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Abstract—With prevalence of remote storage services, data
privacy issues become more serious owing to loss of control to
outsourced data. In the meanwhile, the service providers tend
to minimize storage utility costs. To minimize the storage costs
while preserving data privacy, secure deduplication techniques
have been proposed, which are categorized into client-side or
server-side approaches. Client-side approach achieves storage
and bandwidth savings at the same time but allows external
adversaries to know existence of duplicates in the remote stor-
age. On the contrary, server-side one prevents the adversaries
from getting acknowledged but sacrifices network bandwidth
savings. In fog computing, however, which is a new computing
paradigm extending the cloud computing by outsourcing a
centralized workload of the cloud to geographically distributed
fog devices located at the edge of the networks, the previous
deduplication schemes cannot guarantee efficiency improve-
ment and privacy preservation simultaneously. In this paper, we
present a simple but nontrivial solution of these contradictory
issues in fog storage. The proposed hybrid secure deduplication
protocol combines client- and server-side deduplications by tak-
ing untrustworthy fog storage environments into account. The
client-side deduplication is applied in inter-network (i.e., cloud-
fog network) communications to prevent network congestion at
the network core, while the server-side deduplication is adopted
in intra-network (i.e., user-fog network) communications to
prevent information leakage via side channels for maximal
data privacy. Performance and security analyses demonstrate
the comparable efficiency of the proposed scheme with security
enhancement.

Keywords-Data outsourcing, client-side deduplication, server-
side deduplication, fog computing, data privacy, efficiency

I. INTRODUCTION

Fog computing, as an extension of the cloud computing

from the core to the edge of the network, is a promising

future generation paradigm. Due to the rise of IoT devices

with limited computing resources, cloud-based solutions

have been extensively researched. However, forecasts based

on the recent growth of the IoT market [1], [2] indicate that

centralized clouds will be unlikely to be able to provide

satisfactory services to end users in the near future. On the

other hand, fog computing efficiently handles concentrated

service requests by outsourcing the centralized workloads

in terms of storage space and network bandwidth to fog

devices, which are distributed over a wide geographical

range [3], [4], [5]. While the central cloud provides the

overall computing services, it also manages decentralized

heterogeneous fog devices such as set-top box, access point,

and home gateway. Individual fog devices located near IoT

devices provide faster services to end users based on their

own computation, storage, and network capabilities. In short,

fog computing has the following attractive attributes: (1)

low latency, (2) enhanced user experience (i.e., high quality

service), and (3) context awareness based on locational

proximity to end users [6], [7].

The centralized cloud storage is unable to handle enor-

mous volumes of data in a timely manner given a finite

network bandwidth. Distributed storage, especially fog de-

vices, is incapable of providing computing services to users

owing to its limited resources and field of vision. Therefore,

efficient resource management can be seen as one of the

most important goals of commercial cloud storage services.

As regards space utilization, deduplication is an attractive

data compression technique which stores only a single copy

of duplicate data and provide owners with a link to it.

Compared to cloud storage, fog devices located at the user

side with temporal storage (owing to limited storage capac-

ity) can perform deduplication and provide data outsourcing

services to data owners faster than the ones in central

cloud architecture. At the same time, the central cloud can

efficiently utilize storage space from a global perspective by

receiving and maintaining unique data from fog devices.

As regards bandwidth utilization, fog computing can be

seen as three tier (cloud-fog-end user) layered network. The

service delays are more likely to happen in communications

between the central cloud and the distributed fogs, which is

(possibly, multi-hop) inter-network communications. Con-

trariwise, intra-network (generally, single hop or a few

ones) communications between the fog and end users have

relatively low latency. Thus, client-side deduplication, which

allows end users to upload only a small and unique instance
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of data, is adequate on the inter-network due to its bandwidth

efficiency by preventing repetitive uploads of the whole

duplicate data.

Despite the compelling benefits of deduplication, pri-

vacy issues surrounding outsourced data have also received

close attention. Data owners cannot guarantee the secure

management because they lose control on their outsourced

data in remote storage systems after outsourcing [8], [9].

