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We propose a technique for reducing communication overheads when sending data
across a network. Our technique, called hash challenges, leverages existing deduplication
solutions based on compare-by-hash by being able to determine redundant data chunks
by exchanging substantially less meta-data. Hash challenges can be used directly on any
existing compare-by-hash protocol, with no relevant additional computational complexity.
Using real data from reference workloads, we show that hash challenges can save as much
as 64% meta-data exchanged across the network, relatively to plain compare-by-hash. This
implies reductions of up to 7% in overall transferred volume, and performance gains of up
to 16% with typical asymmetrical broadband connections.
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1. Introduction

Many interesting and useful applications require trans-
ferring large volumes of data across a network, from net-
work file and backup systems, content delivery networks
and software distribution mirroring systems, to recently
popular cloud-based file hosting and sharing systems [1].
While broadband, both wired and mobile, is rapidly be-
coming ubiquitous in developed countries [2], it is not a
panacea. Firstly, upload bandwidth remains a scarce re-
source for the average broadband consumer, for commer-
cial and technical reasons that are unlikely to change in the
near future [2]. Yet, in many examples mentioned above,
clients tend to upload more than they download; e.g.,
in backup and file hosting/sharing systems. Furthermore,
many ISPs charge a per-byte price, whereas network usage
incurs energy costs to battery-constrained mobile clients.
Finally, broadband penetration is still far from significant
in the developing world [3].
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Fortunately, as many studies show (e.g., [4,5]), the data
exchanged between hosts in most of these systems exhibits
high levels of redundancy. Hence, much of the traffic that
the above mentioned applications exchange can be elim-
inated. To illustrate, consider the situation where some
node (the sender) is about to send file S to another node
(the receiver). Assume that the receiver already stores a
set of files, R . Let us call each contiguous data block in R
and S a chunk. Very frequently, S will share many chunks
with other files (or versions of files) that the receiver al-
ready holds (in R). If the sender is able to infer which
chunks in S are redundant across R , then it can avoid
transferring them, as the receiver can directly obtain them
within the local contents in R .

This problem is often called distributed data deduplica-
tion (hereafter simply called deduplication). Much recent
work has proposed different deduplication techniques [5],
the most prominent being the compare-by-hash method
(CBH) [6,4]. In CBH, the sender starts by dividing each
file to be sent into a sequence of contiguous chunks,
c1, c2, . . . , cn , and by computing the corresponding hashes,
using some hash function with a negligible collision prob-
ability (e.g. SHA-1 [7]). The sender then transmits the hash
list to the receiver. The receiver maintains a lookup struc-
ture on the hash of each block in R , usually called a chunk
hash database. Upon receiving the hash list from the sender,
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the receiver searches for each hash in its local chunk hash
database. Whenever a match is found, the receiver re-
trieves the contents from the local chunk (assuming the
local chunk to be identical to the original chunk at S , given
the negligible collision probability). The receiver then tells
the sender which chunks in S are still missing, so that the
sender can transfer such chunks only.

The power of CBH lies in its ability to detect any cross-
file and cross-version redundancy, while requiring no long-
term shared state between sender and receiver. However,
CBH’s effectiveness depends on using chunks that are small
enough to exploit most fine-grained redundancy that S
shares with R . Unfortunately, precision in CBH has a high
price in terms of latency and network overhead of the hash
exchange phase. As one attempts to leverage precision by
reducing chunk sizes, the meta-data overhead will eas-
ily outgrow the savings in the second protocol round [8].
Not surprisingly, most deployed CBH systems are forced to
run at a relatively coarse precision (e.g., 2 Kbytes expected
chunk size in LBFS [4]), thus neglecting substantial redun-
dancy.

This paper proposes a lighter alternative to CBH, called
Hash Challenges (HCs). HCs stretch CBH’s limits by dramat-
ically reducing the underlying meta-data overhead, while
detecting redundant chunks as effectively as the latter (i.e.,
for identical chunk sizes, HCs detect the same redundancy
as CBH). Intuitively, such savings arise from the ability of
HCs to filter out most non-redundant chunks by exchang-
ing very short hash fragments, instead of their complete
hashes. HCs can directly replace the CBH steps in any
existing protocol based on CBH, including the more in-
tricate CBH variations that have been proposed recently
(e.g. [8–11]). Moreover, HCs introduce neither any relevant
computation overhead nor network round-trips relatively
to CBH.

