sets vsz(i) = False, and

sends an accusation against i to the source in epoch z + 1, triggering a punishment; if i sends

all requested monitoring messages, then i is indifferent regarding the content of each report and

accusation, since these do not affect the probability of i being punished in epoch z+ 1; finally, if

i does not forward every event ezty according to the pseudo-random set generator and the seed of

i, then with high probability (i.e., pseq) the source requests reports on the events from sub(t, y)

and detects the deviation of i, again triggering a punishment in epoch z + 1. Once i sends an

invalid message in epoch z, i knows that it will be punished in epoch z+1, so i has no incentives

to continue sending messages. Conversely, once i does not forward an event ezty according to

the protocol, i knows that, if the source requests reports relative to the subsequence sub(t, y),

then i will be punished in epoch z + 1, so i has no incentives to keep forwarding events from

54 CHAPTER 5. GOSSIP DISSEMINATION

E(z, sub(t, y)). In other words, there are information sets Ii for i such that the fact that i omits

certain messages at Ii has no impact on the probability of i being punished in epoch z + 1.

Therefore, the best response strategy for i is to not send those messages. To implement such

strategy, agent i uses a set MEzi to keep track of the subsequences s that contain events that

were not correctly forwarded by i, such that i only forwards an event ezty if the subsequence

sub(t, y) is not in MEzi ; in addition, i uses the variable vsz(i) to keep track of whether i sent

all requested messages and did not send invalid messages, such that i only sends messages if

vsz(i) = True.

The pseudo-code of the algorithm executed by agent i is depicted in Alg. 1. We denote

by vi the value of variable v in agent i. Agent i starts by initializing the variables used in the

algorithm (lines 1-12). In addition to the variables described above, i uses a set Outzi to keep

track of the events that i already output to the application, a set EOz
i (t, y) for each stage t

and event number y that contains all the tuples with the form (y, e, s) that were sent to i, and

a set EFzi (j, t,m) for each agent j, stage t, and round m, which contains the events that i is

expected to forward to j in round m. To simplify the exposition, we also define these variables

for the source, so for instance, vszi (source) is True iff the source only sent valid messages, which

is always the case, since the source always follows the protocol.

In the send phase of round m, agent i sends messages only if vszi (i) = True (lines 14-26). In

the first nseq even rounds of stage 1 of each epoch z, i sends the reports of events requested by the

source. Specifically, for every round m = 2s with 1 ≤ s ≤ nseq, if reszi (s) = True, then i sends

vectors Resi and Sesi that contain the values in rezi and sezi relative to the events from E(z, s)

(lines 17-20). In round 2nseq + 1 of stage 1 of every epoch z > 1, i sends the vector vszi to the

source, which contains accusations against other agents (line 22). Finally, in the dissemination

rounds m > 2nseq + 2 of every stage t, for every agent j 6= i, i sends to j the set EFzi (j, t,m) of

events that i received in round m− 1 (lines 24-25). To simplify the exposition, we consider that

an omission of i in a dissemination round is equivalent to i sending an empty set of events.

In the receive phase of round m, agent i processes every round-m message that i received

from other agents or from the source (lines 27-58). If m is one of the first nseq odd rounds of

stage 1, then i processes the pair (s, resz(s)) that the source sends to i and updates reszi (s)

correspondingly (line 29). If either (i) m is round 2nseq + 1, t = 1, and i omitted the accusations

to the source or (ii) m is one of the first even rounds from stage 1 from epoch z, the source

5.1. DISSEMINATION PROTOCOL 55

requested reports from i, and i did not send those reports, then i sets vszi (i) = False (line 31). If

m = 2nseq + 2 and t = 1, then i stores the seed sdzi sent by the source and, for every agent j 6= i,

i saves the key κzj and updates the verdict bpzi (j) (line 33-36). Finally, if m is a dissemination

round (i.e., m > 2nseq + 2), then i processes all the messages containing events that i received

and that i sent to other agents (lines 38-57):

• For every entity j different from i (where j may be the source or another agent), i updates

the variables according to the message that j sends to i. If j sends an invalid message to

i, then i sets vszi (j) = False. Otherwise, if j sends a valid set S of events, then i registers

those events in rezi (lines 39-49): for every (y, e, s) ∈ S, if j did not send the yth event

to i before and 0 ≤ age(y,m) < n, then i sets rezi (i, j, t, y) to age(y,m), otherwise, i sets

vszj (j) = False, where age(y,m) = m− 2nseq − 1− y (line 43). Agent i registers age(y,m)

instead of m to decrease the average cost of monitoring per stage. After processing the

events received from j, i prepares to forward some of those events. Given agent l and event

e′, let ϕl(e
′) be a function that returns (e′)κzl if bpzi (l) = True or returns e′ otherwise. For

each tuple (y, e, s) received from j, i computes e∗ = ϕj(e) (lines 44), adds (y, e∗, s) to the

set EOz
i (t, y) (line 45), and if i did not forward the yth event before, i adds (y, ϕl(e

′), s) to

EFzi (l,m+ 1) for all agents l ∈ SGi(sdzi , t, y) (lines 47-48).

• For every agent j 6= i, i updates the variables basing on the dissemination message that i

sent to j (lines 50-57). If i sends an invalid message to j, then i sets vszi (i) = False (50),

otherwise, if i sent a set S of events to j, then i updates the variables sezi and MEzi (lines 51-

57). More precisely, for every tuple (y, e, s) ∈ S that i sent to j, if 0 ≤ age(y,m) < n

and i did not send the event before to j, then i sets sezi (i, j, t, y) to age(y,m); otherwise,

i sets vszi (i) = False. Moreover, i adds to MEzi the subsequence number sub(t, y) of every

event ezty not correctly forwarded by i to j, where event ezty is not correctly forwarded if

(i) (y, e, s) ∈ S and (y, e′, s′) /∈ EFzi (j, t,m) for all e′ and s′ (i should not have forwarded

the event to j) or (ii) (y, e, s) /∈ S for all e and s but there exist e′ and s′ such that

(y, e′, s′) ∈ EFzi (j, t,m) (so, i should have forwarded a tuple (y, e′, s′) to j but did not).

We assume that i processes these messages sent by other agents j following the order of the

agents’ identifiers. This assumption will play a role in the proof that the protocol is a sequential

equilibrium.

56 CHAPTER 5. GOSSIP DISSEMINATION

In the update phase of every dissemination round m, i removes all tuples (y, e, s) such that

sub(t, y) ∈ MEzi from the set EFzi (j, t,m + 1) for all agents j, so that i sends no further events

from those subsequences (lines 61-62). In addition, i outputs all tuples (y, e, s) such that i did

not output (y, e, s) before and i believes that (y, e, s) was sent by the source (lines 63-67). More

precisely, we consider that there is a function comp such that comp(e, s) returns the event ezty

if s = [ezty] and i can perform a finite computation on e to retrieve ezty , or comp(e, s) returns ⊥

otherwise. Intuitively, e may correspond to the event ezty ciphered with keys known to i, so i

may try deciphering e with multiple combinations of keys to retrieve ezty . (Obviously, if e = ezty

and s = [e], then comp(e, s) returns e.) For all pairs (t, y) such that (t, y) /∈ Outzi and i received

a tuple (y, e, s) such that comp(e, s) 6= ⊥, i outputs (y, comp(e, s), s).

The pseudo-code of the algorithm run by the source is depicted in Alg. 2. We omit the

subscript i from each variable. The source first initializes the variables used in the algorithm in

an identical fashion to Alg. 1 (lines 1-9). The only difference is that the source does not use the

sets Outzi and EOz
i and initializes res1(s) to False for all subsequences s (recall that the source

never requests reports in the first epoch).

In the send phase, the source only sends messages in the first nseq odd rounds of stage 1 of

each epoch, in round 2nseq +2 of stage 1 of every epoch, and in the dissemination rounds of every

stage (lines 11-25). Specifically, for every round m = 2s+ 1 from stage 1 with 0 ≤ s ≤ 2nseq− 1,

the source sends the pair (s, resz(s)) to all agents i (line 14). In round m = 2nseq + 2 of stage 1,

the source sends to every agent i the seed sdzi and a set Kz
i containing the key κzj and verdict

bpz(j) of every agent j 6= i (lines 17-20). In a dissemination round m = 2nseq + 2 + y with

1 ≤ y ≤ ν, the source sends (y, e, [ezty]) to every agent j from a random set S of f fan agents,

where e either corresponds to (ezty)κzj if j is being punished (bpz(j) = True) or is ezty otherwise

(lines 22-24).

In the receive phase, the source processes all the messages that contain monitoring infor-

mation (lines 26-41). In the first nseq even rounds m = 2s of stage 1 of every epoch z such

that resz(s) = True, the source processes the reports that every agent i sends relative to the

subsequence s. If i does not send valid reports, then the source sets vsz(i) = False (line 30),

otherwise the source stores the reports included by i in Resi and Sesi in the variables rez and sez,

respectively (lines 31-34). In round 2nseq + 1 of stage 1 of every epoch z > 1, the source stores

the accusations received from every agent i: if agent i does not send a valid vector vszi , then the

5.1. DISSEMINATION PROTOCOL 57

Algorithm 1 σf
fan

i : i’s gossip dissemination protocol with fanout f fan

1: for all epochs z ≥ 1 do
2: Outzi ,MEzi ← ∅
3: vszi (i) ← True
4: bpzi (i) ← False
5: for all agents j ∈ N ∪ {source} \ {i} do
6: vszi (j) ← True
7: bpzi (j) ← False
8: for all stages 1 ≤ t ≤ nspe and rounds 1 ≤ m ≤ τ do
9: EOzi (j, t,m) ← ∅

10: EFzi (j, t,m) ← ∅
11: for all stages 1 ≤ t ≤ nspe and events 1 ≤ y ≤ ν do
12: rezi (i, j, t, y), sezi (i, j, t, y) ← ⊥
13: for all epochs z ≥ 1, stages 1 ≤ t ≤ nspe, rounds 1 ≤ m ≤ τ do
14: Phase 1: send phase
15: if vszi (i) = True then . Sends messages if i only sent valid messages before
16: if t = 1 and m = 2s with 1 ≤ s ≤ nseq and reszi (s) = True then

17: for all agents j 6= i and events e
(z−1)t
y ∈ E(z − 1, s) do . Source requested reports for sth sequence

18: Resi (i, j, t, y) ← rez−1
i (i, j, t, y)

19: Sesi (i, j, t, y) ← sez−1
i (i, j, t, y)

20: Send 〈Resi , Sesi 〉 to the source
21: else if z > 1 and t = 1 and m = 2nseq + 1 then
22: Send vsz−1

i to the source . Send accusations
23: else if m > 2nspe + 2 then . Dissemination round
24: for all agents j 6= i do
25: Send EFzi (j, t,m) to j . Send events to j

26: EndPhase
27: Phase 2: receive phase
28: if t = 1 and m = 2s+ 1 with 0 ≤ s ≤ nseq − 1 and source sent 〈s, r〉 then
29: reszi (s) ← r . Source requests reports of sth sequence if r = True
30: else if t = 1 and (m = 2nseq + 1 or ∃s(m = 2s and reszi (s) = True)) and i did not send a valid message then
31: vszi ← False . i did not send requested reports or accusations
32: else if t = 1 and m = 2nseq + 2 and source sent 〈s,Kz

i 〉 then
33: sdzi ← s . Seed for epoch z
34: for all (j, v, κ) ∈ Kz

i do . Stores keys and verdicts
35: bpzi (j) ← v
36: κzj ← κ

37: else if m > 2nseq + 2 then . Dissemination round
38: for all j ∈ N ∪ {source} \ {i} do
39: if j sent invalid message then vszi (j) ← False . Invalidates state
40: else if j sent set S of events to i then
41: for all (y, e, s) ∈ S do
42: if 0 ≤ age(y,m) < n and rezi (i, j, t, y) = ⊥ then . j did not send yth event to i before
43: rezi (i, j, t, y) ← age(y,m) . Registers round in which j first sends event to i
44: e∗ ← ϕj(e) . If j is being punished, deciphers event with κzj
45: EOzi (t, y) ← EOzi (t, y) ∪ {(y, e∗, s)}
46: if sezi (i, l, t, y) = ⊥ for all l then . i has not forwarded event before
47: for all l ∈ SGi(sd

z
i , t, y) do

48: EFzi (l, t,m+ 1) ← EFzi (l, t,m+ 1) ∪ {(y, ϕl(e∗), s)} . Prepares to forward event

49: else vszi (j) ← False

50: if i sent invalid message to j then vszi (i) ← False . i sends no further messages
51: else if i sent valid set S to j then
52: for all (y, e, s) ∈ S do
53: if 0 ≤ age(y,m) < n and sezi (i, j, t, y) = ⊥ then
54: sezi (i, j, t, y) ← age(y,m) . Registers round in which i first sends event to j
55: else vszi (i) ← False

56: for all (y, e, s) not correctly forwarded by i do
57: MEzi ← MEzi ∪ {sub(t, y)} . Some event from sub(t, y) was not forwarded correctly

58: EndPhase
59: Phase 3: update phase
60: if m > 2nseq + 2 then . Dissemination round
61: for all agents j 6= i and (y, e, s) ∈ EFzj (j, t,m+ 1) with sub(t, y) ∈ MEzi do

62: EFzi (j, t,m) ← EFzi (j, t,m) \ {(y, e, s)} . Cleans EFzi
63: O ← ∅
64: for all 1 ≤ y ≤ ν such that (t, y) /∈ Outzi , (y, e, s) ∈ EOzi (t, y), and comp(e, s) 6= ⊥ do
65: O ← O ∪ {(y, comp(e, s), s)} . Retrieves ezty from e
66: Outzi ← Outzi ∪ {(t, y)}
67: Output(O)

68: EndPhase

58 CHAPTER 5. GOSSIP DISSEMINATION

source sets vsz(i) = False (line 37), otherwise, the source stores every accusation contained in

vszi in the variable vsz (lines 39-40).

In the update phase, the source prepares the requests of reports for the next epoch and

prepares the verdicts, keys, and seeds (lines 42-61). In the last round from epoch z, for every

subsequence numbered 1 ≤ s ≤ nseq, the source sets resz+1(s) = True with independent prob-

ability pseq, otherwise it sets resz+1(s) = False (lines 43-45). In round 2nseq + 1 of stage 1 of

every epoch z, for every agent i, the source generates the key κzi and seed sdzi at random, and,

if z > 1, the source determines the verdict bpzi (i) of i (lines 46-60). Specifically, for every event

e
(z−1)t′

y′ disseminated in epoch z − 1, the source determines the first round m∗ when i received

a tuple with the form (y, e, s), where m∗ = ⊥ if i did not receive any such tuple; the source

triggers a punishment of i (bpz(i) = True) if and only if (i) vsz−1(i) = False, which holds when

some agent sent an accusation against i, the source received an invalid message from i, or i did

not send all requested messages, (ii) i received the event (m∗ 6= ⊥) and did not forward it in

round m∗+1 to all agents from SGi(sdz−1
i , t′, y′), or (iii) i sent the event to some agent not from

SGi(sdz−1
i , t′, y′) or in some round m′ 6= m∗ + 1.

5.1.2 Parametrising the Protocol

The parameters nspe, pseq, and nseq determine both the average cost of sending monitoring

messages and the probability of detecting deviations. We now describe how to define the pa-

rameters nseq and pseq as functions of nspe in a way that ensures that the probability of detecting

deviations is sufficiently high, such that agents do not gain by deviating, and the average cost

of monitoring decreases with nspe, such that we can arbitrarily minimize this cost by increasing

nspe.

In the next section, we show that the average overhead of monitoring is sufficiently low if (1)

pseq decreases with nspe and (2) pseqnseq does not decrease with nspe. Moreover, the probability

of detecting deviations is sufficiently high if (1) pseq decreases slower than 1/nspe and (2) pseqnseq

does not increase with nspe. More precisely, the following three conditions that relate pseq and

nseq with nspe are sufficient to prove the main result of this chapter:

C1. pseq = ω(1/nspe)

C2. pseq = o(1)

5.1. DISSEMINATION PROTOCOL 59

Algorithm 2 Source’s gossip dissemination protocol with fanout f fan

1: for all epochs z ≥ 1 do
2: for all agents i ∈ N ∪ {source} do
3: vsz(i) ← True
4: bpz(i) ← False
5: for all agents j 6= i, stages 1 ≤ t ≤ nspe, and events 1 ≤ y ≤ ν do
6: rez(i, j, t, y) ← ⊥
7: sez(i, j, t, y) ← ⊥
8: for all subsequences 1 ≤ s ≤ nseq do
9: res1(s) ← False

10: for all epochs z ≥ 1, stages 1 ≤ t ≤ nspe, rounds 1 ≤ m ≤ τ do
11: Phase 1: send phase
12: if t = 1 and m = 2s+ 1 with 0 ≤ s ≤ nseq − 1 then
13: for all agents i do
14: Send 〈s, resz(s)〉 to i . Mediator requests reports for sequence s if resz−1(s) = True

15: else if t = 1 and m = 2nspe + 1 then
16: for all agents i do
17: K ← ∅
18: for all agents j 6= i do
19: K ← (j, bpz(j), κzj)

20: Send 〈sdzi ,K〉 to i . Sends seeds, verdicts, and keys before dissemination starts

21: else if m = 2nspe + 2 + y with 1 ≤ y ≤ ν then . Dissemination round
22: S ← random set of f fan agents
23: for all j ∈ S do
24: Send {(y, ϕj(ezty), [ezty])} to j . Punishes j iff bpzj (j) = True

25: EndPhase
26: Phase 2: receive phase
27: for all agents i ∈ N do
28: if t = 1 and m = 2s with 1 ≤ s ≤ nseq and reqz(s) = True then
29: if i did not send valid message then
30: vsz(i) ← False . i did not send requested reports
31: else if i sent 〈Resi , Sesi 〉 then
32: for all agents j 6= i and events e

(z−1)t
y ∈ E(z − 1, s) do . Registers reports

33: rez−1(i, j, t, y) ← Rei(i, j, t, y)
34: sez−1(i, j, t, y) ← Sei(i, j, t, y)

35: else if t = 1 and m = 2nseq + 1 then
36: if i did not send valid message then
37: vsz(i) ← False . i did not send accusations
38: else if i sent vsz−1

i then

39: for all agents j 6= i such that vsz−1
i (j) = False do

40: vsz−1(j) ← False . Registers accusation against j

41: EndPhase
42: Phase 3: update phase
43: if t = nspe and m = τ then . End of an epoch
44: for all subsequences 1 ≤ s ≤ nseq do
45: resz+1(s) ← True with prob. pseq or False otherwise . Requests reports for s with probability pseq

46: else if t = 1 and m = 2nseq then . Prepares verdicts, keys, and seeds
47: for all agents i do
48: κzi ← unique random key
49: sdzi ← random seed
50: if z > 1 then

51: for all sequences 1 ≤ s ≤ nseq and events e
(z−1)t′

y′ ∈ E(z − 1, s) such that resz−1(s) = True do

52: m∗ ← minm ∃j∈N∪{source}\{i}se
z−1(j, i, t′, y′) = m . First round when i receives event

53: if vsz−1(i) = False then
54: bpz(i) ← True . i sent invalid message in epoch z − 1
55: else if m∗ 6= ⊥ and ∃

j∈SGi(sd
z−1
i ,t′,y′)

rez−1(j, i, t′, y′) 6= m∗ + 1 then

56: bpz(i) ← True . i did not send event in m∗ + 1 to all agents in SGi(sd
z−1
i , t′, y′)

57: else if ∃
j /∈SGi(sd

z−1
i ,t′,y′)

rez−1(j, i, t′, y′) 6= ⊥ then

58: bpz(i) ← True . i sent event to some agent j /∈ SGi(sd
z−1
i , t′, y′)

59: else
60: bpz(i) ← False . i is not punished

61: EndPhase

60 CHAPTER 5. GOSSIP DISSEMINATION

C3. pseqnseq = θ(1)

Note that C3 implies that pseq = c/nseq for some constant c. For instance, if pseq = 1/
√
nspe

and nseq =
√
nspe, then all three properties are satisfied. More generally, it suffices that pseq =

c/g(nspe) and nseq = g(nspe) for some constant c and function g sublinear on nspe.

5.2 Proof of Main Result

We now prove our main result. We first discuss the most important cryptographic assump-

tions. Then, we prove that, if agents are sufficiently patient and f fan is c-individually rational

for some constant c, then ~σf
fan

is a sequential equilibrium, and the average utility of every agent

i with ~σf
fan

is arbitrarily close to xi(f
fan). Theorem 1 follows immediately from this.

5.2.1 Cryptographic Assumptions

We discuss assumptions about the the symmetric ciphers, the signature-scheme used by the

source to sign events, and the pseudo-random set generator.

Regarding symmetric ciphers, we make the standard assumption that it is computationally

hard for an agent to break the commutative symmetric cipher. Specifically, given an agent i

and event ezty , we assume that if e = (ezty)κzi , then comp(e, [ezty]) = ⊥. In other words i obtains

benefits in an epoch z iff i is not being punished.

Regarding signatures, we assume that it is computationally hard for agents to replicate the

signature of the source. More precisely, to simplify the analysis, we assume that the actions of

agent i available to Ii are restricted as follows: i can send a tuple (y, e, s) to agent j in round

m such that s = [ezty] iff i receives (y, e′, s) in round m′ < m from some agent l; moreover, if

comp(ϕj(e), s) 6= ⊥, then comp(ϕl(e
′), s) 6= ⊥. That is, we assume that agent i cannot replicate

the signature [ezty] without previously receiving the signature in a message, and i cannot guess

ezty before receiving (y, e′, s) such that i can compute ezty from ϕl(e
′) and s.

Finally, given an agent i and seed sdi, we assume that the function SGi generates a sequence

of νnspe sets of f fan agents, such that, for every t and y, the set SGi(sdi, t, y) (which corresponds

to the (ty)th set of this sequence) is generated approximately at random and independently

5.2. PROOF OF MAIN RESULT 61

of other sets. We now show that if a PRNG function exists, then SGi can be defined from

G such that the above assumption holds. Note that we can define a mapping between sets

of f fan agents and numbers in {0 . . .
(
n−1
f fan

)
− 1}, so every stream of sets of f fan agents has

a bitwise representation. Thus, we can define SGi using any PRNG function that generates

approximately random streams of bits. For instance, we can use the PRNG function used by

Abraham et al. (2013).

Specifically, a PRNG function G generates a stream of m(k) bits from a seed s ∈ {0, 1}k

such that no probabilistic time machine can distinguish between the outcome of G and a truly

random sequences of m(k) bits, where k is a security parameter and m is a polynomial on k

such that m(k) > k. Formally, a function G is a PRNG if it satisfies the following property:

• For all constants ξ > 0, there exists k∗ such that, for all k ≥ k∗, sequence of bits ~b ∈

{0, 1}m(k), and bit position 1 ≤ l ≤ m(k), we have

∣∣∣∣ 1

2m(k)
− |S|
|S′|

∣∣∣∣ < ξ,

where S is the set of seeds s such that G(s) = ~b and S′ is the set of seeds s′ such that

G(s′) = ~b or G(s′) = ~b′, where ~b′ differs from ~b only in the lth bit.

We define SGi assuming only that a pseudo-random function G exists. Let b =
(
n−1
f fan

)
be the number of different subsets of f fan agents to which i may forward events, and fix a

correspondence between numbers in 0 . . . b− 1 and sets. Let m(k) = νnspe ·φ(k) · dlog(b)e, where

φ(k) is some polynomial. Intuitively, a stream of m(k) bits represents a stream of νnspe numbers,

where each number is represented using φ(k) · dlog(b)e bits. Let K = {0 . . . 2φ(k)·dlog(b)e} denote

the set of all numbers from this stream. Given the stream of νnspe numbers generated by G, a

stage number 1 ≤ t ≤ nspe, and event number 1 ≤ y ≤ ν, let o ∈ K be the (t + y)th number

in the stream; we define SGi(sdi, t, y) as the set of f fan agents that corresponds to the number

l = o mod b.

We show in Proposition 2 that SGi generates streams of approximately random and inde-

pendent sets. Let ~S be a stream of νnspe sets that fixes every set Syt to which agent i has to

forward event ezty . Let ~S−(t,y) be a stream that fixes every set but Sty, and let PSGi(S
t
y | ~S−(y,t))

be the probability of SGi generating set Sty conditioning on SGi generating the stream of sets

~S−(y,t).

62 CHAPTER 5. GOSSIP DISSEMINATION

Proposition 2. (PRSG1) If G is a PRNG, then for all ξ > 0, there exists k∗ such that for all

k ≥ k∗, stage number 1 ≤ t ≤ nspe, event number 1 ≤ y ≤ ν, sets Sty, and streams ~S−t,y, we have

∣∣∣∣PSGi(S
t
y | ~S−(t,y))−

1

b

∣∣∣∣ ≤ ξ.
Proof. Note that there is a one-to-many mapping between sets and numbers in K. By the

properties of the modulo operation, there are values d and r ∈ {0, . . . , b − 1} such that r sets

are mapped to d + 1 numbers in K and b − r sets mapped only to d numbers in K, where d

is the integer division of #K by b and r ∈ {1, . . . , b − 1} is the remainder of this division. By

the assumption that G is a PRNG, the probability of generating each number o ∈ K as the

yth number from the stream of νnseq numbers is arbitrarily close to selecting o independently at

random, even if we fix the other numbers of the stream. Therefore, the probability of selecting

each set as the yth set is arbitrarily close to a value v in [d/#K, · · · , (d + 1)/#K], even if we

fix the other sets. As φ(k) increases, the interval converges to the point 1/b, so, by increasing k

and φ(k), the probability of selecting each set gets arbitrarily close to 1/b.

5.2.2 Sequential Equilibrium Proof

To prove that ~σf
fan

is a sequential equilibrium, we have to show that there is a belief system

consistent with ~σf
fan

such that no agent i gains by deviating at any given information set Ii.

We start by defining a belief system µf
fan

consistent with ~σf
fan

and then show that no agent i

gains by deviating at any Ii given that i uses µf
fan

to compute its expected utility.

In the definition of µf
fan

, we have to model the belief that every agent i has regarding how

the events that other agents sent to i were generated, since this belief determines whether i

should output a tuple at each information set Ii. We define a belief system such that all the

information that i believes to have in Ii about any given event ezty is the sequence S of valid

tuples with the form (y, e, s) that i receives in Ii. Moreover, if i receives (y, ϕl(e), s) from l, i is

not being punished, and comp(e, s) = ⊥, then i believes that e is a random event, such that i

cannot compute ezty from e, even if i tries to decipher e with keys that i knows.

We now provide a formal definition of µf
fan

that captures the above intuition. Let ~σM be

a completely mixed strategy profile (i.e., attributes positive probability to every action at all

information sets) defined as follows. Recall that there is a finite number of actions ai available

5.2. PROOF OF MAIN RESULT 63

to an agent i at any given information set Ii; let KIi denote this number. For all agents i and

round-m information set Ii for i, agent i follows σf
fan

i at Ii with probability 1 − 1/1M and

distributes the remaining probability 1/M across all KIi actions as follows. If m is a monitoring

round, then i selects each action with probability 1/MKIi . If m is a dissemination round, i

decides on which value to output and which messages to send to each agent j independently.

Namely, i outputs each set S of tuples with independent probability 1/Mo, where o is the number

of sets that i may output. For each agent j 6= i, i sends an invalid message with probability

1/(2MJ) where J is the number of possible invalid messages, and with probability 1/2M sends

a valid message ~mi defined as follows. Given y, let SjIi,y be the set of tuples that i may send

to j at Ii containing y and let Sjy be the subset of tuples (y, e, s) such that e corresponds to

ezty ciphered with zero or more keys κzl for l 6= i (i.e., e = (((ezty)κzl1
)...)κzlk

for some set of k

agents l1, . . . lk different from i). For each 1 ≤ y ≤ ν, i sends no tuple with the form (y, e, s)

with probability 1/2 and with probability 1/2 selects a tuple (y, e, s) defined as follows: with

probability (1−1/M)(1/#(SjIi,y \S
j
y)), i selects a tuple(y, e, s) ∈ SjIi,y \S

j
y, and with probability

(1/M)(1/#(Sjy)) i selects (y, e, s) ∈ Sjy. For all agents i, information sets Ii, and global history

h ∈ Ii, we have:

µf
fan

(h) = lim
M→∞

P~σM (h)∑
h′∈Ii P~σM (h)

.

It is easy to see that ~σM is completely mixed and converges to ~σf
fan

. Moreover, note that

when an agent i deviates in a dissemination round, i decides on which tuple to send to each

agent j independently, and the probability of i including in valid messages only random tuples

converges to 1. So, with µf
fan

, if agent i is not being punished and some l sends (y, e, s) to i

such that comp(e, s) = ⊥, then i believes that e is a random event, so i does not gain from

outputting e.

Having defined µf
fan

, we now show that no agent i gains by deviating at any given informa-

tion set Ii, given that the expected utility of i is computed using µf
fan

. Note that the number of

deviations that an agent i may perform at Ii is infinite. Therefore, it is not tractable to compare

the utility of agents using ~σf
fan

with that of agents using (σi, ~σ
f fan

−i) for all possible deviating

strategies σi of i. Fortunately, by the one-shot deviation property (Hendon et al. 1996) (OSD),

we only need to consider one-shot deviations of i at Ii, i.e., deviations where i does not take

actions at Ii according to the protocol but does not deviate at every other information set. By

the OSD, if i does not gain by performing a one-shot deviation at any given information set

64 CHAPTER 5. GOSSIP DISSEMINATION

Ii, then ~σf
fan

is a sequential equilibrium. Proposition 3 formalizes this intuition 3. Given an

information set Ii for i, an action ai ∈ Ai(Ii), and a strategy profile ~σ, let ~σ|Ii,ai denote the

strategy profile that differs from ~σ exactly in that i deterministically takes action ai at Ii.

Proposition 3. (One-shot Deviation Property) A strategy profile ~σ is a sequential equilibrium if

and only if there exists a belief system µ consistent with ~σ such that for all agents i, information

sets Ii for i, and actions a∗i , a
′
i ∈ Ai(Ii) such that σf

fan

i (a∗i | Ii) > 0, ui(~σ|Ii,a∗i | Ii) ≥ ui(~σ|Ii,a′i |

Ii).

We now show that for all agents i and information sets Ii, i does not gain by performing

a one-shot deviation at Ii. We start by proving Lemmas 4 and 5, which list properties of ~σf
fan

regarding the probability of i being punished in future epochs and the probability of i sending

and receiving events, respectively, when i performs a one-shot deviation at Ii.

Lemma 4 relates the probability of agent i being punished in epoch z+ 1 with the values of

vszi (i) and MEzi . Given an information set Ii, let vi|Ii denote the value of variable vi in agent i at

Ii. Given epoch z, agent i, and information set Ii, say that the source triggers a punishment of

i in epoch z′ after Ii with probability p if p is the probability µf
fan

~σf
fan

,Ii
(r) of every run r in which

the source sets bpz
′
(i) = True in round 2nseq + 1 from stage 1 from epoch z′. Finally, given a

run r and agent j, let rj(z, t,m) denote j’s information set at round m from stage t from epoch

z.

Lemma 4. For all agents i and round-m information set Ii from stage t from epoch z, the

following properties hold:

M1. If vszi (i)|Ii = True, then the source triggers a punishment of i in epoch z + 1 after Ii with

probability P ∗(#MEzi |h) = 1− (1− pseq)#MEzi |Ii .

M2. If vszi (i)|Ii = False, then the source triggers a punishment of i in epoch z + 1 after Ii with

probability 1.

M3. For all z′ > z+1, the source triggers a punishment of i in epoch z′ after Ii with probability

0.

Proof. We prove each property in turn:

3A proof of the one-shot deviation property is provided in (Hendon et al. 1996).

5.2. PROOF OF MAIN RESULT 65

M1. If vszi (i)|Ii = True, then i sends no invalid messages in epoch z and sends all requested

messages to the source, which implies that in round 2nseq + 1 of the first stage from epoch

z+1 no agent sends an accusation against i and the source never sets vszi (i) = False. Hence,

the source triggers a punishment of i in epoch z + 1 iff it detects that i did not forward

some event according to SGi and sdzi . Say that the reports relative to i and event ezty are

inconsistent in a run r ∈ R(Ii) iff there exists j such that sezj (j, i, t, y)|rj(z+1,1,1) = m∗ 6= ⊥,

m∗ is the first round when some agent j sent a valid tuple (y, e, s) to i (according to sezj),

and there exists l 6= i such that either (i) l ∈ SGi(sdzi , t, y), and rezl (l, i, t, y)|rl(z+1,1,1) 6=

m∗ + 1 or (ii) l /∈ SGi(sdzi , t, y) and rezl (l, i, t, y)|rl(z+1,1,1) 6= ⊥. Since i forwards all tuples

(y′, e′, s′) with sub(t′, y′) /∈ MEzi |h after Ii when using ~σf
fan

, (i.e., sends the tuple to the

agents in SGi(sdzi , t
′, y′) upon receiving it for the first time), it is easy to see that, for all

runs r such that µf
fan

~σf
fan

,Ii
(r) > 0, the reports relative to i and ezty are inconsistent in r

iff sub(t, y) ∈ MEzi |Ii . Note that in a run r if the source requests the reports relative to

subsequence s in the monitoring rounds of stage 1 from epoch z + 1, then every agent j

sends sezj (j, i, t, y)|rj(z+1,1,1) and rezj (j, i, t, y)|rj(z+1,1,1) to the source for every (t, y) ∈ E(s).

Therefore, in a run r, the source detects that i did not forward events correctly iff the

source requests some subsequence s and there exists (t, y) such that the reports relative

to i and ezty are inconsistent in r, which is true iff s ∈ MEzi |Ii . Such runs happen with

probability P ∗(#MEzi (i)|Ii).

M2. If vszi (i)|Ii = False, then at least one of the following is true: (i) i sent an invalid message

to the source or omitted a message when i was supposed to send that message such that

the source sets vsz(i) = False, (ii) i sent an invalid message to an agent j, such that j did

set vszj (i) = False, in which case j sends an accusation against i to the source in stage 1

from epoch z + 1. Whether (i) or (ii) are true, the source sets vsz(i) = False and triggers

a punishment of i in epoch z + 1.