Thus, end users attempt to outsource encryptions of their

contents while supporting deduplication such as convergent

encryption (CE) [10]. In this context, server-side dedupli-

cation, which allows repetitive uploads of duplicate data

but eliminates them at the server side, is more appropriate

to communications between the fog and end users (on

the intra-network) since it prohibits illegitimate users from

learning side information such that duplicate content resides

in remote storage or not.

Considering secure deduplication together with storage

and bandwidth efficiency in the fog storage systems, we

present a hybrid secure deduplication protocol. By applying

client-side deduplication at inter-network level and server-

side counterpart at intra-network level, the proposed scheme

achieves best-effort bandwidth with desirable security guar-

antees. Specifically, our protocol satisfies the following

properties:

1) End users can upload their contents without prior key

agreement while preventing side information leakage.

2) Fog storage and cloud storage cannot learn any infor-

mation about outsourced data except occurrences of

deduplication.

3) Throughput increases by adaptively adopting client-

and server-side deduplications according to network

condition.

4) Storage utilization ratio increases in fog storage and

cloud storage by exploiting multi-tier hierarchy in fog

storage system.

Our solution is nontrivial because previous server-side

deduplications with interactive key agreement require strong

assumption that at least one end user, who has previously

uploaded the same content, is supposed to be always online.

Server-side deduplication without key agreement generally

cannot allow the semi-honest fog storage to perform dedupli-

cation because it is difficult to identify duplication without

knowledge of the encryption key.

The rest of this paper is organized as follows. In Section

2, previous secure deduplication studies are briefly reviewed.

In Section 3, our goal for fog storage systems is defined. In

Section 4, the proposed deduplication protocol is presented.

In Sections 5 and 6, our scheme is compared and analyzed

with previous deduplication approaches. In Section 7, the

paper concludes with a summary of the proposed scheme.

II. RELATED WORK

Extensive researches on secure deduplication have been

conducted recently under the consideration of cloud stor-

age environments not specific to fog storage environments.

Notice that there have been numerous secure deduplication

protocols including what allows end users to outsource

plaintext [11], [12], [13], [14] under the assumption that the

remote storage service provider is fully trusted. Though, we

assume that all of the remote storage cannot be fully trusted

for the rest of this paper [8]. Thus, we focus on previous

secure deduplication schemes which exploit cryptographic

primitives at the end user side as regards data privacy.

In this section, we briefly summarize some representative

works and point out their limitations and difficulties in direct

application to the upcoming fog storage architecture.

A. Client-side secure deduplication

Client-side deduplication occurs from the side of data-

uploading entity (i.e., end users rendered by IoT devices).

Specifically, a client who attempts to upload data computes

and sends a duplicate identification term (e.g. hash value) of

the data to remote storage before actual outsourcing. When

duplicate copy is discovered in remote storage, the upload

requestor proves his ownership to the storage with modest

amount of communications instead of uploading the entire

content. By allowing only unique content to be outsourced

to the remote storage, bandwidth consumption might dimin-

ish significantly and the effects of storage savings appear

immediately.

Douceur et al. [10] introduced a cryptographic primitive,

namely CE, by attempting to link data confidentiality via en-

cryption with data deduplication. In this study, an encryption

key is derived from the outsourced data in a deterministic

way (i.e., hash value) so that ciphertext generated under

this key becomes the same. As a result, clients having the

same content produce the same ciphertext without prior key

agreement and the remote storage is allowed to identify

duplicates via simple equality test without knowledge of

encryption keys. Following this concept of deterministic

key derivation from the data itself, Bellare et al. [15]

presented a generalized framework, called message-locked

encryption (MLE). MLE is categorized into four particular

constructions and assessed rigorously according to levels of

integrity and security guarantees.

However, some vulnerabilities arise in client-side dedupli-

cation approaches such as confirmation-of-file (CoF). CoF

is indicated in [16], [17] as side information such that the

knowledge of duplicates in the remote storage is revealed to

adversaries. This might cause serious impact on data privacy

when the message space is restricted to predictable space.

Unfortunately, this side channel is inevitable because the

identification of deduplicate content in the remote storage is

a requisite component in client-side deduplication.
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B. Server-side secure deduplication

As opposed to client-side deduplication, server-side dedu-

plication occurs from the side of data-storing entity (i.e.,

cloud and fog storage). The storage server receives all of

the uploaded ciphertexts from clients, and then performs

deduplication off-line or in the background during service

provisioning. In a sense that the uploading client cannot be

aware of duplicate copies in remote storage, this approach

can be seen more secure than the client-side one.

