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Abstract—Data centers offer computational resources with
various levels of guaranteed performance to the tenants, through
differentiated Service Level Agreements (SLA). Typically, data
center and cloud providers do not extend these guarantees to
the networking layer. Since communication is carried over a
network shared by all the tenants, the performance that a tenant
application can achieve is unpredictable and depends on factors
often beyond the tenant’s control.

We propose ViTeNA, a Software-Defined Networking-based
virtual network embedding algorithm and approach that aims
to solve these problems by using the abstraction of virtual
networks. Virtual Tenant Networks (VTN) are isolated from
each other, offering virtual networks to each of the tenants, with
bandwidth guarantees. Deployed along with a scalable OpenFlow
controller, ViTeNA allocates virtual tenant networks in a work-
conservative system. Preliminary evaluations on data centers with
tree and fat-tree topologies indicate that ViTeNA achieves both
high consolidation on the allocation of virtual networks and high
data center resource utilization.

I. INTRODUCTION

The creation of data centers allowed global access to huge

computational resources, previously only available to large

companies or governments. By renting the desired computa-

tional power, small companies (or even an individual) avoid

large capital expenses. In current data center environments, a

client can ask for a computational instance of various sizes,

and the service provider assures levels of guaranteed perfor-

mance (through an SLA) for that computational instance. This

guarantee is possible due to the huge evolution of virtualization

technologies. Nowadays, a hypervisor can control the behavior

of the virtual machines (VMs) it hosts, ensuring that a VM

cannot use more CPU than what it was requested (except when

the hypervisor allows). In this way, tenants are not harmed by

the misbehavior of the other tenants.

This simplicity of computational resources on demand has

generated a lot of interest around the world. However, there

are still a lot to improve in this area - considerably, the

lack of network accounting in the renting of resources. Cloud

providers do not offer network performance guarantees to

their tenants. In fact, a tenant’s compute instances or VMs

communicate over the network shared by all tenants. Thus,

the network performance that a certain VM can get depends

on several factors including those outside the tenant’s control,

such as the network load on a given moment or the placement

of that VM in the network. This is further aggravated by the

oversubscribed nature of a data center network.

Lack of guarantees in a shared communication medium

leads to unpredictable application performance often at ten-

ants’ cost. Machine virtualization has a considerable impact

on network performance, where virtualized machines often

present abnormally large packet delay variations, up to hun-

dred times larger than the propagation delay between the

considered two hosts. Moreover, TCP and UDP throughput

can fluctuate rapidly (in the order of tens of milliseconds)

between 1 Gb/s and zero, which shows that applications will

have a very unpredictable performance [1]. Tenant applications

in the cloud and data centers are often data intensive, such

as video processing, scientific computing, or distributed data

analysis. Hence a fluctuation in tenant virtual bandwidth

allocation may severely degrade the performance achieved

by an application. With intermittent network performance,

MapReduce[2] applications will experience harsh issues when

the data to be shuffled amongst mappers and reducers is quite

large.

Software-Defined Networking (SDN) [3] is an abstraction

that decouples the control plane from the data plane consisting

of forwarding hardware such as switches and routers. Hence,

the control mechanism can be extracted from the network

elements and logically centralized in the SDN controller. The

controller creates an abstraction of the underlying network, and

thereby provides an interface to the higher-layer applications.

SDN controllers can be leveraged to create a Virtual Tenant

Network (VTN) on top of the data plane. Each of the tenants

is given isolation guarantees at network level, with an illusion

of a dedicated virtual network. VTN can be leveraged in data

center and cloud networks to ensure that SLAs are met with

Quality of Service (QoS) guarantees from the bottom-most

level.

Virtual network embedding [4] aims to completely vir-978-1-5090-3216-7/16/$31.00 ©2016 IEEE
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tualize the network, providing performance isolation among

tenants at the network level. So, virtual network embedding

consists in the mapping of virtual networks (consisting of

virtual nodes and links) onto the substrate network (consisting

of physical nodes and links). Virtual network embedding

is considered the main challenge in the implementation of

network virtualization [5]. In the data center context, network

virtualization is advantageous as it allows clients to define the

desired network topology, which will be allocated within the

infrastructure exactly as defined by the client. This enables

seamless migrations of current or legacy networks to a data

center environment, since the client defines the topology and

the required guarantees (such as CPU or bandwidth between

machines), which will be enforced by the embedding algorithm

by placing the virtual network only where the resources are

sufficient.

