
Resource discovery over P2P networks for the creation of

dynamic virtual clusters

Carlos Paulo Ferreira Santos
P2P-Clusters: criação dinâmica de clusters em cycle-sharing

Instituto Superior Técnico
CPFSantos@netcabo.pt

Abstract. The importance of cycle-sharing and distributed computing
has grown in the past years and the amount of internet traffic over
peer-to-peer networks is increasing. The methods that peer-to-peer
applications use to maintain scalability and perform their goals can be
used to improve upon current grid systems to facilitate the creation and
maintenance of dynamic virtual clusters allowing them to grow further
or perform better. We intend to draw upon the strengths of P2P and
grid systems to create a system capable of dynamically creating or
adjusting virtual clusters for the execution of distributed applications,
thus allowing for higher cluster availability as well as lessen the wasted
computational resources.

Keywords: Peer-to-peer, Grid computing, Virtual clusters,
Cycle-sharing

1. Introduction

In the ever-evolving modern world, one of the few constants in regards to
computers has been growth. This growth manifests itself both in terms of computationally
more demanding applications as well as a higher availability of computational resources.

One would think these patterns of growth would neatly overlap, yet that is not
so. A high amount of computer cycles are being wasted at all times all over the world, and
yet, at the same time there are applications that have a strict demand for computational
power that requires more than a simple computer's effort to satisfy.

Over the length of the past 20 or so years, several approaches to this problem
have been created. Initially most heavy computational processes were handled by
supercomputers and mainframes, but this solution was both expensive and inherently
generated inefficiency.

With the passing of time the concept of a computational cluster became the
norm. A group of machines, similar both in hardware and software specifications, but also
connected by high-throughput and high-availability networks, solely dedicated to the
solving of a common problem through the uses of distributed and shared computing
mechanisms.

1/25

However, while locally capable of providing for the needs of any entity requiring
such form of computational power, it still failed to provide a solution except for the most
wealthy and stable of companies[9]. The common user was still without a solution, the
vast resources of the internet were still not being used, and above all, there was still a
high amount of computational power that was wasted, not only during idle times in
computer clusters, but also in the raw untapped power of millions of personal computers
and other computational devices (such as the ever popular portable cellphones, hand-
held devices, etc.) all over the world connected to the internet[26].

Several partial solutions appeared with the passing of time, each focusing on a
certain approach and method to solve the challenges required to implement a platform
that would both maximize computational power available as well as minimize resource
waste.

The concept of distributed and parallel computing itself is one of the interesting
points that evolved alongside the clustering paradigm. Cycle-sharing and Grid computing
are different approaches to this concept, each with their own goals and constraints.
These constraints that still prevent public computing from having access to proper
clustering tools. In a way, public computing and computer clusters are still like two islands
in a sea, totally separate, due to the lack of tools to overcome such constraints. Should a
tool arise that could allow for the dynamic creation and alteration of clusters based on a
peer-to-peer network, we could finally reach the goal of allowing the computational power
of clusters to the general public.

We will discuss the objectives of our own approach in section 2. A global
analysis of previous approaches will be presented in section 3. Such analysis will be
escorted with a short evaluation and analysis of a few strengths and weaknesses of such
approaches, what they are lacking and where they succeed. and how we plan on
overcoming those weak spots while capitalizing on the strengths of prior approaches.
Section 4 contains the description of our plan on how to overcome those weak spots
while capitalizing on the strengths our program to solve the two major issues ahead of us.
This description will be evaluated using the methods described in section 5 and we are
confident that the results will show the strength of our approach. This document wraps up
with section 6 where we present a short reflection of the results of our labor and the
impact the solution could have in the current computing environments.

2. Objectives

Our goal is to design a system based on a public, peer-to-peer overlay network
of nodes representing computers offering or needing resources that can on a per-request
basis locate a list of the best candidates for the creation of a virtual cluster from the nodes
present in the network. With this list we will make a choice of the exact machines that will
be part of the cluster and finally create the cluster itself, always maintaining the capability
of adjusting its size or members.

This system must be able to:

– Allow the soft and controlled entrance and exit of nodes from the network.

– Locate resources in useful time, ensuring that if a resource exists, it can be found

– Take into consideration each machine's specifications including CPU type, clock
speed, core availability as well as available bandwidth

2/25

– Allow each request to specify QOS-level metrics to refine the search and provide
the best candidates for a cluster.

– Be capable of finding a cluster of the appropriate size and specifications to meet
the needs of the request

– Maintain a high level of scalability and reduced bottlenecks/points of failure.

– Create and maintain a cluster from heterogeneous machines if necessary

– Initiate a cluster dynamically, at request execution time

– Dynamically Alter the size of a cluster, if the application to be executed requires it,
effectively enabling the cluster to be elastic and have a higher capability for adaptation.

In order to do this, we will create an approach that involves both a P2P-based
protocol for resource discovery, a P2P-based node handling system and an application
for the deployment of the code to be executed on the recently created virtual cluster.

This will solve the major issues highlighted in the previous section, our
approach will perform such tasks in an efficient way, making use of resources located not
only in fixed, easy to access networks but mainly via perishable networks like the internet.
We will present a system that allows a user to share local resources, set up QOS (quality
of service) levels in several aspects in order to locate a machine or group of machines
currently available that best fits the execution of an application as well as actually relaying
the execution of the application in that machine or virtual cluster.

To achieve this, there are three main problems to solve. The first of those lies
with the nature of the network wherein we will locate our resources. The internet is not
without fails and faults, and even though its reliability (and availability) has greatly
increased in the past years, we cannot assume a node present at a time to be available
at another time. Our system must be able to allow a node to make itself known and
announce its available resources without generating a unsustainable amount of control
messages in order to ensure a capacity for scaling.

The second issue is directly interlinked with the first one. Our protocol must be
able to locate resources that have been announced that fit the criteria defined in the QoS
specifications. The same care must be shown in order to avoid flooding the network, but
also we have to pay attention to the amount of time spent locating the “perfect” resources,
and whether locating them is feasible.

The third and final issue appears once we have obtained a list of candidates for
execution of the required application. From that list, we will have to choose a machine or
group of machines that can most satisfy the QoS requirements and start a virtual cluster
for the execution of the code. Those resources will have to be reserved, execute the
code, the results of the execution must be gathered and assembled and then the
resources should be freed, to be reused. This can be achieved by using an appropriate
tool (like a small applet or virtual appliance) that is dynamically deployed onto the
machines of the selected nodes.

