
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 3, March 2015

 All Rights Reserved © 2015 IJARTET 8

Maintaining Secrecy of Users Data from World
Scrutinizing In Cloud Storage

Gurupandi.P1, Vetrithangam.D2

M.E, CSE, RVS College of Engineering and Technology, Dindigul, India 1

Associate Professor, CSE, RVS College of Engineering and Technology, Dindigul, India 2

Abstract: Cloud storage services have become commercially popular due to their overwhelming advantages to provide
ubiquitous always-on access; a cloud service provider maintains multiple replicas for each piece of data on multiple
distributed servers. A key problem of using the replication technique, which is nothing but master slave combinations of
databases in clouds is that it is very expensive to achieve strong consistency on a worldwide scale. So, this system advise a
heuristic auditing strategy (HAS) to reveal as many violations as possible. Cloud storage is a common place for data to be
not only stored but also shared across multiple users. Unfortunately, the integrity of cloud data is subject to uncertainty due
to the existence of hardware/software failures and human errors. User operation table have been generated to allow both
data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud
server. This System proposes a novel privacy-preserving mechanism that supports public auditing on shared data stored in
the cloud.

Index Terms—Cloud storage, heuristic auditing strategy (HAS).

I. INTRODUCTION

Cloud storage services can be responsible as a
typical service in cloud computing, which involves the
delivery of data storage as a service, including database-like
services and network attached storage, often billed on a
utility computing basis. Examples include Amazon
SimpleDB1, Microsoft Azure storage2 and so on. By using
the cloud storage services, the customers can access data
stored in a cloud anytime and anywhere, using any device,
without caring about a large amount of capital investment
when deploying the underlying hardware infrastructures.

In cloud computing paradigm it is not only used to
store the user’s data and also allows the users to share the
data among them. Sometimes the integrity of cloud data is
loss due to the existence of hardware/software failures and
human errors. To prevent this problem several mechanisms
have been designed to allow both data owners and public
verifiers to efficiently audit cloud data integrity without
retrieving the entire data from the cloud server. However,
public auditing on the integrity of shared data with these
existing mechanisms will inevitably reveal confidential
information identity privacy to public verifiers. This system
proposes a novel privacy-preserving mechanism that
supports public auditing on shared data stored in the cloud.

identity of the signer on each block in shared data is kept
private from public verifiers, who are able to efficiently
verify shared data integrity without retrieving the entire file.
This system technique is able to perform multiple auditing
tasks simultaneously instead of verifying them one by one.

The main scope of this project to solve the above
privacy issue on shared data, this systems propose a novel
privacy preserving public auditing mechanism. more
specifically, this system utilize ring signatures to construct
homomorphism authenticators in Orate, so that a public
verifier is able to verify the integrity of shared data without
retrieving the entire data while the identity of the signer on
each block in shared data is kept private from the public
verifier. Cloud computing is a general term for anything that
involves delivering hosted services over the Internet. These
services are broadly divided into three categories:
Infrastructure-as-a-Service, Platform-as-a-Service and
Software-as-a-Service. The name cloud computing was
inspired by the cloud symbol that's often used to represent
the Internet in flowcharts and diagrams.

Infrastructure as a service is a provision model in
which an organization outsources the equipment used to
support operations, including storage, hardware, servers and
networking components. The service provider owns the
equipment and is responsible for housing, running and

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 3, March 2015

 All Rights Reserved © 2015 IJARTET 9

maintaining it, Platform as a Service is a way to rent
hardware, operating systems and storage and network
capacity over the Internet. The service delivery model allows
the customer to rent virtualized servers and associated
services for running existing applications or developing and
testing new ones, Software as a Service is a software
distribution model in which applications are hosted by a
vendor or service provider and made available to customers
over a network, typically the Internet.