In this paper, we describe the design, implementation, and

evaluation of ViTeNA virtual network embedding approach.

ViTeNA leverages the global view of the network offered by

SDN controllers for virtual network allocation for tenants in

a data center network. This allows tenants to express their

requirements in terms of bandwidth, which is then enforced

through virtual networks. ViTeNA is designed as a scalable

solution for data center environments. It further achieves high

consolidation within the placement of virtual networks, and

high utilization of the data center’s physical resources - servers

and network.

II. BACKGROUND AND RELATED WORK

OpenFlow [3] is a southbound protocol and core enabler

of SDN. Many SDN controllers such as OpenDaylight [6],

ONOS [7], and Floodlight [8] have developed OpenFlow

implementation in high-level languages. Supported by the

Linux Foundation and many big players in the networking

industry, OpenDaylight and ONOS have grown to be large

and complex SDN projects, with various sub-projects and use

cases. Floodlight remains fairly simple as a compact Java-

based open source SDN controller.

OpenDaylight VTN offers virtual network provisioning,

flow and QoS control over virtual network, and virtual network

monitoring. However, OpenDaylight VTN focuses on network

virtualization function; not on virtual network allocation guar-

antees. MicroTE [9] uses OpenFlow as a framework to have

centralized control over the data center and make routing

decisions based on predictions of the traffic matrix. Current

traffic engineering techniques do not apply well to a data

center, as they are too slow to react to micro-congestions, and

the reaction time must be under 2 seconds to be effective [9].

Hence, MicroTE creates a hierarchical structure to make

traffic measurements scalable with the data center size, having

a centralized controller.

Unpredictability of network performance in data center en-

vironments is damaging to both tenants and service providers,

since the tenant applications suffer from the unpredictability

and the service provider can incur in avoidable revenue

losses [10]. Oktopus [10] facilitates predictable networks,

offering network guarantees to the tenants. SecondNet [11]

utilizes a central unit that receives virtual network requests,

and runs the embedding algorithm to process and allocate

the virtual tenant network requests. But, unlike Oktopus,

the routes calculated by the central node do not translate

into routing rules to the switches, because in SecondNet

the physical machines keep information about the routes of

each VM it owns. Silo enables co-existence of tenants in a

competitive environment for resources, though with a trade-off

of reduced network utilization [12]. EyeQ offers a distributed

transport layer for network performance isolation in multi-

tenant environments [13].

Seawall [14] tackles the problem of fair bandwidth sharing

and network performance isolation in data centers. It over-

comes the lack of performance isolation at the network level

by assigning weights to each entity (such as a VM, or a process

inside a VM). Thus, Seawall devices a solution where the share

of bandwidth obtained by the entity in each network link is

proportional to its weight. Gatekeeper [15] shares some design

ideas and goals with Seawall. However, it provides minimum

bandwidth guarantees, by using Open vSwitch [16] in each

server to control all the VMs within a server. Each VM has

a virtual network interface card (vNIC), that connects to the

Open vSwitch. A minimum receive bandwidth guarantee as

well as a minimum send bandwidth guarantee is assigned

to each VM. Minimum bandwidth guarantees are achieved

using an admission control mechanism that limits the sum of

guarantees to the available physical link bandwidth.

Heuristics based virtual network embedding algorithms have

various specific objectives including low execution time. Sur-

vivable networks [17] aim to make the virtual network embed-

ding with fast failure recovery times. Despite the differences

in goals, all these algorithms focus on delivering bandwidth

guarantees in a data center network. Server locality of the same

virtual network embedding request is exploited and leveraged

by these algorithms, to reduce the search space for a solution,

thus reducing the algorithm execution time.

As virtual network embedding is an NP-hard problem, node

mapping and link mapping phases are separated in typical

heuristic-based algorithms. If the request is smaller than the

VM capacity of the largest available server, upon a virtual

network request, the system first attempts to do the node

mapping by trying to accommodate everything inside a single

server. If not, they try the servers on the same rack, followed

by the adjacent racks, and so on, to minimize the distance. The

choice of the first server rack to analyze varies from work to

work, but it is either random or in a round-robin fashion. The

link mapping phase only starts if the virtual network request

completes the node mapping phase. If it does not, it can be

put into a queue to be processed later or the request discarded

to alert the client there are no resources available for their

request.