In further detail, our resource-discovery protocol will be based on a structured
peer to peer approach and will be oriented towards locating machines that can, partially
or fully, satisfy the QoS-level metrics presented by the request. These metrics can include
characteristics such as the machines' number of CPUs, their CPU availability, available
RAM, storage space, network latency and/or bandwidth available, among others.

3/25

The system we will design for handling the entrance, exit and maintenance of
nodes in the network will be based in a peer-to-peer approach to ensure a low amount of
overhead generated by control messages. It will have to maintain the data on resources,
node availability and characteristics in order to sustain the node network's health as well
as feed the resource discovery protocol

Finally, the prototype application will both serve to deploy the code to be
executed onto the target dynamically created cluster and provide an interface for the
usage of our proposed system.

We will show our solution in finer detail in section 4.

3. Related Work

Isaac Newton once said “If I have seen further it is only by standing on the
shoulders of giants.“ and we are in the same position. Our work is based on gradual
evolution in the field, both in the academic world and in the computer industry. In this
section we will describe the evolution in two main fields within which our work is based.
The first one is regarding resource discovery in peer-to-peer/grid networks while the
second one relates to the creation of dynamic clusters itself.

The following subsections contain a short analysis of the origin and evolution of
those technologies, as well a analyze why they succeeded and failed.

3.1. Peer-to-Peer

Peer to peer (or more commonly P2P) is a concept where resources are shared
among several nodes in a network, be those resources tasks, information or storage. The
networks based on this concept can be both structured and unstructured. We will first
give an example of unstructured ones.

These systems share responsibilities amongst the nodes and allow for far
greater resource availability than existed in previous single-point or centralized
approaches.

A peer to peer system is characterized by its level of decentralization, which is
how distant from the ideal that all nodes in the network are equal. This affects not only the
homogeneity of the nodes in the network but also the degree of scalability and
performance issues that might arise.

Another important point in these systems is resource discovery, or the method
for which a node discovers other nodes/resources in nodes. This can greatly affect the
performance of a system, to the point of actually making it not useable in practice.

One issue concerning these systems is the entrance and exit of nodes from the
network. This is directly tied to its level of decentralization, but is independent enough that
merits mentioning. Although it has only a partial impact on scalability, it can greatly hinder
the performance of a system if not handled correctly.

4/25

3.1.1 Unstructured P2P

 This concept was first made famous by the application Napster that quickly
accrued upwards of 80 million files shared between 1999 and 2001[27]. Napster,
however, is unlike more modern P2P implementations in the fact that it was a not a fully
decentralized technology, using superservers to direct and control entrance into the
network, resource discovery and node publication, among other tasks.

Napster

Napster uses in fact a Hybrid Decentralized Architecture[5] which uses the
aforementioned superserver in addition to normal peer nodes in a network. This particular
feature is one of the weaknesses of this type of approach offering an individual point
where failure or fault greatly compromises the P2P network, as well as offering a
bottleneck that can greatly affect scalability of the system.

This approach in fact limits one of the strong points of P2P systems: scalability.
More modern approaches use either one of two different P2P types, which vary exactly in
the equality of peers within the network. A Partially Centralized Architecture[5][12], such
as the one used by the FastTrack protocol (as used in KaZaa1 or ED2K based
systems[15]) is based on the existence of some peers that accumulate more
responsibility than that of the usual client, and thus also have tasks of control and
organization of the network.

FastTrack

 Unlike Napster's approach, the lack of a central server means there is no
bottleneck, and the tolerance for fails and faults is much higher. The sudden absence of
one of these superpeers does not compromise the network. If it is necessary, a new
superpeer can be elected to take the place of the previous one, or in some cases another
already existing superpeer can take over for the absent one. In any case, these peers are
required to present certain characteristics in order to be promoted to a superpeer, both in
terms of computational power as well as bandwidth available to them.

The final type of P2P system is the Purely Decentralized Architecture[12][1].
This system presents true equality among peers, not using superpeers or centralized
servers. For a new node to join a network of this type, he simply needs to know the
address of a node already in the network, and the system itself accommodates for the
new node and spreads the information of its existence.

While this may seem to offer less bottlenecks than the previous two types, there
is an issue with resource discovery. Due to the lack of nodes with the responsibility of
containing information on the resources present in the network, a much higher amount of
control messages might be required in the system.

Traditionally the spreading and discovery of resources was handled by flooding
the network. The evolution of these systems started using other methods such as random
walks [20] and Distributed Hash Tables[17][11] (as seen in the Bittorrent[23] protocol and
several of the structured networks present in the following subsection 3.1.2.)

1: Kazaa homepage http://kazaa.com

5/25

3.1.2 Structured P2P

Unlike the peer to peer based systems described in the previous subsection,
structured peer to peer architectures use a rigid organization to govern the nodes within
the network. This well-defined structure allows some knowledge over the nodes to be
passed onto their itself as well as both ensure that resource locating algorithms do not
flood the network and that if a resource exists, it is found in a well-known and predictable
number of steps[14].

Examples of systems that use a structured peer to peer approach are for
example, Chord [8] and CAN [4]. There are some systems such as Pastry [19] and
Kademlia [16] that use portions of both unstructured and structured systems, but in their
essence function as structured approaches. The great advantage these approaches have
over an unstructured approach is the control over node joining and content that lies
within the node structure, ensuring both a lower amount of control messages as well as
faster (or at least more certain) searches.

Chord

Chord was one of the first structured peer to peer systems, developed at MIT,
and uses a Distributed Hash Table to store pairs of keys and values. Each node stores all
values for any keys he is responsible for, and the system enforces how each key is given
to each node.

Resource discovery in Chord takes two steps: first you locate the node that is
responsible for the key, then you locate the key (and appropriate value) in such a node.
Like many structured approaches of this type, the nodes in Chord are structured in a
figurative directed circle. Each node has another node as a successor and one as a
predecessor in the circle.

In order for chord to function, the system uses a consistent-hashing system to
generate a unique identifier with a length of N bits. The maximum number of nodes in a
Chord circle is 2^n nodes, and each of these is responsible for a number of keys equal to
the total number of keys divided by the number of nodes.