We support the above claims with a theoretical anal-
ysis and an experimental evaluation of the HCs protocol.
Running a full-fledged implementation of HCs with stan-
dard workloads from reference work in data deduplication,
we show that HCs can save as much as 64% meta-data
exchanged across the network, relatively to CBH. Such re-
ductions mean gains in overall transferred volume of up
to 7%, with no relevant performance degradation.

Most importantly, the benefits of HCs are amplified in
scenarios where data to deduplicate is to be sent over a
low bandwidth link. In a 1 Mbps uplink/100 Mbps down-
link scenario, HCs are up to 16% faster than CBH.

The remainder of the paper is organized as follows.
Section 2 describes and analyzes HCs. Section 3 provides
experimental results that confirm the advantages of HCs
over CBH. Finally, Section 4 discusses related work and
Section 5 draws concluding remarks.

2. Hash challenges

HCs ensure the same as CBH: to allow the sender
node to know whether the receiver already holds a given
chunk, c, in its local repository, R . Fig. 1 depicts HCs. Like
CBH, HCs work in three phases, which we explain next.
Hereafter, we assume FIFO message ordering.
Fig. 1. Hash Challenges (HCs) protocol.

Phase i. The sender starts by dividing the contents to
send (S) into a sequence of (contiguous) chunks. We can
use any standard approach for defining chunk boundaries,
either fixed- or variable-sized [5]. For each chunk c to
transfer, the sender computes c’s hash, h(c), using some
cryptographic hash function, e.g. SHA-1 [7]. Hereafter, let N
denote the hash length in bytes (e.g. N = 20 for SHA-1).

Chunk division results in a list of meta-data entries that
characterize each chunk in S , including the chunk’s hash
value, length and the address of its contents. The sender
will maintain this list until phase iii.

While CBH would send the N-byte chunk hashes of ev-
ery chunk in S to the receiver, our protocol will only send
k-byte prefixes of each such hash. We call each prefix in
the sequence sent to the receiver a hash challenge. The key
insight behind HCs is that, even if the sender delivers such
incomplete pieces of meta-data to the receiver, the sender
will still be able to infer whether each chunk c in S is re-
dundant across R or not. We explain how next.

Phase ii. The receiver maintains a local chunk hash
database, which stores chunk meta-data for each chunk the
receiver stores in R . For any given hash challenge, the local
chunk hash database is able to lookup the chunks whose
first k hash bytes match the given hash challenge. We des-
ignate such chunks as the candidates for the given hash
challenge. Furthermore, we designate the remaining N − k
bytes of the chunk’s hash as that candidate’s hash response
(to the HC).

For each received hash challenge hc(ci), the receiver
inspects its local chunk hash database for one or more
candidates that match hc(ci). For each candidate that the
receiver finds for hc(ci), the receiver adds it to a candi-
date list and sends the candidate’s hash response, labeled
by the i index. The candidate list is held by the receiver
until phase iii.

It is straightforward to extend the hash table-based
chunk hash databases of most conventional CBH systems
in order to support the above candidate lookup operation.
A particularly efficient solution is to use a hash table with
as many buckets as possible HCs (i.e. 2k×8). Each bucket i
contains a list of meta-data entries for the chunks whose
k-byte hash prefix equals i. Hence, finding the candidates
for some hash challenge hc(ci) is as simple as directly re-
turning all the entries in the bucket whose index is hc(ci).

Phase iii. Upon reception of each candidate’s hash re-
sponse for some hash challenge hc(ci), the sender obtains
the real hash value of chunk ci and compares both. If an
effective match is found, then the receiver is actually hold-
ing the same chunk (assuming no hash collisions occur). In
this case, the sender replies with the offset (within S) to
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Fig. 2. Meta-data saved and added by HCs for different sizes of R and redundancy probabilities.
where the receiver must copy the redundant contents of
the candidate chunk that the receiver holds.

If, otherwise, the hash response does not match the
actual chunk hash, the current candidate is false. Hence,
the sender replies with a reserved offset value (no match),
telling the receiver to ignore the current candidate.

Finally, the sender transfers the chunks it did not find
redundant. The receiver fills the non-redundant gaps with
such contents, thereby completing S .

