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A Survey of Computation Offloading Strategies for Performance
Improvement of Applications Running on Mobile Devices

Minhaj Ahmad Khan

Bahauddin Zakariya University Multan, Pakistan.

Abstract

Handheld mobile devices have evolved from simple voice communication devices to general pur-
pose devices capable of executing complex applications. Despite this evolution, the applications
executing on the mobile devices suffer due to their constrained resources. The constraints such
as limited battery lifetime, limited storage and processing capabilities produce an adverse impact
on the performance of applications executing on the mobile devices.

Computation offloading addresses the issue of limited resources by transferring the compu-
tation workload to other systems having better resources. It may be oriented towards extending
battery lifetime, enhancing storage capacity or improving the performance of an application. In
this paper, we perform a survey of the computation offloading strategies correlated with perfor-
mance improvement for an application. We categorize these approaches in terms of their work-
load distribution and offloading decisions. We also describe the evolution of the computation
offloading based environment as well as a categorization of application partitioning mechanisms
adopted in various contributions. Furthermore, we present a parameter-wise comparison of au-
tomated frameworks, the application domains that benefit from computation offloading and the
future challenges impeding the evolution of computation offloading.

Keywords:
Computation Offloading, Mobile Computing, Performance Improvement, Mobile Cloud
Computing, Cyberaging

1. Introduction1

With the advent of smartphone technologies, the mobile devices have become ubiquitous.2

These devices are no longer constrained to providing only communication services. Instead,3

these devices are capable of executing applications with diverse requirements. The processing4

required by these applications may range from simple mathematical computations performed by5

a calculator to a very complex voice recognition system.6

The execution of complex applications requires the mobile devices to possess powerful re-7

sources. The scarcity of these resources has adverse effects on the ever-growing usage of the8

mobile devices. For instance, the statistics according to StatCounter show that about 30.66%9
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of the platforms used for web browsing are the mobile systems (smartphones/tablets) [1]. Con-10

sequently, the mobile market plays a significant role in e-commerce and sales growth. This11

role is however diminished by the fact that the mobile systems have limited energy and power12

resources. Although there have been efforts to incorporate high performance multiple core pro-13

cessors in smartphones, the gap b/w the existing and the required resources continues to grow. In14

this context, the computation offloading is a mechanism that enables us to bridge the gap by mak-15

ing intensive computations execute on large systems having sufficient resources as required by16

the application. This not only makes a resource constrained mobile system seem like a high-end17

powerful machine, but also enables to perfectly utilize the existing resources.18

The computation offloading is not a novel idea as it has evolved from various paradigms in-19

corporating distributed computing [2, 3, 4, 5]. The performance improvement of an application is20

achieved by partitioning it into several subprograms each of which may be assigned to a different21

processor for execution. Each processor makes use of its own memory and/or shares the memory22

with other processors to perform computations in parallel. Subsequently, the results are returned23

to the processor controlling the overall execution.24

A cloud computing platform is also based on the intuition of distributed computing and of-25

fers the compute services through a Service Level Agreement (SLA) on a large network usually26

the internet. It differs from other computing paradigms since an assurance regarding availability27

of services is provided to the users. The Mobile Cloud Computing (MCC) therefore refers to28

provision of services through a cloud to mobile devices that are characterized with limited re-29

sources [2, 3, 4, 5, 6, 7, 8]. The computation of a mobile application may be offloaded to another30

resource-rich system termed as surrogate. Such kind of computation offloading not only miti-31

gates the issue of limited resources of mobile devices but also enables to harness the processing32

power of high-end machines that will otherwise be idle [9, 10, 11, 12, 13, 14, 15].33

In this paper, we perform a comprehensive survey of the computation offloading strategies34

impacting the performance of the applications executing on mobile devices. Although, the com-35

putation offloading has also been aimed at saving energy required for executing an application36

[16, 17, 18, 19, 20, 21, 22, 23, 24, 25], but in this paper, we mainly consider the contributions37

which impact the execution performance (computation speed) of applications running on mo-38

bile devices. The survey encompasses the research work for computation offloading arranged39

in terms of multiple aspects including the taxonomy, strategies, evolution pattern and relevant40

application domains. We also present a categorization of partitioning approaches adopted in dif-41

ferent contributions and a parameter-wise comparison of main offloading frameworks. We also42

discuss main issues related to computation offloading and suggest possible approaches to address43

these issues effectively.44

The rest of the paper is organized as follows. Section 2 describes the offloading taxonomy in45

terms of architectures and criteria for its effectiveness. The evolution of offloading and wireless46

technologies is described in Section 3. The offloading approaches and contributions aimed at per-47

formance improvement are surveyed in Section 4. A categorization of partitioning approaches48

used in computation offloading is given in Section 5. A parameter-wise comparison of the au-49

tomated computation offloading frameworks is described in Section 6, whereas the applications50

benefiting from computation offloading are discussed in Section 7. The main issues related to51

an effective implementation of computation offloading are discussed in Section 8 together with52

their solutions before concluding at Section 9.53
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2. Offloading Taxonomy: Architectures and Effectiveness54

Many clients such as mobile phones or low power laptops require computation to be offloaded55

to powerful server machines. The decision of offloading may not always be beneficial to leverage56

the performance or energy requirements as a significant overhead is involved while offloading57

computations. This section describes succinctly the general architectures for which offloading58

may be required and the parameters that impact its effectiveness.59

2.1. Computation Offloading Architectures60

In an environment supporting computation offloading, the users with mobile devices are con-61

nected to a high performance server in different ways. The simplest form of this connection62

is made through Wi-Fi based networks that connect mobile devices to other machines using63

wireless routers as shown in Figure 1. The wireless router not only connects devices to a local64

network but also may be connected to a DSL device thereby providing connections to remote65

servers through internet.66

BSS

M SC

Data Network

Laptop, W IFI & DSL

BTS

BSC

High Perform ance M achines

Figure 1: Offloading architecture

Similarly, in a more complex form, the users with mobile devices first connect to a wire-67

less network through devices such as Base Transceiver Station (BTS), Base Station Controller68