M3. Since z′−1 > z, when using ~σf
fan

agent i sends only valid messages and omits no message in

epoch z′−1, and forwards all events according to ~σf
fan

and sdz
′−1
i , so i never sets vsz

′−1
i (i) =

False and never adds tuples to MEz
′−1
i . By M1, the source triggers a punishment of i in

epoch z′ with probability P ∗(#MEz
′−1
i) = P (0) = 0.

66 CHAPTER 5. GOSSIP DISSEMINATION

We now prove Lemma 5, which compares the probability of i receiving and forwarding each

event when i follows ~σf
fan

and when it performs a one-shot deviation. First, we need some

additional definitions. Given a round-m information set Ii, event ezty is said to be disseminated

after Ii if the source disseminates the event in round m or after Ii is observed, otherwise, ezty is

said to be disseminated before Ii. Let qi be a function such that for all runs r, epoch numbers

z, stage numbers 1 ≤ t ≤ nspe, and event numbers 1 ≤ y ≤ ν, qi(r, z, t, y) = 1 if i receives a

tuple (y, e, s) for some e and s or qi(r, z, t, y) = 0 otherwise. We denote by E~σ[qi(r, z, t, y) | Ii]

the expected value of qi(r, z, t, y) when agents use the strategy profile ~σ conditioning on the run

being R(Ii), that is,

E~σ[qi(r, z, t, y) | Ii] =
∑

r∈R(Ii)

µf
fan

~σf
fan

,Ii
(r)qi(r, z, t, y).

Given an information set Ii, strategy profile ~σ, and numbers t and y, let P send
~σ,Ii

(t, y) and P out
~σ,Ii

(t, y)

denote the probabilities of i sending and outputting the tuple (y, ezty , [e
zt
y]), respectively. Actions

a∗i and a′i are said to be equivalent if agent i sends only valid messages in both actions and, for

all event numbers y, i sends a tuple containing y to j in a∗i iff i sends a tuple containing y to

j in a′i; a
∗
i is said to be contained in a′i if i sends a tuple containing y to j in a∗i only if i sends

a tuple containing y to j in a′i. Finally, given a run r, agent j, epoch z, and e′, we denote by

ϕr,zj (e) the event e′ such that e′ = (e)κzj if the source triggers a punishment of j during epoch z

in r or e′ = e otherwise.

Lemma 5 shows that (i) disseminating events with the pseudo-random set generator is

equivalent to sending events using eager-push gossip dissemination (Properties D1 and D2), (ii)

an agent receives events disseminated in the future with a probability that is independent from

the current action (Property D3), (iii) every agent i receives each event ezty disseminated in the

future ciphered with κzi iff i is being punished (Property D4), (iv) if a∗i and a′i are equivalent,

then the probability of i receiving and forwarding each event already sent by the source is

independent of whether i takes a∗i or a′i (Property D5), and (v) if a∗i is contained in a′i, then the

probability of i outputting an event already being disseminated does not increase if i takes a′i

instead of a∗i (Property D6).

Lemma 5. Fix an agent i, epoch z ≥ 1, stage 1 ≤ t ≤ nspe, round 1 ≤ m ≤ τ , round-m

information set Ii for i from stage t from epoch z, and belief system µ consistent with ~σf
fan

. Fix

two arbitrary actions a∗i , a
′
i ∈ Ai(Ii), and let ~σ∗ = (σf

fan

i |Ii,a∗i , ~σ
f fan

−i) and ~σ′ = (σf
fan

i |Ii,a′i , ~σ
f fan

−i).

5.2. PROOF OF MAIN RESULT 67

The following properties hold:

D1. For all z′ > z, 1 ≤ t′ ≤ nspe, and 1 ≤ y′ ≤ ν, we have E~σ∗ [qi(r, z′, t′, y′) | Ii] ≈ q(f fan).

D2. For all events ezt
′

y′ disseminated after Ii, we have E~σ∗ [qi(r, z′, t′, y′) | Ii] ≈ v ≤ q(f fan).

D3. For all events ez
′t′
y′ disseminated after Ii, we have E~σ∗ [qi(r, z′, t′, y′) | I∗i] =

E~σ′ [qi(r, z′, t′, y′) | I ′i].

D4. For all events ez
′t′
y′ disseminated after Ii and runs r ∈ R(Ii) such that µf

fan

~σ∗ (r) > 0,

if some agent j sends (y′, e, s) to i in r in stage t′ from epoch z′, then s = [ez
′t′
y′] and

ϕr,z
′

j (e) = ϕr,z
′

i (ez
′t′
y′).

D5. For all events ez
′t′
y′ disseminated before Ii, agent l 6= i, and round m′ ≥ m, if a∗i and a′i are

equivalent, then

P send
~σ∗,Ii

(t′, y′) = P send
~σ′,Ii

(t′, y′).

D6. For all events ez
′t′
y′ disseminated before Ii, if a∗i is contained in a′i, then

P out
~σ∗,Ii

(t, y) = P out
~σ′,Ii

(t, y).

Proof. We prove properties D1-D6 one at a time:

D1. Fix z′, t′, and y′. Consider a protocol ~σ′′ where the source and the agents disseminate

ez
′t′
y′ using eager-push gossip dissemination. We show that we can partition the set of runs

into sets R of runs of ~σ∗ and sets R′ of runs of ~σ′′ such that the probability of the run

being in R with ~σ∗ is approximately equal to the run being in R′ with ~σ′′, and the set of

the messages that agents send in R containing ezt
′

y′ is the same as the set of corresponding

messages sent in R′. Property D1 follows immediately from this.

Let ~S be a vector that defines a set Sj of f fan agents l 6= j for all entities j ∈ N ∪{source}.

The vector ~S characterizes the dissemination of the event ez
′t′
y′ with both ~σ∗ and ~σ′′: every

entity j forwards the event ez
′t′
y′ to the f fan agents in Sj ; in ~σ∗, if j is an agent, then

Sj = SGj(sdz
′
j , t
′, y′). Let R(~S) ⊆ R(Ii) denote the set of all runs where agents follow

~σf
fan

or ~σ′ at and after Ii, and agents disseminate ez
′t′
y′ according to ~S. Note that the

probability of a run of ~σ∗ being in R(~S) depends only on the probability of the source

68 CHAPTER 5. GOSSIP DISSEMINATION

selecting Ssource and selecting seeds sdz
′
j such that SGj(sdz

′
j , t
′, y′) = Sj for all agents j;

similarly, the probability of a run of ~σ′′ being in R(~S) depends only on the probability of

every entity j selecting Sj , given that Sj is selected independently at random. By PRSG1

and the fact that seeds are selected uniformly at random, the probability of a run of ~σ∗

being in R(~S) is arbitrarily close to that of a run of ~σ′′ being in R(~S), i.e., for an arbitrarily

small ξ > 0, there exists SGi such that∣∣∣∣∣∣
∑

r∈R(~S)

µf
fan

~σ∗,Ii
(r)−

∑
r∈R(~S)

µf
fan

~σ′′,Ii
(r)

∣∣∣∣∣∣ ≤ ξ. (5.1)

Note that ~S determines whether i receives a tuple with the form (y′, e′, s′) (since all agents

forward the event according to the protocol), i.e, the value qi(r, z
′, t′, y′) is constant for all

runs r ∈ R(~S); let qi(~S, z
′, t′, y′) denote this value. We have

q(f fan) =
∑

~S:qi(~S,z′,t′,y′)=1

∑
r∈R(~S)

µ′~σ′′,Ii(r),

and

E~σ
∗
[qi(r, z

′, t′, y′) | Ii] =
∑

~S:qi(~S,z′,t′,y′)=1

∑
r∈R(~S)

µ~σ∗,Ii(r).

Consequently, the result follows immediately from (5.1).

D2. The proof is similar to that of Property D1. Fix ezt
′

y′ and ~σ′′ where agents disseminate

ez
′t′
y′ in stage t′ using eager-push gossip dissemination. We show that there is a partition

of the set of runs into subsets R of runs of ~σ∗ and subsets R′ of runs of ~σ′′, such that the

probability of the run being in R with ~σ∗ is approximately equal to the probability of the

run being in R′ with ~σ′′, and the set of the messages that agents send in R containing ezt
′

y′

is a subset of the set of corresponding messages in R′. Property D7 follows immediately

from this.

Again, we can describe the dissemination of ez
′t′
y′ in both ~σ∗ and ~σ′′ by a vector ~S of

sets of f fan agents. However, now in runs of ~σ∗ some agents j may not forward tuples

containing ez
′t′
y′ because it may be that vszj (j) = False or sub(t′, y′) ∈ MEzj . Let R(~S) be

defined as in the proof of D1, except in runs of ~σ∗ the set Sj is defined by SGj(sdzj , t
′, y′),

regardless of whether j forwards the event. By the definition of µf
fan

and the fact that

5.2. PROOF OF MAIN RESULT 69

i never learns the seeds of other agents, PRSG1 (5.1) holds (here, we use the fact that

in Ii the only information that agent i may have of sdj for j 6= i is the sequence of sets

St
′
y′′ = SGj(sdzj , t

′, y′′) for y′′ < y′). For all runs r ∈ R(~S) of ~σ∗ and r′ ∈ R(~S) of ~σ′′, in r′

agents send messages containing ez
′t′
y′ according to ~S whereas in r agents omit a subset of

those messages, so qi(r, z, t
′, y′) ≤ qi(r′, z, t′, y′). Therefore, the result follows immediately

from (5.1).

D3. The probability of i receiving a tuple with the form (y′, e, s) in stage t′ from epoch z′

depends on the seeds sdz
′
j and on whether j forwards (y′, e, s) upon receiving it for the first

time, for all agents j 6= i. Specifically, before i receives such tuple, every agent j forwards

the tuple to all agents SGj(sdz
′
j , t
′, y′) upon receiving it for the first time iff vsz

′
j (j) = True

and sub(t′, y′) /∈ MEz
′
j . Note that the values of the variables vszj (j) and MEzj depend only

on what j does before Ii, since j follows ~σf
fan

at and after Ii, so they are independent of

i’s action at Ii. Consequently, the probability of i receiving a tuple (y′, e, s) is independent

of i’s action at Ii. Therefore, D3 holds.

D4. Fix an event ez
′t′
y′ disseminated after Ii and run r ∈ R(Ii) such that µf

fan

~σf
fan

,Ii
(r) > 0, and

let m′ be the round when the source sends ez
′t′
y′ . We show using induction on the rounds

m′ ≤ m′′ ≤ m′ + n − 1 that, if entity j′ sends in r the tuple (j, e, s) to agent l, then

e = ϕl(ϕ
r,z′

j (ez
′t′
y′)) and s = [ez

′t′
y′]. D4 follows immediately by Commutativity.

If m′′ = m′, then j′ is the source; if the source sends (y′, e, s) to l, then e = ϕr,z
′

l (ez
′t′
y′) and

s = [ez
′t′
y′], proving the base case. Now, suppose that m′′ > m′ and j′ receives (y′, e′, s) from

some agent l′. Let e = ϕr,z
′

l′ (e′). By the hypothesis, e′ = ϕr,z
′

j (ϕr,z
′

l (ez
′t′
y′)) and s = [ez

′t′
y′].

By commutativity, we have

e = ϕr,z
′

l (e′) = ϕr,z
′

l (ϕr,z
′

j (ϕr,z
′

l (ez
′t′
y′))) = ϕr,z

′

l (ϕr,z
′

l (ϕr,z
′

j (ez
′t′
y′))) = ϕr,z

′

j (ez
′t′
y′).

So, if j sends (y′, e′′, s′) to l, then s′ = s = [ez
′t′
y′] and e′′ = ϕl(e) = ϕr,z

′

l (ϕr,z
′

j (ez
′t′
y′)), as we

intended to prove. This concludes the proof of D4.

D5. Suppose that the actions a∗i and a′i are equivalent. Fix an event ez
′t′
y′ disseminated before

Ii. We can assume that 0 ≤ age(y′,m) < n− 1 and that i did not forward the event, since

otherwise D5 would follow immediately otherwise. So, we have z = z′ and t′ = t. The

dissemination of the event in rounds m′ ≥ m depends on the seed sdzj and the variables

70 CHAPTER 5. GOSSIP DISSEMINATION

vszj (j), MEzj (j), rezj , and sezj at round m for all agents j. Given a configuration c of the

values of these variables at m, there is a correspondence between runs r ∈ R(Ii) of ~σ∗ and

runs r′ ∈ R(I ′i) of ~σ′ such that µf
fan

~σ∗,Ii
(r) = µf

fan

~σ′,Ii
(r′) and the values of the aforementioned

variables are given by c. Fix any such corresponding runs r and r′. Note that only

the variables rezj and sezj may change at or after m. We show using induction on the

rounds m′ ≥ m that an agent j sends a round-m′ message containing a tuple with the

form (y′, e′, s′) to agent l in run r′ for some e′ and s′ iff j sends a round-m′ message to

l containing a tuple with the form (y′, e, s) to l in run r for some e and s. Since this is

true for all corresponding runs r and r′, D5 follows immediately. The base case is clearly

true for all j 6= i, since j sends the same round-m messages in r and r′, and it is true for

j = i, since a∗i and a′i are equivalent. In the inductive step, by the hypothesis, every agent

j receives tuples in round m′′ containing y′ from the same set agents in r and r′, and rezj

and sezj are updated in the same way in r and r′. Hence, j forwards a tuple containing y′

to agents in SGz
j (sdzj , t, y

′) in round m′ + 1 in r′ iff j does the same in r. This proves D5.

D6. Suppose that a∗i is contained in a′i. Fix an event ezty disseminated before Ii. We can

assume that i did not output the event nor outputs it in a∗i . As in D5, we fix two equally

likely runs r and r′ of ~σ after i takes a∗i and a′i at Ii, respectively, such that the values of

the variables that determine how the event is disseminated are the same. Note that the

verdicts bpz(l) and keys κzl are the same in r and r′ in every agent j for all agents l; we

denote by ϕl(e) the event e′ that corresponds to (e)κzl iff bpl(l) = True or corresponds to

e otherwise. Given an agent j 6= i, round m′ ≥ m, and run r′′, say that j processes tuple

(y, e∗, s) at m′ in r′′ if j receives a tuple (y, e, s) from l in round m′ such that e∗ = ϕl(e)

and j forwards the tuple in round m′+1. We now show using induction that for all rounds

m′ ≥ m and agents j 6= i, the following two properties hold (i) if some agent l sends a

tuple containing y to j at round m′ in r but not in r′, then l sends a tuple to j containing

y in r′ at some round m′′ < m′, and (ii) if j processes the tuple (y, ϕi(e
∗), s∗) at m′ in r′

and comp(ϕj(e
∗), s∗) 6= ⊥, then j also processes the tuple (y, ϕi(e

∗), s∗) at m′ in r. Note

that i outputs the tuple (y, ezty , [e
zt
y]) at round m′ in r′ only after i receives (y, e, s) from j

in round m′ such that comp(ϕj(e), s) 6= ⊥. In this case, j processes the tuple (y, ϕi(e), s)

at m′ − 1 in r′. By (ii) of the hypothesis, j also processes (y, ϕi(e), s) at m′ − 1 in r, so i

receives (y, ϕj(e), s) from j and outputs (y, ezty , [e
zt
y]) in r as well. Since this is true for all

runs r and r′, D6 follows immediately.

5.2. PROOF OF MAIN RESULT 71

First, consider that m′ = m. Since a∗i is contained in a′i, then (i) is clearly true. Now,

suppose that j processes (y, ϕi(e
∗), s∗) in round m′ such that comp(ϕj(e

∗), s∗) 6= ⊥. Then,

(ii) holds if the agent j only receives the tuple (y, e∗, s∗) from agents l 6= i, since every

such l sends the same round-m messages in r and r′. So, suppose that j receives (y, e∗, s∗)

from i. i can only send such tuple if i received (y, ϕl(e
′), s′) from some l in Ii such that

comp(e′, s′) 6= ⊥, but in this case i outputs (y, ezty , [e
zt
y]) in Ii or in a∗i . Since we have

assumed that this is not the case, j cannot receive (y, e∗, s∗) from i, so the hypothesis

holds for the base case.

Now, suppose that m′ > m. To prove (i), suppose that some l sends (y, e, s) to j in r at

round m′ but does not send a tuple containing y to j in r′ at round m′. Then, l must have

received a tuple containing y for the first time at round m′ − 1 from some agent l′ in r,

whereas l′ does not send any such tuple at m′ − 1 to l in r′. By (i) of the hypothesis, l′

must have sent such tuple to l at a round m′′ < m′−1 in r′, hence l must have sent a tuple

containing y to j at round m′′′ ≤ m′′+ 1 in r′. This proves (i) for the inductive step. Now,

suppose that j processes (y, ϕi(e
∗), s∗) at round m′ such that comp(ϕj(e

∗), s∗) 6= ⊥ in r′.

Then, some agent l sends (y, ϕi(e
′), s∗) to j, where e′ = ϕl(e

∗), so l processes (y, ϕi(e
′′), s∗)

at m′−1 in r′, where e′′ = ϕj(e
′). Note that since j processes the tuples that it receives in

round m′ by the order of the agents’ identifiers, l is the agent with the smallest identifier

that sends a tuple containing y in round m′. By commutativity, we have

comp(ϕl(e
′′), s∗) = comp(ϕl(ϕj(ϕl(e

∗))), s∗) = comp(ϕj(e
∗), s∗) 6= ⊥.

Thus, by (ii) of the hypothesis, l processes (y, ϕi(e
′′), s∗) at m′ and sends (y, ϕi(e

′), s) to

j at m′ − 1 in r. Since j receives no tuple containing y prior to round m′, by (i) for the

inductive step, the set of agents that send a tuple containing y in r is a subset of the

corresponding set in r′, so, in r, l is also the agent with the smallest identifier among those

that send a tuple containing y to j in round m′. This implies that j also processes the

tuple (y, ϕi(e
∗), s∗) at round m′ in r, which proves (ii). This concludes the proof of D6.

We have identified properties of ~σf
fan

when agents perform one-shot deviations. Now, we

calculate the difference between the expected utilities of agent i following ~σf
fan

and performing

72 CHAPTER 5. GOSSIP DISSEMINATION

a one-shot deviation; we denote this different by ∆. The value of ∆ is a function of three factors,

namely, (1) a long-term factor, which consists in the difference in the expected utilities for all

epochs z′ > z + 1, (2) a medium-term factor, which consists in the difference in the expected

utilities for epoch z + 1, and (3) a short-term factor, which consists in the difference in the

expected utility for epoch z. We now analyse each of these factors in turn.

Given a strategy profile ~σ and information set Ii, let uz
′
i (~σ | Ii) denote the expected utility

of i in epoch z′ when agents use ~σ after Ii. Lemma 6 shows that the long-term factor is 0.

Lemma 6. For all agents i, round-m information set Ii for i from stage t from epoch z, epoch

z′ ≥ z + 1, and actions a∗i , a
′
i ∈ Ai(Ii), we have uz

′+1
i (~σf

fan |Ii,a∗i | Ii)− u
z′+1
i (~σf

fan |Ii,a′i | Ii) = 0.

Proof. Fix i, Ii, z
′, and a∗i , a

′
i. If all agents use ~σf

fan
after Ii, then they send messages according

to ~σf
fan

in epochs z′ and z′ + 1, and by M1 of Lemma 4, no agent is punished in epoch z′ + 1.

Consequently, the expected utility of i is constant, regardless of the action of i taken at Ii. To

see this, note that: (i) i incurs the same expected costs for sending monitoring messages, since

these costs depend only on the probability of the source selecting each subsequence of events; (ii)

i incurs the same expected costs for sending dissemination messages, since by D3 from Lemma 5,

for all events e
(z′+1)t′
y disseminated in epoch z′ + 1, i receives a tuple (y, e, s) from some agent

and forwards it to f fan agents with the same probability, whether i follows a∗i or a′i; and (iii)

by D4 of Lemma 5, if i receives tuple (y, e, s) in a run r′′, then e = ϕ
r′′,(z′+1)
i (e

(z′+1)t′
y) and

s = [e
(z′+1)t′
y]; since i is not punished in epoch z′ + 1, we have ϕr,z

′

i (e) = ϕr
′,z′

i (e) = e for all e

and runs r ∈ R(Ii) and r′ ∈ R(Ii) of ~σf
fan |Ii,a∗i and ~σf

fan |Ii,a′i , respectively; hence, i obtains the

same expected benefit of outputting each event. This proves the result.

Lemma 7 analyses the medium-term factor. Given action ai ∈ Ai(Ii) and epoch z′, let

vsz
′
i (i)|Ii,ai and MEz

′
i |Ii,ai denote the values of variables vsz

′
i (i) and MEz

′
i after i follows ai at Ii.

Note that these values depend only on Ii and on what i does at Ii. Let βn
spe

i = q(f fan)nspeνβi

denote the approximation of the expected benefits of i for receiving events in future epochs:

there are nspeν events disseminated during an epoch, and i receives each of those events with

probability approximately q(f fan).

Lemma 7. Fix an agent i, round-m information set Ii from stage t from epoch z, and actions

a∗i , a
′
i ∈ Ai such that σf

fan

i (a∗i | Ii) > 0; given epoch z′, let ∆z′ = uz
′
i (~σf

fan |Ii,a∗i | Ii)− u
z′
i (~σf , a′i |

Ii). We have:

5.2. PROOF OF MAIN RESULT 73

1. If vszi (i)|Ii = False, then ∆z+1 = 0.

2. If vszi (i)|Ii = True and vszi |Ii,a′i = False, then ∆z+1 ≈ βnspe

i (1− P ∗(#MEzi |Ii)).

3. If vszi (i)|Ii,a′i = True, then ∆z+1 ≈ βnspe

i (P ∗(#MEzi |Ii,a′i)− P
∗(#MEzi |Ii)).

Proof. If all agents use ~σf
fan

in epoch z+1, then expected costs of i sending monitoring messages

is constant, since these depend only on the probability of the source requesting reports relative

to each subsequence, and i sends all requested monitoring messages; moreover, by D1 from

Lemma 5, i receives and forwards each event to f fan agents with probability approximately

equal to q(f fan); in addition, by D4 of Lemma 5, if the source does not trigger a punishment

of i in epoch z + 1, then i receives and outputs each event e
(z+1)t′

y′ disseminated in epoch

z + 1 with approximate probability q(f fan), otherwise i outputs no event. Since in a∗i agent

i sends only valid messages and forwards every event according to ~σf
fan

, the probability of

the source triggering a punishment of i in z + 1 does not increase if i takes a∗i at Ii, i.e.,

vszi (i)|Ii,a∗i = vszi (i)|Ii and MEzi (i)|Ii,a∗i = MEzi (i)|Ii ; if i takes a′i at Ii, then the probability of the

source triggering a punishment may only increase, i.e., MEzi (i)|Ii ⊆ MEzi (i)|Ii,a′i and we never

have vszi (i)|Ii,a′i = True and vszi (i)|Ii = False. Therefore, we have ∆z′ = (pa′i − pIi)β
nspe

i , where

pa′i and pIi are the probabilities of the source triggering a punishment of i in epoch z + 1 after

i takes a′i and a∗i at Ii, respectively. The result follows immediately, since we have:

1. If vszi (i)|Ii = False, then by M1 from Lemma 4 pa′i = pIi = 1.

2. If vszi (i)|Ii = True and vszi |Ii,a′i = False, then by M1 and M2 from Lemma 4 pa′i = 1 and

pIi = P ∗(#MEzi |Ii).

3. If vszi (i)|Ii,a′i = True, then by M2 from Lemma 4 pa′i = P ∗(#MEzi |Ii,a′i) and pIi =

P ∗(#MEzi |Ii).

This concludes the proof.

Finally, Lemma 8 analyses the short-term factor. Let γn
spe

i denote the expected costs of

i for sending events during an epoch: i receives and forwards each of the νnspe events to f fan

agents with probability approximately q(f fan), so, γn
spe

i = q(f fan)νnspef fan . Let ρn
spe

i denote the

expected cost of sending reports in monitoring messages: i sends reports relative to an expected

number of pseqνnspe events, and each report contains log(n) bits, so ρn
spe

i = pseqνnspen log(n)αi.

74 CHAPTER 5. GOSSIP DISSEMINATION

Finally, let ρi denote an upper bound on the cost of sending accusations and sending any given

monitoring message: i sends n accusations, where each accusation has a length of one bit, and

i sends ν(nspe/nseq)n reports in a single monitoring message, where each report has a length of

log(n) bits, so ρi = nαi + ν(nspe/nseq)n log(n)αi.

Lemma 8. Fix an agent i, round-m information set Ii for i from stage t from epoch z, and

actions a∗i , a
′
i ∈ Ai(Ii) such that σf

fan

i (a∗i | Ii) > 0; let ∆z = uzi (~σ
f fan |Ii,a∗i | Ii)−u

z
i (~σ

f fan |Ii,a′i | Ii).

We have:

1. If vszi (i)|Ii = False, then ∆z ≥ 0.

2. If vszi (i)|Ii = True and vszi (i)|Ii,a′i = False, then the value of ∆z depends on whether m is

monitoring round:

• If m is a monitoring round (i.e., t = 1 and m ≤ 2nseq + 2), then

∆z ≥ −(γn
spe

i + ρn
spe

i + ρi).

• If m is not a monitoring round (i.e., t > 1 or m > 2nseq + 2), then

∆z ≥ −(γn
spe

i + n(f fan + βi)).

3. If vszi (i)|Ii,a′i = True, then let x = #MEzi |Ii and x′ = #MEzi |Ii,a′i:

• If x′ = x, then ∆ ≥ 0.

• If x′ > x, then

∆z ≥ −n(f fan + βi)− (x′ − x)
nspeν

nseq
f fan .

Proof. By D3 of Lemma 5, for al events ezt
′

y′ disseminated after Ii in epoch z, i receives a tuple

with the form (y, e, s) with the same probability whether i takes a∗i or a′i at Ii, and by D4 of the

same lemma, e is ϕi(e
zt′
y′) and s = [ezt

′
y′]. Since ϕr,zi (ezt

′
y′) is the same event for all runs r ∈ R(Ii),

i outputs ezt
′

y′ with the same probability whether i takes a∗i or a′i at Ii. This implies that the

expected benefits of receiving events in epoch z disseminated after Ii are the same whether i

takes a∗i or a′i at Ii.

Regarding events output by i in round m, it is true that i does not gain from outputting a

tuple (y, e, s) in a′i that i does not not output in a∗i . To see this, note that by the definition of

5.2. PROOF OF MAIN RESULT 75

µf
fan

, if i outputs a tuple (y, e, s) in a′i, then i gains a benefit βi only if s is a valid signature of

e. This is true only if e = ezty and i receives (y, e′, s) from l in Ii such that comp(ϕl(e
′), s) = e,

but in this case i outputs (y, e, s) in Ii or in a∗i . It is also easy to see that if i outputs an event

in a∗i , then i does not gain by not outputting the event in a′i, since i outputs a tuple in a∗i iff i

gains the benefit βi by doing so. Therefore, i never gains by not outputting in a′i the exact same

events that i outputs in a∗i .

Consequently, ∆z is a function of two factors:

1. i may avoid the cost of sending some messages in epoch z by taking a′i at Ii. Specifically,

i may avoid the cost of sending some of the messages sent in a∗i . In addition, i may avoid

the cost of sending some messages that i sends in later rounds when i takes a∗i at Ii: if i

omits a monitoring message or sends an invalid message and vszi (i)|Ii = True, then i sends

no additional messages; if i does not send invalid messages but omits some events from

subsequence s and vszi (i)|Ii = True, then i does not forward any more events from s.

2. i may increase the benefit of receiving events disseminated before Ii. In particular, if i

sends tuples in a∗i that contain garbage, then by not sending those tuples i may increase

the chances of later receiving the corresponding events disseminated by the source in plain.

Since i sends messages according to ~σf
fan

in a∗i , we have vszi (i)|Ii,a∗i = vszi |Ii and MEzi |Ii =

MEzi |Ii,a∗i ⊆ MEzi |Ii,a′i , and we never have vszi (i)|Ii = False while vszi (i)|Ii,a′i = True. So, ∆z is a

function of the variables vszi (i)|Ii , vszi (i)|Ii,a′i , MEzi |Ii , and MEzi (i)|Ii . We now calculate ∆z for

all possible values of these variables in turn:

1. If vszi (i)|Ii = False, then i sends no messages in a∗i nor after taking a∗i , so i avoids no costs

by taking a′i. Since i sends no events in a∗i , a
∗
i is contained in a′i, so by D6 from Lemma 5,

i also does not output events already disseminated with higher probability by taking a′i

instead of a∗i at Ii. Therefore, ∆z ≥ 0.

2. If vszi (i)|Ii = True and vszi (i)|Ii,a′i = False, then the difference in the utility depends on

whether m is a monitoring or dissemination round:

• If m is a monitoring round (t = 1 and m ≤ 2nseq + 2), then i avoids at most the

cost ρi of sending a monitoring message to the source in a∗i and accusations in round

76 CHAPTER 5. GOSSIP DISSEMINATION

2nseq + 2, avoids the maximum cost ρn
spe

i of sending reports in monitoring rounds

m′ > m, and the maximum cost γn
spe

i of forwarding events in all stages from epoch

z (note that by D2 of Lemma 5 i receives and forwards each event with approximate

probability q(f fan)), so we have

∆z ≥ −(γn
spe

i + ρn
spe

i + ρi).

• If m is not a dissemination round (t > 1 or m > 2nseq + 2), then again i avoids the

cost c ≤ γn
spe

i of sending events in all rounds that follow m in epoch z, avoids the

cost c′ ≤ nf fan of forwarding n events disseminated before Ii (recall that there are

at most n events being disseminated at every point in time), and receives each of

the n events disseminated before Ii still being disseminated with a probability that

increases by p ≤ 1, so we have

∆z ≥ −(γn
spe

i + n(f fan + βi)).

3. If vszi (i)|Ii,a′i = True, then let x′ = MEzi |Ii,a′i and x = MEzi |Ii :

• If x′ = x, then a′i and a∗i are equivalent, so by D5 from Lemma 5, i avoids no costs

of sending events disseminated before Ii. In addition, a∗i is contained in a′i, so by D6

from Lemma 5 the probability of i outputting events disseminated before Ii does not

increase. Therefore, ∆ ≥ 0.

• If x′ > x, then again i gains at most (βi + f fan)n, and avoids at most the cost (x′ −

x)q(f fan)f fanνnspe/nseq of not forwarding νnspe/nseq events from x′ − x subsequences

of events disseminated after Ii, so we have

∆z ≥ −(x′ − x)
nspeν

nseq
f fan − n(f fan + βi).

This proves the result.

We can now prove Theorem 9, which shows that ~σf
fan

is a sequential equilibrium if agents

are sufficiently patient and f fan is c-individually rational for some constant c.

Theorem 9. There is a constant c ≥ 1 such that, for all c-individually rational fanouts f fan ,

there exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), ~σf
fan

is a sequential equilibrium.

5.2. PROOF OF MAIN RESULT 77

Proof. Fix an individually rational f fan , agent i, round-m information set Ii for i from stage t

from epoch z, and actions a∗i , a
′
i ∈ Ai(Ii) such that σf

fan

i (a∗i | Ii) > 0. Let ∆ = ui(~σ
f fan |Ii,a∗i |

Ii)−ui(~σf
fan |Ii,a′i | Ii). We show that there is a constant c > 0 such that if f fan is c-individually

rational and agents are sufficiently patient, then ∆ ≥ 0. The result follows immediately by the

one-shot deviation property.

By Lemmas 6, 7, and 8, the value of ∆ is a function of the differences of the expected utility

in epochs z and z + 1; let ∆z and ∆z+1 denote these differences. As Lemmas 7 and 8 show, the

factors ∆z and ∆z+1 depend only on the values of the variables vszi (i) and MEzi at Ii and after

i takes a′i. We now show that ∆ ≥ 0 for all possible values of these variables if δ is sufficiently

close to 1, nspe is sufficiently large, and βi is sufficiently larger than f fan . By Lemmas 7 and 8,

we have:

1. If vszi (i)|Ii = False, then ∆ ≥ 0.

2. If vszi (i)|Ii = True and vszi (i)|Ii,a′i = False, then we need to consider the cases where m is

a monitoring round and when it is not separately:

• If m is a monitoring round (t = 1 and m ≤ 2nseq + 2), then there is a value v such

that we have:

∆ ≈ v ≥ (δn
spe
βn

spe

i − γnspe

i)− (ρn
spe

i + ρi).

Let ε = βi − f fan ; since βi > f fan , we have ε > 0. Let ε(δ) = δn
spe
βn

spe

i − γnspe

i . We

have

δn
spe
βn

spe

i = δn
spe 1− δnspe

1− δ
νq(f fan)βi.

As δ approaches 1, δn
spe
βn

spe

i converges to nspeνq(f fan)βi; conversely, γn
spe

i converges

to nspeνq(f fan)f fan ; consequently, we have

lim
δ→1

ε(δ) = nspeq(f fan)νε > 0. (5.2)

Moreover, we have

ρn
spe

i + ρi = pseqnspeνn log(n)αi +
nspeν

nseq
n log(n)αi + nαi. (5.3)

In (5.3), the only factors that depend on nspe are pseqnspe and nspeν/nseq: by C2,

78 CHAPTER 5. GOSSIP DISSEMINATION

pseqnspe = o(nspe) (i.e., grows slower than nspe as nspe increases); by C1 and C3,

nseq = ω(1), so nspe/nseq = o(nspe); hence, (5.3) is a sublinear function on nspe. By

(5.2) and (5.3, we have)

lim
δ→1,nspe→∞

∆ ≥ lim
δ→1,nspe→∞

(ε(δ)− (ρn
spe

i + ρi)) = lim
nspe→∞

(θ(nspe)− o(nspe)) =∞.

Therefore, for values of δ sufficiently close to 1 and nspe sufficiently large, we have

∆ ≥ 0.

• If m is not a monitoring round (t > 1 or m > 2nseq + 2), then we have:

∆ ≈ v = δn
spe
βn

spe

i (1− p)− γnspe

i − n(f fan + βi), (5.4)

where p = P ∗(#MEzi |Ii) ≤ 1− (1− pseq)nseq
. As in the previous case, as δ approaches

1, (5.4) converges to

nspeνq(f fan)(βi(1− p)− f fan))− n(f fan + βi). (5.5)

By C1-C3, as nspe grows, 1− p ≥ (1− pseq)nseq
converges to some constant c. To see

this, note that pseq = c′/g(nspe) and nseq = g(nspe) for some constant c′ and function

g(nspe) that grows with nspe, so

lim
nspe→∞

(1− pseq)nseq
= lim

nspe→∞
(1− c′/g(nspe))g(n

spe) = e−c
′
.

