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Abstract—Cloud storage services have become commercially
popular due to their overwhelming advantages. To provide
ubiquitous always-on access, a cloud service provider (CSP)
maintains multiple replicas for each piece of data on geographi-
cally distributed servers. A key problem of using the replication
technique in clouds is that it is very expensive to achieve strong
consistency on a worldwide scale. In this paper, we first present
a novel consistency as a service (CaaS) model, which consists
of a large data cloud and multiple small audit clouds. In the
CaaS model, a data cloud is maintained by a CSP, and a group
of users that constitute an audit cloud can verify whether the
data cloud provides the promised level of consistency or not. We
propose a two-level auditing architecture, which only requires a
loosely synchronized clock in the audit cloud. Then, we design
algorithms to quantify the severity of violations with two metrics:
the commonality of violations, and the staleness of the value of
a read. Finally, we devise a heuristic auditing strategy (HAS)
to reveal as many violations as possible. Extensive experiments
were performed using a combination of simulations and real
cloud deployments to validate HAS.

Index Terms—Cloud storage, consistency as a service (CaaS),
two-level auditing, heuristic auditing strategy (HAS).

I. INTRODUCTION

CLOUD computing has become commercially popular,
as it promises to guarantee scalability, elasticity, and

high availability at a low cost [1], [2]. Guided by the trend
of the everything-as-a-service (XaaS) model, data storages,
virtualized infrastructure, virtualized platforms, as well as
software and applications are being provided and consumed as
services in the cloud. Cloud storage services can be regarded
as a typical service in cloud computing, which involves the
delivery of data storage as a service, including database-like
services and network attached storage, often billed on a utility
computing basis, e.g., per gigabyte per month. Examples
include Amazon SimpleDB1, Microsoft Azure storage2, and
so on. By using the cloud storage services, the customers
can access data stored in a cloud anytime and anywhere,
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Fig. 1. An application that requires causal consistency.

using any device, without caring about a large amount of
capital investment when deploying the underlying hardware
infrastructures.

To meet the promise of ubiquitous 24/7 access, the cloud
service provider (CSP) stores data replicas on multiple geo-
graphically distributed servers. A key problem of using the
replication technique in clouds is that it is very expensive
to achieve strong consistency on a worldwide scale, where a
user is ensured to see the latest updates. Actually, mandated
by the CAP principle3, many CSPs (e.g., Amazon S3) only
ensure weak consistency, such as eventual consistency, for
performance and high availability, where a user can read
stale data for a period of time. The domain name system
(DNS) is one of the most popular applications that implement
eventual consistency. Updates to a name will not be visible
immediately, but all clients are ensured to see them eventually.

However, eventual consistency is not a catholicon for all ap-
plications. Especially for the interactive applications, stronger
consistency assurance is of increasing importance. Consider
the following scenario as shown in Fig. 1. Suppose that Alice
and Bob are cooperating on a project using a cloud storage
service, where all of the related data is replicated to five cloud
servers, CS1, . . . , CS5. After uploading a new version of the
requirement analysis to a CS4, Alice calls Bob to download
the latest version for integrated design. Here, after Alice
calls Bob, the causal relationship [5] is established between
Alice’s update and Bob’s read. Therefore, the cloud should
provide causal consistency, which ensures that Alice’s update
is committed to all of the replicas before Bob’s read. If the

3CAP principle [3], [4] states that any shared data system can provide only
two of the following three properties: consistency, availability, and partition
tolerance. Since partitions are inevitable in wide-area networks, distributed
systems should trade consistency for availability.
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cloud provides only eventual consistency, then Bob is allowed
to access an old version of the requirement analysis from CS5.
In this case, the integrated design that is based on an old
version may not satisfy the real requirements of customers.

Actually, different applications have different consistency
requirements. For example, mail services need monotonic-
read consistency and read-your-write consistency, but social
network services need causal consistency [6]. In cloud storage,
consistency not only determines correctness but also the
actual cost per transaction. In this paper, we present a novel
consistency as a service (CaaS) model for this situation. The
CaaS model consists of a large data cloud and multiple small
audit clouds. The data cloud is maintained by a CSP, and an
audit cloud consists of a group of users that cooperate on a
job, e.g., a document or a project. A service level agreement
(SLA) will be engaged between the data cloud and the audit
cloud, which will stipulate what level of consistency the data
cloud should provide, and how much (monetary or otherwise)
will be charged if the data cloud violates the SLA.

The implementation of the data cloud is opaque to all users
due to the virtualization technique. Thus, it is hard for the users
to verify whether each replica in the data cloud is the latest
one or not. Inspired by the solution in [7], we allow the users
in the audit cloud to verify cloud consistency by analyzing
a trace of interactive operations. Unlike their work, we do
not require a global clock among all users for total ordering
of operations. A loosely synchronized clock is suitable for
our solution. Specifically, we require each user to maintain a
logical vector [8] for partial ordering of operations, and we
adopt a two-level auditing structure: each user can perform
local auditing independently with a local trace of operations;
periodically, an auditor is elected from the audit cloud to
perform global auditing with a global trace of operations.
Local auditing focuses on monotonic-read and read-your-write
consistencies, which can be performed by a light-weight online
algorithm. Global auditing focuses on causal consistency,
which is performed by constructing a directed graph. If the
constructed graph is a directed acyclic graph (DAG), we claim
that causal consistency is preserved. We quantify the severity
of violations by two metrics for the CaaS model: commonality
of violations and staleness of the value of a read, as in [9].
Finally, we propose a heuristic auditing strategy (HAS) which
adds appropriate reads to reveal as many violations as possible.
Our key contributions are as follows:

1) We present a novel consistency as a service (CaaS)
model, where a group of users that constitute an audit
cloud can verify whether the data cloud provides the
promised level of consistency or not.