This is a greedy approach, since it picks the locally optimal

choice at each branch in the road (i.e. it chooses the best

solution that complies with the virtual network constraints).

With this type of algorithms, the virtual networks also benefit
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from the reduced number of hops in the substrate network,

which will yield low latency (as low as possible, but with no

guarantees) between the VMs communicating in the virtual

network. Some works [11], [18], [10], [19], [20] follow this

approach. Path splitting (i.e. bifurcated traffic) and migration

of VMs can also be considered for small data centers [19],

as this does not significantly reduce the search space in a

reasonable time for data centers beyond a few hundreds of

nodes. Chowdhury et al [4] formulate the virtual network

embedding as a mixed integer problem and solve it as a linear

program by relaxing the integer constraints. Extending the later

advances in networking and SDN, ViTeNA aims to improve

virtual network embedding, offering a virtual tenant network

for multi-tenant data centers.

III. ViTeNA APPROACH FOR NETWORK ALLOCATION

We will describe ViTeNA virtual tenant network allocation in

this section. Although ViTeNA can be deployed on any network

research topologies, we will limit our focus on the traditional

tree-like topologies (tree and fat-tree) since they are still the

most used data center topologies [21].

Figure 1 depicts a sample deployment of data center net-

work in ViTeNA approach. The OpenFlow controller is the

core of ViTeNA, as it is responsible for running the virtual

network embedding algorithm to map the requests on the

substrate network, and programs the switches to deploy the

requested virtual networks. Each switch acts merely as a

packet forwarder, per the rules dictated by the controller. The

controller has a connection to every switch in the network,

represented by the thinner dotted lines that are from the control

plane in Figure 1. Though the data flows and control flows are

differentiated using different lines in the diagram, the control

plane does not necessarily need dedicated connections; it can

use the same physical links of the data plane.

Fig. 1. Deployment landscape of ViTeNA with a tree topology.

ViTeNA network embedding algorithm tries to allocate the

requests on the smallest available subset of the substrate

network, like the other existing virtual network embedding

approaches. It thus aims to maximize the proximity of VMs

belonging to the same tenant, which results in minimizing the

number of hops between those VMs. This is advantageous for

two reasons: i) with less hops, the delay is generally reduced;

and ii) keeping the VMs close (e.g. in the same rack) relieves

the bandwidth usage in the upper links of the tree, where the

bandwidth is scarcer in a data center [21]. With this approach,

we will be able to accept more virtual network requests, since

the core links will not be so likely to become the bottleneck

of the data center.

Figure 1 shows the placement of three virtual networks in

tree topology with depth equal to 3 and fanout equal to 2.

The virtual network of tenant A (V TNA) represents the best

possible case where all the VMs of the virtual network can

be mapped on the same physical server. In this case, there is

no usage of the network (which saves bandwidth for future

requests), and the bottleneck of the virtual network is only

the speed within the server. In the virtual network of tenant B

(V TNB) the request could not be mapped to a single server,

and hence it uses another server belonging to the same rack to

accommodate the entire request. The virtual network of tenant

C (V TNC) shows a case where the virtual network could not

be mapped in the same rack, and must use a server on the

adjacent rack. As we can see, the bandwidth of the links on

the top of the tree is only used in the worst cases (i.e. when the

request is large or the data center is operating near saturation).

Besides the network embedding algorithm that ensures that

the network can provide the bandwidth guarantees requested

by each tenant, ViTeNA exploits the centralized information

in the controller to provide fair bandwidth sharing (i.e. work-

conservation) among tenants (non-existent in network embed-

ding systems) and incremental consolidation of virtual network

requests. Fair bandwidth sharing is achieved by instructing

every switch used by a virtual network (which is determined

by the embedding algorithm) to create a new queue for

that virtual network. The queues in OpenFlow are used to

provide QoS guarantees (in this case, bandwidth). Incremental

consolidation of virtual network requests is enforced in the

network embedding algorithm itself, choosing the location of

a virtual network according to a best-fit heuristic on the VM

placement. To do this, the algorithm leverages the current

state of the network and the physical servers available to the

OpenFlow controller.