To ensure safe departure from the network, each node has not only information
of its successor, but also information on a few of the following nodes, ensuring that the
circle is not broken upon network or node failure. Whenever a new node joins the
network, the responsibility of each node is recalculated to ensure an even distribution of
keys.

CAN

CAN (short for Content Addressable Network) is another DHT-based structured
P2P system. Unlike chord, the nodes are not sorted in a circular fashion. CAN interprets
the node space as a N-Dimensional Cartesian system. Nodes are assigned coordinates
as if they were a point in the axial system and each node is assigned a partition of the
total dimension that the node becomes responsible for.

6/25

Each node contains a list of its neighbor nodes as well as their IP addresses
and maintains this information in a routing table of sorts. Also unlike Chord, a node's
entrance into the network causes not a calibration of the whole weight, but only a split in
one of the spaces assigned to a node. The new node contacts a node already present in
the network and discovers a node (either by picking random coordinates in the system)
that is responsible for a certain amount of space. That node splits his space into two
between itself and the new node, and informs the neighboring nodes of the new
responsibilities. The information is then propagated across the network.

This small change causes a much smaller amount of overhead (when
compared to Chord) in networks with high amounts of nodes and keys, but conversely
does not guarantee that the keys are evenly distributed as Chord does.

The process for a node's leave from the network is more complex. There has to
be a control mechanism that periodically probes the nodes for livelihood. Once an absent
node is found, its space is merged with one of its neighbor nodes and that information is
once again propagated to the merged node's neighbors and the network. To ensure that
the routing protocol in CAN is obeyed, the choice of which neighbor gets the responsibility
over the space previously assigned to the node that left follows strict rules regarding the
shape of the final space. If no merge is possible, then the neighbor node with the smallest
space is assigned responsibility over the departed node's space as well.

The actual of a resource is handled based on the resource's coordinates in the
axial system. From any node, you simply move the request onto the neighboring node
that is in the direction of the resource's , and the request moves forward in this fashion
until the is finally reached.

Pastry

Pastry is in many ways similar to Chord. Nodes are also arranged in a circle,
and the system also uses a Dynamic Hash Table to store key-value pairs. The main
difference between the two are the Ids that each system handles.

Pastry uses a 128-bit ID setup that represents a position in the circle. Node IDs
are assigned at random and on top of the circular node setting pastry uses an external
routing overlay network. This overlay maintains information on node “proximity” (be it
through the existence of a low amount of hops between them, low latency, etc) in a list of
neighbor nodes.

Each node also maintains a list of leaf nodes which are the closest nodes to
itself in terms of node ID, totally disregarding the metric. The routing list basically looks at
each 128 bit key as a length of digits or characters as if it were a string, and sets farther
nodes (in terms of the metric) to strings that have only 1 of the digits or characters in
common to it, while nodes “closer” might share more characters in common. For
example, given a node with key ABCD, the node FGHD is farther away than the node
CBCD.

The actual routing of a message takes multiple steps. If a node wants to send a
message to a certain key, that node sends it directly to that space. The node with the ID
closest to it on the circle then scans its leaf nodes to check for the key being present
there. Should it be there, the message is delivered. Should the key be absent, the node's
routing table is consulted to attempt to find a node with the a longer string in common with
the target key.

7/25

This structure allows real life constraints such as bandwidth and round trip times
to determine proximity in nodes, which can greatly increase the performance of such a
system.

Kademlia

Kademlia[16], like Chord and Pastry before it, also uses a Dynamic Hash Table,
but in this case the hashing is directly tied to the IDs of the nodes. In a Kademlia network,
resource is an iterative, gradual approach. Every step of this process attempts to find
“closer” nodes to the target key, and proximity is determined by a simple XOR of node
IDs.

Each of these steps ensures that either a better match is found, or that either
the node is absent or that we've found the key being procured. Another large
differentiating feature in Kademlia is that the distance of nodes is kept in lists by each
node. There is one list for each bit in the node ID, so if there were 32 bits in such an id,
there would be 32 lists kept in each node. The first one contains the nodes farthest away
from this one, and each subsequent list contains nodes closer. These lists are updated
as nodes are encountered, which generates a very low overhead and keeps the routing
list fresh.

3.1.3 Analysis and comparison

For ease of reference, we will provide a comparison table between the systems
described above, containing a few of the main characteristics of each.

We define overhead in this table as the amount of control and system
messages necessary to maintain the correct state of the system, its nodes and the
resources available. Ideally in a single-machine system, these are nearly nonexistent.
The lower the overhead resulting from these messages, the smoother the system scales
with a growing number of nodes. This is a defining point of any system, as it can
determine the capability of our system to accompany a large growth in the number of
nodes. The control messages usually stem from resource requests and finds, file
transfers, among others.

Also, when referring to “servers”, these are specialized machines, not selected
from normal nodes, and multiple in number, as opposite to super-peers which can
sometimes be drawn from the normal node pool. These specialized machines are
centralized in fashion and predetermined by the system itself.

Name P2P type Level of
Decentralizatio

n

Resource Types of
nodes

Overhead

Napster[27] Unstructured
Hybrid

decentralized

Central Server Server-side Peers,
server

Small

Direct
Connect

Unstructured
Hybrid

decentralized

Servers Server-side Peers,
servers

Medium

8/25

Kazaa Unstructured
Partially

Decentralized

Super-peers Super-peer
controlled

flood

Peers,
super-peers

Large

Edonkey[15] Unstructured
Partially

Decentralized

Super-peers Super-peer
controlled

flood

Peers,
super-peers

Large

Freenet Unstructured
partially

decentralized

Super-peers Super-peer
controlled

flood

Peers,
super-peers

Large

Gnutella Unstructured
partially

decentralized

Super-peers Super-peer
controlled

flood

Peers,
super-peers

Large

Ares Unstructured
partially

decentralized

Super-peers Super-peer
controlled

flood

Peers,
super-peers

Large

Chord[8] Structured Fully
Decentralized

2-step search
by nodeID
and key

Peers Medium

CAN[4] Structured Fully
Decentralized

Routing by
neighbor

peers

Peers Small

Pastry[19] Structured Fully
Decentralized

Peer overlay
and nodeID

Peers Small

Kademlia[16] Structured Fully
Decentralized

Iterative list
search

Peers Small

3.2 Grid systems

Grid computing is the process of using computer resources from disparate s
and architectures to join together in order to overcome a common computational
challenge[33]. It is somewhat related to traditional computer clusters in the sense that it
uses several machines to solve a computational problem, but the similarities end there.