2.1. Analysis

It is easy to see that, in the absence of false candidates,
HCs exchange less hash value meta-data than CBH for the
non-redundant chunks. By only sending k bytes across the
network and receiving an empty answer, the sender is im-
mediately sure that the receiver does not hold c. Further-
more, in the case that the receiver does hold chunk c and
no other chunk shares c’s k-byte hash prefix, HCs exchange
the same number of hash bytes as CBH: N bytes (k plus
N − k, in HCs). Of course, since HCs save meta-data, their
overall impact will only be noticeable when meta-data vol-
ume is non-negligible; as we show briefly, this is true for
chunk sizes below 8 Kbytes.

It is worth noting that, by varying the size of hash
challenges (from k = N to 0) we can actually define a spec-
trum of protocols. At the k = N extreme we get CBH. As
we drop k, we achieve higher efficiency due to the above
mentioned meta-data savings with non-redundant chunks.
However, decreasing k will inevitably increase the likeli-
hood of false candidates and consequently introduce net-
work overhead.
We need to precisely predict the aggregate volume that
HCs exchange in order to better understand this trade-
off. We prove in Appendix A that the expected number of
bytes transferred is bounded from above by:

|S|
cs

× k
︸ ︷︷ ︸

phase i

+ #cand × [
(N − k) + int

]
︸ ︷︷ ︸

phase ii

+ int × #cand + [
1 − Pred(S, R, cs)

] × |S|
cs

× cs
︸ ︷︷ ︸

phase iii

where |S| and |R| denote the size (in bytes) of S and R ,
resp.; int denotes the size of an integer (used to express
chunk indexes and offsets); Pred(S, R, cs) denotes the prob-
ability that each chunk in S is redundant across R , assum-
ing an average chunk size of cs; and #cand denotes the
number of candidates found at the receiver on phase ii.
The latter is given by: #cand = [Pred(S, R, cs)+ |R|

cs × 1
2k×8 ]×

|S|
cs .

The above expression leads us to some fundamental
conclusions about HCs. Firstly, starting at k = N and grad-
ually decreasing k, meta-data savings due to HCs grow
much faster than the false candidate rate increases, un-
til a critical threshold is reached. This is evident in Fig. 2,
which depicts the meta-data volume that HCs actually save
(by exchanging less hash bytes) and introduce (when false
candidates occur).1 For different combinations of two key

1 The plotted values are estimates obtained from the components of the
aggregate volume expression of HCs (see Appendix A for details).
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variables, the size of R and the redundancy probability, the
effective outcome of HCs is given by the vertical distance
between both lines in Fig. 2. The higher the gain line is
relatively to the loss line, the less the system will actu-
ally transfer across the network. For any scenario, such a
positive difference tends to grow as one drops k. However,
when one reaches the critical threshold (for instance, k = 3
for R with 100K chunks), such gains are almost instanta-
neously lost with an explosive increase of false candidates.

Hence, the success of deploying HCs depends on a care-
ful choice of parameter k; more precisely, on choosing the
lowest k with a negligible false candidate rate. As Fig. 2 shows,
that choice depends only on the size of R . Any system
based on HCs should thus either adapt k as R changes,
or simply limit R to a maximum acceptable size and set k
accordingly.

As Fig. 2 illustrates, smaller sizes of R maximize the ef-
fective gains that HCs can attain. This suggests that HCs
are especially suited to workloads with smaller sizes of R .
Nevertheless, the gains of HCs drop slowly as one consid-
ers much larger sizes of R (e.g. up to 100 TB with 1 KB
chunks, k can be as low as 6 without incurring frequent
false candidates).

In scenarios where the receiver stores a large reposi-
tory, one option for using a low k is to partition that repos-
itory into smaller sub-domains, each one corresponding to
a different R . This technique is not new. For instance, it is
extensively used in Web content deduplication, where it is
well studied that, for many Web workloads, by restricting
redundancy detection to smaller content partitions (e.g. a
single directory instead of the full repository at the server),
similar redundancy levels are achieved [12].

Another crucial conclusion is that HCs always reduce
meta-data volume on the sender-to-receiver link, while
any additional traffic due to false candidates exclusively
affects the receiver-to-sender link. This is particularly ad-
vantageous in asymmetric network where the bandwidth
from the sender to the receiver is lower than in the oppo-
site direction. For instance, most Internet broadband users
face this situation when uploading new contents to a file
sharing service. Besides reducing the overall volume, HCs
also shift part of such volume to the higher bandwidth
stream.

We empirically confirm these predictions next.