Following the security vulnerabilities via side channels

identified by Harnik et al. [11], Bellare et al. presented

a server-aided deduplication, DupLESS [18]. This protocol

adopts oblivious transfer protocol so that data owners of the

same content can agree on pseudorandom encryption key.

With a support of additional independent key server, it pre-

vents adversaries from guessing plain content by exploiting

the common hash value as side information. In addition,

online brute-force attack can be effectively mitigated by

rendering the key server as a rate-limiting authority.

Recently, Liu et al. proposed a server-side deduplication

without additional independent servers [19] by exploiting

password authenticated key exchange (PAKE) protocol. In

this scheme, data-uploading user engages in key agreement

protocol with online users who previously uploaded with the

same short hash permitting collisions intentionally. During

the process of PAKE protocol, communications pass through

the cloud while secret values risking the data privacy are not

transmitted. Once an agreed key is produced through PAKE

protocol, the data-uploading user retrieves the encryption

key and produces the same ciphertext stored in the cloud.

This protocol is desirable in that neither side information

is leaked to illegitimate users nor additional overheads are

required in order to maintain additional servers. But network

traffic is concentrated on the cloud, which is likely to cause

a single point of failure. In addition, the assumption, that

there should be at least one online user who has previously

outsourced the same content, is too strong in pragmatic cloud

storage environments.

Although the server-side deduplication achieves higher

level of security than the client-side deduplication in terms

of blockading leakage of side information, it requires more

communications overheads than the one of client-side coun-

terpart. This can be seen as a trade-off between data privacy

and bandwidth efficiency, but efficient utilization of the

network bandwidth becomes a crucial goal as the volume

of outsourced data increases in the era of fog computing.

Besides, Stanek et al. [20] proposed an interesting idea

considering both of client- and server-side deduplications

based on the popularity of outsourced content. When it

comes to popular outsourced data, existence of outsourced

data can be leaked to adversaries, which brings about the

same side channel vulnerabilities because then the encryp-

tion of popular content converges to the convergent encryp-

Figure 1: Architecture of a fog storage system

tion. The existence of trusted third party incurs additional

maintenance overhead as well in this scheme.

III. FOG STORAGE DESCRIPTION AND OUR GOALS

In this section, we describe the architecture of fog storage

systems and then define our goal of this paper.

A. Fog storage architecture

We introduce the three system entities in a typical fog

storage system: the cloud, fog, and end user (Fig. 1).

1) The cloud is a centralized service provider which

provides long-term data storage and retrieval services.

The cloud maintains deduplicated data and metadata in

the form of (data owner’s ID, physical link to the data).

In order to handle enormous volume of data and to

avoid network congestion caused by its finite storage

and network resources, its data storage workload is

outsourced to widely distributed fog devices.

2) The fog is a distributed entity which is located at

the edge of the network and provides data storage

services in place of the cloud with its own limited

resources. Fog devices are connected to the central

cloud and also possibly with each other (via inter-

network), while it is connected to end-user devices

in a spatially restricted domain (via intra-network).

It is responsible for temporal storage services and

relays services from the cloud when temporal/spatial

workloads exceed its capability.

3) The end user is the data outsourcing/retrieving entity

(e.g. IoT devices). The principal goal of end users is

to receive data storage/retrieval services with elasticity

and scalability from the cloud storage through the fog

storage. They have relatively very limited amount of

storage space compared to the one of cloud and fog

storage. Thus, we assume that they remove the data

content from their local storage after outsourcing it.

B. Efficiency requirements

Taking into account the fog storage architecture explained

above, bandwidth consumption needs to be minimized in

inter-network communication. In other words, heavy net-

work traffic is likely to be concentrated to the central cloud
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because it should receive uploaded data from several fog

storage and transmit stored data to them in order to maintain

the overall storage services. Therefore, to control network

bandwidth effectively, it is desirable to perform client-side

deduplication between the cloud storage and the fog storage.