If βi > ec
′
f fan , then (5.5) goes to ∞ as nspe increases. This implies that, for a

sufficiently large nspe and a δ sufficiently close to 1, we have ∆ ≥ 0.

3. Let x = #MEzi |Ii , x′ = #MEzi |Ii,a′i , and d = x′ − x. If vszi (i)|Ii,a′i = True and d = 0, then

∆ ≥ 0. If vszi (i)|Ii,a′i = True and d > 0, then we have

∆ ≈ v ≥ δnspe
βn

spe

i (p′ − p)− dq(f fan)(νnspe/nseq)f fan − n(f fan + βi),

where p = 1 − (1 − pseq)x and p′ = 1 − (1 − pseq)x′ . Let L = limδ→1 ∆. Using the same

reasoning as before, we have:

L ≥ nspeνq(f fan)βi(p
′ − p)− dq(f fan)(νnspe/nseq)f fan − n(f fan + βi).

5.2. PROOF OF MAIN RESULT 79

Let c = βi/f
fan and let

L′ =
L

q(f fan)nspeνβi(p′ − p)
= 1− d

cnseq(p′ − p)
− n(c+ 1)

cq(f fan)νnspe(p′ − p)
.

Recall that d is the number of different subsequences containing events omitted in a′i and

events not yet disseminated. Note also that by C1 and C3 we have nseq = o(nspe), so

the number of events per subsequence nspeν/nseq grows with nspe. In particular, if nspe is

sufficiently large, then this number is larger than n. Suppose that this is the case. Since i

can omit at most n events in a′i, i omits events from at most one subsequence that contains

events not yet disseminated, so d = 1. Therefore, we have

p′ − p = (1− pseq)x − (1− pseq)x′ = (1− pseq)x(1− (1− pseq)d) ≥ (1− pseq)nseq
pseq,

and

L′ ≥ 1− 1

cnseq(1− pseq)nseqpseq
− n(c+ 1)

cνnspe(1− pseq)nseqpseq
.

By C1-C3, there exists a value c′′ that is constant on nspe such that cnseq(1 − pseq)nseq
pseq

converges to c′′ as nspe increases (again, by C3, (1 − pseq)nseq
converges to a constant and

nseqpseq is constant by definition), whereas cνnspe(1−pseq)nseq
pseq goes to∞ (by C1, nspepseq

goes to infinity). Consequently, we have

lim
nspe→∞

L′ = 1− 1

cc′′
.

So, if c > 1/c′′, then the limit is positive, which implies that limnspe→∞ L =∞. Therefore,

there exists a constant c such that, if βi > cf fan , then, for a sufficiently large nspe and δ

sufficiently close to 1, ∆ ≥ 0. In particular, if nseq =
√
nspe and pseq = 1/

√
nspe, then the

above holds for all c ≥ e. This concludes the proof.

5.2.3 Average Utility

We now prove Theorem 10, which shows that the average utility of agent i when agents use

~σf
fan

can be arbitrarily close to xi(f
fan) for sufficiently patient agents.

80 CHAPTER 5. GOSSIP DISSEMINATION

Theorem 10. For all arbitrarily small values ε > 0, there exists δ∗ ∈ (0, 1) such that for all

δ ∈ (δ∗, 1) and agents i, we have |ūi(~σf
fan

)− xi(f fan)| < ε.

Proof. Fix agent i. The average utility of i is the difference between the average benefits and

costs per stage of receiving and forward events and the average costs per stage of sending

monitoring messages. If all agents use ~σf
fan

, then by D1 from Lemma 5 i receives tuples cor-

responding to each disseminated event with approximate probability q(f fan) and forwards it

to f fan agents. Moreover, since by M1 and M2 from Lemma 4 i is never punished, by D4

from Lemma 5 every tuple that i receives contains the corresponding event disseminated by

the source in plain. Hence, the expected utility of i regarding dissemination only is arbitrarily

close to xi(f
fan). In addition to this, once every epoch, i send messages containing reports and

accusations. Specifically, for each 1 ≤ s ≤ nseq, i sends a message containing nnspeν/nseq reports

with independent probability pseq (i.e., one report per agent and event in s); each report consists

in log(n) bits that represent a round number 1 ≤ m ≤ n. Thus, the expected cost per epoch of

sending reports is αin
speνpseqn log(n). In addition, i sends one message containing n accusations.

Hence, the total cost per epoch is α∗ = αi(n+ nnspepseqν log(n)). The average cost per stage is

α∗ + δn
spe
α∗ + δ2nspe

α∗ + . . ., i.e., it is given by the sum

∞∑
t=0

δtn
spe
α∗ = α∗

1− δ
1− δnspe .

As δ approaches 1, this sum converges to

α∗

nspe
= αi(

n

nspe
+ n log(n)νpseq). (5.6)

By C2, (5.6) converges to 0 as nspe increases. Therefore, for all arbitrarily small constants ε > 0,

if δ is sufficiently close to 1 and nspe is sufficiently large, then |ūi(~σf
fan

) − xi(f fan)| < ε. This

proves the result.

5.3 Fully Distributed Protocol

In streaming services executed among multiple administrative domains such as peer-to-peer

networks, there is usually a user that volunteers to serve as a source of the stream, so unless the

volunteer colludes with some other user it is safe to assume that the source is trusted (Li et al.

5.3. FULLY DISTRIBUTED PROTOCOL 81

2006; Li et al. 2008). However, in some applications users may only be willing to serve as the

source of the stream if they expect to receive another stream in return, such that the source

cannot be trusted. Moreover, the source is a single point of failure regarding its role as the

mediator. We now discuss how we can extend our protocol to distribute the role of the source

and the mediator in a way that the main result of this chapter still holds in a fully distributed

setting where the source is also a rational agent.

To obtain a folk theorem in a fully distributed setting, we need to address three additional

challenges, namely, (1) the source gains by not sending the stream, (2) the role of the mediator

cannot be performed by a single agent, and (3) the mediator may not perform its role correctly.

We can address challenge (1) if agents cooperate to disseminate two or more streams, say

s0 and s1, with different sources. The idea is that, for i ∈ {0, 1}, agents that are not the source

of stream si report to the source of s1−i about the events that the source of si sends in a similar

fashion to ~σf
fan

such that if the source of si−1 detects a deviation in epoch z, then the source of

si is punished in epoch z + 1 by not receiving the stream si−1.

Regarding challenge (2), we do not need the source to perform the role of the mediator.

In fact, we can distribute the role of the mediator in a similar fashion to LiFTing (Guerraoui

et al. 2010): we assign to each agent i a set Si of agents that must perform the role of mediator

of i; this set may contain any agent other than i. At the beginning of every epoch, agents

in Si execute the same protocol used to collect accusations against i and information about

the events that i sent and received in the previous epoch, with the following difference: in the

centralized protocol, the mediator has to decide whether to collect information about the events

from each subsequence with independent probability; in the distributed version, agents in Si

have to execute some distributed coin mechanism such as the one proposed in (Abraham et al.

2013) to correlate their decisions. That is, for each subsequence, agents in Si execute the coin

mechanism to decide with probability pseq whether to request reports regarding events from the

subsequence; if so, then they send a request to all agents other than i, which then broadcast

the corresponding reports to all agents in Si. (The fact that agents only send a request with

probability pseq ensures that the average cost of sending those requests is also sublinear on nspe.)

In the next step, all agents other than i broadcast their accusations (if they have any) to the

agents in Si. At the end of the monitoring rounds, the agents in Si use a distributed coin to

generate a unique key κi, which they send to all agents other than i. To generate the seed sdi,

82 CHAPTER 5. GOSSIP DISSEMINATION

agents have to use a different approach, for our mechanism cannot allow the agents in Si to learn

the seed; instead, each agent generates a separate seed and sends it only to i; i then computes

a final seed sdi from the received seeds (e.g., using the same modulo technique proposed in the

problem of fair consensus); at the beginning of the next epoch, all agents in Si reveal their seeds

to each other, allowing them to learn the final seed that i was supposed to use. To dissuade

agents in Si from not performing the role of the mediator correctly, we can punish agents in Si

for omitting messages or for disagreeing about the verdict or key of i.

Regarding challenge (3), although the solution to challenge (2) ensures that agents from the

set Si of mediators of any given agent i do not gain from not performing the role of the mediator

correctly, we cannot assume that there are never disagreements among the agents in Si, which

is a problem to proving that the protocol is a sequential equilibrium. The solution is for agents

to reach a consensus on the data that the agents in Si send regarding the key and verdict of i.

Specifically, agents broadcast the information they receive during n rounds. If an agent j omits

a message, sends an invalid message, or sends two different messages to two different agents,

then j is marked as ”crashed” by the other agents and is punished in the next epoch (agents can

exchange additional monitoring information for this purpose); once j is marked as crashed, it

sends no further messages until the end of the epoch. By the end of the n rounds, either (i) all

agents have been marked as crashed or (ii) all agents that have not been marked as crashed agree

on the information that the mediators sent to them or if the mediators did not send the same

information to all those agents, then they agree on some pre-defined values. This guarantees

that all the agents that disseminate events during every epoch use the same keys and verdicts.

Given this guarantee, the proof that ~σf
fan

is a sequential equilibrium follows without change.

Summary

In this section, we have proved a slightly weaker version of an approximate Folk Theorem for

eager-push gossip dissemination protocols. The most important consequence of this result is that

we can sustain cooperation with protocols that use almost any fanout f fan , while minimizing the

overhead of the incentives provided for rational agents to follow the protocol. In the proof of this

result, we defined a protocol that disseminates events using any fanout f fan , where the source

monitors the behaviour of agents and triggers punishments after agents deviate. We proved

that agents did not gain from deviating provided that they could not break the cryptographic

5.3. FULLY DISTRIBUTED PROTOCOL 83

primitives used in the protocol, and we showed that the average cost of monitoring per stage

can be arbitrarily minimized. We have also discussed how to distribute the role of the source.

We believe that the protocol defined in this chapter also sustains cooperation if agents may

crash or communication channels are unreliable, provided that the probabilities of a single agent

crashing and messages being lost are sufficiently small. Moreover, the protocol is almost robust

to rational behaviour if the system is partially asynchronous, in the sense that the time it takes

for messages sent in a stage t to be delivered is arbitrarily large, but messages sent in t are still

received in that stage, i.e., there is asynchrony within a stage and synchrony between stages.

In this setting, agents still do not gain by not forwarding events correctly and not sending

monitoring information. However, an agent can gain by delaying the dissemination of an event,

and no agent can detect and punish such deviation. This issue could be addressed if we could

assume that agents communicate through FIFO channels and that every agent fears that, by

delaying a message in stage t, this message is not be delivered in t with high probability, in

which case delaying a message is equivalent to an omission.

For future work, it would be interesting to actually prove an approximate theorem for

computationally unbounded agents, so that we would not have to assume a sufficiently high

benefit/cost ratio and we would not have to use cryptography to detect and punish deviations.

However, we stress that we cannot prove an exact Folk theorem without the support of an

exogenous monitoring infrastructure, since agents must share their private observations; the

communication costs that agents incur for sharing private information always introduce a non-

negligible overhead.

In the next chapter, we discuss our results related to pairwise exchanges in dynamic net-

works.

84 CHAPTER 5. GOSSIP DISSEMINATION

Type Notation Description

Agents
N Set of agents.

n Number of agents.

Actions and histories

ami Round-m action of agent i.

h Global history.

Ii Information set for agent i.

R(Ii) Set of runs compatible with information set Ii.

R(h) Set of runs compatible with global history h.

Ai(Ii) Set of actions available to i at Ii.

Time

τ Total number of rounds per stage.

τD Number of dissemination rounds per stage.

τM Number of monitoring rounds per stage.

Utilities

δ Discount factor.

µ Belief system.

βi Benefit that i obtains when it outputs an event.

αi Cost incurred by i per bit sent in a message.

uzi (~σ | Ii) Expected utility of i in epoch z when agents use ~σ conditioned on Ii.

ui(~σ | Ii) Expected utility of i when agents use ~σ conditioned on Ii.

ui(~σ) Expected utility of i when agents use ~σ.

xi(f
fan) Expected utility of i in one stage of eager-push gossip dissemination.

ūi(~σ) Average utility of i when agents use ~σ.

Events

ezty yth event from stage t from epoch z.

ν Number of events per stage.

Ezt Set of events from stage t from epoch z.

E(z, s) Set of events from sth subsequence from epoch z.

sub(t, y) Sequence number of yth event from stage t.

Cryptography

[e] Source’s signature of event e

SGi(sd
z
i , t, y) Pseudo-random set of f fan agents for yth event from t seeded by sdzi .

(e)κ Cipher of event e with key κ.

Algorithm

f fan Fanout.

rezi , se
z
i Received and sent events in epoch z.

MEzi Subsequences containing incorrectly forwarded events in epoch z.

Outzi Events already output in epoch z.

EFzi Events to be forwarded in each round from epoch z.

vszi Validity of sent and received messages.

age(t, y,m) Age of yth event from stage t at round m.

pseq Request probability of each subsequence.

nspe Number of stages per epoch.

comp(e, s) Function that retrieves disseminated event from e and s.

ϕi(e) Ciphers/deciphers e with κi iff i is being punished.

bpzi Verdicts for epoch z.

EOzi Events to be output at each round.

Strategies

σi Strategy for agent i.

~σ Strategy profile.

~σf
fan

Gossip dissemination protocol with fanout f fan .

µf
fan

Belief system consistent with ~σf
fan

.

~σ|Ii,ai One-shot deviation where i takes ai at Ii.

Table 5.1: Notation - gossip dissemination.

6Pairwise Exchanges in

Dynamic Networks

In this chapter, we address the problem of sustaining cooperation in infinitely repeated

pairwise exchanges over links of a dynamic network. Our goal is to identify necessary and

sufficient restrictions on the set G∗ of evolving graphs that the adversary may generate. We focus

on protocols that satisfy three properties, namely, (1) the protocols are G∗-OAPE, (2) if no agent

deviates, then agents always exchange their values in every interaction, and (3) protocols are

bounded, i.e., they are self-stabilizing in bounded time (Dolev 2000). A protocol that satisfies

the first two properties is said to sustain cooperation in pairwise exchanges. The third property

is an additional requirement that is important both in theory and in practice, since bounded

protocols can recover from transient failures and require bounded memory. Bounded memory

is a crucial property in dynamic networks where agents have a limited memory capacity, which

is often the case of mobile networks and wireless ad-hoc networks. Our results show that the

existence of such protocols depends not only on the restrictions on G∗ but also on the structure

and utility of pairwise exchanges and the type of incentives used by the protocols.

We start by determining the weakest restrictions on G∗ necessary to sustain cooperation.

Specifically, we show that G∗ must admit weak timely punishments, even if the protocols are not

bounded. Intuitively, this means that for every pairwise exchange between agents i and j, at

least one of the two agents i′ ∈ {i, j} is able to communicate a deviation of the other agent j′ to

some third agent l that is capable of punishing j′ in a later stage. We show that a consequence

of this result is that G∗ must admit strong timely punishments to sustain cooperation in one-shot

pairwise exchanges, which means that in every interaction between i and j in stage t, both i

and j must be capable of communicating deviations in stage t. These restrictions are not met

by some networks such as file-sharing overlays (e.g., Bittorrent (Cohen 2003)), where users with

similar interests interact frequently with each other but only rarely with users with different

interests; in these cases, an exchange between agents with different interests may not admit a

timely punishment.

86 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

Our next result provides a bounded protocol ~σval that sustains cooperation in pairwise

exchanges, assuming that G∗ admits strong timely punishments. We also assume that each stage

contains at least three rounds and pairwise exchanges are valuable in the sense that agents have

a high benefit/cost ratio of receiving/sending messages and neglect download costs. Valuable

exchanges occur, for instance, when agents share small but highly valuable secrets such as private

keys (Halpern & Teague 2004; Abraham et al. 2006) and the bandwidth is asymmetric.

In many cases, the assumption that pairwise exchanges are valuable is too restrictive. For

instance, in file-sharing, we may expect agents to be interested in exchanging large files, but

the cost of downloading such files is certainly non-negligible, and the benefit/cost ratio of re-

ceiving/sending files may be small. Moreover, if the network is too dynamic, then agents may

not be able to exchange more than one message in each interaction. Our next results identify

necessary and sufficient restrictions on G∗ to sustain cooperation with bounded protocols in

general one-shot pairwise exchanges.

We first identify problems with protocols that use certain types of punishments as an incen-

tive to sustain cooperation. Specifically, in a one-shot pairwise exchange between agents i and j,

agent i can punish j in three different ways: (1) i may not send its value to j, this way denying

the benefit βj to j, (2) i may require j to send larger messages, this way forcing j to incur an

additional cost for sending messages, and (3) i may send larger messages to j, such that j incurs

a larger cost for receiving messages. We show that if agents omit messages as punishments

of type (1) or uses punishments of types (2) or (3), then the protocol is not an equilibrium if

G∗ is only restricted by weak timely punishments. This shows that, to sustain cooperation in

general one-shot pairwise exchanges, either we must place additional restrictions on G∗ or we

must not use any of the above types of punishments. Indeed, Li et al. (2006, 2008) propose

protocols that do not use the above punishments and are effective at sustaining cooperation. In

these protocols, agents always exchange messages of fixed size, and they punish their neighbours

by sending garbage data instead of their value; we call such protocols symmetric. Symmetric

protocols not only avoid the problems with other types of punishments but also are simpler to

develop and analyse. Our two final results identify a necessary and a sufficient restriction on G∗

to sustain cooperation with symmetric and bounded protocols.

We show that if there is a symmetric and bounded protocol that sustains cooperation in

general one-shot pairwise exchanges, then G∗ must be restricted, in addition to strong timely

87

Restrictions on the Adversary

Bounded

Pr
ot
oc
ol
 T
yp
e

WTP STP

𝝈𝒗𝒂𝒍

Figure 6.1: Results for Valuable Pairwise Exchanges (Section 6.2).

punishments, by a restriction that we call eventual distinguishability. Roughly speaking, this

restriction states that whenever two (or more) agents may punish i for omitting messages in

the past (towards some other agent j), they have the information necessary to coordinate their

actions, so that the total number of additional punishments for a single deviation of i is neither

too large nor too low.

Whether G∗ is restricted by eventual distinguishability depends both on the properties of

graphs in G∗ and on the information available to agents about the topology. Our last result shows

that if agents can learn the degree of their neighbours and all evolving graphs in G∗ satisfy a

connectivity property similar to the property defined by Kuhn and Oshman (2010), then there

is a symmetric and bounded protocol ~σgen that sustains cooperation in general one-shot pairwise

exchanges. This result is a generalization of the experimental results of Li et al. (2006, 2008),

which show that symmetric and bounded protocols sustain cooperation in overlays where the

degree is constant for all agents (and thus known) and the topology is always connected.

Our main results are summarized in Figs. 6.1 and 6.2. In valuable pairwise exchanges

(Fig. 6.1), we show that if G∗ does not admit weak timely punishments (WTP), then no pro-

tocol sustains cooperation (grey area), but if G∗ is restricted by strong timely punishments

(STP) and there are at least three rounds per stage, then there is a bounded protocol ~σval that

sustains cooperation. In general one-shot pairwise exchanges (Fig. 6.2), we show that if G∗ is

not restricted by strong timely punishments (STP), then no protocol sustains cooperation (grey

area), if G∗ is not restricted by eventual distinguishability (ED), then no symmetric and bounded

protocol sustains cooperation (dotted area), and if G∗ is restricted by connectivity with known

degrees (CKD), then there is a symmetric and bounded protocol ~σgen that sustains cooperation.

We now prove each of these results in turn. In the proofs of these results, we use multiple key

88 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

Restrictions on the Adversary

Bounded and
symmetric

STP ED CKD

𝝈𝒈𝒆𝒏

Pr
ot
oc
ol
 T
yp
e

Figure 6.2: Results for General One-shot Pairwise Exchanges (Section 6.3).

concepts related to properties of the protocols and evolving graphs. We define these concepts

first, before proving the results. Table 6.1 summarizes the most important notation used in this

chapter.

6.1 Key Concepts

We define the concepts of punishment opportunities and indistinguishable evolving graphs,

which are related to properties of the evolving graphs, we introduce the notion of evasive pro-

tocols, and we define symmetric and bounded protocols.

Punishment Opportunities. Roughly speaking, a punishment opportunity (PO) for an

interaction of agent i with j is a later interaction between an agent l and i where l may have been

informed of a deviation of i towards j and thus has the opportunity to punish i. This requires

the existence of a temporal path (a sequence of causally influenced interactions) from j to l in

the evolving graph such that i cannot interfere with information forwarded from j to l along

this path. Formally, given G ∈ G∗, agent i, and stage t, an i-edge is a pair (j, t) such that (i, j)

is an edge in Gt. Given round m from stage t and round m′ from stage t′, we say that j causally

influences l in G between (t,m) and (t′,m′), denoted (j, t,m) G (l, t′,m′), if (t,m) < (t′,m′)

(i.e., t < t′ or t = t′ and m < m′) and either j = l or there is a j-edge (o, t′′) in G and a round

m′′ from stage t′′ such that (o, t′′,m′′) G (l, t′,m′). We say that j causally influences l in G

without interference from i between (t,m) and (t′,m′), denoted as (j, t,m) G
i (l, t′,m′), if the

above holds for o 6= i. A PO of i for (j, t,m) in G is a tuple (l, t′,m′) such that (l, t′) is an i-edge

in G and (j, t,m) G
i (l, t′,m′).

6.1. KEY CONCEPTS 89

Type Notation Description

Agents

N Set of agents.

n Number of agents.

vti Value of i in stage t.

Network

G∗ Set of evolving graphs generated by the adversary.

Gt Communication graph from stage t.

Gti (G) Set of graphs that provide same information to i as Gt.

(j, t,m) G (l, t′,m′) Causal influence in G.

(j, t,m) Gi (l, t′,m′) Causal influence without interference from i in G.

(j, t) i-edge.

Actions and histories

ami Round-m action of agent i.

h Global history.

Ii Information set for agent i.

Ii(G) Set of information sets compatible with G.

R(G, Ii) Set of runs compatible with information set Ii and evolving graph G.

R(h) Set of runs compatible with global history h.

Time τ Total number of rounds per stage.

Utilities

δ Discount factor.

µ Belief system.

βi Benefit that i obtains when it outputs a value.

αi Cost that i incurs per bit sent in a message.

γi Cost that i incurs per bit received in a message.

πi Cost that i incurs per penance sent in a message.

uzi (~σ | G, Ii) Expected utility of i in epoch z when agents use ~σ conditioned on G and Ii.

ui(~σ | G, Ii) Expected utility of i when agents use ~σ conditioned on G and Ii.

ui(~σ | G, h) Expected utility of i when agents use ~σ conditioned on G and h.

ui(~σ | G) Expected utility of i when agents use ~σ conditioned on G.

Algorithm

accti Accusations against other agents.

vsti Validity of messages exchanged between i and neighbours.

pti(j) Number of penances that i owes to j in stage t.

ρ Maximum delay of dissemination of monitoring information.

pndti Number of pending punishments.

degti Degree of i in stage t.

Strategies

σi Strategy for agent i.

~σ Strategy profile.

~σval Protocol for valuable pairwise exchanges.

~σgen Protocol for general one-shot pairwise exchanges.

~σ|Ii,ai One-shot deviation where i takes ai at Ii

Table 6.1: Notation - pairwise exchanges in dynamic networks.

Indistinguishable Evolving Graphs. We say that an evolving graph G is indistinguish-

able from evolving graph G′ to agent i at stage t if i acquires the same information about G and

G′, regardless of the protocol followed by agents. Specifically, given G ∈ G∗, stage t, and agent

90 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

i, let Gti (G) be the set of graphs that provide the same the information to i about the topology

in stage t as Gt, and let Cti (G) be the set of agents l such that (j, t′, 1) G (i, t, τ) for some

t′ ≤ t (recall that τ is the number of rounds per stage). That is, Cti (G) is the set of agents j

that can causally influence i between the beginning of stage t′ and the end of stage t. For all

agents i, evolving graphs G,G′ ∈ G∗, and stages t, G is indistinguishable from G′ to i at t iff (i)

Cti (G) = Cti (G
′) and (ii) for all stages t′ ≤ t and agents j ∈ Cti (G), Gt′j (G) = Gt′j (G′).

Evasive Protocols. Given a strategy profile ~σ∗, an evasive protocol for agent i is a strategy

σ′i where i deviates from σ∗i and then hides this deviation from as many agents as possible, for

as long as possible. In our impossibility results, we formally define specific types of evasive

protocols.

Bounded Protocols. A protocol ~σ is said to be bounded if the duration of punishments

is bounded. Specifically, every protocol can be represented as a state machine (Osborne &

Rubinstein 1994): each global history h corresponds to a state sh from a set S~σ and, if agents

follow ~σ at h and the resulting global history is h′, then the corresponding state sh
′

is also in

S~σ. We consider that agents are in one of two types of states, namely, either they punish some

agents or they send messages of fixed size l containing their values. Say that a state s ∈ S~σ is a

cooperation state if for all stages t, global histories h from t that correspond to s, runs r ∈ R(h)

of ~σ, and agents i, i sends its value vti in a message of size l to every neighbour in Gt in stage

t. A protocol ~σ is said to be bounded if it is self-stabilizing in bounded time (Dolev 2000): (1)

the set of possible states S~σ is finite, (2) there is a nonempty subset S∗ ⊆ S~σ of states that are

cooperation states, (3) if agents follow ~σ at a state s∗ ∈ S∗, then the resulting state is also in

S∗, and (4) there is a constant ρ > 0 such that for all stages t, global histories h from stage t,

and runs r ∈ R(h) of ~σ, r(t + ρ) corresponds to a state in S∗. A bounded protocol ~σ sustains

cooperation if it is a G∗-OAPE and the initial state is a cooperation state.

Symmetric Protocols. A protocol ~σ is said to be symmetric if for all agents i, σi requires

agent i to send messages with a fixed size to all neighbours at all information sets. Otherwise,

the protocol is said to be nonsymmetric.

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 91

6.2 Sustaining Cooperation with Strongest Adversary

We now prove our first two results. We start by showing that weak timely punishments are

a necessary restriction on G∗ in order to sustain cooperation in pairwise exchanges, and that

strong timely punishments are necessary to sustain cooperation in one-shot pairwise exchanges.

Then, we define a protocol for pairwise exchanges that is a G∗-OAPE if G∗ is restricted by strong

timely punishments and pairwise exchanges are valuable.

6.2.1 Need for Timely Punishments

We say that the adversary is restricted by weak timely punishments iff there exists some

bound ρ > 0 such that for all evolving graphs G ∈ G∗, stages t, and edges (i, j) in Gt, there

exists a stage t′ > t, round m′ from stage t′, and agent j′ such that t′ < t + ρ and, for some

round m from stage t, either (j′, t′,m′) is a PO of i for (j, t,m) in G or (j′, t′,m′) is a PO of j for

(i, t,m) in G. We call this restriction weak timely punishments. Intuitively, if i and j interact

and send messages in some round m from stage t, then at least one of them must be able to

report on a deviation of the other to another agent j′ that is able to punish the deviating agent

in a later stage.

We say that the adversary is restricted by strong timely punishments iff there exists some

bound ρ > 0 such that for all evolving graphs G ∈ G∗, stages t, agents i, and i-edges (j, t) in G,

there exist a stage t′ > t and agent j′ such that t′ < t+ ρ and (j′, t′, 1) is a PO of i for (j, t, τ)

in G. We call this restriction strong timely punishments. This restriction is stronger than weak

timely punishments in two aspects namely, (1) both i and j can be punished after a bounded

number of stages for deviating in stage t, and (2) agents can be punished in the first round of

some stage t′ > t for deviations in the last round of stage t.

Theorem 12 shows that weak timely punishments are necessary to sustain cooperation. The

proofs use the notion of single-omission evasive strategy, which we now define.

Given a strategy profile ~σ, evolving graph G ∈ G∗, agents i and j, and round m from stage

t, a single-omission strategy σ′i relative to the tuple (~σ,G, j, t,m) is a strategy where i deviates

from σi by omitting messages to j at all round-m information sets and then behaves as if i had

not deviated, such that all agents l not causally influenced by j never learn of the deviation

of i. Formally, σ′i is defined as follows. σ′i is identical to σi at every round-m′ information set

92 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

Ii from stage t′ such that (t′,m′) < (t,m) or Ii /∈ Ii(G). At every remaining information set

Ii, σ
′
i specifies a probability distribution over a pair (ai, I

′
i) containing an action ai that i takes

at Ii and information set I ′i that i uses to later pretend that it did not deviate from σi at Ii.

More precisely, we define σ′i recursively for pairs (t′,m′) ≥ (t,m) as follows. At every round-m

information set Ii ∈ Ii(G) from stage t, with probability σ∗i (a
∗
i | G1), i follows ai identical to a∗i

except i omits messages to j. After observing an information set I ′i consistent with i following

ai, i selects I ′′i identical to I ′i except in I ′′i agent i follows a∗i at Ii. This concludes the definition

for round m. Now, given the definition for (t′,m′) ≥ (t,m), and given round-m′ information

set Ii ∈ Ii(G) and corresponding information set I ′i ∈ Ii(G) selected by i, i follows ai with

probability σi(ai | I ′i). After taking action a′i and observing an information set I ′′i , agent i

selects I ′′′i equivalent to I ′i for pairs (t′′,m′′) ≤ (t′,m′) and compatible with I ′′i in the round-m′

actions (i.e., i makes the same observations regarding round-m′ actions in I ′′′i and I ′′i).

We now show that, if for some pair (t′,m′) of a stage t′ and round m′, there is no PO

(j, t′′,m′′) of i for (j, t,m) in G for every pair (t′′m′′) ≤ (t′,m′) and i follows a single-omission

evasive strategy σ′i relative to (~σ,G, j, t,m), then every neighbour of i in stages t′′ ≤ t′ makes

the same observations with the same probability at every such round m′′ from stage t′′, whether

i follows σ′i or σi. Let ~σ′ = (σ′i, ~σ−i). For the sake of simplicity, we consider that every run

r of ~σ′′ also specifies the choices of information sets made by i prior to every round. Given a

pair (t′′,m′′), let St′′,m′′ be the set of agents l not causally influenced by j between (t,m) and

(t′′,m′′), i.e., (j, t,m) G (l, t′′,m′′) is false. Given an information set Ii ∈ Ii(G), global history

h ∈ Ii, pair (t′′,m′′) ≥ (t,m), set St′′,m′′ , and round-m′′ information set I∗Sm′′∪{i}
= ∩l∈Sm′′∪{i}I

∗
l

from stage t′′ that fixes the observations of agents in Sm′′ ∪ {i}, let Q~σ
′
(ISt′′,m′′∪{i} | G, h) be

the probability of the run r of ~σ′ being such that the observations of agents in St′′,m′′ are given

by I∗St′′,m′′
and i selects I∗i in r. Lemma 11 shows that Q~σ

′
(I∗St′′,m′′∪{i}

| G, h) is the same as the

probability of agents in St′′,m′′ ∪ {i} observing ISt′′,m′′∪{i} when they follow ~σ. Since there is no

PO (l, t′′,m′′) of i for (j, t,m) in G with (t′′,m′′) ≤ (t′,m′), every neighbour l of i in stages t′′ ≤ t′

is in St′′,m′′ for all pairs (t,m′′) ≤ (t′,m′), so every such neighbour l observes each information

set at every such round m′′ with the same probability, whether i follows σ′i or σi.

Lemma 11. Given strategy profile ~σ, agents i and j, stages t and t′, rounds m from t and m′

from t′, and evolving graph G ∈ G∗, if there is no PO (l, t′′,m′′) of i in G for (j, t,m) for all

(t′′,m′′) ≤ (t′,m′), then for all round-m information sets Ii ∈ Ii(G) from stage t, global history

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 93

h ∈ Ii, pairs (t′′,m′′) ≤ (t,m), and round-m′′ information sets ISm′′∪{i} from t′′, we have

Q~σ
′
(ISt′′,m′′∪{i} | G, h) =

∑
r∈R(ISt′′,m′∪{i}

)

P~σ,G(r | h), (6.1)

where ~σ′ = (σ′i, ~σ−i), σ
′
i is a single-omission evasive strategy relative to (~σ,G, j, t,m), and

P~σ,G(r | h) is the probability of run r conditioned on h.

Proof. Suppose without loss of generality that m is not the last round from stage t (the analysis

is exactly the same for the last round of stage t, except the pair that follows (t,m) is (t+ 1, 1)).

Consider round m′′ = m+1 and fix h. Clearly, every agent different from i follows each round-m

action with the same probability, whether i follows σ′i or σi. In addition, when following σ′i, i

selects a∗i with probability σi(a
∗
i | Ii), and sends messages according to a∗i except to j. Since

St,m+1 includes all agents but j and i, then every l ∈ St,m+1 makes private observations with

the same probability whether i follows σi or σ′i. Moreover, i selects each information set I∗i with

a probability that depends on the actions of other agents and a∗i only, so i selects I∗i with the

same probability that i observes this information set when agents use ~σ. This proves the result

for every pair (t′′,m′′) that immediately follows (t,m).

Now, suppose that the hypothesis holds for stage t′′ and round m′′ from stage t′′ with

(t,m) < (t′′,m′′) < (t′,m′), and suppose again that m′′ is not the last round from stage t′′. Fix

round-m′′ information set I1
St′′,m′′∪{i}

from stage t′′. Since i has no PO (l, t′′,m′′) for (j, t,m),

for every agent l ∈ St′′,m′′+1 ∪ {i}, l ∈ St′′,m′′ ∪ {i}, so l follows each action a∗l with probability

σl(a
∗
i | G, I1

l). Moreover, every neighbour of l in round m′′ is in St′′,m′′ ∪ {i}, hence, given

ISt′′,m′′∪{i}, l makes observations in round m′′ and i selects each round-m′′ + 1 information set

with the same probability, whether i follows σi or σ′i. The result follows directly from the

hypothesis.

We can now prove Theorem 12.