A. Software Architecture

Figure 2 depicts each component of ViTeNA as well as

the most important interactions between them. Mininet [22]

open source network emulator has been used to emulate the

data center networks, as it considered the de facto standard

of OpenFlow emulators [23]. ViTeNA could be ported to a

physical data center with a few or no changes in code, from

the current Mininet-based emulations. The only exception is in

the Linux Process, which in a real scenario would be running

a hypervisor to manage the VMs inside that host. In this paper,

this is simplified to an operating system managing processes,

where each process will simulate a VM. We assume all the

physical servers have equal CPU, so that in a virtual network

request a tenant asks for a percentage of a CPU (instead of a

CPU with a certain frequency).

Information Flow: The tenant expresses its demands

in a virtual network request in an XML configurations file.

This includes defining the number of VMs required (and the

percentage of CPU of each one), as well as the bandwidth

required between the VMs that will be connected (expressed in
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MBit/s). This request is fed into the virtual network embedding

algorithm that is running in the OpenFlow controller. Upon

receiving the request, the embedding algorithm contacts the

network information manager to get the current state of the

network. Based on this state, the algorithm determines (if

the request is accepted) where this virtual network will be

allocated. As all the requests are processed by the controller,

this updated view of the network involves zero control mes-

sages over the network (both to switches and hosts), since

the controller just should update this information when it

processes a new virtual network request.

Fig. 2. Software architecture of ViTeNA.

The controller then translates the output of the algorithm

(i.e. the affected switches and hosts) to OpenFlow rule(s) to

reprogram the switch(es). Upon receiving this message, the

Open vSwitch manager creates a new queue for this virtual

network, with the assured bandwidth present in the received

message. It further installs a new rule in the switch’s flow

table to forward packets from a certain VM to the newly

created queue. Hence, there will be a queue for each pair of

linked VMs in a virtual network. Thus, a VM can use more

bandwidth than its minimum when the link is not throttled.

Moreover, the sharing of bandwidth between queues is made

fairly according to the minimum bandwidth a queue has (a

queue with a higher minimum bandwidth will use more spare

bandwidth). Thus, the resource usage is maximized, since the

tenants share unused bandwidth fairly, but at the same time

get their minimum bandwidth guarantee when the network is

saturated.

The VMs are represented by and implemented as Linux

processes. To simulate tenant workloads, each process runs

a traffic generator. Upon the necessary configurations, each

process (i.e. VM) can communicate with other processes on

the same virtual network, using either the operating system

(in case the processes are on the same server), or contacting

its adjacent switch, which will use the flow table to check

to which queue it should forward this solicitation (in case

the processes are on different servers). In this paper, we will

only focus on communication inter-server as the intra-server

communication is a responsibility of the hypervisor.

B. Virtual Network Allocation

As the core procedure of ViTeNA, algorithm 1 aims to

guarantee that every VM pair in the virtual network request

gets at least the requested bandwidth; and, to consolidate the

virtual networks on the least amount of physical resources

possible. Instead of making a consolidation algorithm that runs

periodically, ViTeNA performs the consolidation incrementally

at each request, merging the network embedding and the

consolidation algorithms. Hence it avoids heavy migrations of

VMs between servers, which would stop temporarily the work

of those VMs and possibly generate a lot of control and data

traffic. Periodic execution of the algorithm would diminish

the controller performance. ViTeNA thus avoids performance

degradation while processing the virtual network requests.

Algorithm 1 ViTeNA Virtual Network Embedding

1: procedure ISNETWORKREQUESTACCEPTED(V NR)
2: totalVMLoad ← getVMLoadFromVNR(VNR)
3: highestCPUAvailable ← getMostFreeCPU()
4: if (totalVMLoad < highestCPUAvailable) then
5: appropriateList ← findAppropriateList(totalVMLoad)
6: for all (server in appropriateList) do
7: serverCPUAvailable ← getCPUAvailable(server)
8: if (totalVMLoad < serverCPUAvailable) then
9: allocVirtualNetwork(VNR, server)

10: Return True � Request is accepted

11: else
12: server ← getMostFreeServer()
13: firstServer ← server
14: sortedVNR ← sortVNRByBWDemands(VNR)
15: [preAllocatedVMs, remainingVMs] ← splitRequest(sortedVNR, high-

estCPUAvailable)
16: VMsAlreadyAllocated ← (preAllocatedVMs, server)
17: preAlloc(preAllocatedVMs, server)
18: while (True) do
19: server ← getNextServer(server)
20: if server.isF irstServer() then
21: cancelAllPreAllocs()
22: Return False � Request is not accepted