2) We propose a two-level auditing structure, which only
requires a loosely synchronized clock for ordering op-
erations in an audit cloud.

3) We design algorithms to quantify the severity of viola-
tions with different metrics.

4) We devise a heuristic auditing strategy (HAS) to reveal
as many violations as possible. Extensive experiments
were performed using a combination of simulations and
real cloud deployments to validate HAS.

The remainder of this paper is organized as follows: We
introduce related work in Section II and present preliminaries

in Section III. We describe verification algorithms for the
two-level auditing structure in Section IV, before we provide
algorithms to quantify the severity of violations in Section
V. After we propose a heuristic auditing strategy to reveal as
many violations as possible in Section VI, we conduct exper-
iments to validate the heuristic auditing strategy in Section
VII. Finally, we provide additional discussion in Section VIII
and conclude this paper in Section IX.

II. RELATED WORK

A cloud is essentially a large-scale distributed system where
each piece of data is replicated on multiple geographically-
distributed servers to achieve high availability and high per-
formance. Thus, we first review the consistency models in dis-
tributed systems. Ref. [10], as a standard textbook, proposed
two classes of consistency models: data-centric consistency
and client-centric consistency. Data-centric consistency model
considers the internal state of a storage system, i.e., how
updates flow through the system and what guarantees the
system can provide with respect to updates. However, to a
customer, it really does not matter whether or not a storage
system internally contains any stale copies. As long as no
stale data is observed from the client’s point of view, the
customer is satisfied. Therefore, client-centric consistency
model concentrates on what specific customers want, i.e.,
how the customers observe data updates. Their work also
describes different levels of consistency in distributed systems,
from strict consistency to weak consistency. High consistency
implies high cost and reduced availability. Ref. [11] states
that strict consistency is never needed in practice, and is
even considered harmful. In reality, mandated by the CAP
protocol [3], [4], many distributed systems sacrifice strict
consistency for high availability.

Then, we review the work on achieving different levels of
consistency in a cloud. Ref. [12] investigated the consistency
properties provided by commercial clouds and made several
useful observations. Existing commercial clouds usually re-
strict strong consistency guarantees to small datasets (Google’s
MegaStore and Microsoft’s SQL Data Services), or provide
only eventual consistency (Amazon’s simpleDB and Google’s
BigTable). Ref. [13] described several solutions to achieve
different levels of consistency while deploying database ap-
plications on Amanzon S3. In Ref. [14], the consistency
requirements vary over time depending on actual availability
of the data, and the authors provide techniques that make
the system dynamically adapt to the consistency level by
monitoring the state of the data. Ref. [15] proposed a novel
consistency model that allows it to automatically adjust the
consistency levels for different semantic data.

Finally, we review the work on verifying the levels of
consistency provided by the CSPs from the users’ point of
view. Existing solutions can be classified into trace-based
verifications [7], [9] and benchmark-based verifications [16]–
[19]. Trace-based verifications focus on three consistency se-
mantics: safety, regularity, and atomicity, which are proposed
by Lamport [20], and extended by Aiyer et al. [21]. A register
is safe if a read that is not concurrent with any write returns
the value of the most recent write, and a read that is concurrent
with a write can return any value. A register is regular if a
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Fig. 2. Consistency as a service model.

read that is not concurrent with any write returns the value
of the most recent write, and a read that is concurrent with a
write returns either the value of the most recent write, or the
value of the concurrent write. A register is atomic if every read
returns the value of the most recent write. Misra [22] is the
first to present an algorithm for verifying whether the trace on
a read/write register is atomic. Following his work, Ref. [7]
proposed offline algorithms for verifying whether a key-value
storage system has safety, regularity, and atomicity properties
by constructing a directed graph. Ref. [9] proposed an online
verification algorithm by using the GK algorithm [23], and
used different metrics to quantify the severity of violations.
The main weakness of the existing trace-based verifications is
that a global clock is required among all users. Our solution
belongs to trace-based verifications. However, we focus on
different consistency semantics in commercial cloud systems,
where a loosely synchronized clock is suitable for our solution.

Benchmark-based verifications focus on benchmarking stal-
eness in a storage system. Both [16] and [17] evaluated
consistency in Amazon’s S3, but showed different results. Ref.
[16] used only one user to read data in the experiments, and
showed that few inconsistencies exist in S3. Ref. [17] used
multiple geographically-distributed users to read data, and
found that S3 frequently violates monotonic-read consistency.
The results of [17] justify our two-level auditing structure.
Ref. [18] presents a client-centric benchmarking methodology
for understanding eventual consistency in distributed key-
value storage systems. Ref. [19] assessed Amazon, Google,
and Microsoft’s offerings, and showed that, in Amazon S3,
consistency was sacrificed and only a weak consistency level
known as, eventual consistency, was achieved.

III. PRELIMINARIES

In this section, we first illustrate the consistency as a service
(CaaS) model. Then, we describe the structure of the user
operation table (UOT), with which each user records his
operations. Finally, we provide an overview of the two-level
auditing structure and related definitions.

A. Consistency as a Service (CaaS) Model

As shown in Fig. 2, the CaaS model consists of a data cloud
and multiple audit clouds. The data cloud, maintained by

the cloud service provider (CSP), is a key-value data storage
system [24], where each piece of data is identified by a unique
key. To provide always-on services, the CSP replicates all of
the data on multiple geographically distributed cloud servers.

An audit cloud consists of a group of users that cooperate
on a job, e.g., a document or a program. We assume that each
user in the audit cloud is identified by a unique ID. Before
outsourcing the job to the data cloud, the audit cloud and the
data cloud will engage in a service level agreement (SLA),
which stipulates the promised level of consistency that should
be provided by the data cloud. The audit cloud exists to verify
whether the data cloud violates the SLA or not, and to quantify
the severity of violations.