Theorem 12. If the adversary is not restricted by weak timely punishments, then there is no

protocol that sustains cooperation in pairwise exchanges.

Proof. The proof is by contradiction. Suppose that ~σ∗ is a G∗-OAPE and that agents always

exchange their values while using ~σ∗. Suppose also that the adversary is not restricted by weak

94 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

timely punishments. For every ρ > 0, there is G ∈ G∗, stage t, and edge (i, j) in Gt such that,

for all rounds m from stage t and every tuple (l, t′,m′) with t′ > t that is either a PO of i for

(j, t,m) or a PO of j for (i, t,m) in G, we have t′−t ≥ ρ. This implies that, for every stage t′ ≥ t

with t′ < t+ ρ, every i-edge (l, t′) with t′ > t, and rounds m from stage t and m′ from stage t′,

(j, t,m) G (l, t′,m′) is false; similarly, the same holds for j. Let ρ be such that yδρ/(1−δ) < c,

where y is the (bounded) maximum range of the utility of a single agent in a stage, and c > 0 is

the minimum cost of sending a message in a stage, and fix corresponding G, i, j, and t. Since

both i and j send their values in stage t, there are rounds mi and mj from stage t, round-mi

information set Ii ∈ Ii(G), and round-mj information set Ij ∈ Ij(G) consistent with ~σ∗ such

that i sends a message to j at Ii, j sends a message to i at Ij , and both i and j receive each

others’ values after sending those messages. Suppose without loss of generality that i is the last

agent to send a message at an information set Ii consistent with ~σ∗, and let m be the last round

when i sends a message. Let σ′i be a single-omission evasive strategy relative to (~σ∗, G, j, t,m),

and let ~σ′ = (σ′i, ~σ
∗
−i). By Lemma 11, for all stages t′ with t < t′ < t + ρ and rounds m′ from

stage t′, the round-m′ neighbours of i observe each information set after round m′ with the same

probability, whether i follows σ′i or σ∗i . Moreover, i also takes the same actions at every such

round m′. It follows that the expected utility of i in round m′ is the same, whether agents follow

~σ′ or ~σ∗. In stage t, i avoids a cost c > 0 of omitting a message to j in round m. Moreover, the

maximum utility loss in every stage t′ ≥ t + ρ is yn. So, if j does not punish i in stage t, then

we have

ui(~σ
∗ | G, Ii)− ui(~σ′ | G, Ii) < −c+ δρyn/(1− δ) < 0.

This contradicts the assumption that ~σ∗ is a G∗-OAPE. So, suppose instead that j punishes

i in stage t. Since i has already received j’s value, the only way that j can punish i is to send

messages to i or to require i to send further messages. By the same arguments as above, either

i or j gain by omitting those additional messages, so ~σ∗ can never be a G∗-OAPE, which is a

contradiction. This concludes the proof.

In one-shot pairwise exchanges between pairs of agents i and j, both i and j must send

messages in every round of each stage t, so in particular i and j send messages in the last

round of every stage t. By the same arguments of the proof of Theorem 12, if the adversary is

not restricted by strong timely punishments, then there is an agent i that can follow a single-

omission evasive strategy such that i omits messages in stage t, no agent punishes i in stage t,

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 95

and agents that punish i in stages t′ > t only do it when it is too late, i.e., when the loss of those

punishments discounted to stage t is lower than the immediate gain of i omitting messages in

stage t. Therefore, Corollary 13 follows immediately from the proof of Theorem 12.

Corollary 13. If the adversary is not restricted by strong timely punishments, then no protocol

sustains cooperation in one-shot pairwise exchanges.

Although the proofs of these results are relatively straightforward, the results are central for

the remainder of the chapter, as they show that it must be common knowledge that G∗ satisfies

some minimum properties. Moreover, the results are general, since they apply to all types of

protocols, not just bounded and symmetric.

6.2.2 A Protocol for Valuable Pairwise Exchanges

We now define a bounded protocol ~σval that sustains cooperation in a setting of valuable

pairwise exchanges (defined below), assuming that the adversary is restricted by strong timely

punishments, and that the number of rounds per stage τ is at least three. We first discuss the

protocol ~σval, before providing a formal definition of valuable pairwise exchanges and proving

that ~σval sustains cooperation.

Let ρ be the constant of the definition of strong timely punishments. The main incentives

of ~σval are based on proportional punishments: if at stage t agent j knows that i deviated in c

stages from {t− ρ . . . t− 1}, then j forces i to pay a cost proportional to c by sending c penance

values that we call penances. Agents detect deviations and inform other agents as follows: if an

agent i omits a message to neighbour j in stage t, then j emits an accusation; this accusation

is disseminated across the network; when an agent l later interacts with i in a stage t′ < t+ ρ,

l forces i to send a number of penances proportional to the number of accusations that l has

against i for stages in {t′ − ρ . . . t′ − 1}.

In more detail, for every stage t, agent i keeps a vector accti of accusations, where, for all

agents j and stages t′ ∈ {t−ρ . . . t−1}, accti(t
′, j) is a boolean that (if equal to True) represents

an accusation against l emitted by j in stage t′. The protocol requires three rounds per stage:

in every round, every agent i sends accti to all neighbours j, and updates this vector at the end

of the round by registering new accusations; in round 2, i also sends a number of penance values

to j proportional to the number of accusations against i that j sends to i in round 1; finally, in

96 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

round 3, i sends its value to j. All messages have a fixed size, except round 2 messages, which

have a variable size that depends on the number of penances that an agent sends. Agents i and

j exchange messages until one of them does not send a valid (correctly formatted) message or

omits penances. To keep track of this, agent i uses a vector vsti of booleans, where, for all agents

j 6= i, vsti(j) = True iff both i and j sent only correctly formatted messages and did not omit

any requested penances to each other. This implies that agent i sends its value to agent j only

if j sends the required messages in rounds 1 and 2 to i (and in particular j sends the required

number of penances to i), so j pays the ”cost” of not receiving i’s value in round 3 if j does not

send the required messages in rounds 1 and 2. If at the beginning of round 3 vsti(j) = True and

j does not send its value to i in round 3, then i sets accti(t, j) = True, i.e., i emits an accusation

against j in stage t. This accusation is forwarded to other agents in stages t′ ∈ {t+1 . . . t+ρ−1}.

We show that, if the adversary is restricted by strong timely punishments, then j always expects

to send an additional penance in the future if j omits a round-3 message to i.

The pseudo-code for the algorithm run by agent i is depicted in Alg. 4. Initially, i initializes

its variables (lines 1-5). In addition to the aforementioned variables, agent i uses variables pti(j)

and ptj(i), which indicate the number of penances that i has to send to j and receive from j in

stage t, respectively. The values of variables pti(j) and ptj(i) are computed from the accusations

that j sends to i and that i sends to j in round 1 of stage t, respectively. Specifically, for each

stage t′ ∈ {t−ρ . . . t−1} such that j has an accusation to i for stage t′, i must send n penances.

This guarantees that i incurs a cost at least as high as the cost that i avoids by omitting round-3

messages to all neighbours in stage t′. Conversely, j must also send n penances for each different

accusation that i sends to j in round 1. In the send phase of every round m from stage t, i

sends a tuple 〈accti, S〉 to every neighbour j such that vsti(j) = True, where S is either (i) ⊥ if

m = 1, (ii) a set of pti(j) penances if m = 2, or (iii) i’s input vti in stage t if m = 3 (lines 7-16).

In the receive phase, i updates its variables according to the messages that each neighbour j

sends to i (lines 19-32). If j sends an invalid message or omits a message to i and vsti(j) = True,

then i sets vsti(j) to False; moreover, if this happens in round 3, then i emits an accusation

against j for stage t, i.e., i sets accti(t, j) = True (lines 19-22). Agent i also sets vsti(j) to False

if j omits some penance in round 2 (line 25). If instead j sends the requested message, then i

registers all new accusations received from j (lines 27 -28); in round 1, i calculates the number of

penances pti(j) that i must send in round 2 (line 30); and, in round 3, i saves j’s input (line 32).

Agent i performs a similar update to vsti for each message that i sends or omits to neighbour j

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 97

(lines 33-39). Namely, i sets vsti(j) to False if i sends an invalid message, omits a message, or

omits penances. In round 2, i also calculates the number of penances ptj(i) that j must send to i

in round 2. Finally, in the update phase of round 3, i outputs every received value (lines 41-47).

Algorithm 3 σval
i : i’s protocol for valuable pairwise exchanges

1: for all stages t and agents j 6= i do
2: vsti(j) ← True
3: vtj ← ⊥
4: for all stages t′ ∈ {t− ρ . . . t− 1} do
5: accti(t

′, j) ← False

6: for all stages t ≥ 1 and rounds 1 ≤ m ≤ 3 do
7: Phase 1: send phase
8: for all neighbours j 6= i such that vsti(j) = True do . Send messages only while relationship is in a good state
9: if m = 1 then

10: Send 〈accti,⊥〉 to j . Sends only accusations
11: else if m = 2 then
12: S ← set of pti(j) penances . Number of accusations that j has against i
13: Send 〈accti, S〉 to j . Sends pti(j) penances
14: else if m = 3 then
15: Send 〈accti, vti〉 to j . Sends value to j

16: EndPhase
17: Phase 2: receive phase
18: for all neighbours j 6= i do
19: if vsti(j) = True and j omits or sends invalid message to i then
20: vsti(j) ← False
21: if m = 3 then
22: accti(t, j) ← True

23: else if vsti(j) = True and j sent 〈acctj , S〉 to i then

24: if m = 2 and #S < ptj(i) then

25: vsti(j) ← False
26: else
27: for all agents l 6= j, i and stages t′ ∈ {t− ρ . . . t− 1} such that acctj(t

′, l) = True do

28: accti(t
′, l) ← True . Registers all new accusations

29: if m = 1 then
30: pti(j) ← n×#{t′ | t− ρ ≤ t′ ≤ t− 1 ∧ acctj(t

′, i) = True} . Number of accusations against i

31: else if m = 3 then
32: vtj ← S . Prepares to output value

33: if vsti(j) = True and i omits or sends invalid message to j then
34: vsti(j) ← False
35: else if vsti(j) = True and i sent 〈acct, S〉 to j then
36: if m = 2 and #S < ptj(i) then

37: vsti(j) ← False . i omitted penances
38: else if m = 1 then
39: ptj(i) ← n×#{t′ | t− ρ ≤ t′ ≤ t− 1 ∧ acct(t′, j) = True} . Number of accusations against j

40: EndPhase
41: Phase 3: update phase
42: if m = 3 then
43: O ← ∅
44: for all agents j 6= i such that vtj 6= ⊥ do

45: O ← O ∪ {vtj}
46: Output(O) . Outputs all received values

47: EndPhase

It is easy to see that ~σval is bounded. We now show that ~σval sustains cooperation under

two main assumptions, namely, that the adversary is restricted by strong timely punishments

and that pairwise exchanges are valuable. Specifically, we assume that utilities are normalized,

98 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

such that, for all agents i, the total cost that i incurs for sending the value vti in round 3 and

for sending the vector accti in all three rounds is 1; let πi denote the cost of i sending a penance.

We say that pairwise exchanges are valuable if πi > 0, βi > 1 + nρπi, and γi = 0 for all agents

i. Intuitively, in a valuable pairwise exchange, agents neglect the costs of receiving messages

and have a high benefit/cost ratio, such that they always prefer to send any required number

of penances (note that nρ is the maximum number of penances that any agent is required to

send) and receive a value in return than to not send or receive any messages. In Section 6.2.3,

we show that we can relax some of these assumptions with cryptography.

We now prove Theorem 14, which shows that ~σval sustains cooperation if the adversary is

restricted by strong timely punishments, pairwise exchanges are valuable, and δ is sufficiently

close to 1, which is a standard assumption in results about infinitely repeated games where future

utilities are discounted by δ. The proof uses the one-shot deviation property for the notion of

G∗-OAPE, which we prove in Appendix A. The key ideas of the proof are the following. If

an agent i performs a one-shot deviation at rounds 1 or 2 of stage t, then i avoids the cost of

sending additional messages in stage t, but loses the benefit of receiving values in round 3; in

valuable pairwise exchanges, the loss in round 3 always outweighs the gain. If agent i performs

a one-shot deviation at round 3, then i may avoid the cost of sending round-3 messages, but i

has to send more penances in some stage t′ > t; if δ is sufficiently close to 1, then the cost of

sending these penances outweighs the gain in stage t.

Theorem 14. If the adversary is restricted by strong timely punishments, then there exists

δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), ~σval sustains cooperation in valuable pairwise exchanges.

Proof. Fix G ∈ G∗, agent i, stage t, round-m, round-m information sets Ii ∈ Ii(G) from stage t,

h ∈ Ii, and actions a∗i , a
′
i such that σval

i (a∗i |Ii) > 0. Let ∆ = ui(~σ
1 | G, h)− ui(~σ2 | G, h), where

~σ1 = ~σval|Ii,a∗i , ~σ
2 = ~σval|Ii,a′i , and ui(~σ | h) is i’s expected utility conditioned on the run being

in R(h). We show that, if the adversary is restricted by strong timely punishments, pairwise

exchanges are valuable, and δ is sufficiently close to 1, then ∆ ≥ 0. By the one-shot deviation

property, it follows that ~σval is a G∗-OAPE. Since in ~σval agents always exchange their values, it

follows immediately that ~σval sustains cooperation in valuable pairwise exchanges.

Given a stage t′, let ∆t′ = ut
′
i (~σ1 | h) − ut′i (~σ2 | h), where ut

′′
i (~σ | h) denotes i’s expected

utility in stage t′′ when agents use ~σ conditioned on the run being in R(h). Fix a stage t′ ≥ t

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 99

and agent j. As in gossip dissemination, we denote by vj |Ij the value of variable vj held by

agent j at an information set Ij . We first prove four facts about ∆t′ , where we say that a fact

is true when agents use strategy profile ~σ if the fact holds in every run r ∈ R(h) of ~σ:

• Fact 1 : For all agents l, if agents use ~σ2, then at the end of stage t′ we have acct
′
j (t, l, i) =

True iff (1) l is a neighbour of i in Gt, (2) m = 3, (3) vsti(j)|Ii = True and i does not send

a valid round-3 message to l in a′i, and (4) (l, t, 3) G
i (j, t′, 1).

Proof. Given t′′ > t, let St
′′

be the set of agents o such that (l, t, 3) G
i (o, t′′, 1). We show

using induction on t′′ that the fact holds. At the end of stage t, we have acctl(t, l, i) = True

iff l is a neighbour of i, i does not send a valid round-3 message to l, and vsti|Ii = True.

Since St+1 = {l}, the base case follows immediately. Continuing inductively, at the end of

every subsequent stage t′′+1, an agent o has an accusation if o already had that accusation

at the end of stage t′′ or received it from l 6= i in some round from stage t′′ + 1. In the

former case, by the hypothesis, o ∈ St′′ ⊆ St
′′+1. In the latter case, by the definition of

causal influence without interference, o ∈ St
′′+1 . Either way, the induction hypothesis

holds, which concludes the proof of Fact 1.

• Fact 2 : For all agents l and stages t′′ 6= t, we have acct
′
j (t′′, l, i) = True at the end of stage

t′ when agents use ~σ1 iff the same is true when agents use ~σ2.

Proof. Note that acct
′
j (t′′, l, i) is only defined if t′′ ≤ t′. If t′ = t and t′′ < t, then j has

an accusation against i at the end of stage t for t′′ iff it already had one such accusation

according to h or receives it in stage t from some agent l 6= i. Either way, the actions of

i have no impact on whether j has an accusation against i for t′′ at the end of stage t.

Since agents never make up accusations, the fact holds if t′ > t and t′′ < t′ (this is easily

shown using induction on t′ > t). Now suppose that t′′ = t′ > t. In this case, i follows

σval
i in stage t′ whether agents are using ~σ1 or ~σ2. So, i sends all requested messages to

every neighbour l, such that acct
′
l (t′, l, i) = False at the end of stage t′ for all agents l.

In particular, acct
′
j (t′, j, i) = False. Therefore, by the same arguments of the case where

t′′ < t and t′ > t, Fact 2 is also true if t < t′′ < t′. This concludes the proof.

• Fact 3 : If t′ > t, then ∆t′ ≥ 0.

100 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

Proof. Whether agents use ~σ1 or ~σ2 at and after h, i follows σval
i in stage t′, hence i sends

acct
′
i in every round to every neighbour j, sends all requested penances in round 2, and

sends its value in round 3. By Facts 1 and 2, j never sends more accusations against i

in round 1 when agents use ~σ1 than when agents use ~σ2: this is clearly true by Fact 2

for accusations relative to stages t′′ 6= t, whereas, by Fact 1, j never sends an accusation

relative to t when agents use ~σ1 because i sends the requested messages in round 3 from

stage t (note that a′i can be any action, including a∗i). This implies that i receives the

value from every neighbour j, and the costs that i incurs for sending messages when agents

use ~σ2 are at least as high as when agents use ~σ1. Since i incurs no costs for receiving

messages, it follows immediately that ∆t′ ≥ 0.

• Fact 4 : If m = 3, vsti|Ii(j) = True, j is a neighbour of i in Gt, and i does not send a valid

message to j in a′i, then there exists a stage t′ ∈ {t+ 1 . . . t+ ρ− 1} such that ∆t′ = nπi.

Proof. Suppose that m = 3, i does not send a valid message to j in a′i, and vsti|Ii(j) = True.

By Fact 1, for all stages t′ > t and agents l such that (j, t, 3) G
i (l, t′, 1), acct

′
l (t, i) = True

if agents use ~σ2, and acct
′
l (t, i) = False if agents use ~σ1. By the assumption that the

adversary is restricted by strong timely punishments, there exist t′ > t and l such that

the above holds, t′ < t + ρ, and l is a neighbour of i in Gt. By Fact 2, l sends one more

accusation against i when agents use ~σ2 than when they use ~σ1, so i sends n additional

penances to l when agents use ~σ2. By the same arguments of Fact 3, i incurs the same costs

for sending accusations and values in stage t′, whether agents use ~σ1 or ~σ2; i also receives

values from all its neighbours in stage t′ and sends no more penances relative to stages

t′′ < t to each neighbour o when using ~σ1 than when using ~σ2. It follows immediately that

∆t′ ≥ nπi, as we intended to prove.

We conclude by showing that ∆ ≥ 0. Note that ∆ =
∑

t′≥t δ
t′−t∆t′ . First, suppose that

m ≤ 2 and that i does not send valid messages or omits penances to c neighbours in a′i. Then, by

taking a′i agent i avoids at most the cost c for sending accusations and values in stage t to those

c agents, and avoids at most the cost cnρπi of sending penances messages in round 2 to each of

the c neighbours (note that i still sends all requested messages to the remaining neighbours).

However, i also loses the benefit cβi of receiving the value from those c neighbours. Therefore,

∆t ≥ c(βi − nρπi − 1). By the assumption that pairwise exchanges are valuable, ∆t ≥ 0. By

6.2. SUSTAINING COOPERATION WITH STRONGEST ADVERSARY 101

Fact 3, ∆ ≥ 0. Now, consider that m = 3. If vsti|Ii(j) = False, then i sends no messages in a∗i ,

so i does not gain by taking a′i, and ∆ ≥ 0. So, suppose instead that vsti|Ii(j) = True and that

i does not send valid messages to c agents j in a′i. If c = 0, then i avoids no costs for sending

messages, hence ∆t ≥ 0. If c > 0, then i avoids at most the cost c for sending accusations and

reports to the c neighbours, hence ∆t ≥ −c ≥ −n; however, by Fact 4, there exists a stage

t′ ∈ {t+ 1 . . . t+ ρ− 1} such that ∆t′ ≥ nπi. By Fact 3, we have ∆ ≥ n(δπi − 1). Since πi > 1,

if δ is sufficiently close to 1, then ∆ ≥ 0. This concludes the proof.

6.2.3 Relaxing the Assumptions about the Utility

The assumption that pairwise exchanges are valuable can be restrictive in practice if n or

ρ are large, since we need βi = Ω(nρ) for all agents i. Moreover, agents must know the exact

values of βi and αi to adjust the size of the penances, which is also restrictive. We now describe

a protocol ~σ∗ that uses a technique proposed by Li et al. (2006) to avoid the assumptions that

βi is large and that agents know βi and αi. The idea of ~σ∗ is that, instead of sending the value

in round 3 and sending accusations in every round, agent i sends accusations only in round 1,

sends the value to a neighbour j also in round 1 ciphered with a private key κj , sends penances

in round 2, and then reveals κj to j in round 3, but only if j sent all the required messages in

rounds 1 and 2. As in ~σval, agents exchange messages until one of them omits penances or does

not send a valid message, and agent i emits an accusation against j iff j is expected to send κi to

i in round 3 but fails to do so; if i emits the accusation, then j is also required to send additional

penances in some later stage. The advantage of this approach is that the cost of a penance only

has to be higher than the cost of sending a key in round 3. That is, it suffices that πi > ακi

and βi > 1 + nρπi for all agents i, where ακi is the cost of i sending a key. If ακi < ε/(nρπi) for

some constant ε, then it suffices that βi > 1 + ε. If the key is small comparatively to n, then ε

is also small and the minimum required benefit/cost ratio is close to the optimal ratio of 1. Of

course, this approach only works if agents are computationally bounded, such that they cannot

break the ciphering algorithm, and G∗ is sufficiently restricted, such that accusations are still

effectively disseminated across the network.

Specifically, given G ∈ G∗, agent i, and i-edges (j, t) and (l, t′) in G, we say that l is stage-

reachable from j between t and t′, denoted as (j, t)→G
i (l, t′), if t < t′ and either j = l or there

exists agent o 6= i and stage t′′ such that (i, o) is an edge in Gt
′′

and (o, t′′)→G
i (o, t′′). We assume

102 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

that there is a bound ρ > 0 such that, for all evolving graphs G ∈ G∗, agents i, and i-edges

(j, t) in G, there is an i-edge (l, t′) in G such that (j, t) →G
i (l, t′) and t′ < t + ρ. Intuitively,

this assumption guarantees that if agent i omits a round-3 message to j and agents use ~σ∗, then

j emits an accusation against i and the accusation reaches an agent l that interacts with and

punishes i after a bounded number of stages, even though agents only forward accusations once

every stage.

The arguments that ~σ∗ is a G∗-OAPE differ from those used in the proof of Theorem 14 in

two cases. First, if an agent i receives a value v from agent j in round 1 from stage t, now i is

not sure of whether v is vtj ciphered with some key known to j, so i is not sure if it is worth it to

send the penances in round 2; however, by the consistency property of belief systems, i believes

that v is indeed vtj ciphered with a key κi known by j, so, by the same arguments as before, i

does not gain from not sending the penances. Second, in round 3, agent i now avoids at most the

cost nαki for not sending valid messages to all neighbours; however, by our assumptions about

G∗, there exists an agent l that is stage-reachable from some neighbour of i and interacts with i

in stage t′ < t+ ρ; this agent requests n additional penances from i, so i loses δρnπi; if πi > αki

and δ is sufficiently close to 1, then i does not gain by deviating. This shows that there exists a

belief system µ consistent with ~σ∗ and G∗ such that if δ is sufficiently close to 1, then no agent

gains by performing a one-shot deviation from ~σ∗ at every information set. By the one-shot

deviation property, it follows that the protocol ~σ∗ sustains cooperation.

6.3 Sustaining Cooperation in General Pairwise Exchanges

We have defined a protocol that sustains cooperation assuming that the adversary is re-

stricted by strong timely punishments, that pairwise exchanges are valuable, and that τ ≥ 3.

We now address the problem of sustaining cooperation in pairwise exchanges where there is

only one round per stage, agents may not neglect download costs, and the benefit/cost ratio can

be small. Specifically, we assume that the benefit βi of an agent i receiving a value from the

neighbour j is larger than the costs that i incurs for engaging in an exchange with j at a coop-

eration state. We also consider that utilities are normalized such that the cost of an exchange

(of sending and receiving values) at a cooperation state is 1. Therefore, the only assumption

that we make about the utilities is that βi > 1. This is the minimum restriction on the utilities

of agents necessary to sustain cooperation: if the benefit βi were not higher than the communi-

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 103

cation costs of an exchange, then i would prefer not to participate in the system. Finally, we do

not assume that agents have exact knowledge of the utilities of other agents (which is usually

the case in practice), so protocols must be independent from the utilities. Given this, we say

that a bounded protocol ~σ sustains cooperation in general one-shot pairwise exchanges if the

protocol requires only one round per stage, the initial state of ~σ is a cooperation state, and ~σ is

a G∗-OAPE for all utilities such that βi > 1 for all agents i.

In the remainder of the section, we identify problems with protocols that are not symmetric,

we show that G∗ must be further restricted by eventual distinguishability to sustain cooperation

with symmetric and bounded protocols, and we present a symmetric and bounded protocol

that sustains cooperation in general one-shot pairwise exchanges if the adversary is restricted by

connectivity with knowledge of the neighbours’ degrees. Because we consider only one round per

stage, we never refer to rounds; we drop the round number from the notation, so, e.g., (j, t) G
i

(l, t) denotes that j causally influences l between (t, 1) and (t′, 1) in G without interference from

i, and a PO (l, t′) of i in G for (j, t) is an i-edge in G such that (j, t) G
i (l, t).

6.3.1 Problems with Nonsymmetric Protocols

Nonsymmetric protocols differ from symmetric protocols in the type of punishments that

agents use as an incentive. Specifically, consider the three types of punishments that can be

applied by an agent i to its neighbour j in a one-shot pairwise exchange: (1) i may not send its

value to j, thus denying the benefit βj to j, (2) i may require j to send larger messages, and

(3) i may send larger messages to j. In symmetric protocols, agents always use the first type

of punishment, where they punish their neighbours by sending garbage data instead of their

value, and they always send messages of fixed size. In nonsymmetric protocols, agents may also

omit bits as a punishment of type 1 or use punishments of type (2) or (3). Note that in general

pairwise exchanges agents may still neglect download costs, so the third type of punishments is

not always effective. We now show that the other types of punishments used by nonsymmetric

protocols are also not effective in general. Specifically, we identify one type of evolving graphs

for which protocols where agents omit bits as a punishment are not equilibria. Then, we show

that if punished agents are required to send larger messages each time they deviate, then the

protocol is not an equilibrium.

104 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

6.3.1.1 Problem of Omissions as Punishments

We start by describing a problem inherent to the type of protocols defined in existing proofs

of Folk Theorems for games with the structure of pairwise exchanges (Mailath & Samuelson

2007) (e.g., the Prisoners’ dilemma game). In these protocols, if an agent i deviates in some

stage t, then in a later interaction between i and some agent j in stage t′ > t, agents i and j do

not exchange messages, thus denying i the benefit of receiving j’s value. In dynamic networks,

such protocols suffer from the following problem. Note that if i deviates in stage t, then different

agents may have to punish i for deviating in different evolving graphs. Suppose that j is the

agent that punishes i in a stage t′ when the evolving graph is G, and let G′ be another evolving

graph where j cannot know that i deviates at stage t (e.g., because there is no temporal path

from a neighbour of i in stage t to j). If i cannot distinguish G from G′ at stage t′, then i

is not sure of whether j knows about the deviation. If j knows about the deviation, then i is

better off by omitting a message to j. If j does not know about the deviation, then i may fear

that by omitting a message to j agent j interprets this as a deviation and triggers additional

punishments of i, so that i prefers to send a message to j. Therefore, i would like to condition

its action at stage t′ on the evolving graph. However, since G and G′ are indistinguishable to i,

i must take the same action at stage t′, whether the evolving graph is G or G′, so the protocol

cannot be an equilibrium. In this case, we say that the punishment of j is ambiguous and that

the protocol has ambiguous punishments. To better understand the problem, we now describe a

concrete scenario. This scenario shows that protocols that have ambiguous punishments are not

equilibria if G∗ is only restricted by strong timely punishments. However, we stress that similar

problems arise if agents only omit some bits instead of entire messages or if only the punisher

agent omits messages.

Consider the scenario depicted in Fig. 6.3. There are five agents numbered 1 to 5, and two

evolving graphs G and G′ from G∗, with the following structure: in stage 1, agent 1 interacts

with agent 2 in both evolving graphs; in stage 2, agent 2 interacts with agent 4 in G and interacts

with agent 3 in G′; finally, in stage 3 agent 1 interacts with agents 3 and 4 in both evolving

graphs. Suppose that ~σ∗ is a protocol that sustains cooperation, such that, if agent 1 omits

a message to 2 and the adversary selects G, then 1 and 4 do not exchange messages in their

interaction in stage 3 as a punishment for 1 deviating towards agent 2. Note that agent 1 cannot

distinguish G from G′ at stage 3, so if the agent omits a message to 2 in stage 1, then 1 omits

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 105

a message to agent 4 in stage 3, whether the evolving graph is G or G′. Now, suppose that

the adversary selects G′ and that the communication graphs of G′ in stages t ≥ 4 form lines

as depicted in Fig. 6.3: 1 is always in between the agents from the set N1 = {2, 3} and the

agents from the set N2 = {4, 5}, and the neighbours of 1 in each stage alternate between 2 or

3 on the left side and between 4 and 5 on the right side. It is easy to see that G′ is restricted

by strong timely punishments. Consider the following strategy σ1 for agent 1: (a) 1 does not

deviate until stage 3; (b) in stage 3, 1 omits messages to agent 4, (c) in every stage t > 3, 1

sends messages towards agents in N2 as if 1 omitted messages to agent 2 in stage 1, and (d) in

every stage t > 3, 1 sends messages towards agents in N1 as if 1 were following the protocol ~σ∗

from the beginning. Note that agent 1 controls the information that flows after stage 3 between

agents in N1 and N2. If agent 1 uses σ1, then agent 1 avoids the costs of sending messages to

agent 4 in stage 3 and is not punished by the agents in N1, for those agents never learn that 1

deviates. If agents in N2 also do not punish 1, then 1 gains by following σ1 instead of σ∗1, so σ∗1

is not a G∗-OAPE. Instead, suppose that agents in N2 punish 1 if 1 omits a message to agent 4.

Consider the following strategy σ′1 for 1: (a) 1 omits messages to agent 2 in stage 1, (b) 1 sends

a message to agent 4 in stage 3 as if 1 did not deviate, (c) in every stage t > 3, 1 sends messages

to agents in N1 as if 1 did not deviate from σ∗1 and omitted a message in stage 3 to agent 4, and

(d) in every stage t > 3, sends messages to agents in N2 as if 1 never deviated from σ∗1. Now, if

agent 1 follows σ′1, then agents in N2 do not punish 1 for omitting messages to agent 4 in stage

3, whereas agents in N1 do not punish 1 for not following σ∗1 at stage 3. This implies that agent

1 gains by following σ′1 at stage 3, so again ~σ∗ cannot be a G∗-OAPE, which is a contradiction.

In summary, if the adversary selects G, then σ∗1 requires agent 1 to send a message to agent

4 at stage 3 if 1 does not deviate in stage 1 (because ~σ∗ sustains cooperation), and requires

agent 1 to omit messages to agent 4 if agent 1 omits messages, as a punishment for agent 1

deviating in stage 1. Since agent 1 cannot distinguish G from G′, if the adversary generates G′,

then σ∗1 also requires agent 1 to send messages to agent 4 in stage 3 if and only if agent 1 does

not deviate in stage 1. However, on one hand, if agents in N2 punish 1 for omitting messages to

agent 4 in stage 3, then there is an information set I1 from stage 3 such that (i) 1 did not deviate

in I1 before stage 3 and (ii) 1 gains by deviating from σ∗1 at I1, that is, 1 omits messages to

agent 4 and then hides the deviation from all agents; on the other hand, if agents in N2 punish

1 for omitting messages to agent 4 in stage 3, then there is an information set I ′1 from stage 3

such that (i) 1 did omit a message to agent 2 in stage 1 and (ii) 1 gains by deviating from σ∗1 at

106 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

23 41

Stage 1

G and G’

5 13 24

Stage 2

G

5

32 41

G’

5

23 51

Even stages 𝒕 ≥ 𝟒 (G’)

4

32 41

Odd stages 𝒕 ≥ 𝟒	 (G’)

5

32 41

Stage 3

G and G’

5

punishments

Figure 6.3: Ambiguous punishment.

I1, i.e., 1 sends a message to agent 4 and then hides the deviation from all agents. Either way,

agent 1 gains by deviating from σ∗1 at some information set if the evolving graph is G′, so ~σ∗

cannot be a G∗-OAPE.

6.3.1.2 Problem of Punishments with Large Upload

Consider that the protocol requires every agent i to always send messages, and if i omits

messages at stage t, then i is required to send larger messages to some neighbour j at a later

stage t′ > t. Now, suppose that i keeps defecting its neighbours. For a given evolving graph

G ∈ G∗, there is an infinite sequence of agents j1, j2, j3, . . . such that i omits a message of size

x1 to j1, then j2 requires i to send a message of size x2 > x1 as a punishment but i avoids this

punishment by omitting the message, then j3 requires i to send a message of size x3 > x2 but

i omits this message, and so on. Since the upload capacity is limited, there is a point in time

where i can no longer be forced to send larger messages. Hence, if i always omits messages, then

i is never punished for deviating, and thus the protocol is not an equilibrium.

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 107

6.3.2 Need for Eventual Distinguishability

We now restrict the analysis to symmetric and bounded protocols. We show that G∗ must

satisfy the restriction of eventual distinguishability in order to sustain cooperation with sym-

metric and bounded protocols in general one-shot pairwise exchanges. Roughly speaking, this

restriction says that for every evolving graph G ∈ G∗, there is a stage t∗ such that for all stages

t ≥ t∗ and agents i, if i deviates and omits messages to some neighbour j in stage t, then some

of the agents that can punish i for deviating (i.e., agents l that interact with i in stages t′ > t

such that (j, t) G
i (l, t′)) can coordinate their punishments such that i gets punished exactly

one additional time for deviating towards j. The need for this restriction stems from the facts

that (1) in symmetric protocols, i must be punished at least once for each deviation, or else i

gains by deviating, and (2) if i always omits messages to its neighbours in every stage t and i

is punished more than once for each of those deviations, then the number of punishments that

i expects to receive after each stage t grows without bound with t, so the delay of punishments

can be arbitrarily large and the protocol cannot be bounded.