23: CPUAvailable ← getCPUAvailable(server)
24: [preAllocatedVMs, remainingVMs] ← splitRequest(sortedVNR,

CPUAvailable)
25: BWDemands ← calcSumOfDemands(sortedVNR, VMsAlreadyAllo-

cated, preAllocatedVMs, server)
26: linksResidualBW ← calcResidualBW(VMsAlreadyAllocated, server)
27: if (BWDemands > linksResidualBW) then
28: clearLastSplitRequest()
29: continue
30: else
31: preAlloc(preAllocatedVMs, server, BWDemands)
32: VMsAlreadyAllocated ← VMsAlreadyAllocated + (preAllocated-

VMs, server)
33: if (remainingVMs.isEmpty()) then
34: allocAllPreAllocs()
35: Return True � Request is accepted

The algorithm is divided into two base cases depending on

the virtual network request: i) when it fits in one physical

server, and ii) when it needs to be spread across multiple

servers. This is the first check made, comparing the total CPU

load requested with the highest CPU available at the moment

(line 4). If the request fits in one server, we want to find the

server with the least free CPU that fits the request (i.e. best-fit).

Once the server is found, we allocate this request on it (which

includes updating the network state with this new request). To

find the best-fit server, we first find a sub set as the search

space (line 5). We will maintain 10 sets: the first keeps the

servers with 0 to 10 % of CPU free, the second the servers

with 10 to 20 % of CPU free, and so on. This reduces the

search space for the appropriate physical server, which in a

large data center environment can reduce the run time of the

algorithm considerably.
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If the request does not fit in one server, we sort the request

by decreasing bandwidth (line 14), and allocate as much VMs

as possible in the freest server on the entire data center. In this

way, the most consuming demands are on the same physical

server, which significantly relieves the load on the network

(and thus we can accept more virtual network requests). After

pre-allocating (since the request can be rejected) what is

possible on the freest server, we try to allocate the rest on

adjacent servers. In line 19, the getNextServer(server) function

returns the servers on the same rack of server, then the servers

on an adjacent rack, and so on. Next we check if we already

tried on every server of the data center (line 20), and reject

the request if so, cancelling all the pre-allocations.

In the next lines (23-26), we see if the server we are check-

ing has connection(s) with sufficient bandwidth (as defined

in the request) to the other server(s) already pre-allocated in

previous iteration(s). If it does not have enough bandwidth, we

try on the next server (lines 27-29). If it does, we pre-allocate

the VMs mapped onto this server. Finally, we check if the set

remaining VMs to be allocated is empty (lines 33-35): if it

is, we allocate all the pre-allocations (i.e. commit) and return

True; if it is not, we move on to the next server to allocate

the remaining ones.

We expect to have a high consolidation (and consequently

low fragmentation) of VMs within the servers, since the

algorithm either allocates a whole server (if the request does

not fit one server), or finds the best-fit server (if the request

fits in one server).

IV. IMPLEMENTATION

Floodlight 1.1 has been leveraged as the core SDN platform

for ViTeNA implementation. Mininet 2.2.1 and Open vSwitch

2.3.1 were used in emulating data centers with various topolo-

gies. The Floodlight controller is based on an event driven

architecture. Hence, for a module to receive an OpenFlow

PacketIn message, the module must subscribe for this type of

messages. When the controller receives an OpenFlow message

from a switch it will dispatch that message to all modules that

have subscribed for that specific message type.

If the controller receives multiple messages from one or

more switches, these messages are enqueued for dispatching

because the controller only supports dispatching one message

at a time. This means that the performance of the controller

is dependent on the time it takes to process a message in each

individual module, as the processing time of a single message

is equal to the sum of all the processing time done in each

individual module.

To add a new module to the Floodlight controller, a new

Java package must be created directly in the code base

of the controller. Floodlight default properties file defines

which modules are launched when Floodlight is started. For a

custom-made module to start up, its path should be added to

the properties file. When the controller starts, it will start the

modules, and set references between them per the inter-module

dependencies. These dependencies are defined by implement-

ing the appropriate methods (according to which dependencies

one wants to set) of the IFloodlightProviderService
interface. We modified the link discovery module of Flood-

light. ViTeNA also includes 3 additional modules into Flood-

light - i) Multipath Routing, ii) Queue Pusher, and iii) Virtual

Network Allocator modules. We will now dive into the details

of each of these four modules of ViTeNA.