In our system, a two-level auditing model is adopted: each
user records his operations in a user operation table (UOT),
which is referred to as a local trace of operations in this paper.
Local auditing can be performed independently by each user
with his own UOT; periodically, an auditor is elected from the
audit cloud. In this case, all other users will send their UOTs to
the auditor, which will perform global auditing with a global
trace of operations. We simply let each user become an auditor
in turn, and we will provide a more comprehensive solution
in Section VIII. The dotted line in the audit cloud means that
users are loosely connected. That is, users will communicate
to exchange messages after executing a set of reads or writes,
rather than communicating immediately after executing every
operation. Once two users finish communicating, a causal
relationship on their operations is established.

B. User Operation Table (UOT)

Each user maintains a UOT for recording local operations.
Each record in the UOT is described by three elements:
operation, logical vector, and physical vector. While issuing
an operation, a user will record this operation, as well as his
current logical vector and physical vector, in his UOT.

Each operation op is either a write W (K, a) or a read
R(K, a), where W (K, a) means writing the value a to data
that is identified by key K , and R(K, a) means reading data
that is identified by key K and whose value is a. As in [7],
we call W (K, a) as R(K, a)’s dictating write, and R(K, a)
as W (K, a)’s dictated read. We assume that the value of each
write is unique. This is achieved by letting a user attach his
ID, and current vectors to the value of write. Therefore, we
have the following properties: (1) A read must have a unique
dictating write. A write may have zero or more dictated reads.
(2) From the value of a read, we can know the logical and
physical vectors of its dictating write.

Each user will maintain a logical vector and a physical
vector to track the logical and physical time when an operation
happens, resepectively. Suppose that there are N users in
the audit cloud. A logical/physical vector is a vector of N
logical/physical clocks, one clock per user, sorted in ascending
order of user ID. For a user with IDi where 1 ≤ i ≤ N ,
his logical vector is < LC1, LC2, . . . , LCN >, where LCi

is his logical clock, and LCj is the latest logical clock
of user j to his best knowledge; his physical vector is
< PC1, PC2, . . . , PCN >, where PCi is his physical clock,
and PCj is the latest physical clock of user j, to the best of
his knowledge.
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Fig. 3. The update process of logical vector and physical vector. A black
solid circle denotes an event (read/write/send message/receive message), and
the arrows from top to bottom denote the increase of physical time.

The logical vector is updated via the vector clocks algo-
rithm [8]. The physical vector is updated in the same way
as the logical vector, except that the user’s physical clock
keeps increasing as time passes, no matter whether an event
(read/write/send message/receive message) happens or not.
The update process is as follows: All clocks are initialized with
zero (for two vectors); The user increases his own physical
clock in the physical vector continuously, and increases his
own logical clock in the logical vector by one only when
an event happens; Two vectors will be sent along with the
message being sent. When a user receives a message, he
updates each element in his vector with the maximum of the
value in his own vector and the value in the received vector
(for two vectors).

To illustrate, let us suppose that there are three users in
the audit cloud, Alice, Bob, and Clark, where IDAlice <
IDBob < IDClark. Each user may update the vectors as
shown in Fig. 3. If the first event for Alice is W (K, a), the first
record in Alice’s UOT is [W (K, a), < 1, 0, 0 >,< 1, 0, 0 >].
This means that Alice writes value a to data identified by
key K when both her physical and logical clocks are 1.
Furthermore, when this event happens, she has no information
about other users’ clocks, which are thus set with the initial
value 0. Note that, since there is no global time in the audit
cloud, the number of clock ticks in each user’s physical clock
may be different, e.g., in Fig. 3, when Alice’s physical clock
passed seven clock ticks, Bob’s physical clock passed only
four ticks.

C. Overview of Two-Level Auditing Structure

Vogels [12] investigated several consistency models pro-
vided by commercial cloud systems. Following their work, we
provide a two-level auditing structure for the CaaS model. At
the first level, each user independently performs local auditing
with his own UOT. The following consistencies (also referred
to as local consistencies) should be verified at this level:

Monotonic-read consistency. If a process reads the value of
data K , any successive reads on data K by that process will

Fig. 4. An application that has different consistency requirements.

Algorithm 1 Local consistency auditing

Initial UOT with ∅
while issue an operation op do

if op = W (a) then
record W (a) in UOT

if op = r(a) then
W (b) ∈ UOT is the last write
if W (a) → W (b) then

Read-your-write consistency is violated
R(c) ∈ UOT is the last read
if W (a) → W (c) then

Monotonic-read consistency is violated
record r(a) in UOT

always return that same value or a more recent value.

Read-your-write consistency. The effect of a write by a
process on data K will always be seen by a successive read
on data K by the same process.

Intuitively, monotonic-read consistency requires that a user
must read either a newer value or the same value, and read-
your-write consistency requires that a user always reads his
latest updates. To illustrate, let us consider the example in Fig.
4. Suppose that Alice often commutes between New York and
Chicago to work, and the CSP maintains two replicas on cloud
servers in New York and Chicago, respectively, to provide
high availability. In Fig. 4, after reading Bob’s new report and
revising this report in New York, Alice moves to Chicago.
Monotonic-read consistency requires that, in Chicago, Alice
must read Bob’s new version, i.e., the last update she ever
saw in New York must have been propagated to the server
in Chicago. Read-your-write consistency requires that, in
Chicago, Alice must read her revision for the new report,
i.e., her own last update issued in New York must have been
propagated to the server in Chicago. The above models can
be combined. The users can choose a subset of consistency
models for their applications.