In practice, the shift of heavy network load to distributed

small area domains is natural because network condition

between the fog storage and end users is expected to be

better than the former because of its physical proximity. As

long as the impact of server-side deduplication is negligible,

it is admissible to perform server-side deduplication between

the fog storage and end users.

C. Adversarial model
In a fog storage system, we assume that the cloud and

fog devices are honest-but-curious entities. To clarify an

adversary’s location and capabilities, it can be broadly

categorized into one of the two groups: inside and outside.

• The inside adversary participates in the data outsourc-

ing services and follows the prescribed protocols. At

the same time, it attempts to learn information about

the underlying plain content of the outsourced data by

exploiting transcripts allowably given to it. The cloud

and fog storage belong to this kind of adversary and

end users who have not outsourced data to them can

be considered potential inside adversaries. Therefore, it

can be regarded as passive attacker.

• The outside adversary attempts to acquire the underly-

ing plain data without obedience of the given protocol.

It can exploit side channels such as eavesdropping,

access and possibly modify physical storage in an

inappropriate manner. Therefore, it can be considered

active attacker.

Without loss of generality, we assume that the cloud and

fog do not collude with other adversaries so that they cannot

learn about existence of duplicates in remote storage.

D. Security requirements
Taking the aforementioned adversaries into account, the

following properties should be satisfied in the proposed

scheme:

1) Confidentiality: Unauthorized access to plain data

should be prevented to deter from unintended exposure

of outsourced data.

2) Integrity: End users should be able to verify the data

integrity after retrieval of their outsourced content.

3) Leakage resilience: Information leakage should be

minimized during data outsourcing process. This dif-

fers from confidentiality in that no side information

should be given to even valid end users who have

outsourced the data content to the remote storage.

IV. PROPOSED HYBRID SECURE DEDUPLICATION

In this section, the proposed hybrid deduplication scheme

in fog storage architecture is described.

A. Preliminaries

Prior to a detailed description of the proposed scheme, the

cryptographic primitives on which it is based will be briefly

summarized.

1) Bilinear maps: Let G and GT be multiplicative cyclic

groups with a large prime order p where g is a generator of

G. Then, there is an efficiently computable bilinear map e
such that e : G×G→ GT with the following properties:

• Bilinearity: e(ua, vb) = e(u, v)ab holds for any u, v ∈
G and any a, b ∈ Zp.

• Non-degeneracy: e(g, g) �= 1.

2) Bilinear Diffie-Hellman assumption: The bilinear

Diffie-Hellman (BDH) problem is to compute e(g, g)
abc ∈

GT given 〈g, ga, gb, gc〉 for randomly chosen values

a, b, c ∈R Zp. Let AdvBDH
A be the advantage that any

probabilistic polynomial-time (PPT) adversary A solves the

BDH problem as follows

AdvBDH
A = Pr[A(e, g, ga, gb, gc) = e(g, g)

abc
].

If AdvBDH
A is a negligible function in the security pa-

rameter λ, then we can say that BDH assumption holds and

denote by 〈p,G,GT , g, e〉 the BDH group.

3) Identity-based encryption (IBE): Waters introduced

an efficient IBE [21] without random oracles. The Wa-

ters’ IBE is comprised of the following three prob-

abilistic algorithms and one deterministic algorithm

(Setup,KeyGen,Enc,Dec).

• (μ,mk)
$←− Setup(1λ): Given the security parameter λ,

choose a random BDH group 〈p,G,GT , g, e〉 as defined

above. In addition, choose random values α ∈R Zp,

g2 ∈R G, and u′, u1, . . . , uN ∈R G for some integer

N ∈ N. Define a pseudorandom function F (v) =
u′ ∏

i∈V ui where v is N -bit identity string and V is a

set of indices on which the value is 1 in v. The public

parameter then becomes μ = (g, g1 = gα, g2, F (·)) and

the master secret key becomes mk = gα2 .

• dv
$←− KeyGen(μ,mk, v): Given N -bit identity,

choose a random value r ∈R Zp. The decryption key

for identity v then becomes dv = (mk · F (v)
r
, gr) =

(gα2 · F (v)
r
, gr).