More precisely, in a symmetric protocol ~σ, agent i either punishes its neighbours by sending

a message containing garbage or sends a message of the same size containing i’s value. There-

fore, given an evolving graph G and information set Ii, we can define the expected number of

punishments p~σ,G,Ii of i at Ii as the expected number of interactions after Ii in which i is pun-

ished, given that agents follow ~σ at and after Ii and the evolving graph is G. In a punishment,

agent i loses the benefit βi of receiving a value. In general pairwise exchanges, we only assume

that βi > 1, so βi can be arbitrarily close to the cost 1 of i sending and receiving messages. This

implies that, for each deviation where i omits a message to some neighbour (and thus avoids

the cost 1), i must expect to be punished in at least one additional interaction, or else i gains

by omitting messages. Therefore, if at information set Ii from stage t agent i omits messages to

y neighbours, then i must be punished y additional times after stage t. Moreover, if i interacts

with x agents in stage t and I ′i is the resulting information set of agents taking actions in stage

t, then we must have p~σ,G,I′i ≥ p~σ,G,Ii + y − x: since i expects to be punished p~σ,G,Ii times at Ii

and i can be punished by at most x agents in stage t, the expected number of punishments after

stage t must be at least p~σ,G,Ii − x added to the number y of omissions of i in stage t. In other

words, the expected number of punishments of i varies over time. If i always omits messages

to all neighbours, then the expected number of punishments grows after the first time agent i

108 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

omits messages, and then never decreases ever since. This is because at every stage t we have

y = x and p~σ,G,I′i ≥ p~σ,G,Ii + y− x ≥ p~σ,G,Ii . Now, suppose that for an infinite number of stages

t, we have p~σ,G,I′i > p~σ,G,Ii . Then, the expected number of punishments grows without bound,

and so the protocol cannot be bounded. This happens if for every such stage t, i expects to be

punished more than once for omitting messages to some neighbour j in stage t. It turns out that

if G∗ is not sufficiently restricted, then there are evolving graphs G such that, for some stages

t, the expected number of punishments of i must increase by more than x if i interacts with

and omits messages to x neighbours in stage t, no matter what protocol the agents use. We

call these stages indistinguishable stages. The restriction of eventual distinguishability requires

that, in every evolving graph G, eventually no stage is indistinguishable.

To better understand the definition of indistinguishable stage, we provide an example, which

is depicted in Fig. 6.4. There are three agents numbered 1 to 3. The adversary may generate

three alternative evolving graphs G1, G2, and G3. In stage 1, agent 1 interacts with agent 2.

In stage 2, agent 2 interacts with agents 3. In stage 3, the interactions depend on the evolving

graph: (G1) i interacts only with 2, (G2) i interacts only with 3, and (G3) i interacts with both

2 and 3. If the protocol is symmetric and sustains cooperation, then 1 must send a message to

2 in stage 1. If 1 omits messages to 2, then 1 must be punished at least once by either 2 or 3.

Suppose that the maximum delay of punishments is two stages, such that stage 3 is the only

opportunity to punish i for omitting messages to 2 in stage 1. Then, agent 2 must punish agent

1 if the evolving graph is G1 and agent 3 must punish 1 if the evolving graph is G2. Since 3

does not know about the deviation of 1, agent 2 must tell 3 in stage 2 that 1 deviated if the

evolving graph is G2. Suppose that the only information that agents have about the topology is

the identity of their neighbours. Then, agent 2 cannot distinguish G1 from G3 at stage 2, so 2

must also tell agent 3 about the deviation if the evolving graph is G3. Moreover, neither agent

2 can distinguish G1 from G3 nor agent 3 can distinguish G2 from G3 at stage 3. Consequently,

if the evolving graph is G3 and agent 1 omits messages to 2 in stage 1, then both agents 2 and

3 learn of the deviation of 1 and punish 1 in stage 3. Therefore, after stage 1, agent 1 expects

to be punished by two neighbours, even though 1 only omits messages to one neighbour.

This example shows that there is an information set I1 ∈ I1(G3) for agent 1 from stage 2

such that, according to the information in I1 available to 1, the expected number of punishments

of 1 conditional on G3 and I1 is 2, whereas i only omitted messages to one agent in stage 1. If

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 109

21 3

G, G1, G2

21 3

G, G1, G2

12 3

G3

12 3

G1

12 3

G2
Stage 3

Stage 2Stage 1

Figure 6.4: Indistinguishable stage.

this type of interactions keeps occurring in G3 for ever, then, for an arbitrarily large number

c, there is an information set I1 ∈ I1(G3) such that, basing on the information available at

I1, agent 1 expects to be punished by at least c neighbours after I1, so the protocol cannot be

bounded.

We now provide a formal definition of indistinguishable stages and eventual distinguishabil-

ity. Given an evolving graphG, agent i, and constant ρ, let ΦG
ρ (t) be the set of PO’s (l, t′) of i inG

for i-edges (j, t′′) such that t′′ ≥ t and t′ < t+ρ. We say that stage t is (G, i, ρ)-indistinguishable

if there are two evolving graphs G1, G2 ∈ G∗ such that (1) for every G′ ∈ {G1, G2} and

(j, t′) ∈ ΦG′
ρ (t), G′ is indistinguishable from G to j at t′, (2) |ΦG1

ρ (t) ∩ ΦG2

ρ (t)| < k, where

k is the number of i-edges in stage t, and (3) ΦG1

ρ (t)∪ΦG2

ρ (t) = ΦG
ρ (t); otherwise, we say that t

is (G, i, ρ)-distinguishable. We say that the adversary is restricted by eventual distinguishability

iff there is a constant ρ > 0 and a stage t∗ such that for all G ∈ G∗ and agent i, every stage

t > t∗ is (G, i, ρ)-distinguishable.

This definition has two parts: (1) the definition of (G, i, ρ)-indistinguishable stage and (2) the

requirement that, eventually, no stage is (G, i, ρ)-indistinguishable. Part (1) is a generalization

of the scenario depicted in Fig. 6.4. Specifically, the problem identified in the example happens

when, for some agent i, stage t, and bound ρ on the delay of punishments, (1) there are sets

S1 and S2 of agents responsible for punishing i in G1 and G2, respectively, in the ρ− 1 rounds

after i omits messages to some (or all) neighbours in stage t (in our example, S1 = {2} and

S2 = {3}), (2) S1 and S2 do not intersect, and (3) for l = 1, 2, no agent in Sl can distinguish

G3 from Gl. We generalize this intuition by showing that the problem arises even if S1 and S2

110 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

intersect, but do not intersect in more than k agents, where k is the degree of i in stage t. We

also show that, if S1 and S2 contain all the agents that can punish i no later than ρ stages after

t for i omitting messages in stages t . . . t+ ρ− 1, then no protocol can avoid the aforementioned

problem. This is exactly the case if S1 = ΦG1

ρ (t) and S2 = ΦG2

ρ (t).

Theorem 17 proves the need for eventual distinguishability. The proof is divided into three

parts. First, we show in Lemma 15 that if agent i defects k neighbours in a stage t, then the

expected number of punishments in the ρ− 1 rounds following stage t must increase at least by

k, where ρ is the maximum time it takes for punishments to end in a bounded protocol. Then,

Lemma 16 shows that, if i constantly defects all neighbours and the adversary is not restricted

by eventual distinguishability, then the expected number of punishments of i grows without

bound. Finally, we prove Theorem 17, where we identify a contradiction between Lemma 16

and the requirement that the protocol must be bounded.

We start with the proof of Lemma 15. Fix a symmetric and bounded protocol ~σ∗ that

sustains cooperation in general one-shot pairwise exchanges, fix a belief system µ∗ consistent

with ~σ∗ and G∗, and let ρ be the maximum time it takes for ~σ∗ to converge to a cooperation

state. Given an agent i, G ∈ G∗, information set Ii ∈ Ii(G) from stage t, and i-edge (j, t) with

t′ > t, ~σ∗ defines a probability P~σ∗,G,Ii(j, t
′) of j punishing i at stage t′. Let pρ~σ∗,G,Ii be the

expected number of punishments of i in the ρ− 1 stages following t, defined as

pρ~σ∗,G,Ii =
∑

i-edge (j,t′):t<t′<t+ρ

P~σ∗,G,Ii(j, t
′).

Lemma 15. For all evolving graphs G ∈ G∗, agents i, stages t, information sets Ii ∈ Ii(G)

from stage t, and protocol ~σ′ = (σ′i, ~σ
∗
−i) where, in σ′i, i omits messages to k neighbours at Ii

and follows σ∗i afterwards, we have

pρ~σ′,G,Ii ≥ p
ρ
~σ∗,G,Ii

+ k.

Proof. The proof is by contradiction. Suppose that there is G, i, Ii, and ~σ′ where i omits

messages to k neighbours at Ii and

pρ~σ′,G,Ii < pρ~σ∗,G,Ii + k. (6.2)

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 111

At Ii, i avoids the cost k of sending messages by following σ′i instead of σ∗i , whereas the

expected benefits and costs of receiving messages are the same. In every stage t′ > t and

interaction with neighbour j from stage t′, both i and j exchange messages of fixed size. Thus, i

incurs the fixed cost 1 of sending and receiving messages, and the expected utility loss of following

σ′i instead of σ∗i in an interaction with j is determined by the increase in the probability of j

punishing i times the loss of βi. Let S be the largest set of i-edges such that ∆(j, t′) > 0 for

every (j, t′) ∈ S, where ∆(j, t′) = P~σ′,G,Ii(j, t
′) − P~σ∗,G,Ii(j, t′). Since ~σ∗ is self-stabilizing in at

most ρ rounds, for every (j, t′) ∈ S, we have t′ − t < ρ, and

ui(~σ
′ | G, Ii)− ui(~σ∗ | G, Ii) ≥

≥ k −
∑

(j′,t′)∈S δ
t′−t∆(j′, t′)βi ≥

≥ k −
∑

(j′,t′)∈S ∆(j′, t′)βi.

(6.3)

By (6.2) and the fact that ~σ∗ is independent of the utilities, there is a value of βi > 1

sufficiently close to 1 such that, for some G and Ii, the utility difference between i following σ′i

and σ∗i is strictly positive, regardless of the value of δ, so i gains by deviating from σ∗i at Ii.

This is a contradiction to ~σ∗ being a G∗-OAPE for every βi > 1, thus proving the result.

We now prove Lemma 16.

Lemma 16. If the adversary is not restricted by eventual distinguishability, then there exist

G ∈ G∗ and agent i such that for every c > 0, there is Ii ∈ Ii(G) such that pρ~σ∗,G,Ii ≥ c.

Proof. Suppose that the adversary is not restricted by eventual distinguishability. There is

G ∈ G∗, i, and an infinite sequence of stages t1, t2, . . . such, that for every k, tk is (G, i, ρ)-

indistinguishable. Given stage t, let ~σt = (σti , ~σ
∗
−i) be the protocol where i always omits messages

up to and including stage t, and follows σ∗i afterwards. By Lemma 15, for every G′ ∈ G∗ and

information set Ii ∈ Ii(G) from stage t,

pρ~σt,G,Ii ≥ p
ρ
~σ∗,G,Ii

+ k, (6.4)

where k is the number of neighbours of i in stage t. It is easy to show that only the agents in

112 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

ΦG
ρ (m) can punish i for omitting messages in stage t, hence we have

pρ~σt,G,Ii = pρ~σ∗,G,Ii +
∑

(j,t′)∈ΦG′ρ (t)

∆(j, t′).

In particular, this is true for t = tk and G′ ∈ {G1, G2} such that (1) for every (j, t) ∈ ΦG′
ρ (m),

G′ is indistinguishable from G to j at t, (2) |ΦG1

ρ (t) ∩ ΦG2

ρ (t)| < k, and (3) ΦG1

ρ (t) ∪ ΦG2

ρ (t) =

ΦG
ρ (t). Since G and G′ are indistinguishable to every such j at stage tk, j must punish i with

the same probability both in G and G′, so by (6.4) we can write

pρ~σt,G,Ii =

= pρ~σ∗,G,Ii +
∑

(j,t′)∈ΦG1
ρ (t)

∆(j, t′)+

+
∑

(j,t′)∈ΦG2
ρ (t)

∆(j, t′)−

−
∑

(j,t′)∈ΦG1
ρ (t)∩ΦG2

ρ (t)
∆(j, t′) ≥

≥ pρ~σ∗,G,Ii + 2k − (k − 1) ≥

≥ pρ~σ∗,G,Ii + k + 1.

Since beliefs are consistent with ~σ∗ and G, there is an information set I ′i ∈ Ii(G) from stage

t+ 1 such that

pρ
~σt,G,I′i

≥ pρ~σ∗,G,Ii + k + 1− k ≥ pρ~σ∗,G,Ii + 1.

This implies that, after every stage tk, there is an information set such that the expected number

of punishments of i increases by at least 1 if i follows σ′i, while it does not decrease after every

other stage. It is easy to show using induction that, for every stage t, there is an information

set Ii ∈ Ii(G) from stage t such that pρ~σ∗,G,Ii ≥ k∗, where k∗ is the largest k with tk < t. Since

k∗ can be arbitrarily large, the result follows immediately.

Finally, we prove Theorem 17.

Theorem 17. If the adversary is not restricted by eventual distinguishability, then there is no

symmetric and bounded protocol that sustains cooperation in general one-shot pairwise exchanges.

Proof. The proof is by contradiction. Suppose that the adversary is not restricted by eventual

distinguishability. By Lemma 16, there is G and i such that for every c > 0, there is a stage t

and information set Ii ∈ Ii(G) from stage t such that pρ~σ∗,G,Ii ≥ c. This is true for t large enough

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 113

such that c is larger than the number of i-edges between t and t+ ρ. This is a contradiction to

~σ∗ converging to a cooperation state in ρ stages, proving the result.

6.3.3 A Protocol for General One-shot Pairwise Exchanges

We now describe a restriction of connectivity on G∗ that ensures that the adversary is

restricted by eventual distinguishability. We also show that under this restriction there is a

symmetric and bounded a protocol ~σgen that sustains cooperation in general one-shot pairwise

exchanges.

Recall that, in the scenario of Fig. 6.4, the problem is that neither agent 2 can distinguish

G1 from G3 at stage 3 nor agent 3 can distinguish G2 from G3 at stage 3, and thus agents 2

and 3 cannot coordinate their actions to punish 1 only once. This problem does not arise if

agents 2 and 3 can learn the degree of agent 1 before sending messages in stage 3. However, the

knowledge of the degree is not sufficient to avoid the aforementioned problem in general. To see

this, consider a similar scenario where agent 3 only interacts with agent 1 in stage 4. In this

alternative scenario, agents 2 and 3 would not be able to coordinate their punishments of agent

1, so agent 1 would still be punished twice for a single deviation. The problem would not arise

if 2 also interacted with agent 3 in stage 3, since in this case, 2 could tell 3 not to punish 1 in

stage 4.

More generally, the adversary is restricted by eventual distinguishability if the following

condition holds: for every G ∈ G∗, agent i, and stage t, agent i knows the degree of its neighbours

in stage t and there is a constant ρ such that the neighbours of i in stage t causally influence

every neighbour of i in stage t+ ρ without interference from i. This condition is exactly met for

ρ = n if G∗ is restricted by a condition similar to 1-connectivity from (Kuhn, Lynch, & Oshman

2010). Specifically, we say that the adversary is restricted by connectivity with knowledge of

degrees iff for every G ∈ G∗, agent i, and stage t, i knows the degree of every neighbour in Gt

before sending messages in stage t and the graph obtained from Gt by removing the edges to i is

connected. We now describe a symmetric and bounded protocol ~σgen that sustains cooperation

in general one-shot pairwise exchanges if the adversary is restricted by connectivity.

The protocol ~σgen only requires one round per stage. At every stage t, agent i sends a message

to each neighbour j containing monitoring information and a value v that is either garbage or

114 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

the value vti ; i sends garbage data as a punishment with a probability proportional to the number

of past deviations of j. Specifically, the protocol matches each deviation of j to a punishment:

agent i keeps count of the number of pending punishments to be applied to j in future stages,

which corresponds to the number of past deviations of j; for each new deviation of j, i increments

the number of pending punishments, and decrements it after knowing that j interacted with

some agent l that could have applied a pending punishment (i.e., when l interacted with j, l

could have been informed of a corresponding deviation). To detect deviations, in every stage t,

agents report on the interactions that they have with their neighbours in t; these reports indicate

for each pair of agents (i, j) whether i interacts with j in stage t and, if so, whether j sent a

valid message to i. Agents disseminate reports and number of pending punishments across the

network to ensure that all agents that punish a single agent j synchronize their punishments in

a way that ensures that expected number of punishments of j per deviation is 1.

In more detail, given an evolving graph G ∈ G∗ and stage t, let degtj denote the degree

of agent j in Gt. Punishments are applied in cycles with period n: if agent i omits messages

to k neighbours in stage t, then the neighbours of i in stage t + n punish i with probability

proportional to k; if x neighbours punish i in stage t and x < k, then the neighbours of i in

stage t+ 2n punish i with a probability proportional to k−x+ y, where y is the number of new

deviations of i in stage t+ n; this procedure is repeated for all stages t+ cn for some constant

c > 0. Agent i uses variables pnd ti and accti to represent the numbers of pending punishments

and the reports that i has at stage t, respectively. Specifically, for all agents j 6= i and stages

t′ ∈ {t − n . . . t}, pnd ti(t
′, j) is the number of pending punishments to be applied to j in stages

t′ + 1, t + n + 1 . . .; for all pairs of agents (j, l) such that l 6= j and stages t′ ∈ {t − n . . . t},

accti(t
′, j, l) is the report of the interaction between j and l in stage t′, where accti(t

′, j, l) = ⊥ if

j and l did not interact, accti(t
′, j, l) = True if l did not send a valid message to j (i.e., j emitted

an accusation against l), and accti(t
′, j, l) = False otherwise. Before interacting with agent j in

stage t, agent i determines the number of pending punishments pnd ti(t − 1, j) of j for stages

t, t + n, . . .: if t < n, then pnd ti(t − 1, j) = 0, otherwise, i computes the degree degt−nj of j in

stage t − n, basing on the reports of interactions that other agents had with j in stage t, and

sets pnd ti(t− 1, j) = max(0, pnd ti(t−n, j)− degt−nj), while ensuring that the number of pending

punishments is a number in {0 . . . n− 1}.

In every stage t, i sends a message to j containing accti, pnd ti, and a value v, where v is either

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 115

garbage data with probability min(1, pnd ti(t, j)/degtj), or is vti with the remaining probability.

Intuitively, i punishes j in stage t with a probability proportional to the number of pending

punishments of j and inversely proportional to the degree of j; we make sure that all neighbours

of j punish j in stage t′, so that the expected number of punishments of j is min(degtj , pnd ti(t, j)).

This way, every agent j is never punished in expectation more than once for each deviation.

Moreover, we show that, if the adversary is restricted by connectivity, then every agent j expects

to be punished for a deviation in stage t by some neighbour in a stage in t, t+n, t+2n . . . t+n2,

so the maximum delay of a punishment is n2 and the protocol is bounded. In Section 6.3.5, we

discuss how to decrease the delay of punishments and the complexity.

Alg. 4 presents the pseudo-code of the strategy σgen

i for agent i. Agent i first initializes the

numbers of pending punishments and the reports for stage 1 with the default values 0 and ⊥,

respectively (lines 1-5). In the send phase of stage t, i decides whether to punish neighbour j

with a probability p∗ that is proportional to the number of pending punishments of j that i

knows of at the end of stage t−1 and inversely proportional to the degree of j in stage t (line 9);

i sends a message containing pnd ti, accti, and a value v that is either garbage if i decides to

punish j or is vti otherwise. In the receive phase of stage t, i processes the message received from

each agent j (lines 13-27). If j sends a valid message, then i sets the report accti(t, i, j) = False

to indicate that j interacted with i and sent a valid message (line 16); if j is a neighbour and

did not send a valid message, then i sets accti(t, i, j) = True, which represents an accusation

of i against j (line 24); if j is not a neighbour, then i sets accti(t, i, j) = ⊥ to indicate that j

did not interact with i in stage t. If j sends a valid message, then i also stores the value v

that j sends to be output at the end of the stage (line 17). (We assume that i loses nothing

for outputting garbage, so that i may output the value v even if v 6= vtj .) Finally, i updates

the number of pending punishments of every agent l 6= j for stages t′ ∈ {t − n . . . t − 1} to the

maximum between the value previously held by i and the value that j sends (line 20), and i

updates every new report that j sends to i (line 22). In the update phase of stage t, i first

adds every received value to a set O of values to be output and updates the number of pending

punishments pnd ti(t, j) of every agent j (lines 30-36). Specifically, i first computes the degree

degt
′
j of j in stage t′ = t+1−n and the number y of deviations of j in stage t′. Note that degt

′
j is

the number of agents that could have punished j in stage t′. So, i sets pnd tj(t, j) to the result of

deducting degt
′
j from pnd tj(t

′, j) and adding y, so that j expects to be punished exactly once for

each deviation. In the next step, i initializes the variables for the next stage (lines 37-41). In the

116 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

last step, i outputs the set O, which contains all the values that i receives in stage t (line 42).

Algorithm 4 σgen

i : i’s protocol for general one-shot pairwise exchanges

1: for all agents j and stages t′ ∈ {1− n . . . 0} do
2: for all agents l 6= j do
3: acc1i (t

′, j, l) ← ⊥
4: if j 6= i then
5: pndti(t

′, j) ← 0

6: for all stages t ≥ 1 do
7: Phase 1: send phase
8: for all neighbours j 6= i do

9: p∗ ← min(1,
pndt

i(t−1,j)

degt
j

) . Probability of punishment

10: v ← garbage with prob. p∗ or vti otherwise . Punishes by sending garbage
11: Send 〈accti, pnd

t
i, v〉

12: EndPhase
13: Phase 2: receive phase
14: for all agents j 6= i do
15: if j sent valid 〈acctj , pnd

t
j , vj〉 then

16: accti(t, i, j) ← False . j behaved according to protocol
17: vtj ← vj . Prepares to output value

18: for all agents l and t′ ∈ {t− n . . . t− 1} do
19: if l 6= j then
20: pndti(t

′, l) ← min(max(pndti(t
′, l), pndtj(t

′, l)), n− 1) . Pending punishments bounded by n− 1

21: for all j′ 6= j, l such that acctj(t
′, l, j′) 6= ⊥ and accti(t

′, l, j′) = ⊥ do

22: accti(t
′, l, j′) ← acctj(t

′, l, j′) . Registers all new reports

23: else if j is a neighbour of i then
24: accti(t, i, j) ← True . Emits accusation
25: else
26: accti(t, i, j) ← ⊥ . i did not interact with j

27: EndPhase
28: Phase 3: update phase
29: O ← ∅
30: for all agents j 6= i do
31: if accti(t, j) = False then
32: O ← O ∪ {vtj}
33: t′ ← t+ 1− n
34: degt

′
j ← #{l 6= j | accti(t′, l, j) 6= ⊥} . Degree of j in stage t+ 1− n

35: y ← #{l 6= j | accti(t′, l, j) = True}
36: pndti(t, j) ← max(0, pndti(t

′ − 1, j)− degt
′
j) + y . Updates number of pending punishments

37: for all agents j and stages t′ ∈ {t− n+ 1 . . . t} do
38: if j 6= i then
39: pndt+1

i (t′, j) ← pndti(t
′, j)

40: for all agents l 6= j do
41: acct+1

i (t′, j, l) ← accti(t
′, j, l)

42: Output(O)
43: EndPhase

The protocol ~σgen is bounded and symmetric. Theorem 18 shows that ~σgen sustains cooper-

ation in general one-shot pairwise exchanges if δ is sufficiently close to 1 and the adversary is

restricted by connectivity with known degrees.

Theorem 18. If the adversary is restricted by connectivity with known degrees, then there exists

δ∗ ∈ (0, 1) such that, for all δ ∈ (δ∗, 1), ~σgen sustains cooperation in general one-shot pairwise

exchanges.

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 117

Proof. ~σgen only requires one round per stage and agents always exchange their values if no

agent deviates. So, we only have to show that ~σgen is a G∗-OAPE provided that the adversary

is restricted by connectivity and δ is sufficiently close to 1. Fix G ∈ G∗, agent i, stage t,

information set Ii ∈ Ii(G) from stage t, h ∈ Ii, and actions a∗i , a
′
i such that σgen

i (a∗i |Ii) > 0. Let

∆ = ui(~σ
1 | h)− ui(~σ2 | h), where ~σ1 = ~σgen|Ii,a∗i and ~σ2 = ~σgen|Ii,a′i . We show that ∆ ≥ 0. By

the one-shot deviation property (Appendix A), it follows that ~σgen is a G∗-OAPE.

Given stage t′, let ∆t′ = ut
′
i (~σ1 | h)− ut′i (~σ2 | h), where ut

′
i is as in the proof of Theorem 14.

We prove six facts first, which hold for every run of ~σ1 and ~σ2 in R(h). Fix agents j and l

different from i, and stages t′, t′′:

• Fact 1 : If i follows a′i and t′ ≥ t, then acct
′
l (t, j, i) is an accurate report of the interaction

between i and j in stage t: (1) if i and j do not interact or it is false that (j, t) G
i (l, t′+1),

then the report says that they did not interact; (2) if i and j interact and (j, t) G
i (l, t′+1),

then acct
′
l (t, j, i) = True iff i does not send a valid message to j in a′i.

Proof. At the end of stage t, the report of l says that i and j interacted iff l = j and i and

j are neighbours. This is exactly the case when (j, t) G
i (l, t+ 1). Moreover, (2) follows

directly by construction of ~σgen. In every subsequent stage t′, agent l updates acct
′
l (t, j, i)

according to the reports different from ⊥ that it receives from other agents. Whether

acct
′
l (t, j, i) = ⊥, if l updates the report to a value v 6= ⊥, then l receives v from l′ such

that acct
′−1
l′ (t, j, i) = v. By the hypothesis, v is accurate, and (j, t) G

i (l′, t′), which

implies that (j, t) G
i (l, t′+1) and acct

′+1
l (t, j, i) is accurate, as we intended to prove.

• Fact 2 : If t′ = t + n − 1 and agents use ~σ2, then pnd t
′
l (t′, i) = y + max(x − degti, 0) after

the update phase, where x is the maximum of pnd to(t− 1, i) for all agents o 6= i, and y is

the number of neighbours to which i omits a message in stage t.

Proof. It is easy to show using induction that for every stage t′′ ∈ {t . . . t′}, pnd t
′′
l (t, i) = xt

′′

at the end of stage t′′, where xt
′′

is the maximum of pnd to(t− 1, i) for all agents o 6= i such

that (o, t) G
i (l, t′′ + 1). This is clearly true for t′′ = t, since only l is causally influenced

by l between t and t + 1. In every other stage t′′, l sets pnd t
′′
l (t, i) to the maximum

of the values that other agents send to l in stage t′′, which by the induction hypothesis

is xt
′′
. Since the adversary is restricted by connectivity with knowledge of degrees, l is

118 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

causally influenced by every agent without interference from i between t and t + n − 1,

so pnd t
′
l (t, i) = x after the receive phase of stage t′. In the update phase, l computes the

value degti and the number y of deviations of i in stage t (by Fact 1, this information is

accurate), and sets pnd t
′
l (t′, i) = min(0, x− degti) + y. This concludes the proof.

• Fact 3 : If t′′ 6= t and t′ ≥ t, then the values of pnd t
′
l (t′′−1, i) and acct

′
l (t′′, j, i) are constant

whether agents use ~σ1 or ~σ2.

Proof. If t′ = t and t′′ < t, then those values depend only on the values received by l

from agents different from i in stage t, which are determined by the history h. Continuing

inductively, for every stage t′ > t, l updates pnd t
′
l (t′′ − 1, i) and acct

′
l (t′′, j, i) according to

the values that agents l′ 6= i send to j in stage t′, which are the same by the hypothesis, so

the values of pnd t
′
l (t′′−1, i) and acct

′
l (t′′, j, i) are constant, whether agents use ~σ1 or ~σ2. If

t′′ > t, then l does not update pnd t
′
l (t′′− 1, i) and acct

′
l (t′′, j, i) if t′ < t′′+ 1. If t′ = t′′+ 1,

l updates pnd t
′
l (t′′ − 1, i) basing on the values pnd t

′
l (t′ − n, i) and acct

′
l (t′ − n + 1, j, i),

which are constant by the same arguments of the proof of the case t′′ < t. If t′ = t′′, then l

updates acct
′
l (t′′, j, i) iff l interacts with j in stage t′′ and updates it to False, since i follows

σgen

i after t, whether agents use ~σ1 or ~σ2. Finally, if t′ > t′′, the result follows directly by

the same arguments used in the case where t′′ < t and t′ > t.

• Fact 4 : If t′ > t, then the value pnd t
′
l (t′, i) at the end of the update phase of t′ is at least

as high when agents use ~σ1 as when agents use ~σ2.

Proof. Let t′′ = t′ − n + 1. The value pnd t
′
l (t′, i) is computed from pnd t

′
l (t′′ − 1, i) and

acct
′′
l (t′′, l, i) for all l 6= i. If t′′ 6= t, then, by Fact 3, the values are constant, whether

agents use ~σ1 or ~σ2. If t′′ = t, then by Fact 2 and the fact that i sends all messages

required by σgen

i in a∗i , the value pnd t
′
l (t − 1, i) at the end of the update phase of stage t′

is higher by y if agents use ~σ2 than if they use ~σ1, where y is the number of neighbours of

i to which i does not send a valid message in a′i, so the fact holds for t′ = t+ n− 1. Since

all agents follow ~σgen in stages t′′ > t, Fact 4 follows immediately by Fact 2 for all stages

t′ = t+ cn− 1 with c > 0. This concludes the proof.

• Fact 5 : If t′ > t, then ∆t′ ≥ 0.

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 119

Proof. In stage t′, both i and its neighbours send messages of fixed size, so the costs of

sending and receiving messages are constant for i whether agents use ~σ1 or ~σ2. By Fact 4,

i is never punished with higher probability if agents use ~σ1 than if they use ~σ2, so the

expected benefits are at least as high when agents use ~σ1. This implies that ∆t′ ≥ 0.

• Fact 6 : If i does not send valid messages to exactly y neighbours in a′i, then∑
t<t∗≤t+n2 ∆t∗ ≥ βiy.

Proof. Given a constant c ≥ 0, let tc = t+ cn, and let pnd~σ
1

l (t′, i) and pnd~σ
2

l (t′, i) denote

the values of the variable pnd t
′−1
l (t′ − 1, i) at the end of the update phase of stage t′ − 1

when agents use ~σ1 and ~σ2, respectively. By Fact 2, if i does not send valid messages

to y neighbours in a′i, we have pnd~σ
2

l (t1, i) − pnd~σ
1

l (t1, i) = y, and l deducts degt
c

i from

pnd t
c+n−1
l (tc, i) in the update phase of stage tc + n− 1 for all c ≥ 1, until pnd t

c+n−1
l (tc, i)

gets the value 0. It is easy to see that if c∗ is the smallest constant such that pnd~σ
1

l (tc
∗
, i) <

degt
c∗

i , then pnd~σ
1

l (tc
∗+1, i) = 0 and we still have pnd~σ

2

l (tc
∗
, i) − pnd~σ

1

l (tc
∗
, i) = y, so i

expects to be punished an additional y times in stages tc
′

for c′ ≥ c∗ if agents use ~σ2.

Since pnd~σ
2

l (t1, i) < n and i has at least one neighbour in every stage, we must have

pnd~σ
2

l (tn+1, i) = 0, so the additional punishments happen in stages t+n, t+ 2n, . . . t+n2.

By the same arguments of the proof of Fact 5, it follows that the expected utility of i

decreases at least by yβi in those stages if agents use ~σ2 instead of ~σ1, whereas the utility

does not increase in every other stage. The result follows immediately.

We can now show that ∆ ≥ 0. Suppose that i does not send valid messages to exactly y

neighbours in a′i. If y = 0, then ∆t ≥ 0 and, by Fact 5, ∆ ≥ 0. If y > 0, then i saves at most

the cost y of sending messages in a′i, but by Fact 6 agent i loses at least δn
2
yβi in future stages.

Hence, we have ∆ ≥ y(δn
2
βi − 1). Since βi > 1 in general pairwise exchanges, if δ is sufficiently

close to 1, then δn
2
βi ≥ 1 and ∆ ≥ 0. This concludes the proof.

6.3.4 Avoiding Prior Knowledge of Degree

The knowledge of degree can be a restrictive assumption in practice. We now discuss an

extension of ~σgen that does not require this assumption, at the expense of requiring three rounds

per stage. The idea is that agents reveal their degrees first and then exchange values. It may

120 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

seem that two rounds are sufficient for this. Unfortunately, this is not the case, because agents

can lie about their degrees. In particular, an agent i may declare a higher degree to a neighbour

j to decrease the probability of being punished by j (recall that j punishes i with a probability

inversely proportional to the degree of i). We can address this problem by including in the report

information about the declared degrees, so that an agent that lies about its degree is caught and

punished. This is still not sufficient though, because of the following scenario. Suppose that i

only has one neighbour j in stage t and only one pending punishment. If i does not lie, then

j punishes i with probability 1. If i declares a degree of n − 1 instead, then the probability of

being punished by j is only 1/(n− 1). This yields an increase in the expected benefits of stage t

from 0 to βi(n−2)/(n−1). In addition, suppose that i defects j by omitting its value. If i omits

its value to j in addition to lying about its degree, then the total gain in stage t can be close to

1 + β(n − 2)/(n − 1), whereas the future loss is βi. Since we only assume that βi > 1, the loss

may not outweigh the gain. The problem is that i reveals the degree before incurring the cost

of sending the value. We can avoid this problem in the same way we relaxed the assumptions

about valuable pairwise exchanges in Section 6.2.3, i.e., by using the technique employed in (Li

et al. 2006).