At the second level, an auditor can perform global auditing
after obtaining a global trace of all users’ operations. At this
level, the following consistency (also referred to as global
consistency in this paper) should be verified:

Causal consistency. Writes that are causally related must be
seen by all processes in the same order. Concurrent writes
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may be seen in a different order on different machines.

Here, a casual relationship between events, denoted as �,
can be defined by the following rules [5]:

• If e1 and e2 are two events in a process, and e1 happens
before e2, then e1 � e2.

• If e1 is e2’s dictating write and e2 is e1’s dictated read,
then e1 � e2.

• If e1 is a send event and e2 is a receive event, then e1 �
e2.

• If e1 � e2 and e2 � e3, then e1 � e3.

If e1 �� e2 and e2 �� e1, then e1 is concurrent with e2,
denoted by e1||e2. The happen-before relationship, denoted as
→, can be defined with logical vector as follows: If LV (e1) <
LV (e2)

4, then e1 → e2, where LV (ei) denotes the logical
vector of operation ei for i ∈ {1, 2}.

In the application scenario in Fig. 4, after uploading a
new version of the report to the data cloud, Bob calls Alice,
asking her to download it. After the call, Bob’s update and
Alice’s read are causally related. Therefore, causal consistency
requires that Alice must read Bob’s new report.

IV. VERIFICATION OF CONSISTENCY PROPERTIES

In this section, we first provide the algorithms for the two-
level auditing structure for the CaaS model, and then analyze
their effectiveness. Finally, we illustrate how to perform a
garbage collection on UOTs to save space. Since the accesses
of data with different keys are independent of each other, a
user can group operations by key and then verify whether
each group satisfies the promised level of consistency. In the
remainder of this paper, we abbreviate read operations with
R(a) and write operations with W (a).

A. Local Consistency Auditing

Local consistency auditing is an online algorithm (Alg. 1).
In Alg. 1, each user will record all of his operations in his
UOT. While issuing a read operation, the user will perform
local consistency auditing independently.

Let R(a) denote a user’s current read whose dictating write
is W (a), W (b) denote the last write in the UOT, and R(c)
denote the last read in the UOT whose dictating write is W (c).
Read-your-write consistency is violated if W (a) happens
before W (b), and monotonic-read consistency is violated if
W (a) happens before W (c). Note that, from the value of a
read, we can know the logical vector and physical vector of its
dictating write. Therefore, we can order the dictating writes
by their logical vectors.

B. Global Consistency Auditing

Global consistency auditing is an offline algorithm (Alg. 2).
Periodically, an auditor will be elected from the audit cloud
to perform global consistency auditing. In this case, all other
users will send their UOTs to the auditor for obtaining a global
trace of operations. After executing global auditing, the auditor
will send auditing results as well as its vectors to all other

4Let LV (ei)j denote user j’s logical clock in LV (ei). LV (e1) <
LV (e2) if ∀j[LV (e1)j ≤ LV (e2)j ] ∧ ∃j[LV (e1)j < LV (e2)j ].

Algorithm 2 Global consistency auditing
Each operation in the global trace is denoted by a vertex
for any two operations op1 and op2 do

if op1 → op2 then
A time edge is added from op1 to op2

if op1 = W (a), op2 = R(a), and two operations come
from different users then

A data edge is added from op1 to op2
if op1 = W (a), op2 = W (b), two operations come from
different users, and W (a) is on the route from W (b) to
R(b) then

A causal edge is added from op1 to op2
Check whether the graph is a DAG by topological sorting

Fig. 5. Sample graph constructed with Alg. 2.

users. Given the auditor’s vectors, each user will know other
users’ latest clocks up to global auditing.

Inspired by the solution in [7], we verify consistency by
constructing a directed graph based on the global trace. We
claim that causal consistency is preserved if and only if the
constructed graph is a directed acyclic graph (DAG). In Alg.
2, each operation is denoted by a vertex. Then, three kinds of
directed edges are added by the following rules:

1) Time edge. For operation op1 and op2, if op1 → op2,
then a directed edge is added from op1 to op2.

2) Data edge. For operations R(a) and W (a) that come
from different users, a directed edge is added from W (a)
to R(a).

3) Causal edge. For operations W (a) and W (b) that come
from different users, if W (a) is on the route from W (b)
to R(b), then a directed edge is added from W (a) to
W (b).

Take the sample UOTs in Table I as an example. The graph
constructed with Alg. 2 is shown in Fig. 5. This graph is
not a DAG. From Table I, we know that W (a) → W (d), as
LV (W (a)) < LV (W (d)). Ideally, a user should first read
the value of a and then d. However, user Clark first reads the
value of d and then a, violating causal consistency.

To determine whether a directed graph is a DAG or not, we
can perform topological sorting [25] on the graph. Any DAG
has at least one topological ordering, and the time complexity
of topological sorting is O(V +E), where V is the number of
vertexes and E is the number of edges in the graph. To reduce
the running time of topological sorting, we can modify Alg.
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TABLE I
SAMPLE UOTS

Alice’s Operation Log Bob’s Operation Log Clark’s Operation Log
Operation logical vector physical vector Operation logical vector physical vector Operation logical vector physical vector
W (a) < 1, 0, 0 > < 1, 0, 0 > W (c) < 0, 1, 0 > < 0, 1, 0 > R(c) < 0, 0, 1 > < 0, 0, 1 >
W (b) < 3, 0, 0 > < 5, 0, 0 > R(c) < 2, 4, 0 > < 2, 5, 0 > R(d) < 0, 0, 2 > < 0, 0, 4 >
R(b) < 5, 3, 5 > < 8, 3, 7 > W (d) < 2, 5, 0 > < 2, 6, 0 > R(a) < 2, 3, 5 > < 2, 3, 10 >

2 as follows: First, before constructing the graph, we move
all writes that do not have any dictated reads. This is because
only reads can reveal violations by their values. Second, we
move redundant time edges. For two operations op1 and op2,
a time edge is added from op1 to op2 only if op1 → op2
and there is no op3 that has the properties op1 → op3 and
op3 → op2.