Grid computing utilizes resources spread throughout several organizations
and/or individuals instead of all belonging to the same organization. In addition to this,
machines in a grid system are not required to have similar specifications, which is
common in cluster systems[3].

In fact, the most common tools at the disposal of a Grid System are physically
and geographically distant computers joining together in a loosely coupled way over
networks that span from lans to wans to the internet itself. By harnessing the collective
power of these machines, one can create virtual supercomputers capable of handling
much more complex tasks.

9/25

The immediate comparison to traditional cluster systems shows pros and cons
on both sides. The typical cluster system can take a greater advantage of the machines
at its disposal, but requires a large investment in planning and hardware. Cluster systems
by definition may are only limited the machines available and the network connecting
them, but can join together a much larger amount of machines and thus derive more
computational power from them.

One of the more modern details regarding Grid systems is the usage of
established middleware to deploy (and possibly partition) or integrate with the code to be
executed among the machines that will perform that task, thus reducing the system's
need to focus on that point.

In its essence, a Grid System is a type of distributed computing, or more
precisely a type of parallel computing that uses whole machines it has low direct physical
control over, connected through networks that the system also has low control over. The
following table will show a small comparison over the three types of systems mentioned
above.

Supercomputer Computer cluster Grid system

Number of machines 1 Several Many

Machine specs
Several similar
processors

Several similar
machines

Many different
machines

Connection type High speed bus Reliable LAN/WAN LAN/WAN/Internet

Machine owner
Single organization Single organization Single organization

or Multiple owners

Owner investment High investment High investment Low investment

Performance
potential

High High Average to very high

Duration of service Long term Long term Task oriented

Overhead Nearly nonexistent Small Medium

Resource wasting Idle periods Idle periods Very small

Grid systems as a whole have been used in the solving of several
computationally intensive problems in several ares of science and academics, from the
discovery of new medicine and drugs to the execution of complex mathematical
calculations.

One of the advantages of this approach is that the individual machines that form
the grid can be purchased independently of each other, on a per-need basis, and later be
used in the virtual supercomputer created by the grid. The obvious advantage here lies
with the low initial cost and investment. [25]

Many small companies requiring higher computational power were for several
years barred from attaining it due to the steep initial investment costs inherent to the
acquisition of a supercomputer or the creation of a cluster. Grid systems present
themselves as the cost-effective solution as well as having the potential for very high
computational performance.

10/25

However, not all is advantageous when it comes to Grids. Due to the very
nature of the machines involved, individual nodes cannot be relied upon as machines in a
cluster can. Not only can the nodes themselves be unreliable, the network connecting
them may present faults or fails as well. To prevent compromising the computation being
done, the system must apply strict measures to prevent a single machine's failure or
absence from critically affecting a job that is underway.

A certain type of distributed computing that is a particular form of grid systems is
what is called Cycle-scavenging[7] (sometimes called cycle-stealing or public computing).
This is what is behind the many well-known volunteer computing programs like
Folding@home and Seti@home. The latter one has in the past years changed its system
to use BOINC, one of the several grid-oriented middleware applications available.

The applications using cycle-scavenging are typically installed in a voluntary
fashion by the machine's owner and run when the computer itself is idle. There is little
cost to the machine's owner, and these applications serve purposes of general interest.
The main goal of reducing idle times in computers is achieved by these applications, but
still the goal of allowing supercomputing to be accessible to the general public is still
unsatisfied.

However, grid computer is becoming more mainstream than simple cycle-
scavenging programs. The CERN has become a great proponent of Grid systems and
there are several initiatives throughout Europe that aim to further the Grid system's
evolution.

We will now present a more closer look at some examples of systems using grid
technologies as well as cycle-scavenging/public computing.

MPI

Message Parsing Interface is a protocol specification designed to allow
computer processes to communicate with each other. It was first announced in draft form
in 1994 and aimed at being used in distributed and parallel computing in systems where
the costs for accessing non-local memory are too high[29].

It is easy to see the importance such a protocol can have in distributed
computing systems like clusters and grids, and the impact MPI had can quickly be seen in
the fact that even though it is not considered a standard, it has all but become a de facto
one in today's parallel and distributed computing world, being used in the vast majority of
appropriate systems.

Being only a specification, MPI allows several implementations to exist, in
several programming languages as well as having two different versions, with different
scopes. MPI-1.2 (commonly shortened to MPI-1) is more focused on the actual message
passing while MPI-2 also includes parallel I/O, dynamic process management and remote
memory operations[28].

MPI-1 focuses mostly on topology, communication and synchronization between
processes. It achieves this by using unique objects and concepts (e.g. process barriers)
for each specialized situation, from using “communicator” objects to handle multiple
processes to mechanisms aimed at passing a message from a particular process to
another (or broadcasting it to all other). It also defines specific data types for usage with
the specification.

11/25

Globus

The Globus toolkit[13] is a set of open source tools for the creation of computing
grids. It was developed from 1995 onwards by an international association that eventually
came to form the Globus Alliance in 2003.

It has a specialized tool for resource management called GRAM[2] (Globus
Resource Al and Management protocol). GRAM can handle most basic job-related
functions as well as more advanced functions such as managing credentials and
monitoring the status of resources. GRAM receives a job as a single submission directed
at a single computational resource and can provide not only input files but also output
files for the result.

For the management of credentials and security, Globus uses a tool called GSI
(Grid Security Interface). GSI ensures that data is not tampered with, can be
authenticated and is read only by those that have a responsibility with it. Within the
Globus toolkit a legacy tool called MDS-2 (Monitoring and Discovery Services) for the
monitoring of computer resources in the grid, but support for this tool is scheduled to be
stopped and the tool removed from the kit.

Condor

Condor[10] is a software framework for distributed computing aimed at
distributing the workload over a dedicated cluster of computers, but may also be used to
draw unused computer cycles from idle machines. It was developed in the University of
Wisconsin in Madison as a means to tackle the problems inherent to distributed
computing. It is firmly set on an Open Source philosophy.

One of Condor's advantages is the seamless integration of heterogeneous and
disparate resources, from clusters to regular desktop computers. This in part derives from
the developer's strong focus in the philosophy of flexibility as a requirement for a system
of this type.

The Condor system uses a component called Condor-G as an interface to
communicate with Grid resources (and also Cloud resources). Its name derives from that
of Globus (mentioned further in this document) which was the Grid creation method
Condor used at first.