II. RELATED WORK

Badrul Philip YimKwong Cheng [1] proposed the
system first explain how the heuristics of availability,
representativeness and anchoring-and-adjustment could have
unfavorable impact on auditors’ judgment and decisions,
followed by discussions of regency and dilution effects, this
system then introduce the properties of the two systems of
reasoning put forward by cognitive scientists and referred to
System one and System two hereon in the article. Against
this background, this system proposes and illustrates with
examples an easily implemented dual systems cognitive
model. author conclude project with a few directions for
future research in a new frontier of behavioural audit
research, heuristics are “mental” shortcuts people commonly
used to help making decisions or forming judgments,
particularly when facing incomplete information or complex
problems. People use availability heuristic when they
“assess the frequency of a class or the probability of an event
by the ease with which instances or occurrence can be
brought to mind” had a similar opinion: judgment can be
based on both the content of accessible judgment-relevant
information and the subjective ease with which this
information comes to mind. When an auditor is asked what
the minimum sample size is, how often the magic number of
30 comes up as the answer? The number 30 is the minimal
sample size and consequently many auditors simply use 30
as the sample size, without going through the process of
determining the confidence level, tolerable and expected
errors and so forth in working out the minimum sample size.
As more and more auditors are using 30 as the minimum
sample size, it becomes so popular that it becomes a
generally accepted “doctrine” among auditors.

BadrulSarwar, George Karypis, Joseph Konstan
and John Riedl [2] proposed that eventually-consistent key-
value storage systems sacrifice the ACID semantics of
conventional databases to achieve superior latency and
availability. However, this means that client applications and

hence end-users can be exposed to stale data. The degree of
staleness observed depends on various tuning knobs set by
application developers (customers of key-value stores) and
system administrators (providers of key-value stores). Both
parties must be cognizant of how these tuning knobs affect
the consistency observed by client applications in the
interest of both providing the best end-user experience and
maximizing revenues for storage providers. Quantifying
consistency in a meaningful way does a critical step toward
both understand what clients actually observe and supporting
consistency-aware service level agreements (SLAs) in next
generation storage systems? Many cloud products and
services such as Web search, e-commerce and social
networking, have to deal with big data. In order to scale with
growing amounts of data and numbers of users, the design of
these systems has moved away from using conventional
ACID databases, toward a new generation of scalable
storage systems called key-value stores (often categorized
more broadly as NoSQL storage systems). Many of these
key-value storage systems offer a weak notion of
consistency called eventual consistency. These items from
Brewer’s CAP principle, which dictates that a storage
system chooses between either consistency or availability
during failures that partition the network connecting the
storage nodes.

G.DeCandia, D.Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall and W. Vogels [5] proposed that reliability at
massive scale is one of the biggest challenges this system
face at Amazon.com, one of the largest e-commerce
operations in the world; even the slightest outage has
significant financial consequences and impacts customer
trust. The Amazon.com platform, which provides services
for many web sites worldwide, is implemented on top of an
infrastructure of tens of thousands of servers and network
components located in many datacenters around the world.
At this scale, small and large components fail continuously
and the way persistent state is managed in the face of these
failures drives the reliability and scalability of the software
systems, Amazon runs a world-wide e-commerce platform
that serves tens of millions customers at peak times using
tens of thousands of servers located in many data centers
around the world. There are strict operational requirements
on Amazon’s platform in terms of performance, reliability
and efficiency and to support continuous growth the
platform needs to be highly scalable. Reliability is one of the
most important requirements because even the slightest
outage has significant financial consequences and impacts

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 3, March 2015

 All Rights Reserved © 2015 IJARTET 10

customer trust. In addition, to support continuous growth,
the platform needs to be highly scalable.