(BSC), and Mobile Switching Center (MSC) to transfer data to public data networks. The com-69

munication data is then transferred through gateways to any local network on which the high70

performance machines are hosted.71

After establishing a connection with the high performance machines, the mobile devices may72

perform a lookup operation to search for services that may be provided by the high performance73

server machines. This may also be termed as the first operation initiated by the application. The74

application may however opt to perform the lookup operation at a later time during execution75
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depending upon the time at which the offloading decision is made and the requirement of the ap-76

plication. The client machines in these environments are usually low power mobile devices, and77

consequently, the computation offloading strategies take into account the cost/benefit analysis in78

terms of the execution time and energy requirements. The server machines are mostly the high-79

end standalone servers, or machines connected to form a grid, cluster, cloud or a combination of80

these. The computers in a grid are loosely coupled, whereas those in a cluster are tightly coupled81

with highly efficient interconnection interfaces such as Myrinet. A cloud system, in contrast,82

uses virtualization to enable multiple operating systems so that remote users can access services83

offered by the cloud platform.84

2.2. Trade-offs for Offloading Decisions85

For minimization of execution time and reduction of energy, the computation offloading from86

a mobile device to a server machine is performed by applying a specific criteria to ensure that87

the offloading will be beneficial [26, 27, 28, 29, 30, 31, 32, 33]. The required criteria takes into88

account several parameters as elaborated below.89

For minimizing execution time, let Or be the overhead of runtime activities including the
time for data transfer and the time for offloading code, i.e.,

Or = Td + To, (1)

where, Td is the time for data transfer and To is the time taken for offloading code (performing
offloading decision, partitioning and the code transfer). Let T s be the time to execute code on
the server machine and Tm be the time to execute code on the mobile device. The computation
offloading is considered effective for minimization of execution time, if we have,

Ts + Or < Tm. (2)

Similarly, for energy reduction, let Ed represent the energy for data transfer and E o repre-
sent the energy required for offloading. Let E m represent the energy required for execution of
entire application on the mobile device and E r be the energy required for runtime activities. The
computation offloading is effective for reducing requirements if

Er < Em, (3)

where Er is represented as
Er = Ed + Eo. (4)

3. Evolution of Offloading and Wireless Technology90

The term ”offloading” has been used widely since year 1995. Its usage has evolved together91

with the evolution of distributed and parallel computing paradigms. Figure 2 shows the number92

of publications each year1 citing the term offloading.93

Similarly, the research work referring to the terms ”data offloading” and ”computation of-94

floading” is also increasing gradually, as shown in Figure 3. Most of the data offloading systems95

aim at storage of data to remote servers with large storage repositories. One of the objectives of96

the recently evolved Mobile Cloud Computing (MCC) is to provide storage facilities to the users.97

The synchronization of data with that existing on the cloud storage repository is also provided by98
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Figure 2: Offloading Usage Trend

Figure 3: Data and Computation Offloading Usage Trend

MCC. Similar to data offloading, the computation offloading has also evolved to be incorporated99

in MCC. In general, it aims at energy minimization and performance improvement.100

Figure 4 shows a quantitative and chronological evolution of several parameters related to101

wireless technology. The smartphones have evolved to contain multi-core based processors.102

Similarly, with the implementation of 3G and 4G based networks, the wireless technology is103

now able to offer more bandwidth than the previous generations. The orientation of offload-104

ing research has evolved from defining manual mechanisms to automated transparent offloading105

mechanisms. The energy requirements (Joules) as given in [34] for 50 KB data transfer (down-106

load with intervals of 20 seconds) through GSM, 3G and Wi-Fi are also shown. The Wi-Fi based107

data transmission requires the highest amount of energy.108

4. Offloading Architectures and Approaches109

We categorize computation offloading approaches into static and dynamic depending upon110

the time at which the decision of offloading takes place.111

1Statistics obtained from the ACM Digital Library for duration up to July 2014
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4.1. Static Offloading112

Figure 5: Static Offloading Mechanism
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As shown in Figure 5, the static offloading approach makes use of performance prediction113

models or offline profiling to estimate the performance [26, 27, 35, 36, 37, 38]. The application114

is then partitioned into client and server partitions which may subsequently be executed.115

A comparison of different static offloading strategies is shown in Table 1. The comparison is116

performed in terms of core components (the basic component on which processing takes place),117

the parameters considered for offloading decision, the offloading approach and the benchmarks118

for which the strategy is shown to be beneficial.119

The approach suggested in [26] first generates a cost graph for the application. The cost120

graph takes into account the computation time and the data to be transferred. The suggested121

approach then distributes the program into client and server subtasks. The data communication122

among the tasks being executed by hosts takes place using the primitives of push and pull. The123

primitives correspond to sending and receiving the modified data. The application is modelled124

to produce the cost graphs representing energy consumption and data communication. The sum125

of both these parameters is minimized by suggesting a branch-and-bound algorithm and a prun-126

ing heuristic that reduces the search space to provide a near-optimal solution. The suggested127

approach produces a significant improvement in execution time and energy consumption for128

benchmarks from Mediabench suite and gnugo game.129

An adaptive approach presented in [27] performs computation offloading by using an initial130

profile obtained by executing the program. If the program does not run to completion within131

a specified timeout, the offloading takes place and the rest of the computations are performed132

on some server. The minimum time required for executing the code on the mobile system is133

computed using the energy consumption on the local mobile processor. With the reduced energy134

consumption, a significant improvement in the performance is achieved for image processing135

benchmarks.136

A framework called Roam which may be used for offloading of applications is suggested137

in [35]. The framework enables partitioning of an application into several components that may138

then be migrated to any other platform. This architecture supports heterogeneity in that the appli-139

cation components may be migrated to another system having a different execution environment.140