Condor supports the MPI specification but also has a proprietary library called
Master Worker. MW is aimed at tasks that require a substantially higher degree of
parallelism.

Boinc

Boinc is a Grid middleware application developed in the Berkeley University of
California in 20022. its original goal was as a platform to support Seti@home but it quickly
outgrew that goal and started being used in a more widespread fashion around the world.
According to statistics publicized monthly, the Boinc-powered virtual supercomputer has
risen above 4 000 Tera flops (average) of computational power3, spread out over more
than 20 different projects.

12/25

This is more than twice the fastest supercomputer currently available (the
Jaguar-Cray XT5 HE, at approximately 1750 Tera flops4), which is a number that not only
proves the efficiency and potential of Grids, it also shows their rapid exponential growth,
reaching this peak in only 6 years.

If we consider peaks of performance instead of averages, the Boinc virtual
supercomputer has achieved over 5 400 Tera flops.

Boinc itself is a free mechanism for anyone that wishes to start a volunteer
computing system, and is mostly used for scientific purposes and is currently the largest
open Grid system in existence.

Folding@home

Folding@home is a cycle-scavenging system designed in the Stanford
University in California in 2000 to model protein folding in order to gain insight over
several diseases and medicine5.

Much like any cycle-scavenging system, it relies on a user installing its client in
a machine so that it can access the machine. It has achieved a peak of 5 600 Tera flops
but averages out at approximately 5 000 Tera flops divided over seven different “cores” of
research, each with their own peculiarities.

Seti@home

Seti@home is a cycle-scavenging system released in 1999 destined to scan
data obtained in the Arecibo astronomical observatory in order to attempt to find hints at
the existence of extra-terrestrial life6.

From 2005 onwards, Seti@home started using the Boinc platform stead of its
own proprietary system. It is currently averaging approximately 730 teraflops, or
approximately 17% of the Boinc virtual supercomputer.

LHC Computing Grid

As mentioned above, the CERN has embraced Grid systems as an answer to
the large computational power required to interpret the immense amount of data being
gathered from the LHC experiments[6].

It was started at the end of 2008 and currently has participating nodes spread
over three continents and contains machines of over 140 different institutions7.

3.2.1 The grid and p2p convergence

At the current point of time, peer to peer systems and grid systems are largely
independent. They were, after all, developed independently and aimed to solve different
goals. Yet, the evolution of both systems may show a confluence between them in the
near future[18].

2:BOINC website, http://boinc.berkeley.edu/
3: BOINC statistics http://boincstats.com/stats/project_graph.php?pr=bo
4: Top 500 Supercomputer List http://www.top500.org/lists/2010/06
5: Folding@home http://folding.stanford.edu/English/License

13/25

As grid systems grow, scalability issues will require them to start using tools
commonly used in peer-to-peer systems to avoid bottlenecks and slowdowns as well as
possible points of failure. On the other hand, as peer to peer systems become more
abridging and attempt to claim more possible uses, they too start using structured models
commonly seen in Grid systems.

One could say that eventually there will cease to be any distinction between the
two types of systems, and that a single, common architecture will be present to fulfill the
goals of both systems: resource sharing (be it in terms of computational power, data
storage, or data itself) and the avoidance of resource wasting. How soon it happens is still
unknown, but it is a near certainty of modern advances.

3.2.2 Cloud Computing

One unavoidable concept in today's distributed computing world is that of cloud
computing. The company Amazon is one of the entities most responsible for the
appearance of the concept of cloud computing. It came to be during the company's
internal hardware system restructure, an action whose goal was to minimize the wasted
computational resources inherent to the company's everyday work.

A company study showed that sometimes only 10% of the machine's total
capacity was being used. During attempts to solve that, the idea of a pool of
computational resources evolved into the modern notion of the cloud. Of course, had it
remained simply a tool for the internal use of the company, the cloud would not be a topic
as well known as it is today. In 2006, Amazon started to provide cloud computing to the
outside public8.

A more careful look at the cloud shows it using concepts already present both in
grid systems, cluster systems and public computing, but with a different implementation
and a more restricted set of premisses.

From the point of view of a regular user, cloud computing seems to solve all the
tasks we set forth to achieve with this work, but after careful analysis, it is not so. Cloud
computing as it is currently pictured ends the client user's control after the request is
made and any decision on the cluster is done without the client user's interference. While
it does add to general agility for typical use, it denies the user the capacity of adjusting
the clusters to his own needs.

Furthermore, the cloud is still closed in the sense that the machines providing
the computational capabilities will not request more capacity themselves, and that a
typical user cannot provide his own unused computer cycles to someone else. These
points are strong enough that a niche for our work exists, and this niche is substantial
enough that it warrants a solution, a proper answer to the issue at hand.

6: Seti@home http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_4.html
7: The CERN Large Hadron Colider computing grid http://lcg.web.cern.ch/LCG/

14/25

3.3 Virtual Clusters

The concept of a virtual cluster[24] is tied directly to that of the traditional
computer cluster. Originally, clusters were groups of similar computers belonging to a
single organization in order to either improve performance by spreading computational
load, diminish network load impact by spreading traffic around or ensuring a higher
availability of data. These computers were traditionally connected by high-bandwidth
networks, had similar specifications and were closely monitored and under strict
organization.

Virtual clusters deviate from tradition by being more loosely coupled and not
necessarily physically close to each other. In addition, the biggest diverging point is that
while clusters are permanently assigned to their particular job, machines participating in a
virtual cluster might be performing that job only a shorter period of time, being released
afterward.

In addition to the constraints and concerns already present in the creation of a
normal cluster, some additional issues arise when we observe the creation of dynamic
virtual clusters. Some of those issues stem from the difference in networks present
between the nodes of the cluster while others arise from the lack of homogeneity between
nodes.

The network connecting the machines itself adds additional focus points. In
applications that require a hefty amount of data transfer between them, high bandwidth
may be required, and that can influence the performance of the virtual cluster, while on
the other hand if a small amount of data is passed amongst nodes, but it is done fairly
often, a globally low latency becomes the priority.

Additionally, the necessity for the cluster to be dynamic or elastic, that is, being
able to alter its size or nodes at will, requires control mechanisms aimed at allowing
departure and entrance into the cluster as well as job management and handling
throughout the changing node network. This management must be able to provide strict
control of the resources within the cluster.