To provide the promised consistency, the data cloud should
wait for a period of time to execute operations in the order
of their logical vectors. For example, suppose that the logical
vector of the latest write seen by the data cloud is < 0, 1, 0 >.
When it receives a read from Alice with logical vector <
2, 3, 0 >, the data cloud guesses that there may be a write
with logical vector < 0, 2, 0 > coming from Bob. To ensure
causal consistency, the data cloud will wait σ time to commit
Alice’s read, where σ is the maximal delay between servers in
the data cloud. The maximal delay σ should also be written
in the SLA. After waiting for σ + Δ time, where Δ is the
maximal delay between the data cloud and the audit cloud, if
the user still cannot get a response from the data cloud, or the
response violates the promised consistency, he can claim that
the data cloud violates the SLA.

C. Effectiveness

The effectiveness of the local consistency auditing algorithm
is easy to prove. For monotonic-read consistency, a user is
required to read either the same value or a newer value. There-
fore, if the dictating write of a new read happens before the
dictating write of the last read, we conclude that monotonic-
read consistency is violated. For read-your-write consistency,
the user is required to read his latest write. Therefore, if the
dictating write of a new read happens before his last write,
we conclude that read-your-write consistency is violated.

For causal consistency, we should prove that: (1) If the
constructed graph is not a DAG, there must be a violation;
(2) If the constructed graph is a DAG, there is no violation. It
is easy to prove proposition (1). If a graph has a cycle, then
there exists an operation that is committed before itself, which
is impossible. We prove proposition (2) by contradiction.
Assume that there is a violation when the graph is a DAG.
A violation means that, given two writes W (a) and W (b)
that have causal relationships W (a) → W (b), we have two
reads R(b) → R(a). According to our construction, there
must be a time edge from W (a) to W (b), a time edge from
R(b) to R(a), a data edge from W (a) → R(a), and a
data edge from W (b) → R(b). Therefore, there is a route
W (a)W (b)R(b)W (a), where the source is the dictating write
W (a) and the destination is the dictated read R(a). Since there
is a write W (b) on the route, according to our rule, a causal
edge from W (b) to W (a) will be added. This will cause a
cycle, and thus contradicts our assumption.

D. Garbage Collection

In the auditing process, each user should keep all operations
in his UOT. Without intervention, the size of the UOT would
grow without bound. Furthermore, the communication cost
for transferring the UOT to the auditor will be excessive.
Therefore, we should provide a garbage collection mechanism
which can delete unneeded records, while preserving the
effectiveness of auditing.

In our garbage collection mechanism, each user can clear
the UOT, keeping only his last read and last write, after each
global consistency verification. This makes sure that a user’s
last write and last read will always exist in his UOT. In local
consistency auditing, if the dictating write of a new read does
not exist in the user’s UOT and the dictating write is issued
by the user, the user concludes that he has failed to read his
last updates, and claims that read-your-write consistency is
violated. If the dictating write of this read happens before
the dictating write of his last read recorded in the UOT, the
user concludes that he has read an old value, and claims that
monotonic-read consistency is violated. If the dictating write
of a new read does not exist in the user’s UOT and the dictating
write comes from other users, then a violation will be revealed
by the auditor. In global consistency auditing, if there exists
a read that does not have a dictating write, then the auditor
concludes that the value of this read is too old, and claims
that causal consistency is violated.

V. QUANTIFYING SEVERITY OF VIOLATIONS

As in [9], we provide two metrics to quantify the severity
of violations for the CaaS model: commonality and staleness.
Commonality quantifies how often the violations happen.
Staleness quantifies how much older the value of a read
is compared to that of the latest write. Staleness can be
further classified into time-based staleness and operation-
based staleness, where the former counts the passage of time,
and the latter counts the number of intervening operations,
between the read’s dictating write and the latest write.

Commonality. For local consistency, commonality can be
easily quantified by letting each user set a local counter
and increasing the counter by one when a local consistency
violation is revealed. During global auditing, each user sends
the local counter as well as his UOT to the auditor, which
will calculate the total number of local violations by summing
all users’ local counters. For global consistency, commonality
can be quantified by counting the number of cycles in the
constructed graph. This can be transformed into removing the
minimum number of edges to make the graph acyclic. This
measurement is coarse because an edge can be part of multiple
cycles, but it is still informative. To illustrate, let us consider
the cyclic directed graph shown in Fig. 5. After we remove
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Fig. 6. Physical time is divided into timeslices.

one edge, W (d)W (a), this graph becomes DAG. In reality,
W (a) happens before W (b), thus Clark reads an old value a
after reading d, and the commonality of violations is 1.

Staleness. Staleness is quantified in the same way in both
local auditing and global auditing. Let R(a) denote the user’s
current read, and let W (b) denote the latest write. Given N
users, for R(a)’s dictating write W (a), the logical vector
is LV (W (a)) =< LC(1), . . . , LC(N) >, and the physical
vector is PV (W (a)) =< PC(1), . . . , PC(N) >; for the
latest write W (b), the logical vector is LV (W (b)) =<
LC(1)′, . . . , LC(N)′ >, and the physical vector is
PV (W (b)) =< PC(1)′, . . . , PC(N)′ >. We calculate∑N

i=1(LC(i)′ − LC(i)) to denote operation-based staleness.
This counter is coarse because the logical clock will increase
by one whenever an event happens. When there are multiple
concurrent latest writes, we use the maximal value as the
operation-based staleness.