The approach of application offloading incorporates adaptation of three different types. The first141

one, dynamic instantiation based adaptation, partitions an application into several device depen-142

dent components. Each component has implementation for multiple platforms. The approach143

then takes into account the capabilities of the target system in order to select the components to144

be migrated. The second type, offloading computation, makes the applications use distributed145

resources by offloading components to remote servers. It is mainly required for offloading the146

application logic based code. The third type trasformation makes the user interface components147

compatible with the target device at runtime. The decision of partitioning is however static and148

is made at the time of designing the application.149

The application partitioning algorithm suggested in [39] divides the application into two main150

parts. The first part contains the partition that can not be offloaded and will execute on the mo-151

bile device locally. The second part contains k partitions that can be offloaded to surrogates. The152

partitions are formed by modelling the computation and communication costs of the application153

components as a dynamic multi-cost graph. A special tightest and lightest vertex solution algo-154

rithm is then used to select a vertex in a partition. The algorithm considers the edge weights and155

vertex weights for partitioning. On the IBM laptop X31 and using two desktop PCs as surrogates,156

the application partitioning is shown to improve the performance for PI calculation, MP4 player157

and MP4 audio/video generation benchmarks.158

A prototype platform AIDE suggested in [40] makes use of three modules for profiling the159
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Framework
Contribution

Core
Component

Parameters
Offloading
Approach

Candidate
Applications

[26] Cost graph
Computation and data

transfer time
Static Mediabench & gnugo

[27] Execution profile
Energy consumption
and time required for

execution
Static Image processing

[35]
Application
components

Components
categorization

Static General applications

[39] Multi-cost graph
Computation and

communication costs
Static

Audio and video
applications

[40] Execution profile
Communication cost
and connectivity of

nodes
Static

Text editor, Biomer
and Voxel

[41] Java bytecode Configuration based Static SciMark benchmark

[42] Jobs
Power consumption

for execution and data
transfer

Static General applications

[31]
Control flow

graph

Execution,
communication,
scheduling and

bookkeeping costs

Static
Image processing,
speech recognition
and compression

[43] 3D rendering
Communication and
computation costs

Static Games processing

[44]
Mobile phone
sensor samples

Energy, latency and
data traffic

Static Social behavior

[45]
Functions based

modules
Configuration based Static

Natural language,
speech processing

and computer vision

[46]
Execution
profiles

Computation cost and
migration cost

Static
Virus scanning and

image search
[47] Analytical model Surrogates coverage Static General applications

[48]
Performance

history
Prediction errors Static General applications

[32]
Object relation

graph
bandwidth, execution
cost and data transfer

static Dacapo benchmark

Table 1: Comparison of static offloading strategies
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application execution, partitioning and migration of code. Initially, a Java application is parti-160

tioned by providing a set of min-cut partitioning. All the partitions are then evaluated by placing161

one node in first partition and all others in second partition. The nodes of second partition having162

the highest connectivity are moved to first partition iteratively. Subsequently, the minimum cut163

represents partitioning with the lowest inter-partition weight with respect to the communication164

cost between two partitions. For a diverse set of benchmarks including the JavaNote (text editor),165

Biomer (molecular editor) and Voxel (fractal landscape), the AIDE platform is shown to reduce166

the execution time significantly.167

The framework DiET [41] is able to make modification to Java bytecode to support offload-168

ing of methods. The mobile users request to execute an application available through service169

providers. The client part of the application is downloaded to the mobile device. The complex170

computation based methods are modified with remote procedure calls in the client part. The171

server reads the requests and executes the code. Moreover, the automated offloading mechanism172

is portable and requires no special JVM dependent instructions. For the SciMark benchmark, the173

suggested approach is able to produce up to 59% of speedup for MonteCarlo integration method.174

In [42], the authors target offloading in a wireless network from a mobile device to the mobile175

support station (MSS). It estimates the power consumption by the CPU in case of local execu-176

tion and power consumption for data/results transfer to/from the remote server together with the177

response time for executing on the local machine and the MSS. If it is found beneficial to use the178

MSS, the jobs are offloaded. Consequently, there is a significant improvement in response time179

for execution of different jobs offloaded to the MSS.180

The strategy proposed in [31] implements computation offloading by partitioning the code181

in client and server parts. A polynomial time algorithm is suggested to achieve optimal parti-182

tioning of code for a given set of input data. For a program, a control flow graph is built where183

each vertex is a basic block and each edge represents dependencies. A point-to analysis is then184

performed to identify the memory addresses or locations during data transfer. For distribution,185

various constraints are used to ensure data consistency. A cost analysis that takes into account186

the costs required for execution, scheduling, bookkeeping and communication is used to model187

the problem as a minimization problem. The problem is then represented as the min-cut net-188

work flow problem and is solved using an option-clustering heuristic. On an IPAQ 3970, and a189