A bottom-up approach to virtual clusters would lead us first to the actual
creation of the cluster. Krsul [32] described a way to create virtual clusters by using virtual
machines. A single virtual machine image would be cloned throughout the machines
belonging to the cluster. This virtual machine would then receive a directed acyclical
graph containing configuration instructions and with them the machine would be set up.
Foster [31] provided a solution to the same problem by introducing the concept of a virtual
workspace. This virtual workspace is nothing but another virtual machine which instead
receives its configuration instructions as an argument and then is deployed to the actual
physical resources in the cluster.

While both above solutions are fine for a low number of machines, they would
not scale well with a sufficiently high number of machines, and alternatives for larger
clusters were created [30]. Here, the deployment itself is accelerated by means of virtual
disk caches (and other techniques) which contain any and all required software, thus
greatly hastening the initial deployment.

8: The Amazon elastic cloud, http://aws.amazon.com/ec2/

15/25

Past the initial deployment step, the existence of a virtual cluster requires
managing of jobs and resources. To do so, a virtual cluster requires the existence of a
Resource Managing System (RMS) that can assign jobs, extract job results, control node
absence and presence, maintain the integrity of the computational exercise being done
and ensure the general stability of the virtual cluster[21].

To do so, the RMS must, upon reception of a request, estimate the impact the
request would have on each machine, and then generate a plan for job distribution and
handling amongst the machines in the cluster. In addition, the RMS must also provide the
security aspect of a request, by authenticating credentials and ensuring data
confidentiality within the cluster.

4. Architecture

The design presented in this paper focuses on three individual parts as
mentioned in section 2. In this section we will provide a more detailed look into both our
system and the inherent protocol it uses to achieve its goals. In general our system will
provide means for a new node to join a network in order to be able to utilize resources on
remote computers as well as allow his own resources to be used by remote requests.

4.1 Network System

Figure 1: System overview

The figure above shows the overview of our system and a general outline of the
several actions in a typical request. To be able to perform these actions, the three
individual parts (the peer-to-peer network system, the resource protocol and the
clustering virtual application) of our work must interact and communicate amongst
themselves in well-defined ways. A more detailed description of these parts and their
interfaces will now be depicted.

Our system is based on a structured peer-to-peer network of nodes. We choose
this type of network to allow quick and efficient of resources and swift routing to specific
nodes, thus promoting scalability and still maintaining the decentralized architecture. We
will model our system in PeerSim, providing the added functionality for node joining and
leaving as well as resource availability control and job request specification.

16/25

The system will allow a machine to join a network by simply knowing the IP or
address of a node already in the network (as depicted in Figure 2), and will accommodate
the new node in its overlay. Both the departure of a node (loss of available resources)
and the joining of one (increase in available resources) will be propagated throughout the
network in a controlled way in order to not flood the system.

Figure 2: The entering of a node into the network.

4.2 Resource discovery Protocol

The actual submission of a job request can be escorted with several quality of
service metrics. A request can be made for a cluster of a specific number of computers
and values to each of the QoS metrics can be provided with the request to later allow our
resource discovery protocol to refine the list of candidates and correctly estimate the
machines that best fit the requirements of the request. For instance, we could request a
cluster composed of 6 machines where we would give a very high weight to a low latency
in the network connections between them as well as the individual machines' CPU type
and number of cores, in order to accommodate an application with low size messages
being swapped among the machines in the cluster.

After a request is submitted, our resource protocol sets in, working on the node
network maintained by our system and will attempt to locate resources that either fit the
request's QoS metrics completely, or at least locate machines that partially fit the request,
all the while maximizing their adaptation to the task. Considering the heterogeneous
nature of the nodes in the network, it is most likely that only partial matches can be
found[22], but the capacity for this protocol to maximize the cluster's capacities to fit the
request are a crucial point. Thus, we allow each node to, upon request submission,
specify minimum thresholds for both partial and global resource satisfaction.

The protocol itself will be modeled in the form of PeerSim classes tailored to fit
our system. The protocol's work has two steps. In the first step, the protocol must locate a
list of potential candidates from within the nodes present in the network and grade them
considering the metrics provided in the request. It must then select the best candidates
from among that list.

17/25

4.3 Cluster setup

After the machines that will be a part of the cluster are selected, our virtual
appliance will then be deployed onto each of those machines. This application will be a
small virtual machine capable of receiving configuration instructions as an argument, and
will be also responsible for the execution of the code.

For each machine, the configuration instructions will either be responsible for
setting up the execution of the clustered application code (either via library, e.g., MPI or
deploying a full system virtual machine with OS and application, e.g., using Xen or
QEMU) or contain instructions to connect to a third machine that will act as the cluster's
coordinator. After the cluster is fully deployed and set up, the execution of the job begins.
Upon its completion, the node chosen as controller or RMS must collect the results and
deliver them to the machine that initiated the request.

Figure 3: Virtual appliance deployment

The system itself evolves over time, and as such the machines present in the
overlay network can change, as well as the clusters in it and even the machines
belonging to each cluster. Figure 4 represents the same sample of the overlay in two
different moments in time.

Figure 4: Changes in the overlay and its clusters.

18/25

4.4 Further detail and Implementation Issues

To implement our resource discovery protocol we will address a number of
Variants that can be later compared regarding completeness, efficiency and scalability.
We can opt for a decentralized method with flooding via neighboring nodes and random
walks (Variant A), which is a method used in several existing systems. This approach is
both simple and effective, but might not be the most efficient one.

Additionally we can use an approach similar to that of CAN (Variant B), where
resources are located by obtaining from the resource key its respective set of coordinates
in the N-Dimensional space. After obtaining the resource's coordinates, getting to the
resource is a question of forwarding the request to the neighboring node that is in the
direction of the set of coordinates.

This second approach will require a more strict placement of resources. In order
for the location to help us, we must have to set similar machines in similar spaces, thus
ensuring that should we require, for example, several machines with 3000 MHz of CPU, 2
GB of available ram and low latency between them, we can know where in the space to
look. In order to avoid two machines falling into the same space, there must be a certain
degree of leeway in the exact coordinates. Two machines with the exact same
components might end up at coordinates X,Y,Z and X+-α,Y+-β,Z+-γ. We will now provide
a simple depiction of the progress of the resource location protocol in this approach.