Since users in the audit cloud will exchange messages
frequently, loose clock synchronization can be easily achieved
by using the solution in [10]. Suppose that the maximal time
difference between any two users is θ. If W (a) is issued
by user i and W (b) is issued by user j, then time-based
staleness is calculated with |PC(j)′ − PC(i)| + θ. If both
writes are issued by the same user i, then time-based staleness
is calculated with |PC(i)′−PC(i)|. When there are multiple
concurrent latest writes, we use the maximal value as the time-
based staleness.

For example, in Table I, a violation is revealed when user
Clark reads data with value a from the data cloud. For R(a)’s
dictating write W (a), its logical vector is < 1, 0, 0 >, and
its physical vector is < 1, 0, 0 >. The last write of Alice is
W (b) with logical vector < 3, 0, 0 > and physical vector <
5, 0, 0 >; the last write of Bob is W (d) with logical vector <
2, 5, 0 > and physical vector < 2, 6, 0 >. Since W (b)||W (d),
we calculate the operation-based staleness with max(((3 −
1) + (0 − 0) + (0 − 0)), ((2 − 1) + (5 − 0) + (0 − 0))) = 6.
The time-based staleness is calculated as follows: W (a) and
W (b) are issued by Alice, and thus the time is |5 − 1| = 4;
W (a) and W (d) are issued from Alice and Bob, respectively,
and thus the time is |6 − 1| + θ = 5 + θ. Then, time-based
staleness is max(4, (5 + θ)) = 5 + θ.

VI. HEURISTIC AUDITING STRATEGY

From the auditing process in the CaaS model, we observe
that only reads can reveal violations by their values. Therefore,
the basic idea of our heuristic auditing strategy (HAS) is to add
appropriate reads for revealing as many violations as possible.
We call these additional reads auditing reads.

As shown in Fig. 6, HAS divides physical time into L
timeslices, where l timeslices constitute an interval. Each
timeslice is associated with a state, which can be marked with

either normal or abnormal. A normal state means that there
is no consistency violation, and an abnormal state means that
there is one violation in this timeslice.

HAS determines the number of auditing reads in the (i+1)-
th interval, based on the number of abnormal states in the i-th
interval. Let ni denote the number of auditing reads in interval
i. HAS determines ni+1, which is the number of auditing reads
in the next interval with Eq. 1:{

ni+1 = min(l, k × ni), ni ≥ α (1)
ni+1 = max(1, 1

k × ni), ni < α

where k is a parameter that is used to adjust the value of
ni+1, l is the number of timeslices in an interval, and α is a
threshold value that is used to determine whether the number
of auditing reads in the next round should be increased by
k times or be reduced to 1/k, compared to the number of
auditing reads in the current round.

Specifically, given a threshold value α, if a user issues ni

auditing reads and reveals more than α violations in interval
i, in interval i + 1, the user will issue ni+1 = min(l, k ∗
ni) auditing reads; that is, each timeslice will be issued, at
most, one auditing read, and the maximal number of auditing
reads will not exceed l. Otherwise, the user will issue ni+1 =
max(1, 1

k × ni) auditing reads, that is, each interval will be
issued at least one auditing read. Since the number of auditing
reads should be an integer, 1

k ×ni is actually the abbreviation
of 	 1

k × ni
.
Suppose that the SLA stipulates that the audit cloud can

gain s (e.g., monetary compensation) from the data cloud if
a consistency violation is detected, and that the audit cloud
will be charged r for a read operation. If after executing n
auditing reads, the users reveal v violations, then the earned
profits P can be calculated by P = s ∗ v − r ∗ n.

Under the CaaS model, consistency becomes a part of the
SLA, the users can obtain proportional compensation from the
CSP, by revealing consistency violations and quantifying the
severity of the violations. We believe that the CaaS model
will help both the CSP and the users adopt consistency as an
important aspect of cloud services offerings.

VII. EVALUATION

In this section, we compare HAS with a random strategy,
denoted as Random. To verify the effectiveness of HAS,
we conduct experiments on both synthetic and real violation
traces. Our experiments are conducted with MATLAB R2010a
running on a local machine, with an Intel Core 2 Duo E8400
3.0 GHz CPU and 8 GB Linux RAM.

A. Synthetic Violation Traces

We summarize the parameters used in the synthetic violation
traces in Table II. In the random strategy, we randomly
choose [1, l] auditing reads in each interval, where l is the
length of an interval. To obtain the synthetic violation traces,
physical time is divided into 2,000 timeslices. We assume that
once a data cloud begins to violate the promised consistency,
this violation will continue for several timeslices, rather than
ending immediately. In the simulation, the duration of each
violation d is set to 3-10 timeslices.
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Fig. 7. Comparison of percentage of revealed violations. (a) and (b) have the same threshold values. (c) and (d) have the same adjusting values.

Fig. 8. Comparison of earned profits. (a) and (b) have the same threshold values. (c) and (d) have the same adjusting values.

TABLE II
PARAMETERS

Notation Description Value
L Length of physical time 2,000 timeslices
l Length of interval 5, 10, 20 timeslices
d Duration of violation 3-10 timeslices
v Number of violations 20, 110
k Adjusting value 2, 3, 5
α Threshold value 1, 2, 5
s Gained money $5
r Charged money $0.1

From Eq. 1, we know that three parameters will impact
HAS: the length of an interval l, the threshold value α,
and the adjusting parameter k. Therefore, our simulations are
conducted with different parameter values. Specifically, the
values of l are set to 5, 10, 20, respectively; the values of α
are set to 1, 2, 5, respectively; and the values of k are set
to 2, 3, 5, respectively. Furthermore, to show the impact of
the violation frequency on HAS, the number of violations v is
first set to 20 and then 110. When v is set to 20, the ratio of
the number of abnormal timeslices to the length of physical
time will be smaller than 1 : 10. When v is set to 110, the
ratio is about 1 : 2.