In more detail, we need three communication rounds per stage. In round 1, agents exchange

monitoring information and the values ciphered with random private keys. In round 2, they

reveal the degrees. Finally, in round 3, they decide whether to cooperate by sending the private

keys or to punish by sending arbitrary keys, with the same probability as in ~σgen. Agents i and

j only exchange messages in round m if they both send valid messages in all rounds m′ < m; if

j sends an invalid message to i or omits a message, then i emits an accusation against j (note

that this is true for all rounds 1 ≤ m ≤ 3). Let ακi denote the cost that i incurs for sending a

key. Note that i can lie about its degree only if i sends valid messages in rounds 1 and 2. The

arguments that this extended protocol still sustains cooperation in general pairwise exchanges

are the same as those of the proof Theorem 18 for the cases where i does not lie about its degree

but may send invalid messages or omit messages to y neighbours: i gains at most y in stage t but

loses δn
2
yβi due to future punishments, so if βi > 1 and δ is sufficiently close to 1, then i does not

gain. If i lies about its degree to y neighbours, then i gains at most y(β(n− 2)/(n− 1) +ακi) (i

may omit the keys in round 3), whereas the future loss is at least δn
2
yβi. If ακ < β/(n−1), then

the gain is less than yβi, so again the future loss outweighs the gain of stage t if δ is sufficiently

close to 1.

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 121

6.3.5 Complexity

We now discuss how to extend ~σgen to improve the complexity by assuming further restric-

tions on G∗ and that agents are computationally bounded. The bit complexity of ~σgen regarding

each message sent in every stage t is O(n3): each message contains n3 reports, with one report

per pair of agents and stage t′ ∈ {t − n . . . t − 1}, and contains n2 numbers of pending pun-

ishments. The maximum delay of punishments is O(n2). We can improve both the complexity

and the delay due to the following observation: the factors n3 and n2 are a result of (1) the

fact that agents have to wait n stages before punishing an agent for a deviation and (2) the

fact that agents have to forward reports and numbers of pending punishments relative to every

other agent. Therefore, we can improve complexity by decreasing the waiting time for agents

to punish any agent and by decreasing the number of agents relative to which agents forward

reports and numbers of pending punishments. However, we need further restrictions on G∗ to

do this.

Specifically, we can improve both the waiting time and the quantity of information included

in each message if G∗ is restricted as follows: there exist constants c, ρ such that for all G ∈ G∗,

stage t, and agent i, (a) every neighbour of i in Gt causally influences every neighbour l of i in

Gt+ρ, (b) if Sti is the set of agents j such that (j, t − ρ) G (i, t), then #Sti ≤ c, and (c) every

agent i always has at least one neighbour. These restrictions are characteristic of networks that

have a high clustering coefficient, e.g., small world networks such as social networks (Holland &

Leinhardt 1971; Watts & Strogatz 1998).

We now discuss a modified version ~σ∗ of the protocol ~σgen that has a lower complexity and

lower delay of punishments. We assume that agents have unforgeable signatures. Protocol ~σ∗ is

identical to ~σgen in that agent i still sends messages in every stage t containing reports, numbers

of pending punishments, and values, and punishes each neighbour with the same probability as

in ~σgen. Protocol ~σ∗ differs from ~σgen in that (i) every report accti(t
′, j, l) that i sends must be

signed by agent j, (ii) every number of pending punishments pnd ti(t
′, j) must be signed by some

agent l 6= j, and (iii) punishments are applied in cycles with period ρ, so agent i calculates the

number of pending punishments pnd ti(t, j) of agent j basing on the reports accti(t − ρ + 1, l, j)

for every l 6= j and the number of pending punishments pnd ti(t− ρ, j).

By the aforementioned restrictions on G∗, every agent i has at most c neighbours, thus for

each stage t′, agents may only send numbers of pending punishments pnd ti(t
′, j) and reports

122 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

accti(t
′, i, j) signed by i for at most c different agents j. Since every agent j is causally influenced

by at most c agents in ρ rounds, if agents cannot forge signatures, then j only receives c2 reports

and numbers of pending punishments signed by different agents in stage t relative to each stage

t′ ∈ {t − ρ . . . t − 1}. Therefore, agents only need to send ρc2 reports and numbers of pending

punishments in each message, so the bit complexity of ~σ∗ is O(ρc2). In addition, note that

if an agent i omits messages to a neighbour j in a stage t, then all neighbours of i in stages

t + ρ, t + 2ρ, . . . know of this deviation and punish i one additional time; since i has always

at least one neighbour and at most c neighbours in each stage, by the same arguments of the

proof of Theorem 18, i is punished one additional time for deviating towards j no later than

stage t + cρ. Hence, the delay of punishments in ~σ∗ is O(ρc). If ρ and c are both sublinear on

n, then both the bit complexity and the delay of punishments are also sublinear on n, so ~σ∗ is

significantly more scalable than ~σgen. The same arguments of the proof of Theorem 14 also show

that ~σ∗ sustains cooperation under the aforementioned restrictions on G∗: agents never gain by

lying about monitoring information, and if agent i omits messages in stage t to some agent j,

then i is punished at least once no later than stage t + cρ, so i also does not gain by omitting

messages to j if δ is sufficiently close to 1.

Summary

We have introduced a new game theoretical model of repeated games played on dynamic

networks and a novel notion of equilibrium for this model. Then, we used this model to anal-

yse infinitely repeated pairwise exchanges. In this analysis, we have identified necessary and

sufficient restrictions on the set of dynamic networks to sustain cooperation. Specifically, we

identified a tradeoff between restrictions on the network, restrictions on the utility, knowledge

that agents have about the topology, and types of punishments used by the protocols.

First, we have shown that it is not possible to sustain cooperation if the set G∗ of evolving

graphs that the adversary may generate is not restricted by weakly timely punishments; we

also showed that no protocol sustains cooperation in one-shot pairwise exchanges if the set G∗

is not restricted by strong timely punishments. Our second result provided a protocol that

sustains cooperation in valuable pairwise exchanges if agents can send more than one message

per stage, and G∗ is restricted by strong timely punishments. This shows that the restriction of

strong timely punishments is almost tight to sustain cooperation in many interactions of interest

6.3. SUSTAINING COOPERATION IN GENERAL PAIRWISE EXCHANGES 123

that can be modelled as valuable pairwise exchanges, e.g., secret-sharing of small but valuable

secrets (Halpern & Teague 2004; Abraham et al. 2006). Another consequence of these results is

that it is not possible to sustain cooperation in certain networks formed in file-sharing systems

such as BitTorrent (Cohen 2003), where agents with different interests interact only rarely.

Next, we considered the problem of sustaining cooperation in general one-shot pairwise

exchanges We have identified multiple problems with protocols that are not symmetric, and

we have identified a restriction on dynamic networks named eventual distinguishability that is

necessary to sustain cooperation with symmetric and bounded protocols. Finally, we have shown

that it is possible to sustain cooperation with symmetric and bounded protocols provided that

the network is always connected and agents know the degree of their neighbours. These results

provide a confirmation of the experimental results by Li et al. (2006, 2008).

For future work, it would be interesting to prove stronger impossibility results that would

close the gaps between weak and strong timely punishments in pairwise exchanges with multiple

rounds and between eventual distinguishability and connectivity with knowledge of degree in

general one-shot pairwise exchanges. Another open issue is collusion. We believe that both

the necessary and sufficient restrictions presented in this chapter could be strengthened by

generalizing the notion of causal influence without interference from individual agents to the

absence of interference from members of a coalition. Given these restrictions, the protocols

presented in this chapter are resilient to collusion.

In the next chapter, we present our results in the problem of consensus with rational be-

haviour and crashes.

124 CHAPTER 6. PAIRWISE EXCHANGES IN DYNAMIC NETWORKS

7Fair Consensus with

Crashes

We now address the problem of fair consensus with rational behaviour and crashes. We show

that (1) there is no fair consensus protocol that is an f -Nash equilibrium if f ≥ 1, (2) there

is a fair consensus protocol that is a π-Nash equilibrium if n > f + 1 and π satisfies minimum

properties, and (3) there is a fair consensus protocol that is a π-sequential equilibrium under

the same assumptions about n an π.

In the impossibility proof that there is no f -Nash equilibrium, we show that if the context

(F,~v) has a specific form, then some agent i can take advantage of knowing this to increase the

probability of obtaining consensus on its preferred value. More precisely, we show that there is

always a context (F,~v), a round m, and an agent j that crashes in round m, such that j sends a

round-m message to i, but if i deviates by pretending that it did not receive that message from

j, then the probability of deciding on i’s input increases, and so the expected utility of i also

increases.

We define a fair consensus protocol ~σnec that is a π-Nash equilibrium if n > f + 1 and π

satisfies minimum properties. The protocol runs in f+1 rounds. In each round, agents exchange

their inputs, reports of crashes, and random numbers. Agents use information about crashes

to agree on a set S of nonfaulty agents and their inputs, and they use the random numbers to

elect a leader at random among agents in S which input is selected as the final decision. ~σnec

provides two types of incentives for agents to not deviate:

1. Threat of punishment to agents that send messages inconsistent with the protocol : every

agent i checks for messages inconsistent with all agents following the protocol or crashing;

if an inconsistency is detected, then i ensures that there is no consensus by deciding Ψ,

thus punishing the agent that deviated (recall that we assume that agents prefer to reach

consensus than not to).

2. Threat of punishment to agents that pretend to crash: the inputs of faulty agents are

126 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

excluded from the decision; therefore, agents that pretend to crash are punished by having

their inputs decided with lower probability.

We prove that ~σnec satisfies the five properties of fair consensus assuming that at most f

agents fail and that n > f+1, but we make no assumptions about π. Then, we prove that ~σnec is

a π-Nash equilibrium assuming that agents care only about consensus, that n > f + 1, and that

π satisfies two properties, namely, π supports reachability and π is uniform. Roughly speaking,

we say that π supports reachability if it attributes small probability to particular failure patterns

that prevent information from one agent reaching an agent that has not crashed by the end of

the protocol; we say that π is uniform if it attributes equal probability to equivalent failures of

different agents. We believe that these assumptions apply in many practical systems; we discuss

this further in Section 7.3. To prove that ~σnec is a π-Nash equilibrium, we show that if an agent

i deviates from ~σnec by following an alternative strategy σi, then the expected utility of i does

not increase, for all possible deviations of i in σi. In the proof, we enumerate all the ways in

which i can deviate.

Finally, we prove that we can obtain a π-sequential equilibrium with minimal changes on

~σnec . To prove this result, we define a belief system µsec that is consistent with ~σnec and satisfies

the following property: if an agent i detects an inconsistency, then i believes with probability 1

that consensus will not be reached, such that agent i has no incentives to deviate by not deciding

Ψ. Therefore, the threats of punishment used in ~σnec are credible with µsec .

We now prove each of the results in turn. Table 7.1 summarizes the most important notation

used in this chapter. Since we only consider one stage of consensus, we drop all references to

stages in the notation.

7.1 An Impossibility Result

We now prove our main impossibility result that there is no f -Nash equilibrium protocol

that solves fair consensus with crashes.

Theorem 19. If ~σ solves fair consensus, agents care only about consensus, and f ≥ 1, then ~σ

is not an f -Nash equilibrium

7.2. OBTAINING A π-NASH EQUILIBRIUM 127

Proof. Consider the initial configuration ~v where all agents but i have initial preference 0 and i

has initial preference 1. If F 1 is the failure pattern where no agent fails, by Fairness, the agents

must decide 1 with positive probability in context (F 1, ~v). It follows that there must be a failure

pattern F 2 where only agent i fails but the agents decide 1 with positive probability in context

(F 2, ~v). (In F 2, i fails only after a decision has been made in F 1.) If F 0 is the failure pattern

where only i fails, and i fails immediately, before sending any messages, then it is clear that no

agents can distinguish this context from one where all agents have initial preference 0, so all

agents must decide 0, by the Validity requirement.

Put a partial order ≤ on failure patterns where only i crashes by taking F ≤ F ′ if either i

crashes in an earlier round in F than in F ′, or i crashes in the same round m in both F and F ′,

but the set of agents to whom i sends a message in F is a subset of the set of agents to whom i

sends a message in F ′. Clearly F 0 < F 2. Thus, there exists a minimal failure pattern F ∗ such

that F 0 < F ∗ ≤ F 2, only i fails in F ∗, the consensus is on 1 with positive probability in context

(F ∗, ~v), the consensus is 0 with probability 1 in all contexts (F,~v) where only agent i fails in F

and F < F ∗. We can assume without loss of generality that i sends a message to some agent

j in the round m in which i fails. To see this, note that if i crashes in the first round then i

must send a message to some agent (otherwise F ∗ = F 0 and the decision is 0 with probability

1). And if i crashes in round m > 1, we have assumed that i sends at least one message before

crashing (recall that we identify an agent crashing at round m > 1 and sending no messages

with the agent crashing at round m− 1 and sending to all agents).

Now suppose that an agent j that receives a message from i in round m pretends not to

receive that message. This makes the situation indistinguishable from the context (F,~v) where

F is just like F ∗ except that i does not send a message to j in round m. Since F 0 ≤ F < F ∗,

the decision must be 0 with probability 1 in context (F,~v). Since j has initial preference 0 in ~v,

j can increase its expected utility by this pretence, so ~σ is not an f -Nash equilibrium.

7.2 Obtaining a π-Nash equilibrium

We now prove a positive result. If we are willing to assume that there is a distribution π

on contexts with some reasonable properties, then we can get a fair π-Nash equilibrium. But,

as we show below, there are some subtle problems in doing this.

128 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Before discussing these problems, it is useful to recall some results from social choice theory.

Consider a setting with n agents where each has a preference order (i.e., a total order) over

some set O of outcomes. A social-choice function is a (possibly randomized) function that maps

a profile of preference orders to an outcome. For example, we can consider agents trying to

elect a leader, where each agent has a preference order over the candidates; the social-choice

function chooses a leader as a function of the expressed preferences. A social-choice function is

incentive compatible if no agent can do better by lying about its preferences. The well-known

Gibbard-Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975) says that if there are at least

three possible outcomes, then the only incentive-compatible deterministic social-choice function

f is a dictatorship; i.e., the function f just chooses a player i and takes the outcome to be i’s

most-preferred candidate, ignoring all other agents’ preferences. Gibbard (1977) extends this

result to show that if there are at least three outcomes, then the only randomized incentive-

compatible social-choice function is a random dictatorship, which essentially amounts to choosing

some player i according to some probability distribution and then choosing i’s value.

Bei et al. (2012) point out that a strategy profile that solves consensus can be viewed as

a social-choice function: agents have preferences over three outcomes, 0, 1, and Ψ, and the

consensus value (or Ψ, if there is no consensus) can be viewed as the outcome chosen by the

function. A strategy profile that is a Nash equilibrium is clearly incentive-compatible; no agent

has an incentive to lie about its preferences. Thus, it follows from Gibbard’s (1977) result that

a solution to rational consensus must be a randomized dictatorship. And, indeed, our protocols

can be viewed as implementing a randomized dictatorship: one agent is chosen at random, and

its value becomes the consensus value. However, implementing such a randomized dictatorship

in our setting is nontrivial because of the possibility of failures 1.

7.2.1 A Naive Protocol

We start with a protocol that, while not solving the problem, has many of the essential

features of our solution, and also helps to point out the subtleties. Consider the following

slight variant of one of the early protocols for consensus (Dolev & Strong 1982). In round 1,

1We remark that Theorem 1 of Bei et al. (2012) claims that, given a fixed failure pattern, a strategy profile for
consensus that is a Nash equilibrium must implement a dictatorship, rather than randomized dictatorship. While
this is true if we restrict to deterministic strategies, neither we nor Bei et al. do so. We have not checked carefully
whether results of Bei et al. that depend on their Theorem 1 continue to hold once we allow for randomized
dictatorships.

7.2. OBTAINING A π-NASH EQUILIBRIUM 129

each agent i broadcasts a tuple (i, vi, xi0, . . . , xif), where vi is i’s initial preference, and xit is a

random element in {0, . . . , n− t}. For round 2, . . . , f + 1, each agent i broadcasts all the tuples

(j, vj , ~xj) that i received and did not already forward in earlier rounds. At the end of round

f + 1, each agent checks for consistency; specifically, it checks that it has received tuples from

at least n − f agents and that it has not received distinct tuples claimed to have been sent by

some agent j. If i detects an inconsistency, then i decides Ψ. Otherwise, suppose that i received

tuples from n− t agents. Then i computes the sum mod n− t of the values xjt for each agent

j from which it received a tuple. If the sum is S, then i decides on the value of the agent with

the (S + 1)st highest id among the n − t agents from which it received tuples. (Here is where

we are implementing the random dictatorship.) Note that the random value xjt is used by i in

computing the consensus value if exactly t faulty agents are discovered; the remaining random

values sent by agent j in the first round are discarded.

It is straightforward to check that if all nonfaulty agents follow this protocol, then they will

all agree on the set of tuples received (see the proof of Theorem 20 for an argument similar in

spirit), and so will choose the same decision value, and each agent whose value is considered has

an equal chance of having their value determine the outcome. But this will not be in general

a π-Nash equilibrium if π allows up to f failures, that is, π puts probability 0 on all failure

patterns that have more than f failures and f ≥ 2.

Consider a distribution π that puts positive probability on all contexts with at most f

failures, and an initial configuration where agent 1 prefers 1, but all other agents prefer 0.

Agent 1 follows the protocol in the first round, and receives a message from all the other agents.

We claim that agent 1 may have an incentive to pretend to fail (without sending any messages)

at this point. Agent 1 can gain by doing this if one of the other agents, say agent 2, crashed

in the first round and sent a message only to agent 1. In this case, if 1 pretends to crash, no

other agent will learn 2’s initial preference, so 1’s initial preference will have a somewhat higher

probability (at least 1
n−1 −

1
n) of becoming the consensus decision. Of course, there is a risk in

pretending to crash: if f agents really do crash, then an inconsistency will be detected, and the

decision will be Ψ. Let α<f be the probability of there being fewer than f failures and at least

one agent crashing in the first round who does not send to any agent other than 1 (this is the

probability that 1 gains some utility by its action); let α=f be the probability of there being f

crashes other than 1 (this is an upper bound on the probability that 1 loses utility by its action).

130 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Then 1’s expected gain by deviating is at least

(β0i − β1i)

(
1

n− 1
− 1

n

)
α<f − (β0i − β2i)α=f .

This is a small quantity. However, if f is reasonably large and failures are unlikely, we would

expect α=f to be much smaller than α<f , so as the number f of failures that the protocol is

designed to handle increases, deviating becomes more and more likely to produce a (small) gain.

7.2.2 A π-Nash equilibrium

There are three problems with the preceding protocol. The first is that, even if 1 pretends

to fail, 1’s value will be considered a potential consensus value, since everyone received the value

before 1 failed. This means that there is little downside in pretending to fail. Roughly speaking,

we deal with this problem by taking into consideration only the values of nonfaulty agents when

deciding on a consensus value. The second problem is that since agents learn the random values

(xi0, . . . , xif) that will be used in determining the consensus value in round 1, they may be

able to guess with high probability the value that will be decided on at a point when they can

still influence the outcome. To address this problem, agents do not send these random values

in the first round; instead, they use secret sharing (Shamir 1979), so as to allow the nonfaulty

agents to reconstruct these random values when they need to decide on the consensus value.

This prevents agents from being able to guess with high probability what the decision will be

too early. The third problem is that in some cases agents can safely lie about the messages sent

by other agents (e.g., i can pretend that another agent did not crash). We could solve this by

assuming that messages can be signed using unforgeable signatures. We do not need this or any

other cryptographic assumption. Instead, we use some randomization to ensure that if an agent

lies about a message that was sent, it will be caught with high probability.

Thus, in our algorithm, an agent i generates random numbers for two reasons. The first is

that it generates f+1 random numbers (xi0, . . . , xif), where xit is used in choosing the consensus

value if there are exactly t faulty agents discovered, and then, as we suggested above, shares

them using secret sharing, so that the numbers can be reconstructed at the appropriate time

(see below). The second is that it generates n − 1 additional random numbers, denoted zmij [i],

one for each agent j 6= i, in each round m, and sends them to j in round m. Then if agent j

7.2. OBTAINING A π-NASH EQUILIBRIUM 131

claims that it got a message in round m from i, it will have to also provide zmij [i] as proof.

In more detail, we proceed as follows. Initially, each agent i generates a random tuple

(xi0, . . . , xif), where xit is in {0, . . . , n − t}. It then computes f + 1 random polynomials

qi0, . . . , qif , each of degree 1, such that qit(0) = xit. It then sends (qi0(j), . . . , qif (j)) to agent

j. The upshot of this is that no agent will be able to compute xit given this information (since

one point on a degree-1 polynomial qit gives no information regarding qit(0)). In addition, in

round 1, each agent i sends vi to each agent j, just as in the naive algorithm; it also generates

the random number z1
ij [i] and a special random number z, and sends each agent the vector

z1
ij = (z1

ij [1], . . . , z1
ij [n]), where z1

ij [j
′] = 0 for j′ 6= i, j and z1

ij [j] = z. (As we said, these random

numbers form a “signature”; their role will become clearer in the proof.) Finally, in round 1,

agent i sends a status report SR1
i ; we discuss this in more detail below. In the receive phase of

round 1, agent i adds all the values received from other agents to the set STi.

In round m with 2 ≤ m ≤ f , i again sends a status report SRmi and a vector zmij . For each

agent j, SRmi [j] is a tuple of the form (m,x), where m is the first round that i knows that j

crashed (m = ∞ if i believes that j has not yet crashed), and x is either the vector zm−1
ji of

random values sent by j in m−1 (if i believes that j has not yet crashed) or an agent that told i

that j crashed in round m. The tuple zmij is computed by setting zmij [l] for l 6= i, j to be zm−1
li [l],

the random number sent by l in the previous round (this will be used to prove that i really got a

message from l in the previous round—it is our replacement for unforgeable signatures); again,

zmij [i] is a random value generated by i. In round f + 1, i also sends j the secret shares ytli it

received in round 1 from each agent l (i.e., the value qtl (i) that it received from l, assuming that

l did not lie). This enables j to compute the polynomials qit, and hence the secret qit(0) = xit

for 0 ≤ t ≤ f .

If i detects an inconsistency in round m ≤ f + 1, then i decides Ψ, where i detects an

inconsistency in round m if the messages received by i are inconsistent with all agents following

the protocol except that up to f agents may crash. This can happen if

1. j sends incorrectly formatted messages;

2. m = 2 and agents j′ and j′′ 6= i disagree about the random values z1
jj′ [j

′] and z1
jj′′ [j

′′] sent

by j in round 1;

3. m > 2 and some agent j′ 6= j reports that j sent a value zm−1
jj′ [i] in round m− 1 different

132 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

from the value zm−2
ij [i] sent by i to j in round m− 2;

4. m = f + 1 and it is not possible to interpolate a polynomial qtj through the shares ytji

received by i from j in round 1 and the values ytjl received from l 6= j in round f + 1.

5. i learns that j crashed in some round m′ (i.e, either j omits a message to i in round m′ or

some agent j′ sends i a status report in round m that says that j crashed in m′) and sent

a message in round m′′ > m′ (i.e. either i receives a message from j in round m′′ > m′ or

some agent j′′ sends i a status report saying that it received a message from j in a round

m′′ > m′);

6. for some agents j, j′, and j′′, j sends i a status report in round m that says that j′′ crashed

in round m′ and that j′ reported this, but j′ sends i a status report in round m that says

that j′′ did not crash before round m′′ > m′;

7. for some agents j, j′, and j′′, j sends i a status report in round m that says that j′ did

not crash by round m− 1 and j′′ crashed in some round m′ < m, while j′ sends i a status

report in round m − 1 saying that j′′ crashed in round m′′ < m′ (so either j ignored the

report about j′′ sent by j′ or j′ lied to j);

8. more than f crashes are detected by i by round m (i.e., f or more agents have not sent

messages to i or were reported to crash in some round up to and including m).

If agent i does not detect an inconsistency at some round m ≤ f + 1, i proceeds as follows

in round f + 1. For each round 1 ≤ m ≤ f + 1 in a run r, agent i computes NCm(r), the set

of agents that it believes did not crash up to and including round m. Take NC0(r) = N (the

set of all agents). Say that round m in run r seems clean if NCm−1(r) = NCm(r). As we show

(Theorem 20), if no inconsistency is detected in run r, then there must be a round in r that

seems clean. Moreover, we show that if m∗ is the first round in r that seems clean to a nonfaulty

agent i, then all the nonfaulty agents agree that m∗ is the first round that seems clean in r,

and they agree on the initial preference of all agents in NCm∗(r), and the random numbers sent

by these agents in round 1 messages in run r. The agents then use these random numbers to

choose an agent j among the agents in NCm∗(r) and take vj to be the consensus value.

The pseudocode for the algorithm of ~σnec that implements this idea is given in Alg. 5.

Lines 1–14 initialize the values of ST and SR1[j], as well as the random numbers required in

7.2. OBTAINING A π-NASH EQUILIBRIUM 133

round 1; that is, i generates xi[t] and the corresponding polynomial qti used for secret sharing

for 0 ≤ t ≤ f , and random vectors (z1
ij [1], . . . , z1

ij [n]) for j 6= i, where z1
ij [l] ∈ {0, . . . , n− 1}. In

the send phase of round m, i sends SRmi and zmij . If m = 1, then i also sends vi and (y0
ij , . . . , y

f
ij)

to j, where ytij = qti(j); that is, ytij is j’s share of the secret xti. Finally, if m = f + 1, instead of

sending zmij to j, i sends all the shares ytli it has received from other agents, so that all agents can

compute the secret (lines 16-21). In phase 2 (the “receive” phase) of round m, i processes all

the messages received and keeps track of all agents who have crashed (lines 22-38). If i receives

a round m message from j, then i adds (j, vj) to STi if m = 1, includes in SRmi [j] the vector z

sent by j to i, and updates the status report SRmi [l] of each agent l. Specifically, if j reports

that j′ crashed in a round m′ and i earlier considered it possible that j′ was still nonfaulty

at round m′, then i includes in SRmi [l] the fact that j′ crashed and that j is an agent that

reported this fact (lines 29-33); if i does not receive a round m message from j and i believed

that j did not crash before, then i marks j as crashed (line 35). In phase 3 (the “update”

phase) of round m ≤ f , i generates the random value zm+1
ij [i] for the next round. If i detects

an inconsistency, then i decides Ψ (line 41); if no inconsistency is detected by the end of round

f + 1, then i decides on a value (lines 46-56) by computing the set NCm′ for every round m′,

determining the earliest round m∗ that seems clean (NCm∗ = NCm∗−1), computing a random

number S ∈ {0, . . . , n − t − 1}, where t is the number of crashes that occurred before m∗, by

summing the random numbers xj [t] of j ∈ NCm∗ (computed by interpolating the polynomials),

and deciding on the value of the agent in NCm∗ with the (S + 1)st highest id.

7.2.3 Analysis

We now prove that ~σnec gives a π-Nash equilibrium, under reasonable assumptions about

π. We first prove that the protocol satisfies all the properties of fair consensus without making

any assumptions about π.

Theorem 20. ~σnec solves fair consensus if at most f agents crash, f + 1 < n, and all the

remaining agents follow the protocol.

Proof. Consider a run r where all agents follow ~σnec and at most f agents crash. It is easy to see

that no inconsistency is detected in r. Since an agent crashes in at most one round and there are

at most f faulty agents, there must exist a round 1 ≤ m ≤ f + 1 when no agent crashes. Let m∗

134 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Algorithm 5 σneci (vi): i’s consensus protocol with initial value vi
1: decided ← False
2: STi ← {(i, vi)}
3: z ← random in {0 . . . n− 1}
4: for all j 6= i do
5: SR1

i [j] ← (∞,⊥) . All agents are initially active
6: for all l 6= j, i do
7: z1ij [l] ← 0

8: z1ij [i] ← random in {0 . . . n− 1} . Random number to be used by j in round 2

9: z1ij [j] ← z . Proves that i sends round 1 message to j

10: for all 0 ≤ t ≤ f do
11: xi[t] ← random in {0, . . . , n− t− 1} . A random number for each possible value of t
12: qti ← random polynomial of degree 1 with qti(0) = xi[t]
13: for all j 6= i do
14: yij [t] ← qti(j)

15: for all round 1 ≤ m ≤ f + 1 such that ¬decided do
16: Phase 1: send phase
17: for all j 6= i do

18: if m = 1 then Send 〈vi, SRmi , (y0ij , . . . , y
f
ij), z

m
ij 〉 to j

19: if 2 ≤ m ≤ f then Send 〈SRmi , zmij 〉 to j

20: if m = f + 1 then Send 〈SRmi , (y0li, . . . , y
f
li)l 6=j〉 to j

21: EndPhase

22: Phase 2: receive phase
23: SRm+1

i ← SRmi
24: for all j 6= i do
25: if receive valid message from j then
26: if m = 1 then STi ← STi ∪ {(j, vj)} . STi contains all the values that i has seen

27: SRm+1
i [j]← (∞, zmji) . Note that j is still active

28: for all l 6= i, j do
29: if SRmj [l] = (m′, j′) and SRmi [l] = (m′′, j′′) and m′ < m′′ then

30: SRm+1
i [l]← (m′, j) . l crashed earlier than previously thought

31: zm+1
il [j]← ⊥

32: else if SRmj [l] = (∞, zmj) then

33: zm+1
il [j] = zmji [j]

34: else if SRm+1
i [j] = (∞, z′) for some z′ then

35: SRm+1
i [j]← (m, i) . i detects a crash of j

36: for all l 6= i do
37: zm+1

il [j]← ⊥
38: EndPhase

39: Phase 3: update phase
40: if an inconsistency is detected then
41: Decide(Ψ) . Punishment
42: decided ← True
43: else if m ≤ f then
44: for all j 6= i do
45: zm+1

ij [i] ← random in {0, . . . , n− 1}
46: else if decided = False then
47: NC0 = N
48: for all 1 ≤ m′ ≤ f + 1 do

49: NCm′ ← {j ∈ N \ {i} | ∀m′′≤m′,lSR
f+2
i [j] 6= (m′′, l)} ∪ {i} . Agents that did not crash up to round m′

50: m∗ ← first round m′ such that NCm′ = NCm′−1 . First round that seems clean
51: t ← n− |NCm∗ | . Number of crashes prior to m∗

52: for all j ∈ NCm∗ do
53: qtj ← unique polynomial interpolating the values ytjl received . otherwise, an inconsistency was detected

54: xj [t]← qtj(0)

55: S ←
∑
j∈NCm∗

xj [t] mod (n− t) . Calculate a random number in 0, . . . , n− t− 1

56: Decide(vj), where j is the (S + 1)st highest id in NCm∗

57: EndPhase

7.2. OBTAINING A π-NASH EQUILIBRIUM 135

be the first such round. We prove that for all nonfaulty agents i and j, NCim(r) = NCjm(r) for

all m ≤ m∗ (where NCim(r) denotes i’s version of NCm(r) in run r, and similarly for j). To see

this, fix two nonfaulty agents i and j. Agent i adds agent l to NCim(r) iff i receives a message

from l in every round m′ ≤ m of run r, and i receives no status report indicating that l crashed

in some round m′ ≤ m. If m < m∗, then it must be the case that j also received a message

from l in every round m′ < m of r and neither received nor sent a status report indicating that

l crashed in a round m′ ≤ m; otherwise j would have learned about this crash by round m and

would have told i by round f + 1 that l was faulty (since j is nonfaulty). Thus, l ∈ NCjm(r).

If m = m∗, then l sends a round m′ message to all agents for all m′ < m∗; and since no agents

fail in round m∗, by assumption, we again have l ∈ NCjm(r). Thus, NCim(r) ⊆ NCjm(r); similar

arguments give the opposite inclusion.

Note that since no agent crashes in round m∗, it is easy to see that we must have NCim∗(r) =

NCim∗−1(r) for all nonfaulty agents i, so round m∗ seems clean. With these observations, we

can now prove that ~σnec satisfies each requirement of Fair Consensus in r.

Validity: Since no inconsistency is detected, every agent i decides a value different from Ψ

in r. Agent i always finds some round m∗ that seems clean, computes a nonempty set NCm∗(r),

which includes at least i, and knows the random numbers sent by these agents in round m∗.

Since STi contains only initial preferences, i decides the initial preference of some agent in

NCm∗(r).

Termination and Integrity: Every agent either crashes before deciding or decides exactly

once at the end of round f + 1.

Agreement: We have shown that all nonfaulty agents i and j agree on NCm(r) for all

m ≤ m∗. We thus omit the superscripts i and j on NCm(r) from here on in. Given this, they

agree on whether each round m ≤ m∗ seems clean and thus agree that some m ≤ m∗ is the

first round that seems clean in r. Moreover, i and j receive identical round 1 messages from the

agents in NCm(r). It follows that i adds a tuple (l, vl) to STi for l ∈ NCm(r) iff j adds that

tuple to STj . Suppose that |NCm(r)| = n − t. Since NCm(r) must include all the nonfaulty

agents, we must have t ≤ f . Clearly, if l ∈ NCm(r), then i and j must receive the values ytli

and ytlj in round 1 messages sent by l. Agents i and j also receive ytll′ from each nonfaulty agent

l′. Since there are at least n − f ≥ 2 nonfaulty agents, and l follows σnecl , i and j will be able

to interpolate the polynomial qtl , and compute xl[t] = qtl (0). Consequently, i and j agree on the

136 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

information relevant to the consensus decision, so must decide on the same value.

Fairness: The probability of the initial preference of each agent in NCm(r) being decided

is 1/|NCm(r)|. Since |NCm(r)| ≤ n, if c nonfaulty agents in NCm initially have preference v,

then the probability of v being decided is at least c/|NCm(r)| ≥ c/n. Since NCm(r) contains all

the nonfaulty agents, Fairness holds.

It remains to show that ~σnec is a π-Nash equilibrium. We show that ~σnec is a π-Nash

equilibrium under appropriate assumptions about π. Specifically, we assume that π supports

reachability and is uniform, notions that we now define.

The reachability assumption has three parts. The first two parts consider how likely it is

that some information that an agent j has will reach an agent that will decide on a value; the

third part is quite similar, and considers how likely it is that a nonfaulty agent becomes aware

that an agent j failed in round m. Of course, the answer to these questions depends in part

on whether agents are supposed to send messages in every round (as is the case with ~σnec). In

the formal definition, we implicitly assume that this is the case. (So, effectively, the reachability

assumption is appropriate only for protocols where agents send messages in every round.) Given

agents i and j 6= i, a round-m information set Ii for i, a failure pattern F compatible with Ii, in

that R(F)∩R(Ii) 6= ∅, and m′ ≥ m, say that a nonfaulty agent l 6= i is reachable from j without

i between rounds m′ and f + 1 given F if there is a sequence jm′ , . . . , jf+1 of agents different

from i such that j = jm′ , for m′′ = {m′, . . . , f}, jm′′ has not failed prior to round m′′ according

to F , and either does not fail in round m′′ or, if m′′ < f + 1, jm′′ fails in round m′′ but sends a

message to jm′′+1 before failing (i.e., if (jm′′ ,m
′′, A) ∈ F , then jm′′+1 ∈ A), and l = jf+1.