• C
$←− Enc(μ, v,M): For a message M and identity

bitstring v, choose a random value t ∈R Zp. The ci-

phertext then becomes C = (M · e(g1, g2)t, gt, F (v)
t
).

• M ← Dec(μ, dv, C): For decryption key dv = (d1, d2)
and ciphertext C = (c1, c2, c3), the plaintext becomes

M = c1 · e(d2, c3)/e(d1, c2).
Its security is based on decisional BDH assumption and

the detailed proof can be found in [21]. In the proposed

scheme, slightly modified version of Waters’ IBE is used

where the identity is represented as pseudorandom value
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generated from the message to be outsourced.1

B. Overview

Once the system public parameters are established, end

users are allowed to transfer their content to a fog storage

in charge and retrieve the content from it on demand.

Each end user outsources a randomized encryption of

his data content by choosing random exponent and deletes

both plaintext and ciphertext from his local storage. The

fog storage, located on user side, then stores the received

ciphertext for a certain period of time. During this period

of time, the fog storage performs server-side deduplication

locally when an encryption of the same content is uploaded

by end users. Upon times excess or storage overload, the

fog storage and the central cloud storage engage in client-

side deduplication. If encryptions of the same content are

stored in distributed fog storage, the central cloud receives

just (random) one of them and all of the fog storage remove

the encryption from its temporal storage.

To access the outsourced data, the end user receives

possibly deduplicated ciphertext from the fog device in

charge. At this time, the fog device relays the ciphertext

belonging to the end user from the central cloud to the end

user if it is not stored in its local storage. Otherwise, the

fog directly transfers the corresponding ciphertext to the end

user.

C. Main construction

From now on, we describe the entire process of our

deduplication protocol. This procedure is composed of four

phases (System setup, Data outsourcing, Retrieval,
Deduplication). It is based on Waters’ IBE scheme, but

is modified version in order to enable secure deduplication.

The specific algorithms are described in Algorithm 1.

1) System setup: The trust initializer runs the Setup
algorithm to obtain system public parameters spp. spp is

disclosed to the public so as to allow any entity who engage

in the data outsourcing to perform the prescribed protocol.

2) Data outsourcing: When an end user tries to upload

content to the fog storage, he first generates two pseudo-

random values derived from the content, which are used in

encryption (as an identity of IBE scheme). By using these

values, he generates a random encryption and decryption key

in the Encrypt algorithm. He then transmits the ciphertext

to the fog storage, which locates at the same or near network

of the end user. The decryption key dk and hash digest α are

kept secret by the end user and used to access the outsourced

content and integrity verification, respectively. Without loss

of generality, he removes all of the parameters except the

1Specifically, the master secret mk = gα2 and g1 in public parameter
spp are removed from the proposed protocol. This removes the necessity
of trusted key generation center (note that the cloud and fog cannot be fully
trusted). Fortunately, the secret key can be generated by valid data owners
from the message, which is similar to the Boneh-Boyen IBE protocol [22].

decryption key for saving storage space. It is notable that the

end user who outsources his encrypted content cannot learn

any information including existence of the same content in

the fog storage.
3) Retrieval: When an end user wants to access his

previously outsourced content from the fog storage, he sends

a retrieval request to it. If the fog storage still stores an

encryption of the user’s content, it just sends the ciphertext

to the end user. Otherwise, the fog storage forwards retrieval

request to the central cloud storage and conveys the received

ciphertext to the end user. The central cloud storage always

stores only single copy (as an encryption) of the data content

outsourced by end users, so it is able to deliver the requested

encryption to the fog storage. The end user then runs the

Decrypt algorithm to obtain the plain content.
4) Deduplication: Once a fog storage receives ciphertext

C from an end user, it checks duplicates by running Dedup
algorithm with another ciphertext C ′ stored in its local

storage. If duplicate copy is found, the fog storage replaces

previously stored ciphertext with the new ciphertext received

just before for the same content and registers the end user

as valid data owner (i.e., server-side deduplication).2 Other-

wise, the fog storage requests (periodically or on demand)

duplicate check to the central cloud storage by sending just

last two parameters in the received ciphertext. The central

cloud runs the Dedup algorithm as the fog did, but it returns

the result of the algorithm to the fog. If the result is False
(in case of unique data not stored in the cloud), the fog

forwards the first component c1 and the cloud stores it in

the form C = (c1, c2, c3) (i.e., client-side deduplication).