Pentium-IV based server, the suggested offloading approach is able to reduce execution time for190

photo processing, graphics compression/de-compression, speech recognition and graph drawing191

benchmarks.192

In [43], an approach for adapting the rendering settings for games in a mobile cloud is de-193

scribed. A static analysis is initially performed to select optimal settings for 3D rendering. These194

settings correspond to different adaptation levels where each level is associated with a total of195

communication and computation costs. During execution, an algorithm works to adjust the ren-196

dering settings in conformance with the existing communication and computation costs. For the197

game PlaneShift being played on a netbook, and using game server having GPU, the experimen-198

tal results show an improvement in the performance in terms of the Game Mean Opinion Score199

(GMOS) corresponding to the gaming user experience.200

A mobile phone based framework to capture the users’ social behavior in a working environ-201

ment is specified in [44]. The quantitative information such as the most sociable person in the202

environment and the number of interactions between two users have been useful for increasing203

productivity of organizations. To obtain such information, the mobile phone sensors are used204

to capture the behavior. The sensors sample the data at a specific rate. The samples are then205

processed to infer the required information. Due to the limited capability of the mobile devices,206
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the processing is distributed among several devices. The decision of performing the computation207

locally or remotely is made by considering the parameters of energy, latency and data traffic. The208

overall task with these parameters is first divided into subtasks and a configuration for processing209

the task is found using the multi-criteria decision theory. With a Nokia 6120 mobile phone as a210

client and an Intel Xeon based server, the suggested approach is efficiently able to process the211

data and infer the required information.212

An approach to partition the application for offloading using a language Vivendi is suggested213

in [45]. The language Vivendi is developed to describe the relevant specification of the application214

whose computation is to be offloaded. A file in the Vivendi language may contain the prototypes215

of functions that can be executed remotely. The next part of the approach incorporates Chroma216

[49] to monitor resources and predict the behavior. Subsequently, the stubs may be generated217

using the Vivendi stub generator and all function calls at corresponding points are replaced by218

calls to stubs. All the modules are then compiled and linked to generate an executable applica-219

tion. The suggested approach is able to support offloading for diverse applications including the220

natural language, speech and computer vision based applications.221

The framework CloneCloud [46] facilitates the execution of a mobile application on the222

cloud. The CloneCloud initially partitions the application to make its parts execute on the mo-223

bile device and the cloud servers. A static offline analysis is performed to identify the partition.224

A dynamic profiler then generates profiles corresponding to different inputs. Consequently, a225

profile tree representing the execution traces is constructed. For each call of code, the computa-226

tion cost and the migration cost in the case of local, remote or hybrid execution are computed.227

The optimization problem is then solved by minimizing these costs using an integer linear pro-228

gramming (ILP) solver. On an Android phone used as a client, and an Intel Xeon based server229

running mobile clones, the experimental results of clone execution show up to 20 times speedup230

for the applications including the virus scanning, image search and behavior profiling.231

In [47], an analytical model is presented for analyzing the performance of offloading systems.232

The model takes into account the distribution of surrogates and shows that in the areas well233

covered by surrogates, the offloading may result in speedup in the performance. In contrast, the234

areas with less coverage of surrogates, the offloading does not improve the performance.235

The framework NWSLite [48] is used for predicting the costs of location and remote execu-236

tion. Its prediction model uses a non-parametric approach. The NWSLite framework incorporates237

a large number of models each with different parameterization. It forecasts measurements based238

on the performance history. The predictors are ranked with respect to the prediction errors and239

the best prediction model having the smallest prediction error. The NWSLite prediction models240

are executed in parallel thereby making it more efficient than the previously suggested LSQ [50]241

and RPF [51].242

The authors in [32] aim at improving the execution performance by using the branch-and-243

bound and min-cut based approaches for partitioning mobile applications. It works by perform-244

ing a static analysis & profiling, followed by the generation of a weighted object relation graph245

(WORG), which is used to represent the objects and relations between objects. The bandwidth246

parameter is then used together with the WORG to partition an application into client and server247

parts. The branch-and-bound based algorithm produces optimal partitioning results for small ap-248

plications, whereas, the min-cut based approach works for large applications. Using a ThinkPad249

notebook for customized and the Dacapo suite benchmarks, the branch-and-bound and the min-250

cut based approaches produce speedups of 44.17% and 37.44%, respectively.251
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Figure 6: Dynamic Offloading Mechanism

4.2. Dynamic Offloading252

As shown in Figure 6, the dynamic offloading strategies initially perform static analysis of253

the code and instrumentation in order to perform dynamic/online profiling during execution [52,254

53, 54, 55, 56]. Based on the information obtained from dynamic profiling, the application255

is partitioned into client and server partitions. The execution then continues with the updated256

configuration.257

A comparison of different dynamic offloading strategies is shown in Table 2. The comparison258

is performed in terms of core components, the parameters considered for offloading decision, the259

offloading approach and the benchmarks for which the strategy is shown to be beneficial.260

In [52], the authors suggest to perform compression and de-compression operations simulta-261

neously during computation offloading. For any application requiring the data to be transferred,262

it reduces the penalty of data transfer. Consequently, the application performance improves if the263

benefit produced by the data compression (in terms of the reduced number of packets) is higher264

than the overall cost of data compression and de-compression. The suggested approach is shown265

to be effective for making decision of Java code to be compiled and executed on remote server266

or locally.267

With the notion of augmented execution, an application may be executed on some clones of268

a smartphone [53]. The runtime engine offloads the computation in a seamless way to another269

system that contains a clone of the entire system image. Consequently, the results may be inte-270

grated back to the smartphone. A special case of multiplicity based augmentation is presented271

that could work for performance improvement of data parallel applications. It requires multiple272

clones of the smartphone image. Similarly, a hardware based augmented execution is shown to273

improve the performance of scanning the file system.274

In [54], the application partitioning is performed through a parametric analysis of the com-275
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Framework
Contribution