A. Link Discovery Module

The controller needs to place the VMs of a request in

physical servers that have links with enough bandwidth to

accommodate what is requested in the XML file. Thus, each

link should know how much free bandwidth it possesses.

However, in Floodlight’s original implementation, the Link

object does not have such information. Hence, it was necessary

to extend the link discovery module, so that each link would

be aware of its spare bandwidth. This consisted in adding a

new field to the Link class, and defining the appropriate getters
and setters to configure this field.

The link’s bandwidth isn’t set automatically as one would

expect (i.e. through the LLDP packets this Module sends).

Mininet emulates all the virtual links with a bandwidth of

10 Gb/s, even if we configure it to have a lower bandwidth.

We had to work around this, and we did it by initializing all

link bandwidth when the controller starts, according to what is

defined in a start-up XML file. To ease the process of running

our controller, this XML file is automatically generated when

the Mininet topology is created, according to the parameters

in the Mininet script.

B. Multipath Routing Module

Floodlight’s original routing module provides a Java API

to use. Its getRoute() method calculates the route between

two endpoints by applying the Dijkstra’s algorithm [24] to the

graph that contains the network topology. This means that it

always gives the shortest path between two nodes in the graph.

Since we want to maximize the number of allocated virtual

networks by the controller, we want to test every possible

route between two endpoints. The shortest path between two

endpoints may not have enough bandwidth to accommodate

a certain request, and a longer path may have that required

bandwidth. By choosing to use more than just the shortest

path can turn many otherwise rejected requests into accepted

ones.

As of our implementation, the multipath routing mod-

ule registers itself as a receiver for events of the type

topologyChanged. By receiving these events, the module

builds a graph, adding and removing links or hosts as the

events dictate. This graph represents the network topology.

Having this graph, one must only apply a search algorithm

on top of it to find the paths between two nodes. We use

a Depth-First Search algorithm [25] to compute all possible

paths between a pair of nodes.

C. Queue Pusher Module

ViTeNA queue pusher module is responsible for providing

an API to create queues in Open vSwitches. Queues in Open

vSwitch are created using the OVSDB protocol [26]. The

144



queue pusher module creates queues, with only the Assured

Rate configured (called min-rate in the OVSDB command)

and no Ceil Rate (or max-rate) configured.

The queue pusher module uses the ovs-vsctl utility

that comes pre-installed with the Open vSwitch, to create

a new QoS entry and a new Queue below that QoS entry

for each Queue the controller wants to create. When creating

Queues, each one gets assigned an identifier, which should be

unique per switch. The traffic will be directed to the Queue

by matching this identifier, since the enqueue action receives

it as argument.

D. Virtual Network Allocator Module

The allocation algorithm runs in the virtual network alloca-

tor module. When the request fits in one server, the sum of

CPUs requested can be accommodated in the same physical

server. In this case, this module should merely update the

global data structures, with the information from the local
data structures, that was gathered from the XML file.

When the request does not fit in one server, the request

should be divided among two or more physical servers, and

this module will start by sorting the links of the virtual network

request in descending order (since the tenant can provide the

XML file in any order). Then, it will allocate as much VMs as

possible in the server that has the most CPU available. After

that, it will try to allocate the remaining VMs in the neighbors

of this server. It will start from the server adjacent to this one,

and it will continue this logic until there are no remaining

VMs.

In each iteration of going to the neighbor of the server with

the freest CPU, this module uses the multipath routing module

and the link discovery module. Every time it advances to an

adjacent server, it uses the multipath routing module to get

all paths between this server and the ones that already have

allocated VMs. Upon getting these paths, the virtual network

allocator module will use the link discovery module to check

each link of each path, to make sure that those links have

enough bandwidth to provide the guarantees required by this

tenant’s request.

Once all the VMs have a physical server assigned (assuming

a request where this happens), the module knows this request

is going to be accepted. So, it is necessary to translate this

request’s results into real network rules. This module uses the

queue pusher to create the required queues on each OpenFlow

switch and the necessary OpenFlow rules, returning True
following that.