Note that if j is nonfaulty according to F , then a nonfaulty agent is certainly reachable

from j without i between rounds m′ and f + 1; just take jm′ = · · · = jf+1 = j. But even if j

fails in round m′ according to F , as long j can send a message to a nonfaulty agent other than

i, or there is an appropriate chain of agents, then a nonfaulty agent is reachable from j without

i by round f + 1. The probability of there being a failure pattern for which a nonfaulty agent

is reachable from j without i depends in part on how many agents are known to have failed in

Ii; the more agents are known not to have failed, the more likely we would expect a nonfaulty

agent to be reachable from j without i.

We also want this condition to hold even conditional on a set of failure patterns, provided

7.2. OBTAINING A π-NASH EQUILIBRIUM 137

that the set of failure patterns does not favor particular agents failing. To make this precise, we

need a few more definitions. Say that an agent j is known to be faulty in Ii if j is faulty in all

runs in R(Ii); thus, j is known to be faulty in Ii if j did not send a message to i at round m− 1

according to Ii. Say that a set F of failure patterns satisfies the permutation assumption with

respect to a set F of failures and an information set Ii if, for all permutations g of the agents

that keep fixed the agents that fail in F or are known to be faulty in Ii, if F ′ ∈ F , then so is

g(F ′), where g(F ′) is the failure pattern that results by replacing each triple (j,m′′, A) ∈ F ′ by

(g(j),m′′, g(A)). F satisfies the permutation assumption with respect to Ii if F satisfies it with

respect to the empty set of failures and Ii. Let R(F) = ∪F∈FR(F).

We say that π supports reachability if for all agents i, all time-m information sets Ii such

that M agents are not known to be faulty in Ii, failure pattern F , and all sets F of failure

patterns that satisfy the permutation assumption with respect to F and Ii, we have that

1. if j 6= i is not known to be faulty in Ii and is not in F , then

π(no nonfaulty agent l 6= i is reachable from j without i

between rounds m and f + 1 | R(Ii) ∩R(F) ∩R(F)) ≤ 1
2M ;

2. if j 6= i is not known to be faulty in Ii and is not in F , then

π(no nonfaulty agent l 6= i is reachable from j without i

between rounds m− 1 and f + 1 | R(Ii) ∩R(F) ∩R(F)) ≤ 1
2M ;

3. if a message from some agent j not in F was received up to and including round m − 2

but not in round m− 1, then

π(no nonfaulty agent l 6= i is reachable from an agent j′ 6= i

that did not receive a message from j in round m− 1 without i

between rounds m and f + 1 | R(Ii) ∩R(F) ∩R(F)) ≤ 1
2M .

The first two requirements essentially say that if i hears from j in round m − 1, then it is

likely that other agents will hear from j as well in a way that affects the decision, even if i does

not forward j’s information. That is, it is unlikely that j will fail right away, and do so in a way

that prevents its information from having an effect. Similarly, the third requirement says that

138 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

if i does not hear from j in round m − 1 (as reflected in Ii), then it is likely that other agents

will hear that j crashed at or before round m− 1 even if i does not report this fact.

We next define the notion of uniformity. Given two failure patterns F 1 and F 2, we say that

F 1 and F 2 are equivalent if there is a permutation g of the agents such that F 2 = g(F 1). We

say that π is uniform if, for all equivalent failure patterns F 1 and F 2 and vectors ~v of initial

preferences, we have π(F 1, ~v) = π(F 2, ~v). Intuitively, if π is uniform, then the probability of

each failure pattern depends only on the number of messages omitted by each agent in each

round; it does not depend on the identity of faulty agents.

The following lemma will prove useful in the argument, and shows where the uniformity

assumption comes into play. Roughly speaking, the lemma says that if the agents run ~σnec ,

then each agent i’s expected value of its initial preference being the consensus value is just its

current knowledge about the fraction of nonfaulty agents that have its initial preference. The

lemma’s claim is somewhat stronger, because it allows for expectations conditional on certain

sets of agents failing.

Before stating the lemma, we need some definitions. Let R(D≥m) consist of all runs where

a decision is made and the first round that seems clean is m′ ≥ m. A set F of failure patterns,

a failure pattern F , a round-m information set Ii for i, and m′ ≥ m are compatible if (a) all

the failures in F happen before round m′, (b) m′ ≤ f + 1, and (c) F satisfies the permutation

assumption with respect to Ii and F . Given an agent i and a run r where consensus is reached,

let nc(r) be the number of agents who apparently have not crashed in the first round of r that

seems clean (i.e., if m is the first clean round in r, then nc(r) = |NCm(r)|), and let ac(r) be the

number of these agents in r that have initial preference 1. Given an information set Ii ∈ Ii and

a failure pattern F , let AF be the set of agents who are faulty in F ; let A consist of the agents

known to be faulty in Ii; let n(Ii, F) = n−|A∪AF |; and let a(Ii, F) be the agents not in A∪AF

that have initial preference 1. Note that nc and ac are random variables on runs (i.e., functions

from runs to numbers); technically, a(Ii, F) and n(Ii, F) are also random variables on runs, but

n(Ii, F) is constant on runs in R(Ii), while a(Ii, F) is constant on runs in R(Ii) if m ≥ 2, since

then Ii contains the initial values of nonfaulty agents.

Lemma 21. If i is an agent who is nonfaulty at the beginning of round m ≤ f + 1 and has

information set Ii (so that Ii is a round-m information set), F is a failure pattern, m′ ≥ m, F

is a set of failure patterns such that F , F , Ii, and m′ are compatible, π is a distribution that

7.2. OBTAINING A π-NASH EQUILIBRIUM 139

supports reachability and is uniform, and π~σnec (R(Ii) ∩R(F) ∩R(F) ∩R(D≥m′)) > 0, then

E[ac/nc | R(Ii) ∩R(F) ∩R(F) ∩R(D≥m′)] = E[a(Ii, F)/n(Ii, F) | R(Ii)], (7.1)

where the expectation is taken with respect to π~σnec .

Proof. Let f ′ = |A ∪ AF | = n − n(Ii, F). For all f ′′ with f ′ ≤ f ′′ ≤ f , let Rf ′′ consists of all

runs r where agents are using ~σnec such that exactly f ′′ agents are viewed as faulty in the first

round that seems clean. We claim that, for all f ′′, we have

E[ac/nc | Rf ′′ ∩R(Ii) ∩R(F) ∩R(F) ∩R(D≥m′)] = E[a(Ii, F)/n(Ii, F) | R(Ii)).

Clearly, (7.1) follows immediately from this claim.

We can calculate the relevant expectations using algebra, but there is an easier way to see

that the claim holds. First suppose that m′ > 1 (so that a(Ii, F) and n(Ii, F) are constants

on R(Ii)). If the first clean round occurs at or after m′, then it is easy to see that all the

agents in A ∪ AF will be viewed as faulty in that round (by all nonfaulty agents), since all

these agents fail before round m′. Note that the set of agents viewed as faulty in the first clean

round of run r is completely determined by the failure pattern in r. Moreover, it easily follows

from the uniformity assumption, the fact that ~σnec treats agents uniformly, and the fact that

F satisfies the permutation assumption that each set B of cardinality f ′′ that includes A ∪ AF

is equally likely to be the set of agents viewed as faulty in the first clean round of a run in

Rf ′′ ∩R(Ii) ∩R(F) ∩R(F) ∩R(D≥m).

Consider the following experiment: choose a set B of f ′′ agents containing A∪AF uniformly

at random, and then choose one more agent j /∈ B at random. Assign a pair (B, j) value 1 if the

agent j chosen has initial preference 1 in all runs of Ii; otherwise, assign it value 0. It is easy to

see that the expected value of a pair is precisely E[ac/nc | Rf ′′∩R(Ii)∩R(F)∩R(F)∩R(D≥m)].

The f ′′ agents in B constitute the set of faulty agents. The fact that B is chosen uniformly at

random (among sets of cardinality f ′′ containing A ∪ AF) corresponds to the assumption that

all choices of B are equally likely. The last agent chosen determines the consensus value; as long

as there is at least one nonfaulty agent, the procedure used in runs of ~σnec guarantees that all

choices of j are equally likely.

140 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Now switch the order that the choices are made: we first choose a nonfaulty agent not in

A ∪ AF uniformly at random and then choose f ′′ − |A ∪ AF | other agents not in A ∪ AF who

will fail uniformly at random. It is clear that there is a one-to-one correspondence between the

choices in the first experiment and the second experiment: in corresponding choices, the same

set of f ′′ − f ′ agents fail and the same other agent is chosen to determine the consensus value.

Moreover, corresponding choices are equally likely. With the second experiment, it is immediate

that the expected value is a(Ii, F)/n(Ii, F).

If m′ ≤ 1, then the argument is the same, except that the value of (B, j) is chosen according

to the distribution of initial preferences of agents j /∈ B in runs where the faulty agents are

exactly the ones in B. This concludes the proof.

Theorem 22 shows that ~σnec is a π-Nash equilibrium, as long as f + 1 < n and π supports

reachability and is uniform.

Theorem 22. If f+1 < n, π is a distribution that supports reachability, is uniform, and allows

up to f failures, and agents care only about consensus, then ~σnec is a π-Nash equilibrium.

Proof. Fix an agent i and a strategy σi. We must show that we have

ui(~σ
nec) ≥ ui((σi, ~σnec−i)). (7.2)

Suppose, by way of contradiction, that (7.2) does not hold. Then i must deviate from σneci

at some round m. Consider all the ways that i can deviate in round m that can affect the

outcome (we discuss what it means to affect the outcome shortly):

1. i pretends to crash; it does not send messages to some subset of agents in round m (and

then does not not send messages from then on).

2. m = 1 and i sends (i, 1− vi) to some agent j 6= i (i.e., i lies about its initial preference to

at least one agent).

3. i sends an incorrectly formatted message to j 6= i (i.e., i sends a message that is different

in format from that required by ~σnec).

7.2. OBTAINING A π-NASH EQUILIBRIUM 141

4. m = 1 and i sends values ytij to an agent j 6= i such that there is no polynomial qti of

degree 1 that interpolates them all or does not choose the polynomials qti at random.

5. i does not choose some zmij appropriately (as specified by ~σnec).

6. m < f + 1 and i decides on a value in {0, 1} in round m or m = f + 1 and i decides on an

incorrect value on the equilibrium path.

7. m = f + 1 and i sends a value ytji to j′ 6= i different from the value ytji that i received from

j in round 1.

8. i does not send a round m′ < m message to some agent j that i does not know at round

m to have been faulty in round m′, and sends a round m message to j′ 6= i.

9. i lies about j’s initial preference to an agent j′ 6= i; that is, i sends a pair (j, vj) to j′

although there is no pair (j, vj) ∈ STi or it does not send a pair (j, vj) to j′ although there

is such a pair in STi.

10. i lies about j’s status to j′ 6= i; that is, i sends j′ a status report SR
m
i such that SR

m
i [j] 6=

SRmi [j].

Note that in a deviation of type 8, we did not consider the case where i deviates by not

sending a message to j in round m′ and then sending a message to j′ if i knows that j failed in

round m′. In this case, i’s deviation is undetectable, and will not affect the outcome. Clearly if

i performs only such undetectable deviations, then σi is equivalent to σneci , so we do not need

to worry about these deviations.

We consider these deviations one by one, and show that none of them makes i better off.

More precisely, we show that if σi involves only deviations 1–d on the list above for appropriate

choices of d, then (7.2) holds. But even this “brute force” argument requires some care, using a

somewhat delicate induction on the number of deviations that i is better off not deviating.

We now prove (7.2). We start with the first type of deviation; that is, suppose that σi involves

only i pretending to crash and that if I∗i is a time-m∗ information set for i, F is a set of failure

patterns that satisfies the permutation assumption relative to I∗i , π~σnec (R(I∗i)∩R(F)) > 0, and

either there are no deviations in runs in R(I∗i) or the first deviation in a run in R(I∗i) occurs at

or after information set I∗i , then

142 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

ui(~σ
nec | R(I∗i) ∩R(F)) ≥ ui((σi, ~σnec−i) | R(I∗i) ∩R(F)). (7.3)

(7.2) clearly follows from (7.3) by taking I∗i to be the initial information set and letting F

be the set of all failure patterns compatible with I∗i .

Given a strategy profile ~σ, let R(~σ) denote the possible runs of ~σ. If there are no runs in

R(σi, ~σ
nec
−i) ∩R(I∗i) in which i pretends to fail, then conditional on R(I∗i), σi and σosci agree, so

(7.3) holds. If there are runs in R(σi, ~σ
nec
−i)∩R(I∗i) in which i pretends to fail, then we proceed

by induction on the number of information sets Ii at or after I∗i at which i first pretends to crash

such that π(σi,~σnec
−i)(R(I∗i) ∩ R(F) ∩ R(Ii)) > 0. Suppose that i first pretends to crash at some

information set Ii that comes at or after I∗i and π(σi,~σnec
−i)(R(I∗i) ∩ R(F) ∩ R(Ii)) > 0. Thus,

there are no runs in R(Ii) in which i pretends to crash prior to information set Ii. Let σ′i be

identical to σi except that i does not pretend to fail at or after Ii. By (7.3),

ui(~σ
nec | R(I∗i) ∩R(F)) ≥ ui((σ′i, ~σnec−i) | R(I∗i) ∩R(F)).

We now show that

ui((σ
′
i, ~σ

nec
−i) | R(I∗i) ∩R(F)) ≥ ui((σi, ~σnec−i) | R(I∗i) ∩R(F)). (7.4)

(7.3) follows immediately.

To prove (7.4), since R(I∗i) is the union of all the time-m information sets for i that follow

I∗i , it suffices to prove that for all time-m information sets I ′i for i that follow I∗i , we have

ui((σ
′
i, ~σ

nec
−i) | R(I ′i) ∩R(F)) ≥ ui((σi, ~σnec−i) | R(I ′i) ∩R(F)) (7.5)

(provided, of course, that π~σnec (R(I ′i)∩R(F)) > 0; in the future, we take it for granted that the

relevant results apply only if we are conditioning on a set with positive measure). (7.4) clearly

follows from (7.5), since the time-m information sets for i partition R(I∗i) ∩R(F).

If I ′i 6= Ii, then (7.5) holds trivially, since in that case σ′i agrees with σi at I ′i and all

subsequent information sets. Thus, it suffices to prove (7.5) in the case that I ′i = Ii. We can

assume without loss of generality that i’s actions at and after Ii are deterministic. If i is better

7.2. OBTAINING A π-NASH EQUILIBRIUM 143

off by pretending to fail at Ii with some probability, then i is better off by pretending to fail at

Ii with probability 1. Note that (a) whether or not there is a seemingly clean round, (b) which

is the first seemingly clean round if there is one, and (c) which agents are considered nonfaulty

at that round are completely determined by the failure pattern. Specifically, a particular failure

pattern F ′ ∈ F determines the first seemingly clean round m∗. We partition the set F into four

sets, F1, . . . ,F4, and show that conditional on R(Ii) ∩ R(Fj), agent i does at least as well by

using σ′i as it does by using σi, for j = 1, . . . , 4.

F1 deals with a trivial case; the remaining elements of the partition consider the first

seemingly clean round of (σ′i, ~σ
nec
−i) and (σi, ~σ

nec
−i). (7.5) in the case that I ′i = Ii clearly follows

from this.

(a) F1 consists of the failure patterns in F where with (σi, ~σ
nec
−i) an inconsistency is detected

(because f + 1 agents seem to fail). Clearly, conditional on R(Ii)∩R(F1), i’s utility is at

least as high with (σ′i, ~σ
nec
−i) as with (σi, ~σ

nec
−i). It may be that with some failure patterns

in F1, no inconsistency is detected if i uses (σ′i, ~σ
nec
−i). But if the failure pattern is such

that an inconsistency is detected with σ′i, then an inconsistency is certainly detected with

σi. Thus, in all the remaining runs, we consider no inconsistency is detected with either

σi or σ′i.

(b) F2 consists of the failure patterns F ′ ∈ F − F1 such that in all runs r′ in R((σ′i, ~σ
nec
−i)) ∩

R(Ii)∩R(F ′), the first clean round occurs at some round m1 < m. It is easy to check that

in a run r of R((σi, ~σ
nec
−i)) corresponding to r′, the first clean round also occurs at m1, so

that all agents get the same utility at r and r′. Thus, conditional on R(Ii) ∩ R(F2), i’s

utility is the same with (σ′i, ~σ
nec
−i) and (σi, ~σ

nec
−i).

(c) F3 consists of the failure patterns in F−F1 that result in m being the first seemingly clean

round with both (σi, ~σ
nec
−i) and (σ′i, ~σ

nec
−i). This can happen in runs in R(σi, ~σ

nec
−i) only if

the fact that i started pretending to fail at Ii with σi is not detected by any agent that

does not crash (i.e., if no agent that decides is reachable from an agent that does not hear

from i in round m). Conditional on R(Ii) ∩ R(F3), i’s utility is the same with (σ′i, ~σ
nec
−i)

and (σi, ~σ
nec
−i).

(d) F4 consists of the failure patterns in F − F1 where the first seemingly clean round with

(σ′i, ~σ
nec
−i) comes at or after m while with (σi, ~σ

nec
−i), the first clean round m∗ comes strictly

144 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

before m or strictly after m. Let M be the number of agents that are not known to

be faulty in Ii, and let a be the number of these that share i’s initial preference. It is

straightforward to check that F4 satisfies the permutation assumption with respect to

Ii, so by Lemma 21, conditional on R(Ii) ∩ R(F4), i’s expected utility with (σ′i, ~σ
nec
−i) is

aβ0i
M + (M−a)β1i

M .

To compute i’s expected utility with (σi, ~σ
nec
−i), we must first consider how we could have

m∗ (the first seemingly clean round) occur before round m. This can happen if (and only

if) i first learns in round m′′−1 ≥ m−1 that some agent j∗ crashed in round m′ ≤ m−1, no

agent nonfaulty agent j′ (other than i) will learn that j∗ crashed in round m′ if i pretends

to crash, and, as a result, round m′ will seem clean to j′. This, in turn can happen if (and

only if) either (i) m′ = m − 1, and i does not hear from j∗ for the first time in round

m− 1, or (ii) m′ < m, i did not hear from j∗ for the first time in round m′ + 1, and there

is a chain j1, . . . , jm′′−m′ of agents that “hides” the fact that j∗ actually crashed in round

m′ from i (and all other nonfaulty agents) until round m′′: j1 does not hear from j∗ in

round m′; for h < m′′ −m, i does not hear from jh in round m′ + h; but jh+1 hears from

jh in round m′ + 1 (thus, j2 hears that j∗ crashed in round m′ from j1 in round m′ + 1,

j3 hears about this from j2 in round m′ + 2, and so on), i hears from jm′′−m′ in round

m′′ (and so hears in round m′′ that j∗ crashed in round m′); and there is no shorter chain

like this from j∗ to i. Note that i can tell by looking at its history at time m whether it

is possible that (i) or (ii) occurred. Specifically, (i) can occur only if there is an agent j∗

that i does not hear from for the first time in round m, and (ii) can occur only if there

is a chain j1, . . . , jm−m′ such that, for h′ < m −m′, i does not hear from jh for the first

time in round m′ + h, either does not hear from jm−m′ in round m or hears from jm−m′

that j∗ crashed in round m′, and i does not hear that j∗ crashed in round m′ before round

m. Also note that in case (ii), i’s history must be such that none of the rounds between

m′ + 1 and m′′ − 1 (inclusive) can seem clean to i (or the other nonfaulty agents).

Agent i’s expected utility with (σi, ~σ
nec
−i) conditional on R(Ii)∩R(F4) depends on whether

i’s history (and hence Ii) is such that (i) or (ii) could have occurred. If (i) or (ii) could not

have occurred, then we must have m∗ > m. To compute i’s expected utility with (σi, ~σ
nec
−i),

we can apply Lemma 21, but now we must include i among the faulty agents (since in

the first seemingly clean round in runs of R(σi, ~σ
nec
−i) ∩ R(Ii) ∩ R(F4), i will be viewed

as faulty by the nonfaulty agents). Let F be the failure pattern {(i,m,A)}, where A is

7.2. OBTAINING A π-NASH EQUILIBRIUM 145

the set of agents to which i sends a message in round m according to σi. Since m∗ > m,

we have R(Ii) ∩ R(F4) ∩ R(F) = R(Ii) ∩ R(F4) ∩ R(F) ∩ R(D≥m+1). Since Ii, F4, F ,

and m + 1 are compatible, by Lemma 21, i’s expected utility with (σi, ~σ
nec
−i) conditional

on R(Ii)∩R(F4) is (a−1)β0i
M−1 + (M−a)β1i

M−1 . Since β1i > β2i, conditional on R(Ii)∩R(F4), i’s

utility is higher with (σ′i, ~σ
nec
−i) than with (σi, ~σ

nec
−i).

Now if Ii is such that (i) or (ii) could happen, we use the reachability assumption to

provide upper bounds on the probability that m∗ < m. Note that if (i) holds, m∗ < m

only if no nonfaulty agent other than i hears that j∗ crashed in round m′. By part 3 of

the reachability assumption, this happens with probability at most 1/2M . If (ii) holds,

m∗ < m only if there is an appropriate chain. If m′′ = m, then agent jm−m′ in the

chain is not known to be faulty in Ii, so by part 1 of the reachability assumption, the

probability that no nonfaulty agent other than i hears from jm−m′ that j∗ crashed in

round m′, conditional on R(Ii)∩R(F4) is again at most 1/2M . Similarly, if m′′ > m, then

jm−m′+1 is not known to be faulty in Ii, so by part 2 of the reachability assumption, the

probability that no nonfaulty agent other than i hears from jm−m′+1 that j∗ crashed in

round m′, conditional on R(Ii)∩R(F4) is again at most 1/2M . Thus, the probability that

m∗ < m conditional on R(Ii)∩R(F4) is at most 1/M , even if both (i) and (ii) can occur.

In the runs of R(σi, ~σ
nec
−i) ∩ R(Ii) ∩ R(F4) ∩ R(F) where the first seemingly clean round

is m∗ < m, i’s utility is at most β0i. If (i) or (ii) could happen and the first clean round

in not before m, then it must occur strictly after m, as noted above. If it does occur after

time m, then by the argument above, i’s expected utility is (a−1)β0i
M−1 + (M−a)β1i

M−1 . Thus, if Ii

is such that (i) or (ii) could happen, then i’s expected utility conditional on R(Ii)∩R(F4)

is at most

(
1

M
+
M − 1

M
· a− 1

M − 1

)
β0i +

M − 1

M
· M − a
M − 1

β1i =
a

M
β0i +

M − a
M

β1i.

In either case, conditional on R(Ii) ∩ R(F4), i’s utility is at least as high with (σ′i, ~σ
nec
−i)

as with (σi, ~σ
nec
−i).

Now, consider a deviation of type 2. If σi is a strategy with deviations of only types 1 and 2,

let σ′i be the strategy identical to σi except that i does not lie about its initial value and behaves

as if it had not deviated from σi afterwards. There is a bijection between runs of (σi, ~σ
nec
−i) and

runs of (σ′i, ~σ
nec
−i), so that two corresponding runs r and r′ are identical except that in run r

146 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

agent i may lie about its initial value and in r′ agent i does not. (So, among other things, the

random choices made in r and r′ are the same.) Again, the lie does not affect which round (if

any) will be considered clean nor which agents will be viewed as nonfaulty in that round. If i

is not one of the agents considered nonfaulty in the clean round, or if i is considered nonfaulty

but i is not the agent whose preference is chosen, then the outcome is the same in r and r′. If

i is the agent whose value is chosen, then i is worse off if it lies than if it doesn’t. Thus, i does

not gain if it lies about its initial value. Again, (7.5) holds. Thus, (7.3) holds for deviations of

types 1 and 2.

Finally, we show that (7.3) holds if we allow deviations of types 3–10. To deal with these,

we proceed by induction on the number of deviations of types 3–10 in σi, removing deviations

starting from the earliest deviation. That is, we consider the information set Ii where the first

deviation of type 3–9 occurs, so that the only deviations prior to Ii are of type 1 or 2, and show

that we can do better by removing the deviation at Ii. Before getting into the details, we need

to state carefully what counts as a deviation of type 1 or 2 prior to Ii. We try to “explain” as

much as possible by i pretending to fail, so as to delay the first deviation not of types 1 or 2 as

late possible. Thus, if i pretends to fail at information set I ′i (i.e., sends message according to

σneci up to I ′i, sends messages, again according to σneci , to some agents at I ′i and does not send

messages to some agents it does not know to be faulty), and then sends a message to some agent

at some information set I ′′i after I ′i, then we say that the first deviation not of types 1 and 2

occurs at the information set that immediately precedes I ′′i (it is a deviation of type 8).

In the base case, σi contains no deviations of type 3–10; we have already shown that (7.3)

holds in this case. For the inductive step, let Ii be an information set at which σi has a deviation

of type 3–10 and there are no deviations of type 3–10 prior to Ii. We consider each deviation of

type 3–10 in turn.

3. If i sends an incorrectly formatted message to j, then either j receives this message and

decides Ψ or j crashes before sending any messages to an agent j′ 6= i (or before deciding,

if m = f). Let σ′i be the strategy that is identical to σi except i sends a correctly formatted

message to j. In all cases, i does at least as well if i uses the strategy σ′i as it does using

σi. Thus, (7.3) follows from the induction hypothesis.

4. If m = 1 and i sends values ytij to an agent j such that there is no polynomial qti of

degree 1 that interpolates them then either an inconsistency is detected or i would have

7.2. OBTAINING A π-NASH EQUILIBRIUM 147

done at least as well by choosing these values according to some polynomial. (Here and

in the remainder of the proof, when we say “an inconsistency is detected”, we mean “an

inconsistency is detected by a nonfaulty agent different from i”.) If i does not choose qti

at random, since f + 1 < n, there exists a nonfaulty agent j 6= i that sends values based

on truly random polynomials. Thus, the agent whose preference determines the consensus

value is chosen at random, even if qti is not chosen at random. So choosing qti at random

does not affect the expected outcome. Again, (7.3) follows from the induction hypothesis.

5. Suppose that i does not choose zmij according to protocol. From the perspective of an agent

j′ 6= i following the protocol σnecj′ , it does not affect the outcome if these values are not

chosen randomly. So, yet again, i does just as well if i chooses the numbers randomly, and

(7.3) holds.

6. Clearly there is no benefit to i deciding on a value other than Ψ early (it can decide

the same value at round f + 1) and no benefit in deciding an incorrect value (since this

guarantees that there is no consensus). Thus, yet again, (7.3) holds.

7. Suppose that m = f + 1 and i lies about ytji to some l 6= i for j 6= i. If it turns out that

there are not n− t agents that seem to be nonfaulty in the first clean round, then the value

of ytji is irrelevant; it is not used in the calculation. If there are n− t seemingly nonfaulty

agents in the clean round, then either an inconsistency is detected due to the lie (if ytji is

sent to some nonfaulty agent, who then cannot interpolate a polynomial through it and

the other values received), in which case i is clearly worse off, or the sum S computed will

be a random element of {0, . . . , n− t− 1}, so the initial preference of each of the seeming

nonfaulty agents is equally likely to be chosen whether or not i lies. Thus, i does not gain

by lying about ytji, so (7.3) holds.

8. Suppose that i does not send a message in round m′ < m to an agent j that i does not

know (at round m) to have been faulty at round m′ and then i sends a message to j′ 6= i

in round m. Let Ii be the round-m−1 information set and I ′i the round-m information set

that immediately precedes Ii. If m′ < m− 1, since m is the first round that a deviation of

types 3–10 occurs, and since i does not know at any round m′′ < m that j was faulty at

round m′ (since i does not know it at round m), i does not send messages between rounds

m′ and m. Thus, sending a round m message to j′ either leads to an inconsistency being

detected or does not affect the outcome (which can be the case if j fails before deciding

148 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Ψ). This means that i does at least as well if i does not send a message to j′ at round m,

so (7.3) holds. So we can assume without loss of generality that m′ = m− 1, and that m′

is the first round that i did not send a message to an agent j. Similarly, we can assume

that i gets a message from j′ in round m − 1; otherwise we can consider the strategy σ′i

where i does send a message to j′ in round m− 1, and otherwise agrees with σi, and again

the result follows from the induction hypothesis.

The rest of the proof proceeds much in the spirit of the proof for deviations of type 1. We

partition F into subsets F1, . . . ,F4, and show that, for j = 1, . . . , 4, i does at least as well

with ~σnec as with (σi, ~σ
nec
−i) conditional on R(Ii) ∩ R(Fj); (7.3) then follows. As in the

case of type 1 failures, F1 consists of the failure patterns in F where, with (σi, ~σ
nec
−i), f + 1

failures are detected. Clearly, conditional on R(Ii) ∩R(F1), i’s utility is higher with ~σnec

than with (σi, ~σ
nec
−i).

Let F2 be the set of failure patterns in F −F1 such that in runs from R(I ′i) ∩R(F2), the

agents that decide do not hear about i’s round m message to j′. Let σ′i be identical to σi

except that at I ′i agent i does not send a message to j′. It is not hard to check that F2

satisfies the permutation assumption with respect to Ii. Clearly, i gets the same utility with

σi as with σ′i conditional on R(Ii)∩R(F2). Since, with σ′i, i has fewer deviations of types

3–9 than with σi, by the induction hypothesis, (7.3) holds conditional on R(Ii) ∩R(F2).

Now let F3 consist of all failure patterns in F − F1 such that, with σi, the agents that

decide hear both that i sent a message to j′ in round m and that i did not send a message

to some agents in round m − 1. Thus, with σi, an inconsistency will be detected, so i

does at least as well with σ′i as with σi conditional on R(Ii)∩R(F3). F3 also satisfies the

permutation assumption with respect to Ii, so (7.3) holds conditional on R(Ii)∩R(F3) by

the induction hypothesis.

Finally, let F4 be the remaining failure patterns in F − F1, the ones where agents that

decide hear about the message sent by i to j′ but not about the omissions of i in round

m − 1. Let σ′′i be a strategy identical to σi, except that at at Ii i does not deviate from

σneci . Conditional on R(Ii) ∩ R(F4), i clearly gets the same utility with (σi, ~σ
nec
−i) as

with (σ′′i , ~σ
nec
−i). It is not hard to show that F4 also satisfies the permutation assumption

with respect to Ii. With σ′′i , i has fewer deviations of types 3–9 than with σi. Thus, by

the induction hypothesis, (7.3) holds conditional on R(Ii) ∩ R(F4). This completes the

7.2. OBTAINING A π-NASH EQUILIBRIUM 149

argument for deviations of type 8.

10. Suppose that i lies about j’s status to an agent j′ 6= i. That is, either (a) i says that j did

not crash before round m′ although i knows that j did crash in round m′ − 1; (b) i says

that j crashed at or before round m′ although i received a message from j in round m′

and either m′ = m− 1 or m′ < m and i did not receive a message from any agent saying

that j crashed in round m′; or (c) i lies about the numbers zm−1
ji sent by j or about which

agent reported that j crashed. Again we consider each of these cases in turn. We can

assume without loss of generality that i did not pretend to crash in Ii, since otherwise the

arguments for deviations of type 8 would apply.

(a) Suppose that i lies by saying that j did not crash before m′ even though i knows that

j did in fact crash earlier. This means that i is claiming to have received a message

from j in round m′. Clearly, it cannot be the case that i knows that j crashed before

m′−1, because then i would know that no agent would get a message from j in round

m′− 1, and an inconsistency would be detected by j′ if the deviation had any impact

on the outcome. Thus, we can assume that j in fact crashed in round m′ − 1. Since

we are assuming that i first deviates in round m, i must have learned in round m− 1

about j’s crash in round m′ − 1. That means that either (i) m′ = m and i did not

receive a message from j in round m − 1 or (ii) m′ < m and i must have received a

message from some agent j′′ with this information in round m − 1. We can assume

without loss of generality that i gets a message from j′ in round m− 1, for otherwise

i would do at least as well by not lying to j, and (7.3) would hold by the induction

hypothesis.

Consider case (i). If m = 2, then i pretending that j did not crash in round 1 can

help only if this leads to round 1 being viewed as clean. But this is the case only if

j′ received a message from j in round 1 (although i did not). According to σneci , i’s

round-m message includes the status report SRmi . Agent i must send such a status

report even with σi, otherwise an inconsistency is detected and clearly i is worse

off. Since i claims to have received a message from j in round 1, SRmi [j] has the

form (∞, z1
ji), where zm−1

ji [i] is the random number sent in round 1 to all agents.

Given that we have assumed that j also sent a round 1 message to j′, j′ also received

z1
ji[i] = z1

jj′ [j
′]. Thus, j′ will detect an inconsistency and decide Ψ unless i correctly

150 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

guesses z1
ji[i]. The probability of i guessing z1

ji[i] correctly is at most 1
n .

We now partition F into three sets of failure patterns F1, F2, and F3, and show that

for j = 1, 2, 3, i does at least as well with ~σnec as with (σi, ~σ
nec
−i). Again, F1 consists

of the failure patterns in F where with (σi, ~σ
nec
−i), f + 1 failures are detected. Clearly

the claim holds in this case. F2 consists of the failure patterns F ′ in F − F1 where

the message that i sent in Ii has no impact on the outcome; that is, either i crashes

before sending the message to j′ or no nonfaulty agent is reachable from j′ without i

between round m+ 1 and f + 1. Let σ′i be identical to σi except that, at Ii, i replaces

the reports relative to j with SRi (the correct report) in messages sent to j′, while

sending the same messages to other agents. Thus, i has fewer deviations with σ′i

than with σi. Clearly, conditional on R(Ii)∩R(F2), i gets the same expected utility

with (σi, ~σ
nec
−i) as with (σ′i, ~σ

nec
−i). It is easy to check that F2 satisfies the permutation

assumption with respect to Ii, so by the induction hypothesis, (7.3) holds conditional

on R(Ii) ∩R(F2).