Core
Component

Parameters
Offloading
Approach

Candidate
Applications

[52] Application code Data transfer Dynamic
Compilation and
execution of Java

code

[53] System clones Fixed configuration Dynamic
Data parallel

applications and file
system scanning

[54]
Application

graph

Computation,
communication,
registration and
scheduling costs

Dynamic
FFT, encode and

decode benchmarks

[57]
Application

graph

Graph dependencies,
network traffic, call
delay and memory

sizes

Dynamic Image and text editors

[58] Application code Fixed configuration Dynamic
Speech synthesis and

MS-PowerPoint

[59] Execution profile
Class usage and

frequency
Dynamic General applications

[60] Multi-cost graph
Communication cost

and class weight
Dynamic

Text recognition and
translation

[29]
Real-time
constraints

Network bandwidth
and server speed

Dynamic
Real-time

surveillance

[30]
Application

profile

Energy consumption,
bandwidth and

latency
Dynamic

Face recognition and
games

[61] Application code
Safety for remote

execution
Dynamic Face recognition

[62]
Application

profile
Application fidelities Dynamic General applications

[63] Lookup service Lookup latency Dynamic General applications

[28] Estimation model
Network bandwidth
and execution costs

Dynamic General applications

Table 2: Comparison of dynamic offloading strategies
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putation and communication costs. The problem of finding optimal partitioning is modelled as276

the min-cut network flow problem. The modules of the application distributed on the mobile277

device of the server depending upon the current value of runtime parameters. A program is first278

divided into modules or tasks that are executed on the server or the mobile device exclusively. A279

cost analysis then takes into account the computation, communication, task scheduling, and data280

registration costs and formulates the optimal partitioning as a single-source single-sink min-cut281

network flow problem. Using the mobile client HP IPAQ 3970, and a server machine having P4282

processor, the results show that an effective partitioning significantly impacts the performance283

of several applications such as FFT, encode and decode from Mediabench and Minbench bench-284

marks.285

An architecture of an inference engine is proposed in [57] for deciding the time of offloading286

and the application partition to be offloaded. The inference engine employs a fuzzy model and287

is implemented in the AIDE framework [40]. Each class of a Java application is represented288

as a node in a weighted graph. Each class is annotated with a flag describing whether or not289

the class may be offloaded to a server. The inference engine uses a min-cut based algorithm to290

find all 2-way cuts of the weighted graph. The nodes in the graph that may not be migrated291

to the surrogate are merged in the partition which will be executed on the mobile device. The292

other nodes are merged taking into account the dependencies and the metrics of network traffic,293

function call delay and memory size. The experiments performed for evaluation of an image294

editor, a text editor and a molecular editor show that the suggested approach minimizes the295

traffic requirements while working with a very small offloading overhead.296

An automated approach of partitioning a Java application for remote execution is presented297

in [58]. A platform called J-orchestra is developed to perform replacement of the object code i.e.298

bytecode of method calls with the remote invocation. It divides an application into a client-server299

based model whose most of the I/O operations are performed on the client machine and the rest300

of the execution takes place on the server machine. With an iPAQ PDA, the J-orchestra has been301

shown to automatically distribute applications such as speech synthesis and MS PowerPoint.302

The approach presented in [59] provides an adaptable offloading mechanism based on the303

application’s execution behavior. A history of the execution pattern is maintained and is later304

used for making offloading decision. The static offloading policy offloads the most used classes,305

whereas the dynamic offloading moves only the invoked classes. The decision of offloading, i.e.306

static, dynamic, no action, or profile is made for each resource. Subsequently, the most common307

decision is opted for implementation. On PDAs, the offloading approach makes the application308

execute faster than local execution and is beneficial for applications with large execution times.309

An offloading service for mobile handsets which may be used during mobility is presented310

in [60]. Initially, the resource information is collected and is followed by partitioning of appli-311

cation execution on the local system and the surrogate. The discovery of a suitable surrogate is312

made using the instantiation of classes for remote execution. The instrumented classes are then313

offloaded to the surrogates. The application partitioning uses a multi-cost graph, each of whose314

vertices is a class. The problem of graph partitioning is then solved by using a k + 1 partitioning315

algorithm. The proposed algorithm takes into account the weight of one class together with the316

weights of one-hop weights while minimizing the communication cost. On an HP iPAQ PDA, the317

suggested approach is applied to the autoTranslator software to recognize text in German lan-318

guage and translate it to English. The approach performs 3 to 5 times better than the randomly319

selected and the highest transfer rate based algorithms.320

In [29], an approach for object recognition and tracing is presented, which may be used in321

the real-time surveillance systems. The approach performs computation offloading on the basis322

13



of real-time constraints. These constraints use various ranges of network bandwidth and server323

speed to make the offloading decision of executing code locally on a robot or remotely on a324

server.325

The MAUI framework [30] supports fine-grained offloading of code in an automated way. To326

accomplish the portability of applications, two versions are created corresponding to execution327

on the mobile phone and the server. The MAUI architecture contains decision engine, proxy328

and profiler on both client and the server. The server part also contains the coordinator compo-329

nent to create an instance of the partitioned application. Initially, the methods to be offloaded330

are annotated by the programmer. These methods are identified by MAUI through Reflection331

API. Subsequently, the state of the application required for transfer or return to/from the server332

is identified. The MAUI profile provides feedback regarding energy consumption, bandwidth333

and latency etc. to the MAUI solver that in turn decides whether or not the code should be of-334

floaded to the server. The solver models it as an optimization problem for minimizing the energy335

consumption subject to various latency constraints. Using MAUI, the code offloading for face336

recognition, video game and chess game is shown to improve the execution time.337