To minimize the deviations, we run simulations 10, 000
times and calculate the average values. Fig. 7 shows the
comparison results regarding the percentage of revealed vi-
olations. From Fig. 7, we know that HAS performs worse
when either the threshold value α or the length of interval l
increases, but performs better when the frequency of violation
v increases. For example, when l = 5, HAS can reveal 90%
of the violations under the setting v = 20 and α = 1. As
the length of an interval increases to 20, HAS only reveals
65% of the violations; when α = 1, HAS can reveal 81%
of the violations under the settings, v = 20 and l = 10. As
the threshold value increases to 5, HAS only reveals 53% of
the violations. Furthermore, HAS is affected by the adjusting
value k. For example, under the settings, v = 20, l = 5 and

α = 1, while k changes from 2 to 5, the percentage of revealed
violations in HAS is reduced from 90% to 82%.

Suppose that the audit cloud can gain $5 from the data cloud
once a consistency violation is detected, the audit cloud will
be charged $0.1 for an auditing read operation. Fig. 8 shows
the comparison results of the earned profit P . From Fig. 8, we
know that HAS usually earns a higher profit than Random. For
example, when v = 110 and k = 2, HAS can generate about
$2,805, $2,895, $2,955, under the settings, of α = 5, α = 2,
and α = 1, respectively; however, Random only generates
$1,705. Furthermore, as the number of violations increases,
HAS can generate a higher profit. For example, when α = 1,
l = 5, and k = 2, HAS generates $365 under the settings, v =
20, and generates $3,110 under the setting v = 110. Finally,
HAS will generate higher earned profit as the parameters α
and l decrease. As k increases, HAS will generate higher profit
under the setting v = 110, but will generate lower profit under
the setting v = 20.

Summary. HAS can detect almost all of the violations
when the threshold value α and interval length l are chosen
properly; Random can detect only about 60% of violations.
Although HAS requires the auditing cloud to issue more
auditing reads, the earned profit is still higher than Random.
Specifically, as the parameters α and l decrease, HAS works
better. However, as the number of violations v increases, the
impact of parameters α and l on HAS decreases. Furthermore,
when there are a lot of violations, the auditing cloud can use
a large k value to earn a higher profit. Otherwise, a larger k
value will generate a lower profit.

B. Real Violation Traces

To validate the effectiveness of HAS, we collect violation
traces from two real clouds, TCloud5 and Amazon EC26.

5https://sites.google.com/a/temple.edu/tcloud/home. This is the Temple
Elastic HPC Cloud project site. The hardware is purchased under NSF grant
CNS 0958854. This side documents the construction process of a private HPC
cloud, lessons and experiences. This site is open to the public.

6http://aws.amazon.com/ec2/
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Fig. 9. Deployment in the TCloud and Amazon EC2.

Fig. 10. Average delays and violations in TCloud.

The deployment in the TCloud and Amazon EC2 is shown
in Fig. 9, with one writer, one duplicator, three storages,
and three readers. The main difference on the deployments
between TCloud and Amazon EC2 is that we initiate 8
instances in the TCloud, and 4 instances in Amazon EC2
(a writer and three readers are deployed in local machines).
The writer continues to write unique data to the duplicator,
which will propagate data to three storages in the order of
receiving the data. Furthermore, the writer will send the time
of completing each write as the start time to three readers, and
each reader will record the time of reading new data as the
finish time. The difference of the finish time and the start time
is used as the delay. We use network time protocol (NTP) to
synchronize time among all instances.

Parameter setting in TCloud. We subscribe m1.xlarge
type instances that have 2 CPUs, 2GB RAM, and 20 GB
of storage, running on a 64-bit Linux platform. The average
bandwidth between the instances is 945.5 MB/s. The writer
continues to write data for 1 day, and it is required to stop for 1
second, and then continues again, after completing 256 writes.
The total number of writes is 22,118,400, and the average
delay is shown in the left side of Fig. 10. We use the average
delays as the threshold values to test violations as follows:
For each reader, if a delay is larger than the threshold value,
then the number of violations increases by one. The right side
of Fig. 10 shows the total number of violations recorded by
three readers. In the experiments, we let the number of time
slices L be the same as the number of writes, i.e., 22,118,400.
We set l, the length of intervals, to be 5, 10, 20, 50, and 100,
respectively. Unlike the synthetic traces that set α with fixed
values, we let the values of α depend on the values of l.
Specifically, we set the values of α to l/5 and l, respectively.
That is to say, when l = 5, the values of α are 1 and 5, when
l = 10, the values of α are 2 and 10, and so on. Finally, the
values of k are set to 2 and 5, respectively.

The comparisons of Random and HAS under different
parameter settings are shown in Figs. 11 and 12, in each
of which the right side is the comparison of HAS under
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Fig. 11. Comparison of percentage of revealed violations in TCloud.
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Fig. 12. Comparison of number of reads in TCloud.

Fig. 13. Average delays and violations in Amazon EC2.

different parameter settings. From Fig. 11, we know that the
percentage of revealed violations decreases as l increases, in
terms of both HAS and Random. However, the change of l’s
value has less impact on HAS than Random. For example,
while l increases from 5 to 100, the percentage of revealed
violations, decreases from 99.99% to 99.97% in HAS with
the setting of α = l/5 and k = 2, and decreases from 67%
to 50% in Random. Furthermore, HAS always reveals more
violations than Random. For example, even when l = 100,
HAS, which can reveal more than 99% of violations, still
performs much better than Random, which can reveal only
50%. The right side of Fig. 11 shows the detailed comparisons
of HAS under different values of α and k. We know that the
percentage of revealed violations decreases as α increases or
k decreases. However, these parameters have minor impacts
on the percentage of revealed violations.