V. EVALUATION

ViTeNA was evaluated on a computer with Intel® Quad-Core

i7 870 @ 2.93 GHz processor, 12 GB DDR3 @ 1333 MHz

RAM, and 450 GB Serial ATA @ 7200 rpm hard disk, on

Ubuntu 14.04.3 LTS (Linux Kernel 3.13.0). The controller

processes virtual network requests. We stop an experiment

when the controller returns False to an allocation, as that

means it cannot allocate any more virtual networks. Each

experiment is run a thousand times to get the mean and

variation of the results. To generate our dataset, we produced

virtual network requests (XML files) where: a VM asks for a

CPU that is generated randomly (using a uniform distribution)

between 0.1 and 5%; the connections between VMs are also

randomly generated (with a uniform distribution as well)

between 0 and 10 Mbit/s. For each size of the virtual network

requests (i.e. number of VMs in it), which we defined as going

from 2 to 40, we generated 10000 virtual network requests.

A tree topology (depth = 3; fanout = 5) with 125 servers,

which entails 31 switches and 155 links, and a fat-tree topol-

ogy (factor k = 32, i.e. switches consist of 32 ports) with

128 servers, which entails 160 switches and 384 links, were

emulated with Mininet for the evaluations.

A. Scalability to Data Center Environments

First, we evaluated the scalability of ViTeNA in data

center scale. To this end, we measured the time it takes

to process each virtual network request using the method

currentTimeMillis from the controller Java API. Fig-

ure 3 depicts the results obtained with tree topology.

Fig. 3. Allocation for a virtual network request in tree topology.

Processing time less than 5 ms was observed for up to

about 25 VMs in a request. SecondNet [11] achieves 10 ms

in requests with 10 VMs, which is twice the processing time

in requests with less than half of the VMs. ViTeNA consumes

about 10 ms to process requests with 40 VMs. It should be

noted that a request with 40 VMs is almost one third of the

number of physical servers in the network. Even in these

conditions, processing time did not grow abruptly, indicating

the high scalability of ViTeNA.

Figure 4 depicts the allocation time for fat-tree. It can be

noticed that the processing time using fat-tree topology is

higher than the one observed for tree topology. Fat-tree peaks

at around 15 ms, which is 5 ms more than that is observed

with tree topology.

Fig. 4. Allocation for a virtual network request in fat-tree topology.

As fat-tree has a lot more links and switches than the tree

topology, there are more paths between any two endpoints.

Thus, the higher processing time can be explained by the

extra work controller had to perform by checking more routes.

Hence the extra processing time was not wasted, as with the

fat-tree we received a total of 15688 accepted requests, versus
15055 with the tree topology.
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B. High Consolidation

As ViTeNA takes server locality into account, allocating the

VMs of a virtual network as close as possible, next we mea-

sured how consolidated the virtual networks are. A low number

of hops leads to a low latency in the communication between

the VMs of a virtual network. This metric is calculated by

counting the numbers of physical servers in a virtual network

allocation. The results of using a tree topology are depicted

in Figure 5.

Fig. 5. Avg. number of hops in a virtual network in tree topology.

Figure 5 indicates that ViTeNA offers high consolidation of

the virtual networks, since the average is almost always near

zero. It starts out equal to zero up to 5 VMs per request,

then the average is almost the same but the variance increases,

meaning most of the virtual networks do not have any hop, but

some do. It keeps this behavior along the line, with the average

increasing less than linearly. On 40 VMs per request we get

an average number of hops close to 1. 40 VMs in a request is

significant, because the evaluated data center network has 125

servers, and still the virtual networks only needed one hop on

average.

The average number of hops using a fat-tree topology is

shown in Figure 6. Fat-tree exhibits a similar pattern to the

one observed in tree topology case, and high consolidation

is achieved in fat-tree topology as well. As we process more

requests with this topology, we notice a higher average number

of hops as well as the standard deviation. The extra requests we

get with fat-tree topology are processed when the data center

is near saturation (since we are stopping on the first rejected

request in the tree topology, and with fat-tree topology we go

further). Since the data center is near saturation, each request

will more likely need a high number of hops, which explains

the increase compared to the tree topology.p p gy

Fig. 6. Avg. number of hops in a virtual network in fat-tree topology.

C. High Resource Utilization

Resource utilization within the data center with ViTeNA
was measured, by calculating the server and link utilization.

Resource utilization is computed by calculating the utilization

of the resources when the experiment stops, and dividing it by

the full capacity. The resource utilization results using a tree

topology are portrayed in Figure 7. As ViTeNA does a best-fit

placement of the VMs within the servers, it was observed that

most of the time ViTeNA achieves high server utilization. As

ViTeNA already does an incremental consolidation, it does not

need or have a consolidation algorithm running periodically

in the controller.