Regardless of the result, the fog removes the ciphertext from

its local storage at the end of Dedup algorithm.

V. PERFORMANCE ANALYSIS

In this section, the proposed scheme is analyzed and

compared with previous secure deduplication approaches in

terms of efficiency.

A. Implementation
In order to evaluate the efficiency of the proposed scheme,

prototypes of ours, Bellare et al.’s scheme [18], and Liu

et al.’s scheme [19] are implemented in Python (version

3.4.3) upon Charm framework [23]. Then, we evaluate the

performance with average values over 100 times repetitions

on a desktop PC running Ubuntu 12.04 LTS with 3.4GHz

CPU with 16GB RAM. In order to follow NIST recommen-

dation with 256-bit security [24], secure symmetric encryp-

tion/decryption is rendered by AES256, universal one-way

hash functions are implemented by exploiting SHA512 and

SHA256, and supersingular elliptic curve with 512-bit base

field is used in the prototypes.

2This duplicate check can be done by fog storage in the background at
any time. The selection criterion which copy should be kept is dependent
on a policy of the fog storage, but it has no effect on the security of the
scheme.
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Algorithm 1 Algorithms in the proposed scheme

procedure Setup(1λ) � System public parameter selection

Select a random BDH group 〈p,G,GT , g, e〉
Select uniform random values g2, u

′, u1, u2, . . . , uN from G for some N ∈ N

Define a functiton F (s) = u′ ∏
i∈V ui given N -bit string s with a bitmap V for which i-th bit of s is 1

Select semantically secure symmetric encryption/decryption with m-bit key ek for some m ∈ N such that

C ← SE(ek,M) and M ← SD(ek, C)
Select universal one-way hash functions H1,H2, and H3 such that

H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → {0, 1}N ,H3 : GT → {0, 1}m
return spp = 〈p,G,GT , g, g2, e, F (·),H1(·),H2(·),H3〉

end procedure

procedure SigGen(spp,M )

� Pseudorandom value generation

α← H1(M)
σM,1 ← gα2
σM,2 ← F (H2(M))
return σ = 〈α, σM,1, σM,2〉

end procedure

procedure Dedup(spp, C̃ = (·, c2, c3), C̃ ′ = (·, c′2, c′3))
� (Client-side) Duplicate identification

if e(c2, c′3) = e(c′2, c3) then
return True

end if
return False

end procedure
procedure Encrypt(spp, σ,M )

� Probabilistic encryption

Select uniform random values r, t ∈R Zp

dk ← (gα2 · σr
M,2, g

r)

ek ← H3(e(σM,1, g2)
t
)

C ← (SE(ek,M), gt, σt
M,2)

return 〈dk, C〉
end procedure

procedure Decrypt(spp, dk, C)

� Deterministic decryption

(dk1, dk2)← dk
(c1, c2, c3)← C
ek ← H3(e(dk1, c2)/e(dk2, c3))
M ← SD(ek, c1)
return M

end procedure

B. Computation overheads

Fig. 2 demonstrates computation time (ms) on client side.

Per algorithm time consumptions are depicted in bar graph

and total time for single data outsourcing is drawn with a

solid line. In all evaluations, computation time for file I/O,

encryption, and decryption are almost the same with stan-

dard deviation less than 0.001 due to the same cryptographic

encryption upon the same machine. In addition, all schemes

have similar computation time dominated by the encryption.

Oblivious pseudorandom key generation (denoted by

OPRF) in Bellare et al.’s scheme is performed on the hash

value of outsourcing content and requires 1 exponentiation

and 2 multiplications, while SigGen algorithm in the pro-

posed scheme uses two universal hash functions and constant

number of multiplications (i.e., 257 multiplications in F (·)
evaluation of prototype) and 1 exponentiation.3

On the contrary, Liu et al.’s scheme requires constant

number of hash (for both of full-length and short) and key

derivation, but repetitive computation of PAKE in proportion

3This makes difference of ours from Bellare et al.’s scheme in that ours
is 2.25 times faster for 2MB data but 0.67 times for 512MB (converging to
35% slower than Bellare et al.’s scheme for data larger than 512MB). But
it is less than half of encryption time making the total computation time in
outsourcing negligible.

to the number of online checkers who have the same short

hash value. Thus, computation time increases as the number

of checkers increases.
The other constant times are summarized in TABLE I.