The application partitioning by performing code analysis is suggested in [61]. The subtasks338

that are safe for remote execution are first identified. Subsequently, an analysis is performed to339

estimate the actual gains after offloading. Finally, two versions corresponding to execution on340

local and remote machine are generated. The suggested approach is implemented in the SUIF2341

compiler [64], and is able to achieve almost 13 times and 15 times speedup in the performance342

of face recognition code on Skiff and iPAQ mobile appliances.343

In [62], the architecture of a framework Spectra is presented. The Spectra framework does344

not require the application to describe the resources to be used, instead, it can predict the appli-345

cation behavior for future execution. It is implemented as part of the Aura framework [65] and346

uses the application fidelities as parameters to decide to perform execution on local and remote347

machines exclusively or hybridly. The CPU availability, network bandwidth, battery energy and348

data access costs are estimated by monitors to predict the application behavior. The Spectra349

framework then selects the best location and fidelity for application execution while taking as in-350

put the application description and the application behavior parameters. Using a Pocket PC with351

an SA-1100 processor as a client and an IBM T20 Laptop as a server, the Spectra framework is352

shown to select the best option for local, remote or hybrid execution.353

In [63], two strategies of service discovery for offloading applications are presented. These354

strategies are based on flooding and unicasting. Every device is represented by a node and355

is associated to a lookup server that is used to store service description. When a service is356

required by a node, a service lookup is performed. The scope of the search (in terms of the357

area) for the server machine is increased gradually if no response is received from the lookup358

server. With flooding, the lookup message is broadcast, in contrast to unicast, which is useful for359

large environments. The experimental results show that the service discovery based approach for360

cyberaging applications is able to reduce the latency of the service lookup operation.361

An approach for deciding offloading between the local and the remote system by making362

use of the bandwidth parameter is provided in [28]. The problem of estimating the local and363

remote execution costs is modelled as a statistical decision problem. The remote execution cost364

is computed as a function of the bandwidth available for transfer of data between the local and365

the remote systems. The Bayesian approach is then used to solve the problem and make the366

prediction regarding the offloading decision.367
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5. Application Partitioning For Computation Offloading368

Together with the evolution of wireless technology, the research in the field of computation369

offloading has also evolved vigorously. As discussed earlier, an effective computation offloading370

technique may significantly impact the performance. The computation offloading incorporates371

various steps and analyses to ensure performance gain. One of the major steps used in compu-372

tation offloading is application partitioning which distributes code for local and remote execu-373

tion. The application partitioning may be categorized into static (application specific, framework374

based and offline profile based) and dynamic as shown in Table 3, and elaborated in this section.375

Partitioning Category References

Application specific static partitioning
[66], [67], [68], [69], [70], [71], [72], [73],
[74], [75], [76], [77], [78]

Framework/API based static partitioning
[79], [80], [81], [82], [83], [84], [85], [86],
[87], [88], [89], [90], [91]

Offline profile based static partitioning
[32], [92], [33], [93], [94], [95], [96], [97],
[37], [98], [38], [99]

Dynamic partitioning
[100], [55], [56], [101], [102], [103], [104],
[105], [106], [107], [100], [108], [109]

Table 3: Comparison of partitioning approaches adopted for computation offloading

5.1. Static Partitioning376

For offloading computation to a remote machine, a static partitioning approach is adopted377

when an application’s code modules are fixed to be executed on local or remote machines. The378

static partitioning may be implemented through an application specific, a framework based or an379

offline profile based strategy.380

For a few partitioning strategies [66, 67, 68, 69], the parts of an application (such as AES381

encryption, image processing, multimedia services and Javascript code) are pre-defined to be ex-382

ecuted on local or remote machines. These strategies set the portions of code depending upon the383

application. Similarly, for offloading strategies suggested in [70] and [71], the partitioning works384

for health related applications and frame-based tasks, respectively, whereas in [72, 73], various385

performance parameters are used to fix application based partitioning. The approach given in386

[74] uses mathematical model for improving face detection. For GPS services, the application387

specific partitioning uses signal processing stages and navigation methods [75], whereas for mo-388

bile games, fixed partitioning is adopted [76]. For surveillance system, a hierarchical partitioning389

approach is given in [78].390

For some framework based strategies [81, 79, 85, 86, 88, 89, 87], the fixed partitioning mech-391

anism is usually driven by programmers. In [90], an operating system to support distributed392

execution of java bytecode through static partitioning is described. The partitioning requires pro-393

grammer annotations to decide the portions of code to be distributed. Similarly, the frameworks394

with fixed partitioning for collaborative or coalition based execution [91, 80] are also proposed.395

Different API functions to support offloading are suggested in [82]. The framework proposed in396

[83] requires the developer to annotate classes which must be offloaded. The offloading approach397

in [84] partitions the application into user interface and computation based components through398

the proposed framework.399

The offline profile based static partitioning uses a set of parameters and evaluates them be-400

fore actually executing the application. The application partitioning approach given in [32] uses401
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branch-and-bound and min-cut based algorithms together with the bandwith parameter. Simi-402

larly, the genetic and machine-learning based approaches are suggested in [92, 96, 93] which403

take into account the resource status, network parameters and data to be transferred. In [33], the404

operations of a web service are profiled to generate a resource consumption profile which is sub-405

sequently used for performing computation offloading. For executing Javascript code, a profiler406

and a points-to analysis are suggested for helping developers to decide the portions of code to be407

offloaded [94]. The approach in [95] maps application partitioning as a minimization problem408

while taking into account performance estimate and communication cost. Similarly, a dynamic409

programming based algorithm [97] uses the estimated execution time for offloading tasks which410

satisfy a specific set of constraints. Other approaches adopted in [37, 98, 38, 99] also make use411

of similar parameters and conditions for partitioning applications for computation offloading.412