Main steps in resource discovery:

-Locate the coordinates of a resource from its characteristics and key
-From the local node's coordinates, locate the neighboring node that lies in the
direction of the coordinates of the resource we obtained in the previous step
- If the resource is located in that node's space, stop, if not, we locate the next
neighboring node that is in the direction of the coordinates
- We then repeat the previous two steps

In Figure 5 we can see an example of the representation of a few nodes in a
coordinate system such as this one. For the sake of simplicity, we will only use two
dimensions, one for the number of cores and the other for each core's clock speed, but
any amount of characteristics can be presented in a N-dimensional space.

Node Clock Speed (MHz) Number of cores Available Bandwidth (Mb) RAM (MB) Latency (ms)

1 2000 2 12 2000 55

2 2500 2 30 2000 43

3 3000 2 8 4000 118

4 3500 8 100 8000 45

5 3000 4 30 4000 61

Figure 5: Node representation in variant B

19/25

0 2 4 6 8 10 12 14 16

1500

2500

3500

Number of cores

C
lo

c
k
 s

p
e

e
d

Each circle represents a node in this section of the overlay, and each node's
location in the 2-dimensional space tells us of the node's characteristics. By using this
information we can easily locate resources with specific characteristics.

A more advanced approach (Variant C) can extend the latter one, by using not
the exact position but the relative size of a resource in several 2-dimensional planes. The
more CPU a machine might have available, the larger the area it occupies on that
dimension in the coordinate space, and thus the higher chance a random coordinate
might fit it.

With this approach, the crucial point is not the node's location in the space, but
rather its size relative to the others. We will show the same nodes used in the example
above, this is a possible representation of these nodes in regards to clock speed.

Figure 6: Possible node representation on variant C regarding clock speed

The relative size would ensure that any resource location request aimed at a
random point in the N-dimensional space would have a higher chance to locate resources
with a higher or better characteristic. In this case, the biggest issue would be the empty
space, which although CAN already partially deals with the matter, is something we must
deal with.

In this approach, the location of a resource is, for each plane (we represent
each characteristic as a 2-dimensional axis), we create a random 2-dimension
coordinate. The machines with more processing power, or more bandwidth, or more
RAM, or less latency (size can in this case be inversely related to the latency shown in
the network) are more likely to be chosen than the others. This can greatly accelerate
resource location and maximize resource occupation in the network.

20/25

Node 1

Node 2

Node 3

Node 4

Node 5

Cluster Deployment

To facilitate cluster setup we will adhere to the Open Virtualization Format
(OVF) standard. This will allow us to utilize .OVA files that can be customized from
preexisting templates in order to allow us to refer our virtual appliance to resources
located on virtual disks containing the application to be executed. These packages can be
extended with configuration data to be accessed by the virtual machine post-deployment.

Simulation

We will structure our system on top of PeerSim using classes developed to
handle node entrance and exit, as well as common resource discovery requests and job
execution requests (as depicted in Figure 7). To properly test the system's performance,
we will also include a small scripting engine capable of receiving scripts containing basic
tasks performed by simulated nodes as well as its periodicity (in seconds or ticks). For
example, we might have a script that makes 2 random machines leave the overlay every
20 seconds and have 3 random machines join every 30 seconds, plus one cluster request
with a random number (with limits) of machines with random characteristics.

Our scripting engine will be fed with scripts containing the actions described
above. This same engine will then forward the action to the appropriate handler, the node
entrance and exit module in case of node presence chance in the overlay or the resource
discovery protocol in the case of a job request.

Both the resource discovery protocol and the scripting engine itself will be
capable of outputting information on the simulated outcome. This output can already be in
a format that our virtual appliance can interpret and execute or it might simply be a
description of the change in the overlay. Such a change can be the creation, disbanding
or altering of a cluster, for example.

Figure 7: Our class model

21/25

5. Evaluation Methodologies and Metrics

To correctly evaluate our application, we will measure its performance in both
quantitative and qualitative terms. Our quantitative analysis will reflect whether or not our
system fulfills the requirements we had for it while the quantitative analysis will be further
focused on the system's actual performance, both in abstract as well as in comparison to
other systems.

5.1 System Qualitative Evaluation

We must ensure that our system can:

- Handle orderly node entrance and exit;
- Handle a node's unexpected disconnection from the network;
- Place each node in a location that is appropriate for the resource location protocol
variant in use;

5.2 Protocol Qualitative Evaluation

We must ensure that our protocol can:

- Locate resources to match each request, if they exist;
- Locate enough resources to provide the best match possible for each request;
- Correctly estimate the best candidates to establish the cluster;
- Distribute resource usage in order to avoid the same nodes being chosen often while
others are nearly unused;
- Allow stretching or thinning a cluster, if the job to be executed requires it;

5.3 Virtual Appliance Qualitative Evaluation

We must ensure that our virtual appliance can:

- Be correctly deployed to the machines chosen to be part of a cluster;
- Correctly communicate with the cluster coordinator to organize the cluster;
- Correctly execute the application to be run;

5.4 Quantitative Evaluation

To properly assess the system's adaptation to the our goal, we have also to
implement measures that can estimate how well our system and protocol handle the
typical requests of a system such as ours. To do that, we will, using our scripting engine
and appropriate scripts, evaluate:

- Percentage of satisfied requests;
- Ratio of fully satisfied and partially satisfied to total requests
- Total number and size of messages sent;
- Average number of hops per query;
- Time taken to resolve a query;
- Amount of memory used by each node required to perform resource discovery;
- Amount of resources wasted on requests that fully occupy all available capacity
- Number of failures due to peer disconnects or unavailability of resources/services.

22/25

5.3 Comparative Evaluation

Finally, we will attempt to compare our system's performance using the
aforementioned parameters to the performance of other existing systems, particularly in
what relates to resource discovery. This, taking into consideration the fact that no other
allows a request to locate several nodes and locate them as a group instead of several
individual machines, as well as few allowing the fine-tuning of QoS-level metrics that our
system permits.

6. Conclusion

The amount of computational resources worldwide that sit idle for lengthy
periods of time while connected to a network is immense. By utilizing these untapped
resources we could harness a massive amount of computational power. The increasing
complexity of applications and computations required by the typical home-user is growing
and by providing such users with the means to access computational power that typically
was only accessible to large-scale companies allows him to better and faster perform
everyday computational tasks, which is particularly useful for the most time-consuming
ones.