Although the proposed scheme requires almost 3 times more

computation time for system setup, this can be done only

once before service provisioning. Liu et al.’s setup time is

minimal because the system does not require initial setup of

parameters for neither elliptic curve nor RSA.
Unlike the proposed scheme, Bellare et al.’s scheme and

Liu et al.’s scheme require computation on server side during

data outsourcing. In Bellare et al.’s DupLESS, the key server

needs to engage in oblivious encryption key generation. In

Liu et al.’s scheme, the central server is supposed to send

data outsourcing entity homomorphically encrypted masked

encryption key. When there is no duplicate encryption in

the server, the server randomly chooses the key without

homomorphic addition, which causes reduction of 167μs in

key generation. Additionally, Liu et al.’s scheme requires

multiple online checkers to participate in PAKE protocol

for the same short hash value.

C. Storage overheads
After data outsourcing, data owners need to keep the

decryption (i.e., encryption) key secret. Both of Bellare et
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(a) Bellare et al. (b) Liu et al. (c) Proposed scheme

Figure 2: Computation time (ms) on client side with varying data size

Table I: Constant computation time in data outsourcing

Entity Phase (algorithm) Scheme Time (ms)

Trusted
initializer

Setup
Bellare et al. 119.2147

Liu et al. 2.5296

Proposed 370.5741

(Key) Server
OPRF Bellare et al. 4.1141

Key combine (Dedup.) Liu et al. 0.2852

Key gen. (Non-dedup.) Liu et al. 0.2685

Online checker PAKE Liu et al. 0.3759

al.’s scheme and Liu et al.’s scheme require the owners

to store (256-bit) AES encryption key. Instead of directly

storing the key, the proposed scheme allows data owners

to keep the key derivation key. Although this mechanism

incurs additional overhead by introducing two elliptic curve

points (in dk), it enables independent data owner to choose

his random encryption key without additional interactive

communications for key agreement or derivation.

On the server side, outsourced encrypted contents along

with metadata related to data owners need to be maintained.

Focusing on the ciphertext, the proposed scheme includes

two additional elliptic curve points (i.e., c2 and c3) which

might be negligible as the size of outsourced content be-

comes larger.4

D. Communication overheads

In Liu et al.’s protocol [19], every communication passes

through the central server (i.e., cloud). On the other hand,

end users interact with two independent servers in Bellare

et al.’s protocol [18]: one with the key server for oblivious

key derivation and the other with cloud storage for data

outsourcing. In any case, all the communications of above

studies are transmitted at inter-network level.

On the contrary, the proposed scheme considers both

inter-network and intra-network communications in a single

4This additional overhead occupies less than 0.035% even for 512KB
data in the storage server. In Charm framework, an element in the pairing
module with 512-bit base field is serialized to a 90-byte stream.

secure deduplication protocol. Therefore, heavy traffic con-

veying the ciphertext mostly occurs in a restricted domain

via intra-network communication.

In order to evaluate the bandwidth efficiency, we ran micro

benchmarks with varying intra-network conditions.5 Fig. 3

depicts transmission time for outsourcing a single 512MB

content with different intra-network speed. Without loss of

generality, as the transmission time is bounded on slower

network, the maximum transmission speed follows that of

inter-network in the previous approaches. This implies that

network traffic can be concentrated to the network core even

when most of the traffic can be handled in the network edge

such that communication condition between the end users

and fog is superior than that between the fog and cloud.

Notably, the proposed scheme can transmit much faster than

others as long as the intra-network speed is faster than the

inter-network.

As the size of outsourced data becomes larger, differences

of communication costs among previous approaches seem

negligible. As it becomes smaller, however, differences of

them would be larger as depicted in Fig. 4. As long as the

condition of inter-network is better, all the scheme shows

similar pattern. In Liu et al.’s approach, communication

overhead becomes larger as the number of online checkers

increases (owing to high probability of short hash value).