5.2. Dynamic Partitioning413

Many offloading strategies are able to adapt partitioning of code dynamically by taking into414

account several parameters [101, 102, 104]. These parameters are evaluated using profiling and415

performance prediction based mechanisms which manifest the possible behavior of an applica-416

tion. To profile execution of an application, the code is first instrumented and then analyzed for417

performance prediction.418

In [100], a programming model with an event-driven approach for providing elastic execution419

of applications is suggested. Its dynamic migration mechanism distributes the execution among420

multiple nodes depending upon the workload requirements. A framework for dynamically adapt-421

ing execution on a collection of smartphones is suggested in [55]. Similarly, the authors in [56]422

propose dynamic partitioning using genetic algorithm for mobile data streams. The approach423

proposed in [103] initially detects movable classes and then offloads by profiling classes dur-424

ing execution. In [105, 106], the partitioning is mapped to min-cut problem, whereas, a few425

components are replicated for minimizing component migration at runtime. Other offloading426

frameworks and mechanisms [107, 100, 108, 109] use online profiles while considering various427

parameters for performing code partitioning dynamically.428

6. Comparison of Offloading Frameworks429

Table 4 describes a comparison of the automated offloading frameworks in terms of the pa-430

rameters of automation, optimization problem solving, replication granularity, fine-grained of-431

floading and native method call support. For automation, the frameworks CloneCloud, Spectra,432

Roam and J-Orchestra provide offloading in a highly automated manner. This requires less inter-433

action of the programmer as compared to those having low automated offloading support. Sim-434

ilarly, the frameworks CloneCloud, AIDE, and J-Orchestra solve the optimization problem in a435

highly asynchronous manner with regards to execution of the application. The replication gran-436

ularity refers to the main component that is replicated or transferred for remote execution. The437

fine-grained component support is provided in the CloneCloud and MAUI frameworks. More-438

over, a few frameworks including the CloneCloud, framework in [110], AIDE and J-Orchestra439

also support native method calls.440

A comparison of the working mechanism in terms of the analysis performed, dynamic profil-441

ing, late binding and trusted execution of the automated frameworks is given in Table 5. All the442

frameworks make use of a static analysis which is performed before execution of the application.443

The frameworks CloneCloud, MAUI, Roam and AIDE incorporate dynamic profiling to obtain444
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Framework
Automa-

tion
Optimization

Problem Solving
Replication
Granularity

Fine-
grained

Native
Method

Call

CloneCloud [46] High
Highly

Asynchronous
Partial Threads Yes Yes

MAUI [30] Low
Low

Asynchronous
Low-level

(fine-grained)
Yes No

SociableSense [44] Low Asynchronous Module-level No No
Spectra [62] High Asynchronous Task-level No No
Framework in [110] Medium Asynchronous Components No Yes

Roam [35] High Asynchronous
Compo-

nent/Roamlet
No No

AIDE [40] Medium
Highly

Asynchronous
Class No Yes

DiET [41] Medium Asynchronous Class methods No No

J-Orchestra [58] High
Highly

Asynchronous
Class methods No Yes

Table 4: Comparison of the automation, optimization problem solving, replication granularity, fine-grained and native
method call support based characteristics of the offloading frameworks

Framework
Static

Analysis
Dynamic
Profiling

Late
binding

(offloading)

Trusted
execution

CloneCloud [46] Yes Yes Yes No
MAUI [30] Yes Yes Yes No
SociableSense [44] Yes No Yes No
Spectra [62] Yes No No No
Framework in [110] Yes No Yes No
Roam [35] Yes Yes Yes No
AIDE [40] Yes Yes Yes No
DiET [41] Yes No No No
J-Orchestra [58] Yes No No No

Table 5: Comparison of the static analysis, dynamic profiling, late binding and trusted execution based characteristics of
the offloading frameworks
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Framework Applications
Trade-off

Parameters
Optimization

Strategy
Dynamic

Adaptation Strategy

CloneCloud [46] Scientific
Execution speed,
energy and data

transfer

Integer Linear
Programming (ILP)

Profile tree based

MAUI [30] Scientific
Energy & execution

speed with data
transfer

0-1 ILP Call graph based

SociableSense [44] Social Interaction
Accuracy, energy,
latency and data

traffic

Multi-criteria
decision theory

Learning based

Spectra [62] Voice recognition
Latency, battery life

and fidelity
Fidelity solver None

Framework in [110]

Language
translation &

Character
recognition

Response time,
communication, CPU

and memory

(k + 1) partitioning
algorithm

Speedup based

Roam [35] Games & Graphics
Capabilities of target

devices and user
interface design

Component-based
partitioning

Target device
capabilities based

mechanism

AIDE [40]
Image and text

processing

Processor load,
memory and

communication

Min-cut based
heuristic

Execution graph
based

DiET [41]
Mathematical
applications

User directives based
User configuration

based
User configuration

based

J-Orchestra [58]
General

applications
Input/output, disk

processing and GUI

User directives based
parameters of I/O

usage
None

Table 6: Comparison of the applications, trade-off parameters, optimization and dynamic adaptation mechanisms of the
offloading frameworks

information during execution of the application and perform adaptation accordingly. The late445

binding for offloading refers to the offloading implemented at a later time during execution of the446

application. It is performed by the CloneCloud, MAUI, SociableSense, [110], Roam and AIDE447

frameworks. Currently, none of these frameworks ensures a trusted execution to provide secure,448

reliable and authenticated access for offloaded applications.449

Table 6 provides a comparison of the offloading frameworks in terms of their applications,450

trade-off parameters, optimization and dynamic adaptation strategies. The CloneCloud, MAUI,451