Parameter setting in Amazon EC2. We subscribe
EC2 amzn-ami-2011.02.1.i386-ebs (ami-8c1fece5) AMI and a
small type instance with the following specs: 32-bit platform,
a single virtual core equivalent to 1 compute unit CPU, and
1.7 GB RAM. The average bandwidth from EC2 to the local
machine is 33.43 MB/s, and from the local machine to EC2
is 42.98 MB/s. The writer continues to write data for 1 hour,
and it is is required to stop for 1 second, and then continue
again, after completing 256 writes. The total number of writes
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is 921,600, and the average delay is shown in the left side of
Fig. 13. We use the average delays as the threshold values to
test violations, and the total number of violations recorded by
three readers are shown in right side of Fig. 13. As in the
setting of TCloud, we let the number of timeslices L be the
same as the number of writes, i.e., 921,600. We also set l, α
and k with the same values as those in TCloud.

The comparisons of Random and HAS under different
parameter settings are shown in Figs. 14 and 15, in each
of which the right side is the comparison of HAS under
different parameter settings. From Fig. 14, we know that
the percentage of revealed violations decreases in terms of
both HAS and Random, as l increases. However, even when
l = 100, HAS still performs much better than Random. The
right side of Fig. 14 shows the detailed comparisons of HAS
under different values of α and k. We know the percentage
of revealed violations decreases as α increases, e.g., this
percentage decreases from 0.988 to 0.935, as α increases from
l/5 to l, when l = 100, and k = 2, but k has minor impacts
on the percentage of revealed violations, e.g., as k increases
from 2 to 5, this percentage only increases from 0.988 to 0.990
when l = 100 and α = l/5.

Summary. The performance of Amazon EC2 is more stable
than that of TCloud. The violations occur less frequently in
Amazon EC2. The main reason for this may be that all of the 8
instances run in TCloud, but only 4 instances run in Amazon
EC2. Furthermore, the longer running time in TCloud may
be another factor. The experimental results in the real cloud
traces are similar to those in the synthetic traces, e.g., HAS
usually works better than Random, and as the parameters α
and l decrease, HAS can detect more violations. However,
since there are a lot of violations in both TCloud and Amazon
EC2, the changes of the parameters α, l, and k make minor
differences. For example, the percentage of revealed violations
in TCloud decreases from 0.999 to 0.998, as α increases from

l/5 to l, when l = 100, and k = 2; this percentage decreases
from 0.996 to 0.995, as k decreases from 5 to 2, when l = 100
and α = l/5. Note that HAS works better as there are more
violations, e.g., HAS can detect almost all of the violations
under different parameter settings, when there are a lot of
violations in real cloud traces. Therefore, the feasibility of
HAS is verified.

VIII. DISCUSSION

In this section, we will discuss some additional issues
about CaaS in terms of the election of an auditor and other
consistency models.

A. Election of An Auditor

In section III, an auditor is simply elected from the auditor
cloud in turn, where each user becomes the auditor with the
same probability. However, different users have different levels
of ability in terms of available bandwidth, CPU, and Memory
of clients. The users with a higher ability should have a higher
probability of being selected as auditor. In this section, we
provide a more comprehensive solution to elect an auditor
as follows: We construct an ID ring for a group of users,
where each node is associated with a node ID, and each user
is denoted by a set of nodes in the ring. Suppose the number
of nodes in the ring is n. To elect an auditor, we can randomly
generate a number r, and let the user who is denoted by the
node with an ID of (r mod n) in the ring to be the auditor.

Note that the selection of each user does not have to be
uniform. The number of nodes associated with a user can be
determined by his abilities, e.g., the capability of his client, his
trusted rank, and so on. In this way, the probability of a user
with a higher ability of being chosen as the auditor becomes
higher. For example, given 3 users and 6 nodes, user Alice
is denoted by 3 nodes, user Bob is denoted by 2 nodes, and
user Clark is denoted by 1 node. Therefore, the probability of
Alice being the auditor is 50%, for Bob it is 33%, and for
Clark it is 17%.

B. Other Consistency Models

In local auditing, we only consider two kinds of consis-
tencies, i.e., monotonic-read consistency and read-your-write
consistency. Now, we discuss other consistency models such as
read-after-write consistency and monotonic-write consistency
models. Read-after-write consistency requires that all clients
immediately see new data. With read-after-write consistency,
a newly created object, file, or table row will immediately be
visible, without any delays. Therefore, we can build distributed
systems with less latency. Today, Amazon S3 provides read-
after-write consistency in the EU and US-west regions. So far,
it is hard to achieve read-after-write consistency in a world-
wide scale.

Monotonic-write consistency requires that a write on a copy
of data item x is performed only if that copy has been updated
by any preceding write operations that occurred in other
copies. However, monotonic-write is not always necessary for
all applications. For example, the value of x is first set to
4 and, later on, is changed to 7. The value 4 that has been
overwritten isn’t really important.
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IX. CONCLUSION

In this paper, we presented a consistency as a service
(CaaS) model and a two-level auditing structure to help users
verify whether the cloud service provider (CSP) is providing
the promised consistency, and to quantify the severity of
the violations, if any. With the CaaS model, the users can
assess the quality of cloud services and choose a right CSP
among various candidates, e.g, the least expensive one that
still provides adequate consistency for the users’ applications.
For our future work, we will conduct a thorough theoretical
study of consistency models in cloud computing.
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