3. Evaluation

This section evaluates HCs, with the goal of answer-
ing two main questions: in practice, (1) how much network
volume do HCs save?; and (2) how do HCs impact perfor-
mance? To answer both questions, we built two file trans-
fer systems: one that implements the CBH protocol used
by LBFS [4], and an extension of the previous system that
runs the HCs protocol. Both systems use Rabin fingerprints
to delimit chunks using content-based boundaries, 20-byte
SHA-1 hash values to identify chunks (N = 20), and main-
tain a 128M-bucket in-memory chunk hash table at the
receiver site. The expected chunk size, hereafter denoted
ecs, is a tunable parameter, and can be set from 128 B up
to 8 KB. As in LBFS [4], we imposed size limits to prevent
pathological cases; namely, a chunk cannot be smaller than
ecs/4 and no larger than ecs × 2.

The sender and receiver processes each ran in an Intel
Core 2 Quad CPU machines with 8 GB RAM, connected by
a 100 Mbps Ethernet network. All values presented next
are an average of the results obtained on five runs of each
experiment, preceded by one cold start run.

As for workloads, we consider three real workloads:
emacs, gcc and linux-src. These workloads have been used
to evaluate other state-of-the-art deduplication protocols
(e.g. [8,10]). In each workload, R consists of a snapshot
of a given set of files, whereas S corresponds to a sub-
sequent snapshot of the same files. Initially, the receiver
stores R . Each experiment consists of the sender sending S
to the receiver. In emacs, the snapshots correspond to the
source code trees of versions 20.1 and 20.7 (respectively)
of the popular editor; in gcc, to versions 3.3.1 and 3.4.1
(respectively) of the compiler’s source code tree; finally,
linux-src denotes versions 2.4.22 and 2.4.26 (respectively)
of the Linux kernel sources.

The following table summarizes each workload’s char-
acteristics that directly affect the behavior of HCs, as ana-
lyzed in Section 2.1.

|R| |S| Pred(S, R, ecs)

128 512 2K 8K

emacs 43 MB 52 MB 57% 46% 33% 22%
kernel 149 MB 154 MB 90% 87% 80% 72%
gcc 135 MB 164 MB 61% 47% 33% 18%

Taking into account the above values and the lines plot-
ted in Fig. 2, we chose to use the reference value of k = 3.5
bytes, which yielded negligible false candidate ratios. More
precisely, only 0.17% false candidates were found with
large chunks (ecs = 8 KB), which increased to a ratio of
less 0.74% with small chunks (ecs = 128 B), for all work-
loads.

We start by studying the impact of HCs in transferred
volume. Our results show that HCs are able to exchange
substantially less bytes across the network than CBH. Fig. 3
illustrates such savings for the linux-src workload. As ex-
pected, the positive impact of HCs increases as we divide
data into smaller chunks, therefore increasing the meta-
data overhead associated with exchanging chunk hashes.
HCs are able to significantly reduce meta-data volume by
up to 33% in linux-src, relatively to CBH. In the case of
emacs and gcc, which have lower redundancy levels than
linux-src, meta-data savings rise to 62% and 64%, respec-
tively. This confirms our predictions that HCs are more
effective as redundancy decreases.

Most importantly, the savings on meta-data volume re-
sult in a tangible impact on the overall volume that HCs
transfer (meta-data plus non-redundant data). In the case
of linux-src, this amounts to an overall gain of 5.7% when
compared to CBH, for ecs = 2 KB (the choice of ecs that
minimizes the volume that CBH transfers). In emacs and
gcc, we observe comparable overall volume gains (5.8%
and 5.2%, respectively), again considering the ecs values in
which CBH transfers less bytes.

It is worth noting that, in some cases, the meta-data
savings of HCs can actually be traded for even greater data
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Fig. 3. Volume transferred at each phase of HC and CBH for different expected chunk sizes (ecs) in the linux-src workload.

Fig. 4. Transfer times in symmetric (left-hand) and asymmetrical (right-hand) scenarios.
savings. For instance, considering the linux-src workload,
by switching from an ecs of 2 KB to 1 KB, HCs are able to
raise the overall volume gain to 6.6%, relatively to the best
CBH option (2 KB).

Furthermore, if we restrict our focus to sender-to-
receiver communication, the savings of HCs rise to 21.2%,
11.2% and 9.7% in linux-src, emacs and gcc, respectively.
Again, this is consistent with our predictions.