DiET and J-Orchestra are useful for general scientific applications, whereas the frameworks452

Roam and AIDE are shown to be effective for image and graphics processing. Similarly, the453

framework in [110] and Spectra are shown to work on voice and character recognition based454

applications. The SociableSense is specific for applications requiring processing on social inter-455

action in an organization. The trade-off parameters are the elements considered while optimizing456

the offloading decision. In general, most of the frameworks use the execution time, energy con-457

sumption and communication overhead as the main trade-off parameters. While optimizing the458

decision problem, different heuristics based on the min-cut, k+1 partitioning, and integer lin-459

ear programming (ILP) are used in most of the offloading frameworks. The frameworks also460

require dynamic adaptation for offloading decisions during execution of the application. The461

CloneCloud, MAUI and AIDE frameworks use execution pattern for runtime adaptation. Simi-462

larly, the framework in [110] performs adaptation using the speedup obtained through offload-463

ing. The Roam framework uses the target device platform based runtime adaptation, whereas the464
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Multimedia [26], [54], [39]
Games [26], [35], [30], [43]
Graphics and image processing [27], [52], [48], [40], [57], [60], [31], [43], [45], [46]
Mathematical computations [54], [52], [53], [39], [41], [31]
Artificial Intelligence based applications [52], [58], [60], [29], [30], [61], [31], [62], [45], [46]
Health & Social applications [111], [112], [44]
Database, file system or GPS Processing [52], [53], [82]

Table 7: Domain-wise categorization of the research work related to computation offloading

DiET framework requires user configuration for runtime adaptation.465

7. Application Domains Benefiting From Offloading466

The computation offloading has proved to be beneficial for a large number of applications467

lying in several domains. A domain-wise categorization of research work is shown in Table 7. A468

large part of the research work has targeted the applications lying in the domains of mathematics469

and graphics/image processing. Likewise, the games and multimedia based applications are also470

targeted and their number continues to grow together with the evolution of wireless technology.471

The applications related to Artificial Intelligence and social behavior are also being offloaded as472

they involve complex learning based computations. The applications with database processing,473

file system and GPS processing have also been implemented through offloading to improve their474

performance.475

8. Current Challenges For Effective Computation Offloading476

Despite the long term evolution of the offloading techniques, several issues are yet to be477

resolved. The most challenging issues including partitioning, automated transparency & porta-478

bility, security, and application requirements are discussed below together with their possible479

solutions.480

8.1. Partitioning481

The computation offloading requires the application code to be partitioned into client and482

server parts for local and remote execution, respectively. The partitioning takes into account483

several parameters including costs of data transfer and computation time, however the optimal484

partitioning is an NP-complete problem. Consequently, different heuristics with fixed constraints485

are employed in the partitioning strategies.486

For an effective offloading implementation, the partitioning problem needs to be solved487

in a quasi-automated manner requiring directives from the programmer as well as automated488

distribution of modules. In this regard, the scheduling techniques for heterogeneous systems489

[113, 114, 115] may be incorporated to minimize the total execution time.490
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8.2. Automated Transparency & Portability491

The frameworks implemented for computation offloading yet lack the automated transparency492

so that the surrounding environment is detected and the computation offloading takes place in a493

seamless manner [12, 4, 11, 100, 84]. This is a complex task as it requires an implementation of494

a standard protocol that will perform lookup services and other functionalities depending upon495

the environment while taking into account its constraints. An implementation of the standard496

protocol for a diverse collection of devices and environments will render it portability as well.497

8.3. Security498

With computations being offloaded to remote machines/servers, the security of data and en-499

vironment for the remote systems needs to be ensured [116, 4, 7, 14, 117, 77]. This requires500

restraining the types of operations that may be offloaded for remote execution. A limited set501

of permissible operations may be provided by implementing a virtual machine and making the502

remote component execute in the environment provided by the virtual machine [118]. Moreover,503

different authorization and authentication mechanisms may be incorporated in order to ensure504

security of data on the cloud [119, 120].505

8.4. Application Requirements506

The applications being executed on mobile devices are not only growing in size but also507

in terms of complex operations. The widely used multimedia applications including the VoIP,508

online streaming, and video/audio chat require the mobile devices to improve the energy require-509

ments, graphics rendering and the execution time. Moreover, these applications require real-time510

processing. Consequently, it is not possible to offload all the modules remotely. In this regard,511

the caching techniques and implementation of a specialized hardware such as a Digital Signal512

Processor (DSP) [121] or a System-on-Chip (SoC) [122] may be beneficial for an effective of-513

floading.514

9. Conclusion515

This paper presents a comprehensive survey of the research work conducted on computation516

offloading which aims at performance improvement of applications executing on the resource517

constrained mobile devices. The limited resources of mobile devices require the intensive com-518

putations to be offloaded in order to mitigate the issues of slow execution and low energy. Some519

of the offloading strategies work in a fixed static manner while others are able to perform of-520

floading in accordance with the dynamic behavior of the application. We perform a comparative521

analysis of these strategies as well as the automated frameworks implemented to support compu-522

tation offloading.523

We also survey the evolution of mobile technologies and also compare different partitioning524

mechanisms used for distributing code between local and remote machines. The research work525

is also categorized in terms of the application domains for which the computation offloading is526

shown to be effective. Moreover, the main issues related to computation offloading: partitioning,527

automated transparency & portability, security, and application requirements are discussed, and528

their possible solutions are also proposed.529
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