III. METHODOLOGY

This Proposed methodology used HAS technique
for auditing and cloud is essentially a large scale distributed
system where each piece of data is replicated on multiple
distributed servers to achieve high availability and high
performance, this system first review the consistency models
in distributed systems and it classify two classes of
consistency models first is data-centric consistency and
second is client-centric consistency, data-centric consistency
model considers the internal state of a storage system, i.e.,
how updates flow through the system and what guarantees
the system can provide with respect to updates. However, to
a customer, it really does not matter whether or not a storage
system internally contains any stale copies. As long as no
stale data is observed from the client’s point of view then
customer is satisfied. A key problem of using the replication
technique, replication is nothing but master slave
combinations of databases in clouds is that it is very
expensive to achieve strong consistency on a worldwide
scale. Finally, this system advise a heuristic auditing strategy
(HAS) to reveal as many violations as possible. Cloud
storage is a common place for data to be not only stored but
also shared across multiple users. Unfortunately, the
integrity of cloud data is subject to uncertainty due to the
existence of hardware/software failures and human errors.
User operation table have been generated to allow both data
owners and public verifiers to efficiently audit cloud data
integrity without retrieving the entire data from the cloud
server, Fig.1 illustrates the proposed methodology.

Figure: 1 proposed methodology
CAP THEOREM

CAP is an abbreviation for consistency, availability, and
partition tolerance. The basic idea is that in a distributed
system, you can have only two of these properties, but not
all three at once. Let's look at what each property means.

Consistency
Data access in a distributed database is considered

to be consistent when an update written on one node is
immediately available on another node. Traditional ways to
achieve this in relational database systems are distributed
transactions. A write operation is only successful when it's
written to a master and at least one slave, or even all nodes
in the system. Every subsequent read on any node will
always return the data written by the update on all nodes.
Availability

The system guarantees availability for requests
even though one or more nodes are down. For any database
with just one node, this is impossible to achieve. Even when
you add slaves to one master database, there's still the risk of
unavailability when the master goes down. The system can
still return data for reads, but can't accept writes until the
master comes back up. To achieve availability data in a
cluster must be replicated to a number of nodes, and every
node must be ready to claim master status at any time, with
the cluster automatically rebalancing the data set.
Partition Tolerance

Nodes can be physically separated from each other
at any given point and for any length of time. The time
they're not able to reach each other, due to routing problems,
network interface troubles, or firewall issues, is called a
network partition. During the partition, all nodes should still
be able to serve both read and write requests. Ideally the
system automatically reconciles updates as soon as every
node can reach every other node again

Figure: 2 CAP

Read-your-writes Consistency
A value written by a process on a data item X will

be always available to a successive read operation performed
by the same process on data item. Each operation op is either
a write W (K, a) or a read R(K, a), where W(K, a) means
writing the value a to data that is identified by key K, and
R(K, a) means reading data that is identified by key K and
whose value is a. As system call W(K, a) as R(K, a)’s
dictating write, and R(K, a) as W(K, a)’s dictated read. In
this paper assume that the value of each write is unique. This

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 3, March 2015

 All Rights Reserved © 2015 IJARTET 11

is achieved by letting a user attach his ID, and current
vectors to the value of write. Therefore, system have the
following properties: (1) a read must have a unique dictating
write. A write may have zero or more dictated reads. (2)
From the value of a read, system can know the logical and
physical vectors of its dictating write.
Writes-follows-reads Consistency

In Writes-follow-reads consistency, updates are
propagated after performing the previous read operations.
For example "A write operation by a process on a data item
x following a previous read operation on x by the same
process is guaranteed to take place on the same or a more
recent value of x that was read.

1) Strong Consistency
Strict consistency is the strongest consistency

model. It requires that if a process reads any memory
location, the value returned by the read operation is the value
written by the most recent write operation to that location
Online Algorithm

Local consistency auditing is an online algorithm; each
user will record all of his operations in his UOT. While
issuing a read operation, the user will perform local
consistency auditing independently.
Initial UOT with ∅
While issue an operation op does
If op = W (a) then
Record W (a) in UOT
If op = r (a) then
W (b) ∈ UOT is the last write
If W (a) → W (b) then
Read-your-write consistency is violated
R(c) ∈ UOT is the last read
If W (a) → W(c) then
Monotonic-read consistency is violated
Record r (a) in UOT
Offline Algorithm
 Global consistency auditing is an offline algorithm
periodically; an auditor will be elected from the audit cloud
to perform global consistency auditing. In this case, all other
users will send their UOTs to the auditor for obtaining a
global trace of operation.
Each operation in the global trace is denoted by a vertex
For any two operations op1 and op2 do
If op1 → op2 then
A time edge is added from op1 to op2
If op1 = W (a), op2 = R (a), and two operations come
From different users then
A data edge is added from op1 to op2