The great obstacles to such an outcome are the lack of systems and
architectures capable of not only allowing local resources to be available to others, but
also to properly utilize remote resources and shape them into organized clusters capable
of adapting to the characteristics of the application to be executed.

We present in this paper a system that can overcome such obstacles, a system
capable of efficiently locating remote resources, setup specialized clusters and allow a
high degree of control to the user, in the form of quality-of-service metrics that specify in
fine-grain exactly the characteristics that such a cluster needs to best fit the application
being ran. This system performs this in over a peer-to-peer overlay of nodes in order to
allow for greater scalability with a growing number of nodes, as well as faster resource
discovery.

We ensure that our system is up to the task with several evaluation measures
that will prove how well the protocol performs, both in scalability, speed and effectiveness
in handling resources. We believe the architecture shown in this paper is thus capable of
providing a much needed tool to a substantial niche in today's computer user world,
furthering the state of the art in distributed computing and contributing to fulfill the basic
two goals we set forth to reach, allowing common users with computational power far
beyond what was available in the past and efficiently managing resources in such a way
as to diminish resource wasting in today's interconnected world.

23/25

Bibliography

1: Schollmeier, R, A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures
and Applications, Proceedings. First International Conference on Peer-to-Peer Computing, 2001. IEEE
2: Foster, I; Kesselman, C; Lee, C; Lindell, B; Nahrstedt, K; Roy, A, A distributed resource management
architecture that supports advance reservations and co-allocation, Seventh International Workshop on Quality of
Service, 1999. IWQoS'99
3: Buyya, R; Venugopal, S, A Gentle Introduction to Grid Computing and Technologies, 2005, Computer Society
of India
4: S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A scalable content-addressable network,
Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer
communications, 2001, ACM
5: Ghosemajumder, S, Advanced Peer-Based Technology Business Models, MIT Sloan School of Management,
2002, Citeseer
6: Jon Brodkin, Case Study: Parallel Internet: Inside the Worldwide LHC computing Grid, 2008, Techworld
7: A.; Karaul, M., Kedem, Z., Wyckoff, P, Charlotte: Metacomputing on the Web, 9th International Conference
on Parallel and Distributed Computing Systems, 1996
8: I Stoica, R Morris, D Karger, and M Kaashoek, Chord: A scalable peer-to-peer lookup service for internet
applications, Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols
for computer communications, 2001, ACM
9: STIMI, K.O., CLUSTER COMPUTING, 2008, COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
10: Thain, D; Tannenbaum, T; Livny, M, Distributed Computing in Practice: the Condor Experience, 2005,
University of Wisconsin
11: Ghodsi, A, Distributed k-ary System: Algorithms for Distributed Hash Tables, 2006, KTH-Royal Institute of
Technology
12: Veiga, L; Rodrigues, R; Ferreira, P, Gigi: An ocean of gridlets on a ”grid-for-the-masses”, Seventh IEEE
International Symposium on Cluster Computing and the Grid, 2007, IEEE
13: Foster, I; Kesselman, C, Globus: A metacomputing infrastructure toolkit, International Journal of High
Performance Computing Applications, 1997, SAGE Publications
14: Loguinov, D; Kumar, A; Rai, V; Ganesh, S, Graph-theoretic analysis of structured peer-to-peer systems:
routing distances and fault resilience, Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, 2003, ACM
15: ED2K, http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html eDonkey protocol documentation
16: P. Maymounkov; D. Mazières, Kademlia: A peer-to-peer informationsystem based on the xor metric,
IPTPS02 Peer-to-Peer Systems, 2002, Springer
17: Balakrishnan, H; Kaashoek, MF; Karger, D; Morris, R; Stoica, I, Looking up data in P2P systems, 2003,
Communications of the ACM
18: Foster, I; Iamnitchi, A, On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing, 2003,
University of Chicago
19: Rowstron, A; Druschel, P, Pastry: Scalable, decentralized object location and routing for large-scale peer-to-
peer systems, 2001, Microsoft Research LTD
20: Gkantsidis, C; Mihail, M; Saberi, A, Random walks in peer-to-peer networks: algorithms and evaluation,
2006, Georgia Institute of Technology
21: Begnum, KM; Disney, M, Scalable deployment and configuration of high-performance virtual clusters,
International Journal of Applied Mathematics and Computer Sciences, 2005, Citeseer
22: Silva, JN; Ferreira, P; Veiga, L, Service and resource discovery in cycle-sharing environments with a utility
algebra, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), 2010, IEEE
23: Tamilmani, K, Studying and enhancing the BitTorrent protocol, 2003, Stony Brook University
24: Nakada, H; Yokoi, T; Ebara, T; Tanimura, Y; Ogawa, H; Sekiguchi, S, The design and implementation of a
virtual cluster management system, Proceedings of the first IEEE/IFIP International Workshop on End-to-end
Virtualization and Grid Management, 2007, IEEE
25: Foster, I; Kesselman, C, The Grid: Blueprint for a New Computing Infrastructure, 1999, Morgan Kaufmann
Publishers
26: Nisan, N, The POPCORN Market – an Online Market for Computational Resources, 1998, Citeseer
27: Carlsson, B; Gustavsson, R, The Rise and Fall of Napster - An Evolutionary Approach, 6th International
Computer Science Conference on Active Media Technology, 2001, Springer
28: Gropp, W; Thakur, R; Lusk, E, Using MPI-2: Advanced Features of the Message Passing Interface, 1999,
MIT Press, 0-262-57133-1
29: Gropp, W; Lusk, E; Skjellum, A, Using MPI: Portable Parallel Programming with the Message-Passing
Interface, 1994, MIT Press, 0-262-57104-8
30: Nishimura, H; Maruyama, N; Matsuoka, S, Virtual clusters on the fly-fast, scalable, and flexible installation,
2007, IEEE Computer Society
31: Keahey, K; Foster, I; Freeman, T; Zhang, X; Galron, D, Virtual workspaces in the grid, 2005, Euro-Par
Parallel Processing
32: Krsul, I; Ganguly, A; Zhang, J; Fortes, JAB; Figueiredo, RJ, Vmplants: Providing and managing virtual

24/25

machine execution environments for grid computing, Supercomputing. Proceedings of the ACM/IEEE SC2004
Conference, 2004, ACM/IEEE
33: Foster, I, What is the Grid? A Three Point Checklist, GRID today, 2002, University of Chicago

25/25