Fig. 7. Resource utilization in tree and fat-tree topologies.

The server utilization starts to drop when the number of

VMs in a virtual network is around 20. This happens because

with a request of this size (and larger), some of the VMs must

be placed on different servers, which causes fragmentation of

the CPU utilization by a server. This results in a lower server

utilization. Obviously, the network utilization starts to grow

when this happens, since we have more and more utilized links

across the network. Moreover, the low network utilization is a

result of getting all the servers full before we get some virtual

networks that require link usage, as this is just a matter of

which resource is exhausted first.

The results appear similar for both tree and fat-tree topolo-

gies. However, fat-tree allows the server utilization to remain

high for longer (up to 25 VMs per request), where as in

the tree topology it starts to drop at 15 VMs per request.

This can be explained by higher number of requests served

by fat-tree topology, since more requests allow to decrease

the fragmentation in CPU usage across servers, which in turn

causes the server utilization to increase. Nevertheless, fat-tree

network utilization is significantly lower compared to the tree

topology. This is due to the much higher number of links

that fat-tree topology has (more than double of that of tree

topology), which all add up to the denominator of this metric

and causes it to decrease significantly.

D. Bandwidth Guarantees in a Work-conservative System

To evaluate the bandwidth guarantees in a work-

conservative system, we created a topology with 8 hosts,

where 4 hosts generate traffic towards the other 4. Each host

generates 50 Mbit/s, and we simulate a 100 Mbit/s link using

a queue with the max-rate parameter set to this value. We

used the iperf tool to generate traffic with a constant bit-

rate, each one generating traffic with a rate of 50 Mbit/s. We

used a constant bit-rate to make sure that changes we see in

the rate on the receiver side are due to the network changes

and not from changes in the sending side. Figure 8 shows the

graph generated accordingly.

Fig. 8. Throughput achieved by multiple hosts sharing a single link.
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In the beginning (t = 0s), only Host 1 is generating traffic

with the bit-rate stated above, and with Host 5 as destination.

As Host 1 is the only one doing so, it gets the full bandwidth

that it requested - 100 Mbit/s. This goes on until t = 20s,

when Host 2 starts to generate traffic towards Host 6, and

there are two hosts generating traffic at 50 Mbit/s, which is

the link capacity (i.e. the max-rate allowed by Switch 2).

Each host on the right gets practically the bandwidth that its

correspondent is generating; but we can already see the action

of Switch 2, portrayed by the irregularities in both lines.
When we reach t = 40s, Host 3 starts to generate traffic

to Host 7. Now, the sum of the traffic generated by the hosts

exceeds the link capacity’, which will cause dropped packets.

However, each host gets more than its assured bandwidth (25

Mbit/s), as the three of them divide the link, each one getting

about 33 Mbit/s. Finally, at t = 60s, Host 4 begins to generate

packets towards Host 8. Now, the 100 Mbit/s link is divided by

the four hosts, and each one gets about its assured bandwidth.

Thus ViTeNA offers bandwidth guarantees to the tenants, while

they utilize more resources when the resources are abundant.

VI. CONCLUSIONS AND FUTURE WORK

Current data centers lack network performance guarantees,

since all tenants interchangeably share the network. This

makes the performance of tenant applications unpredictable,

since it depends on factors outside of its control. This unpre-

dictability severely prevents a wider cloud adoption, as many

cloud use cases require network performance and isolation

guarantees. These problems are solved using the abstraction of

virtual networks. Virtual Tenant Networks (VTN) are isolated

from each other, providing performance guarantees. Virtual

network embedding algorithms attempt to solve this NP-hard

problem of an efficient tenant network resource allocation.
ViTeNA is a virtual network embedding approach that ex-

tends an OpenFlow SDN controller to allocate virtual networks

with bandwidth guarantees in a work-conservative system,

providing a QoS-aware multi-tenanted data center. Evaluation

on tree and fat tree topologies confirm that ViTeNA offers, 1)

low execution time, 2) high consolidation on the allocation of

virtual networks, and 3) high resource utilization of the data

center resources. As a future work, ViTeNA should be extended

for reliability and isolation guarantees, in addition to efficient

network allocation.
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