Under any circumstances, the proposed scheme seems to

most effectively utilize the network bandwidth.

VI. SECURITY ANALYSIS

A. Confidentiality

When adversaries obtain outsourced ciphertext in an illicit

way, they cannot learn any information about plain content

from the ciphertext. The main difference of our protocol

from Waters’ IBE is that the master secret is generated by

valid data owners rather than by the trusted key generation

center. Nevertheless, we give a brief sketch of security proof

of the proposed protocol that is bounded on the Waters’ IBE.

5In this simulation, we consider the network condition as goodput.
According to average Internet speed [25], we set the goodput of inter-
network 20Mbps.
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Figure 3: 512MB data transmission in 20Mbps inter-network

Figure 4: 10KB data transmission in 20Mbps inter-network

Proposition 1. As long as the symmetric encryption is
semantically secure and universal hash functions satisfy one-
wayness, our scheme is as secure as Waters’ IBE [21].

Proof: By means of eavesdropping, any (insider or out-

side) adversary without the entire data can obtain {g, g2} ⊂
spp and {gt, σt

M,2} ⊂ C. Without loss of generality, we can

set α = H1(M), g2 = gβ , t = γ, σM,2 = gδ . Actually, α
and δ are dependent on message, but according to hardness

assumptions of discrete logarithm (resp. σM,1 = gH1(M))

and subset product (resp. σM,2 = F (H2(M))), α and δ look

independent and random from the perspective of adversaries

without knowledge of the entire data M . Therefore, the

adversaries regard 〈α, β, γ, δ〉 as independent and random

values.

Now, suppose that the PPT adversary B can break the pro-

posed scheme with non-negligible probability. We can build

another PPT adversary A′ that can break the Waters’ IBE

by exploiting B. Given 〈g, gα, gβ , gδ, gγδ〉, B can compute

e(g, g)
αβγ

by the assumption. Accordingly, the adversary

A′ taking the same challenge (i.e., 〈g, gα, gβ , gδ, gγδ〉) as

input invokes the adversary B with the challenge, obtains

e(g, g)
αβγ

as a result of B, and learns the plain data M
by removing masking factor e(g, g)

αβγ
from the ciphertext

M · e(g, g)αβγ through simple division. It contradicts the

security assumption of Waters’ IBE. Thus, the proposed

scheme is as secure as Waters’ IBE under bilinear Diffie-

Hellman assumption.

B. Integrity

When valid data owner obtains outsourced plain data M
via Retrieval phase, he can verify integrity of his restored

data through equality test of H1(M) with the stored value

α.

C. Leakage resilience

In the proposed scheme, end users trying to outsource

their contents cannot learn existence of encryptions for

the same content. This deters adversaries from launching

confirmation-of-file attack, which is devised to reveal ex-

istence of upload-requesting content in the remote storage

by analyzing the response from the remote storage in client-

side deduplication. In addition, duplicate identification is not

conducted by simple comparison of relatively small values

(i.e., hash values) in the proposed scheme. By allowing each

end user to select a uniform random value r in Encrypt
algorithm, adversaries without valid decryption key cannot

learn any information during Data outsourcing phase.

VII. CONCLUSION

Ever-increasing volume of data induced data outsourcing

to become popular. With privacy concerns in conjunction

with efficient resource management, remote storage service

providers are supposed to provide a secure and efficient way

to manage outsourced contents. In this paper, we presented

a simple but secure data deduplication protocol with best-

effort bandwidth efficiency. Adaptive combination of client-

and server-side deduplication according to network condition

makes deduplication more eligible for environments with

tremendous amount of outsourced data. Moreover, this hy-

brid approach effectively eliminates leakage of side informa-

tion enabling more reliable data outsourcing. Efficiency and

security analyses demonstrate that the proposed approach is

well suited to the upcoming fog computing era with data

explosion.

We plan to extend our research through evaluation under

real environments by deploying the prototypes in Android

mobile devices (which is supported by Charm framework)

and by measuring real time consumption upon mobile de-

vices and transmission time. We also take into account an

optimization of the proposed scheme including efficiency-

enhancement of duplicate identification as well as security-

enhancement considering offline brute-force attack on re-

mote storage side.
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