We now turn our attention to the performance of HCs
and CBH for each workload, which Fig. 4 presents. We
start by studying the left-hand graph, corresponding to the
baseline scenario where the sender and the receiver are
connected by a symmetrical 100 Mbps link. If one consid-
ers the ecs values for which both solutions achieve best
results in this scenario, we observe that the performance
of HCs and CBH remains relatively close. For example, for
ecs = 2 KB, HCs are 2.5% slower in linux-src, 1.5% faster in
emacs and 1.7% faster in gcc, when compared to CBH. This
suggests that HCs, when compared to CBH, introduce no
relevant local processing overhead.

When we shift to a scenario where the uplink has
limited bandwidth, HCs start exhibiting substantial perfor-
mance gains. The right-hand graph in Fig. 4 compares HC
and CBH performance when we applied a 1 Mbps filter to
the sender-to-receiver link. This recreates common broad-
band home Internet connections, with increasingly high
downlink bandwidth and limited uplink bandwidth [2].

HCs attain considerable performance gains in this sce-
nario. More precisely, HCs are 15.9% faster than CBH with
linux-src, 9.0% with emacs and 8.3% with gcc (if we con-
sider the best ecs choice for each solution in each work-
load). This is a natural consequence of the substantial gains
in sender-to-receiver communication that HCs are able to
attain.
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4. Related work

Several research and industrial systems (e.g. [6,4,13–
15]) employ CBH-based distributed deduplication. They ei-
ther divide values into fixed-sized [6] or variable-sized
chunks [4]. More recently, more intricate variants of CBH
have been proposed that enhance precision and efficiency
by relying on multi-resolution chunking schemes [8]. Ex-
amples include TAPER [8], Hierarchical Substring Cach-
ing [9], fingerdiff [10], JumboStore [11] and Wanax [16].
Although we describe HCs in the context of single-resolu-
tion, variable-sized CBH, our algorithm can be directly ap-
plied to improve all the above solutions.

If one regards R and S as chunk sets, CBH and HCs can
be seen as probabilistic solutions to a problem that com-
munication complexity literature calls set intersection [17].
The probabilistic communication complexity of set inter-
section is known to be Θ(n), where n is the length of the
sets being compared [18]. HCs have equivalent communi-
cation complexity as long as one chooses a value of k for
which the probability of false candidates is negligible.

5. Conclusions

The compare-by-hash (CBH) approach for distributed
data deduplication has inherent precision and efficiency
limits imposed by its meta-data overhead. We propose
Hash Challenges (HCs), a novel technique that leverages
existing CBH-based solutions by exchanging substantially
less meta-data to ensure the same goal as CBH. We support
our claims with a formal comparison of the network effi-
ciency of our approach and CBH. Using real data from ref-
erence deduplication workloads, we show that hash chal-
lenges can save as much as 64% meta-data exchanged
across the network, relatively to plain compare-by-hash.
This implies reductions of up to 7% in overall transferred
volume, resulting in performance gains of up to 16% in
typical broadband connections.

Appendix A. Proof

We now prove the expression in Section 2.1 for the ag-
gregate volume exchanged by HCs.

Phase i: Phase i will transfer k bytes per each one of the
|S|/cs chunks.

Phase ii: For each chunk c in S , the receiver can find
candidates for two reasons: the receiver already stores c
in R; or c′ is a false candidate. The first case depends on
probability Pred(S, R, cs). Regarding the second case, let us
first consider one chunk only, c, to send across the net-
work. Assume, for simplicity, that the stored chunks at
the receiver have the same average size as the chunks to
send (cs). Hence, we know that the receiver stores ap-
proximately2 R

cs chunks in R . For each such chunk c′ , the

2 We make two conservative approximations here: that, for any c1, c2

in R , c1 �= c2 and c1 �= c.
probability that it shares its k-byte hash prefix with c is
1

2k×8 . Thus, the number of collisions with c is given by the
mean of a binomial distribution with as many samples as
chunks in R , each with the previous probability of suc-
cess (i.e. collision), hence R

cs × 1
2k×8 . Since, for each chunk

in S , any candidate (either true or false) results in sending
a hash response of N − k bytes plus its index back to the
sender, we obtain the second term.

Phase iii: The sender starts by transferring an offset
value per candidate it received, including false candidates
(i.e., C ). The sender then transfers the chunks that it did
not find redundant. By definition of Pred , this comprises
[1 − Pred(S, R, cs)] × S

cs chunks, each with an average size
of cs.
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