Let F3 consist of the remaining failure patterns in F . In runs of R(σi, ~σ
nec
−i)∩R(Ii)∩

R(F3), j′ detects an inconsistency and decides Ψ unless i guesses the random number

correctly. Again, it is not hard to check that F3 satisfies the permutation assumption

with respect to Ii. Since the largest utility that i can get if no inconsistency is detected

is β0i,

ui((σi, ~σ
nec
−i) | R(Ii) ∩R(F3)) ≤ 1

n
β0i +

n− 1

n
β2i.

On the other hand, by Lemma 21,

ui(~σ
nec | R(Ii) ∩R(F3)) ≥ 1

n
β0i +

n− 1

n
β1i.

Since β1i > β2i, we have

ui(~σ
nec | R(Ii) ∩R(F3)) ≥ ui((σi, ~σnec−i) | R(Ii) ∩R(F3)).

Therefore, (7.3) holds if m = 2.

Continuing with case (i), suppose that m > 2. Now it is possible that i pretending

that j did not crash can help even if j did not send a message to j′. Nevertheless,

essentially the same argument will work. This is because now SRi would have to

7.2. OBTAINING A π-NASH EQUILIBRIUM 151

include zm−1
ji . Moreover, zm−1

ji [j′] = zm−2
j′j [j′], the random number in {0, . . . , n − 1}

sent by j′ to j in round m − 2. Clearly, j′ knows this number, so i would have to

guess it correctly. The argument now proceeds as above.

Now consider case (ii). There are two ways in which i can ignore the information

that j′′ sent about j in round m− 1. The first is to pretend that j′′ crashed in round

m − 1; the second is for i to lie about the message that it received from j′′ (but to

say that it did get a message from j′′). In the first case, as with deviations of type 8,

we can assume without loss of generality that i does not know that j′′ is faulty at the

beginning round m. We partition F into three sets much as in the argument for case

(i): F1, the failure patterns in which more than f+1 failures are detected with σi; F2,

the failure patterns where i’s lie has no impact on the outcome; and F3, the remaining

failure patterns. Again, it is easy to see that (7.3) holds conditional on R(Ii)∩R(F1)

and R(Ii)∩R(F2). To see that (7.3) holds conditional on R(Ii)∩R(F3), we use the

reachability assumption, much as we did for as in (d) of the argument for deviations

of type 1. By part 1 of the reachability assumption, if i pretends that j′′ crashed in

round m−1, an inconsistency will be detected with probability at least (2M−1)/2M .

Thus, the same argument as that used in part (e) of the argument for deviations of

type 1 shows that (7.3) holds conditional on R(Ii) ∩R(F3).

The analysis is essentially the same if i lies about the message it received from j′′,

except that, conditional on R(Ii)∩R(F3), by the reachability assumption, j′ receives

the round m−1 message from j′′ with probability at least (2M−1)/2M , so j′ receives

inconsistent reports about j’s status in round m− 1, and decides Ψ.

(b) Suppose that i lies to some j′ in round m by saying that j crashed at or before round

m′ although i received a message from j in round m′ and either m′ = m − 1 or

m′ < m− 1 and i did not receive a message from any agent saying that j crashed in

round m′. If m′ = m− 1, then we can proceed as in part (a). Specifically, we can use

the reachability assumption to show that i is better off if i does not lie.

The analysis is similar if i pretends to have received a message in round m− 1 from

some agent j′′ saying that j crashed in an earlier round. If i did not receive a message

from j′′ in round m− 1 saying that j crashed before m′ but is claiming to have done

so, then we can again use the same arguments as in part (a) where either i must guess

the random number zm−2
j′j′′ [j′] known by j′ (if j′′ did not send a round m− 1 message

152 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

to i) or i has to lie about the round m− 1 report of j′′.

(c) It is easy to see that i does not gain if i lies about which agent told him that j crashed

or about the values zm−1
ji sent by j to i in round m− 1 (and may be worse off, if an

inconsistency is detected).

This completes the proof of the inductive step and, with it, the proof of the theorem.

7.3 A π-Sequential Equilibrium for Fair Consensus

We now show that the protocol ~σnec can be extended to a π-sequential equilibrium with

minimal changes. In the proof of Theorem 22, we showed that i could not gain by deviating at

an information set Ii where there were no deviations of type 1–9 prior to Ii. We did not show

that i does not gain from deviating at Ii if an inconsistency is detected at Ii, so that i is expected

to decide Ψ. In fact, if i believes that the inconsistency may go unnoticed by other agents due

to crashes and consensus may still be reached on some value in {0, 1}, then i always gains by

not deciding Ψ. However, suppose that µsec is a belief system such that at an information set

Ii for i that is off the equilibrium path due to a deviation (or multiple deviations) from ~σnec by

agents other than i, i believes that these agents decided Ψ when they deviated. (Intuitively, i

believes that if the agents were crazy enough to deviate in the first place, then they were also

crazy enough to decide Ψ.) In that case, deciding Ψ is also a best response for i.

The belief system µsec is not enough to deal with information sets Ii off the equilibrium

path due to i himself having deviated. Agent i cannot believe that it played Ψ when it in fact

did not. To get a sequential equilibrium, we modify σneci at information sets off the equilibrium

path that are reached due only to agent i’s deviations. Define the strategy σseci so that it agrees

with σneci at every information set Ii where agent i has not deviated in the past. Thus, in

particular, i decides Ψ with σseci if i detects an inconsistency at one of these information sets.

More generally, say that an information set Ii is unsalvageable if i knows at Ii that another agent

j deviated or detected an inconsistency at a point when j had not crashed, and thus decided

Ψ. Ii is certainly unsalvageable if reaching Ii requires deviations by agents other than i (for

then the agent that performed that deviation decided Ψ). But even if i is the only agent who

deviates at Ii, Ii may be unsalvageable. For example, i does not send a message to j in round

m1, i sends a message to j in round m2 > m1, and then j sent a message to i in round m2 + 1,

7.3. A π-SEQUENTIAL EQUILIBRIUM FOR FAIR CONSENSUS 153

the round-(m2 + 2) information set where i receives j’s message is also unsalvageable. If Ii is

unsalvageable, i decides Ψ. Finally, if Ii is salvageable, then at Ii agent i acts in a way that

is most likely to have the other agents think that there has been no inconsistency. In general,

there may be more than one failure pattern that will prevent a nonfaulty agent from realizing

that there is an inconsistency. For example, if f = 1, n = 3, and agent 1 did not send a message

to agent 2 in round m, but did send a message to agent 3, then i can either not send a message

to any agent in round m+1, or it can send a message to agent 3. If it is more likely that neither

2 nor 3 failed in round m than agent 2 failed before telling agent 3 that it did not hear from 1,

then it would be better for i not to send a message to 2 or 3 in round m + 1. If there is more

than one best response, then i chooses a fixed one according to some ordering on actions. (Note

that this means that, unlike ~σnec , the behavior of ~σsec may depend on π.)

Having defined ~σsec , we can now define µsec formally. We assume that there are only finitely

many actions that i can play at each of its information sets Ii: it can send one of KIi possible

messages and/or decide one of Ψ, 0, or 1 if it has not yet made a decision, or do nothing. Given

an integer M > 0, let ~σM be the strategy profile where at each information set Ii, agent i

plays σseci (Ii) with probability 1− 1/M , and divides the remaining probability 1/M over all the

actions that can be played at Ii as follows: if i has already decided before, then i sends each

of the KIi possible messages with equal probability 1
M(KIi+1) and does nothing with probability

1
M(KIi+1) ; if i has not yet decided at Ii, then for each of the KIi messages m that it can send, it

decides Ψ and sends m with probability 1
M(KIi+1) −

1
M2(KIi+1)

, decides Ψ and sends no message

with probability 1
M(KIi+1) −

1
M2(KIi+1)

, and performs each of the remaining 3(KIi + 1) possible

actions with equal probability 1
3M2(KIi+1)

. Clearly ~σM is completely mixed and the sequence

~σM converges to ~σsec . Given a round-m information set Ii and global history h ∈ Ii, let

µsecIi (h) = lim
M→∞

π~σM (h)

π~σM (Ii)
.

The effect of this definition of µseIi beliefs is that if Ii is off the equilibrium path as a result of

some other agent j’s deviation, then i believes that j played Ψ. Moreover, i believes that other

agents j have similar beliefs.

Theorem 23 shows that ~σsec is a π-sequential equilibrium for a reasonable and uniform π.

Theorem 23. If f+1 < n, π is a distribution that supports reachability, is uniform, and allows

154 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

up to f failures, and agents care only about consensus, then ~σsec is a π-sequential equilibrium.

Proof. Fix an agent i, a round-m information set Ii, and strategy σi. It is easy to see that µsec

is consistent. Thus, it suffices to show that

ui((σ
sec
i , ~σsec−i) | R(Ii)) ≥ ui((σi, ~σsec−i) | R(Ii)), (7.6)

where the expected utilities are taken relative to µsec~σsec ,Ii
.

We need to consider the cases where (a) Ii is consistent with ~σsec , (b) Ii is inconsistent with

~σsec and unsalvageable, and (c) Ii is inconsistent with ~σsec and salvageable. In case (a), σseci

agrees with σneci ; the argument of the proof of Theorem 22 shows that it is a best response. In

case (b), the definition of µsec guarantees that i ascribes probability 1 to whichever agent has

deviated or detected a deviation playing Ψ, so it is a best response for i to play Ψ. Finally, in

case (c), for failure patterns where some other agent j detects i’s deviation, i ascribes probability

1 to j playing Ψ, so it does not matter what i does. On the other hand, for failure patterns

where all the nonfaulty agents will consider it possible that there are no deviations, the proof

of Theorem 22 shows that i should continue to play in a way consistent with σneci . If there are

several choices of how to play that might be consistent with σneci , then i should clearly play one

that is best.

Summary

We have shown that there is no f -Nash equilibrium protocol that solves fair consensus if

f ≥ 1. We have also provided a strategy for fair consensus that is a π-Nash equilibrium and

can be extended to a π-sequential equilibrium, where π is a distribution on contexts that allows

up to f failures and satisfies minimal conditions, as long as n > f + 1. Although our argument

is surprisingly complicated, we have considered only the simplest possible case: synchronous

systems, crash failures, and only one player deviating (i.e., no coalitions). A small variant of our

strategy also gives a Nash and sequential equilibrium even if coalitions are allowed, but proving

this seems significantly more complicated. Of course, things will get even worse once we allow

more general types of failures, such as omission failures and Byzantine failures. But such failure

types, combined with rational agents, are certainly of interest if we want to apply consensus in,

7.3. A π-SEQUENTIAL EQUILIBRIUM FOR FAIR CONSENSUS 155

for example, financial settings of the type considered by Mazières (2015). Consensus is known

to be impossible in an asynchronous setting, even with just one failure (Fischer et al. 1985), but

algorithms that attain consensus with high probability are well known (e.g., (Aspnes 2003)).

We may thus hope to get an ε–π-Nash equilibrium in the asynchronous setting if we also allow

rational agents. We believe that the techniques developed in this paper will be applicable to

these more difficult problems.

It is also worth examining our assumptions regarding distributions in more detail. The

uniformity assumption implies that no agent is more likely to fail than any other. If all agents

can be identified with identical computers, then this seems quite reasonable. But if one agent

can be identified with a computer that is known to be more prone to failure, then the uniformity

assumption no long holds. Note that the uniformity assumption does allow for correlated failures,

just as long as the permutation of a correlated failure is just as likely as the unpermuted version.

Now consider the assumption that π supports reachability. If we are considering Nash equi-

librium (where there is only one deviating agent), the assumption says that the probability,

conditional on an information set Ii (and some assumptions about failures), that some informa-

tion (about a message sent by an agent that crashes or about the fact that an agent crashed in

a particular round) is quite high, where “quite high” is a function of the number of agents M

that are nonfaulty according to Ii. Since the more nonfaulty agents there are, the more likely it

is that an agent l 6= i is reachable from j without i.

Our final comment concerns the fairness assumption. While this assumption distinguishes

our work from some of the other related work (e.g., (Afek et al. 2014; Bei et al. 2012)), since, as

we observed above, a consensus protocol must essentially implement a randomized dictatorship,

achieving fairness once we get consensus in the presence of rational and faulty agents is not

that difficult; we must simply ensure that the rational agents cannot affect the probability of a

particular agent being selected as dictator. We enforce this using appropriate randomization in

our protocol. The requirement by Bei et al.(2012) that consensus must be achieved no matter

what the deviating agents do turns out to have far more impact on the technical results than

the fairness requirement.

In the next chapter, we conclude the thesis with a final discussion.

156 CHAPTER 7. FAIR CONSENSUS WITH CRASHES

Type Notation Description

Agents

N Set of agents.

n Number of agents.

vi i’s input for consensus.

Failures

f Upper bound on number of failures.

~f Failure of an agent.

F Failure pattern (set of failures ~f).

F Set of failure patterns.

~v Configuration of values.

(F,~v) Context.

π Probability distribution on contexts.

Actions and histories

ami Round-m action of agent i.

Ψ Action that aborts consensus.

h Global history.

Ii Information set for agent i.

R(Ii) Set of runs compatible with information set Ii.

R(h) Set of runs compatible with global history h.

R(F,~v) Set of runs with context (F,~v).

R(F) Set of runs with failure pattern F .

R(F) Set of runs compatible with set F of failure patterns.

Ai(Ii) Set of actions available to i at Ii.

Utilities

µ Belief system.

β0i Benefit of i when agents reach consensus on i’s value.

β1i Benefit of i when agents reach consensus on another value.

β2i Benefit of i when agents do not reach consensus.

ui(~σ | Ii) Expected utility of i when agents use ~σ conditioned on Ii.

ui(~σ) Expected utility of i when agents use ~σ.

ui(~σ | (F,~v)) Expected utility of i conditioned on context (F,~v).

ui(~σ | F) Expected utility of i conditioned on failure pattern F .

ui(~σ | R) Expected utility of i conditioned on the run being in R.

Algorithm

STi Set of tuples (j, vj) that i receives in round 1.

SRmi Status reports of i at round m.

xi[t] Secret random number of i for each number t ∈ {0, . . . , f} of failures.

qti Polynomial encoding xi[t].

ytij j’s share of the secret xti.

zmij [l] Random number that proves to l that i sent a message to j.

NCm Set of agents that did not crash before round m+ 1.

m∗ First round that seems clean.

Strategies

σi Strategy for agent i.

~σ Strategy profile.

~σnec π-NE protocol for fair consensus.

~σsec π-SE protocol for fair consensus.

µsec Belief system consistent with ~σnec .

Table 7.1: Notation - consensus with crashes.

8Conclusions
To summarize the work in this thesis, we addressed the problem of rational behaviour in

infinitely repeated gossip dissemination, infinitely repeated pairwise exchanges in dynamic net-

works, and fair consensus with crashes. Our main contributions were as follows. Regarding the

problem of gossip dissemination, we proved a slightly weaker version of a Folk Theorem for the

notion of sequential equilibrium. Regarding the problem of pairwise exchanges, we proposed a

new game theoretical model of repeated games, in dynamic networks, we defined a new notion

of equilibrium for this model that refines sequential equilibrium, and we identified multiple nec-

essary and sufficient restrictions on the network, structure of pairwise exchanges, and protocols

to sustain cooperation according to our new notion of equilibrium. Regarding the problem fair

consensus with crashes, we proved that there is no Nash equilibrium solution if agents can know

what the failures are, but if there is a probability distribution on failures that satisfies minimal

assumptions, then there is a Nash equilibrium protocol that solves fair consensus with crashes;

a slightly modified version of this protocol is also a sequential equilibrium.

These results provide new insights towards the goal of devising dependable distributed sys-

tems robust to rational behaviour: the impossibility results establish conditions under which

we cannot sustain cooperation, and the possibility results show that we can sustain cooperation

under mild assumptions. In particular, the results for consensus and pairwise exchanges in dy-

namic networks show that no protocol is robust to rational behaviour if agents can have any

beliefs about the information they lack, i.e., information about crashes in consensus and informa-

tion about the evolution of the network in pairwise exchanges. Consequently, agents must form

some beliefs about the missing information in the form of probability distributions. However,

our possibility results show that agents do not need to know exact probability distributions on

crashes or network topologies; they only need to know that such distributions exist and that they

satisfy minimum properties, namely, the distribution on failures must satisfy reachability and

uniformity, and the distribution on network topologies must satisfy strong timely punishments

or connectivity with known degrees. In the problem of gossip dissemination, we do not need

158 CHAPTER 8. CONCLUSIONS

to make any assumptions about beliefs other than that agents believe that every other agent

wants to participate in the system and that events are always disseminated independently of

each other, which are perfectly reasonable assumptions in practice. For all three problems, we

defined protocols that implement novel techniques used by the agents to detect deviations and

promptly punish the deviating agents. Since all protocols are sequential equilibria, the threats

of punishments are credible.

We believe that these results can be easily generalized to deal with crashes and message

loss in all three problems. We also believe that we can extend the results of fair consensus and

pairwise exchanges in dynamic networks to cope with collusion with minimal changes in the

protocols. Beyond these extensions, the main direction for future work would be to understand

how to sustain cooperation in asynchronous systems in the presence of Byzantine behaviour.

Bibliography

Abraham, I., D. Dolev, R. Gonen, & J. Halpern (2006). Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation. In

Proceedings of the 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, PODC’06, Denver, CO, USA, pp. 53–62. ACM.

Abraham, I., D. Dolev, & J. Halpern (2013). Distributed protocols for leader election: A

game-theoretic perspective. In 27th International Symposium on Distributed Computing,

DISC’13, pp. 61–75. Springer.

Abreu, D., P. Dutta, & L. Smith (1994). The folk theorem for repeated games: A NEU

condition. Econometrica 62 (4), 939–948.

Afek, Y., Y. Ginzberg, S. Landau Feibish, & M. Sulamy (2014). Distributed computing build-

ing blocks for rational agents. In Proceedings of the 33th ACM Symposium on Principles

of Distributed Computing, PODC’14, Paris, France, pp. 406–415. ACM.

Aiyer, S., L. Alvisi, A. Clement, M. Dahlin, J. Martin, & C. Porth (2005). BAR fault tolerance

for cooperative services. In Proceedings of the 20th ACM Symposium on Operating Systems

Principles, SOSP’05, Brighton, United Kingdom, pp. 45–58. ACM.

Aspnes, J. (2003). Randomized protocols for distributed consensus. Distributed Comput-

ing 16 (2–3), 165–176.

Bei, X., W. Chen, & J. Zhang (2012). Distributed consensus resilient to both crash failures

and strategic manipulations. Available at http://arxiv.org/abs/1203.4324; version 3.

Bellare, M., A. Desai, E. Jokipii, & P. Rogaway (1997). A concrete security treatment of

symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science,

FOCS’97, pp. 394–. IEEE.

Ben-Porath, E. (2003). Cheap talk in games with incomplete information. Journal of Economic

Theory 108 (1), 45–71.

159

160 CHAPTER 8. CONCLUSIONS

Bhaskar, V. & I. Obara (2002). Belief-Based Equilibria in the Repeated Prisoners’ Dilemma

with Private Monitoring. Journal of Economic Theory 102 (1), 40–69.

Birman, K. P., M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, & Y. Minsky (1999). Bimodal

multicast. ACM Trans. Comput. Syst. 17 (2), 41–88.

Cohen, B. (2003). Incentives build robustness in bittorrent. In Proceedings of the 1st Workshop

on Economics of Peer-to-Peer Systems, P2PEcon’03, Berkeley, CA, USA.

Compte, O. (1998). Communication in repeated games with imperfect private monitoring.

Econometrica 66 (3), pp. 597–626.

Dolev, D. & H. R. Strong (1982). Polynomial algorithms for multiple processor agreement. In

14th Annual ACM Symposium on Theory of Computing, STOC’82, pp. 401–407.

Dolev, S. (2000). Self-Stabilization. MIT Press.

Dolev, S., E. Schiller, P. Spirakis, & P. Tsigas (2010). Game authority for robust and scalable

distributed selfish-computer systems. Theor. Comput. Sci. 411 (26-28), 2459–2466.

Dolev, S., E. M. Schiller, P. Spirakis, & P. Philippas (2011). Strategies for repeated games

with subsystem takeovers implementable by deterministic and self-stabilising automata.

Int. J. Auton. Adapt. Commun. Syst. 4 (1), 4–38.

Ely, J. & J. Välimäki (2002). A robust folk theorem for the prisoner’s dilemma. Journal of

Economic Theory 102 (1), 84–105.

Fabrikant, A., A. Luthra, E. Maneva, C. H. Papadimitriou, & S. Shenker (2003). On a network

creation game. In Proceedings of the 22nd ACM Symposium on Principles of Distributed

Computing, PODC’03, Boston, MA, USA, pp. 347–351. ACM.

Feldman, M., K. Lai, I. Stoica, & J. Chuang (2004). Robust incentive techniques for peer-to-

peer networks. In Proceedings of the 5th ACM conference on Electronic commerce, EC’04,

New York, NY, USA, pp. 102–111.

Fischer, M. J., N. A. Lynch, & M. S. Paterson (1985). Impossibility of distributed consensus

with one faulty processor. Journal of ACM 32 (2), 374–382.

Fudenberg, D. & D. Levine (2007). The nash-threats folk theorem with communication and

approximate common knowledge in two player games. Journal of Economic Theory 132 (1),

461 – 473.

161

Fudenberg, D., D. Levine, & E. Maskin (1994). The folk theorem with imperfect public

information. Econometrica 62 (5), pp. 997–1039.

Fudenberg, D. & E. Maskin (1986). The folk theorem in repeated games with discounting or

with incomplete information. Econometrica 54 (3), 533–554.

Fudenberg, D. & E. Maskin (1991). On the dispensability of public randomization in dis-

counted repeated games. Journal of Economic Theory 53 (2), 428 – 438.

Fudenberg, D. & J. Tirole (1991). Game Theory. MIT Press.

Gibbard, A. (1973). Manipulation of voting schemes. Econometrica 41, 587–602.

Gibbard, A. (1977). Manipulation of schemes that mix voting with chance. Economet-

rica 45 (3), 665–681.

Guerraoui, R., K. Huguenin, A. Kermarrec, M. Monod, & S. Prusty (2010). Lifting:

lightweight freerider-tracking in gossip. In Proceedings of the ACM/IFIP/USENIX 11th

International Conference on Middleware, Middleware’10, Bangalore, India, pp. 313–333.

Halpern, J. & V. Teague (2004). Rational secret sharing and multiparty computation: Ex-

tended abstract. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of

Computing, STOC ’04, Chicago, IL, USA, pp. 623–632. ACM.

Hendon, E., H. Jacobsen, & B. Sloth (1996). The one-shot-deviation principle for sequential

rationality. Games and Economic Behavior 12 (2), 274–282.

Holland, P. W. & S. Leinhardt (1971). Transitivity in structural models of small groups. Small

Group Research 2 (2), 107–124.

Hughes, D., G. Coulson, & J. Walkerdine (2005). Free riding on gnutella revisited: The bell

tolls? IEEE Distributed Systems Online 6 (6), 1–.

ISO/IEC (2006). Information technology – Security techniques – Modes of operation for an n-

bit block cipher. ISO ISO/IEC 10116:2006, International Organization for Standardization,

Geneva, Switzerland.

Jun, S. & M. Ahamad (2005). Incentives in bittorrent induce free riding. In Proceedings of

the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems, P2PECON

’05, Philadelphia, Pennsylvania, USA, pp. 116–121. ACM.

Kandori, M. & H. Matsushima (1998). Private observation, communication and collusion.

Econometrica 66 (3), pp. 627–652.

162 CHAPTER 8. CONCLUSIONS

Kermarrec, A., L. Massoulié, & A. J. Ganesh (2003). Probabilistic reliable dissemination in

large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14 (3), 248–258.

Kinateder, M. (2008). Repeated Games Played in a Network. Working papers, Fondazione

Eni Enrico Mattei.

Kreps, D. & R. Wilson (1982). Sequential equilibria. Econometrica 50 (4), 863–894.

Kuhn, F., N. Lynch, & R. Oshman (2010). Distributed computation in dynamic networks. In

Proceedings of the 42Nd ACM Symposium on Theory of Computing, STOC ’10, Cambridge,

MA, USA, pp. 513–522. ACM.

Laclau, M. (2012). A folk theorem for repeated games played on a network. Games and

Economic Behavior 76 (2), 711–737.

Leitão, J., J. Pereira, & L. Rodrigues (2007). Hyparview: A membership protocol for reliable

gossip-based broadcast. In IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN’07, pp. 419–428. IEEE.

Li, H. C., A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi, & M. Dahlin (2008).

Flightpath: obedience vs. choice in cooperative services. In Proceedings of the 8th USENIX

symposium on Operating Systems Design and Implementation, OSDI’08, San Diego, CA,

USA, pp. 355–368.

Li, H. C., A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, & M. Dahlin (2006). BAR

gossip. In Proceedings of the 7th symposium on Operating Systems Design and Implemen-

tation, OSDI’06, Seattle, WA, USA, pp. 191–204.

Mailath, G. & L. Samuelson (2007). Repeated Games and Reputations. Oxford University

Press.

Matsushima, H. (2004). Repeated games with private monitoring: Two players. Economet-

rica 72 (3), 823–852.

Mazières, D. (2015). The Stellar consensus protocol: a federated model for internet-level

consensus. Available at www.stellar.org/papers/stellar-consensus-protocol.pdf.

Mokhtar, S. B., J. Decouchant, & V. Quéma (2014). AcTinG: Accurate freerider tracking in

gossip. In Proceedings of the IEEE 33rd International Symposium on Reliable Distributed

Systems, SRDS’14, pp. 291–300. IEEE.

163

Moscibroda, T., S. Schmid, & R. Wattenhofer (2006a). On the topologies formed by selfish

peers. In Proceedings of the 25th Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, PODC’06, Denver, CO, USA, pp. 133–142. ACM.

Moscibroda, T., S. Schmid, & R. Wattenhofer (2006b). When selfish meets evil: Byzantine

players in a virus inoculation game. In Proceedings of the Twenty-fifth Annual ACM Sym-

posium on Principles of Distributed Computing, PODC’06, Denver, CO, USA, pp. 35–44.

ACM.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy

of Sciences of the United States of America 36 (1), 48–49.

Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics 54 (2), 286–295.

Nisan, N., T. Roughgarden, E. Tardos, & V. V. Vazirani (2007). Algorithmic Game Theory.

New York, NY, USA: Cambridge University Press.

Obara, I. (2009). Folk theorem with communication. Journal of Economic Theory 144 (1),

120 – 134.

Osborne, M. & A. Rubinstein (1994). A course in game theory. The MIT Press.

Piatek, M., T. Isdal, T. Anderson, A. Krishnamurthy, & A. Venkataramani (2007). Do in-

centives build robustness in bit torrent? In Proceedings of the 4th USENIX conference on

Networked systems design and implementation, NSDI’07, Cambridge, MA, USA, pp. 1–1.

USENIX Association.

Piccione, M. (2002). The repeated prisoner’s dilemma with imperfect private monitoring.

Journal of Economic Theory 102 (1), 70–83.

Rahman, R., T. Vinkó, D. Hales, J. Pouwelse, & H. Sips (2011). Design space analysis for

modeling incentives in distributed systems. SIGCOMM Comput. Commun. Rev. 41 (4),

182–193.

Rubinstein, A. & A. Wolinsky (1995). Remarks on infinitely repeated extensive-form games.

Games and Economic Behavior 9 (1), 110 – 115.

Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: existence and corre-

spondence theorems for voting procedures and social welfare functions. Journal of Eco-

nomic Theory 10, 187–217.

164 CHAPTER 8. CONCLUSIONS

Sekiguchi, T. (1997). Efficiency in repeated prisoner’s dilemma with private monitoring. Jour-

nal of Economic Theory 76 (2), 345–361.

Selten, R. (1965). Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit.

Zeitschrift für Gesamte Staatswissenschaft 121, 301–324 and 667–689.

Shamir, A. (1979). How to share a secret. Communications of the ACM 22, 612–613.

Sorin, S. (1995). A note on repeated extensive games. Games and Economic Behavior 9 (1),

116 – 123.

Srinivasan, V., P. Nuggehalli, C. Chiasserini, & R. Rao (2003). Cooperation in wireless ad

hoc networks. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer

and Communications, INFOCOM’03, San Francisco, CA, USA, pp. 808 – 817. IEEE.

Sugaya, T. (2011). Folk theorem in repeated games with private monitoring. Economic The-

ory Center Working Paper No. 011-2011, Stanford University (submitted to Journal of

Economical Literature).

Vilaca, X. & L. Rodrigues (2013). On the effectiveness of punishments in a repeated epidemic

dissemination game. In Proceedings of the 15th International Symposium on Stabilization,

Safety, and Security of Distributed Systems, SSS’13, Osaka, Japan, pp. 206–220. Springer-

Verlag.

Watts, D. J. & S. H. Strogatz (1998). Collective dynamics of small-world networks. Na-

ture 393 (6684), 440–442.

Wong, E. & L. Alvisi (2013). What’s a little collusion between friends? In Proceedings of

the 2013 ACM symposium on Principles of distributed computing, PODC ’13, Montreal,

Quebec, Canada, pp. 240–249. ACM.

Wong, E., I. Levy, L. Alvisi, A. Clement, & M. Dahlin (2011). Regret freedom isn’t free.

In Proceedings of the 15th international conference on Principles of Distributed Systems,

OPODIS’11, Toulouse, France, pp. 80–95. Springer-Verlag.

AOne-shot Deviation

Property for G∗-OAPE

We now show that the One-Shot-Deviation Principle (Hendon, Jacobsen, & Sloth 1996) also

holds for the notion of G∗-OAPE. The proof is almost identical to (Hendon, Jacobsen, & Sloth

1996), so we only include a sketch. We use the same notation of Chapter 5, i.e., ~σ∗|Ii,ai denotes

the strategy profile identical to ~σ∗ at every information set, except i deterministically follows ai

at Ii.

Proposition 24. One-Shot-Deviation Principle. A protocol ~σ∗ ∈ Σ is a G∗-OAPE if and

only if there exists µ∗ consistent with ~σ∗ and G∗ such that, for every G ∈ G∗, round m, agent

i, round-m Ii ∈ Ii(G), and actions a∗i , ai ∈ Ai(Gm), we have ui(~σ
∗|Ii,a∗i | G, Ii) ≥ ui(~σ

∗|Ii,a′i |

G, Ii) | G, Ii).

Proof. (Sketch) We proceed as in (Hendon, Jacobsen, & Sloth 1996), except that we fix G ∈ G∗.

The implication is clear: since ~σ∗ is a G∗-OAPE, agent i cannot increase its expected utility

by following ~σ∗|Ii,a′i instead of ~σ∗, and ui(~σ
∗|Ii,a∗i | G, Ii) = ui(~σ

∗ | G, Ii). As for the reverse

implication, fix round-m Ii. Suppose that the right-hand side of the proposition holds and that

there is σi such that for some ε > 0

ui((σi, ~σ
∗
−i) | G, Ii)− ui(~σ∗ | G, Ii) = 2ε. (A.1)

Define m′ > m such that δm
′−myn/(1 − δ) < ε. Let σ′i be identical to σi at every round-

m′′ information set for m′′ ≤ m′, but is identical to σ∗i at every round-m′′ information set for

m′′ > m′. It can be shown using the right-hand side and backwards induction that

ui(~σ
∗ | G, Ii) ≥ ui((σ′i, ~σ∗−i) | G, Ii) ≥ ui((σi, ~σ∗−i) | G, Ii)− ε.

This contradicts (A.1), proving the reverse implication. This concludes the proof.

	Introduction
	Problem Statement
	Contributions
	Gossip Dissemination
	Pairwise Exchanges in Dynamic Networks
	Fair Consensus with Crashes

	Publications
	Document Outline

	Background in Game Theory
	Game Structure
	Game Tree
	Available Information
	Information Completeness
	Information Perfectness
	Information Recall

	Strategies
	Utilities

	Notions of Equilibrium
	Nash Equilibrium
	Subgame Perfect Equilibrium
	Sequential Equilibrium

	Existence and Multiplicity of Equilibria
	Finite Games
	Folk Theorems in Infinitely Repeated Games
	Information
	Communication
	Monitoring Non-deterministic Behaviour

	Related Work
	Proofs of Folk Theorems
	Perfect Public Monitoring.
	Imperfect Public Monitoring
	Perfect Private Monitoring
	Imperfect Private Monitoring
	Discussion

	Rational Behaviour in Gossip Dissemination
	Rational Behaviour in Pairwise Exchanges
	Game Theoretical Approaches to Distributed Pairwise Exchanges
	Game Theoretical Approaches to Dynamic Networks

	Rational Behaviour in Consensus
	Game Theoretical Approaches to Other Problems

	Model
	General Aspects
	Communication
	Actions
	Information
	Histories and Runs
	Strategies and Protocols

	Gossip Dissemination
	Problem of Infinitely Repeated Gossip Dissemination
	Utility
	Approximate Folk Theorem

	Pairwise Exchanges in Dynamic Networks
	Problem of Infinitely Repeated Pairwise Exchanges In Dynamic Networks
	Utility
	Notion of Equilibrium

	Fair Consensus with Crashes
	Fair Consensus Problem
	Utility
	Notions of Equilibrium
	f-Nash equilibrium
	-Nash Equilibrium
	-Sequential Equilibrium

	Gossip Dissemination
	Dissemination Protocol
	Algorithm
	Parametrising the Protocol

	Proof of Main Result
	Cryptographic Assumptions
	Sequential Equilibrium Proof
	Average Utility

	Fully Distributed Protocol

	Pairwise Exchanges in Dynamic Networks
	Key Concepts
	Sustaining Cooperation with Strongest Adversary
	Need for Timely Punishments
	A Protocol for Valuable Pairwise Exchanges
	Relaxing the Assumptions about the Utility

	Sustaining Cooperation in General Pairwise Exchanges
	Problems with Nonsymmetric Protocols
	Problem of Omissions as Punishments
	Problem of Punishments with Large Upload

	Need for Eventual Distinguishability
	A Protocol for General One-shot Pairwise Exchanges
	Avoiding Prior Knowledge of Degree
	Complexity

	Fair Consensus with Crashes
	An Impossibility Result
	Obtaining a -Nash equilibrium
	A Naive Protocol
	A -Nash equilibrium
	Analysis

	A -Sequential Equilibrium for Fair Consensus

	Conclusions
	Bibliography
	One-shot Deviation Property for G*-OAPE