If op1 = W (a), op2 = W (b), two operations come from
Different users, and W (a) is on the route from W (b) to
R (b) then
A causal edge is added from op1 to op2
Check whether the graph is a DAG by topological sorting

IV. EXPERIMENTAL RESULTS

UOT Table
Each user maintains a UOT for recording local

operations. Each record in the UOT is described by three
elements: operation, logical vector, and physical vector.
While issuing an operation, a user will record this operation,
as well as his Current logical vector and physical vector, in
his UOT. Each operation op is either a write W (K, a) or a
read R (K, a), where W(K, a) means writing the value a to
data That is identified by key K, and R(K, a) means reading
data that is identified by key K and whose value is a. As,
system call W (K, a) as R(K, a)’s dictating write, and R(K, a)
as W(K, a)’s dictated read. In this paper assume that the
value of each write is unique. This is achieved by letting a
user attach his ID, and current vectors to the value of write.
Therefore, system have the following properties: (1) A read
must have a unique dictating write. A write may have zero
or more dictated reads. (2) From the value of a read, user can
know the logical and physical vectors of its dictating write.

Figure: 3 UOT Table

Performance Evoluation

Figure: 4 Performance Evaluations

Performance summarizes the parameters used in the
synthetic violation traces in Table II. In the random strategy,
users randomly choose [1, l] auditing reads in each interval,

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 3, March 2015

 All Rights Reserved © 2015 IJARTET 12

where l is the Length of an interval. To obtain the synthetic
violation traces, physical time is divided into 2,000 time
slices.user assume that once a data cloud begins to violate
the promised consistency, this violation will continue for
several time slices, rather than ending immediately. In the
simulation, the duration of each violation d is set to 3-10
time slices.

DAG For Consistency

Figure: 5 DAG

V. CONCLUSION AND FUTURE ENHANCEMENT

In this paper discussed about a consistency as a
service model and a two-level auditing structure to verify the
cloud service provider for providing promised consistency
and to quantify the severity of the violations if any. With the
CaaS model, the users can assess the quality of cloud
services and choose a right CSP among various candidates
and least expensive one that still provides adequate
consistency for the users’ applications.

This system will conduct a thorough theoretical study of
consistency models in cloud computing and achieving strong
consistency in distributed server and will generate individual
report system to the user to identify consistency status of
their own files.

REFERENCE

[1]. Badrul Philip YimKwong Cheng, “Improving Audit Judgment
and Decision Making With Dual Systems Cognitive,” in Proc.
2010 USENIX HotDep.

[2]. BadrulSarwar, George Karypis, Joseph Konstan and John Riedl,
“Client-centric Benchmarking of Eventual Consistency for
Cloud Storage Systems,” in Proc. 2010 ACM SOSP.

[3]. D. Bermbach and S. Tai, “Eventual consistency: how soon is
eventual?” in Proc. 2011 MW4SOC.

[4]. Davide Gerhard, DavideGirardi, “consistency properties in
Amazon SimpleDB and Amazon S3.2011-12.

[5]. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall and W.

Vogels, “Dynamo: Amazon’s highly available key-value store,”
in Proc. 2007 ACM SOSP.

[6]. M Douglas Thain, Todd Tannenbaum and MironLivny,”
Distributed Computing in Practice: The Condor Experience, vol.
9, no. 1, 2012.

[7]. S. Esteves, J. Silva and L. Veiga, “Quality-of-service for
consistency of data geo-replication in cloud computing,” Euro-
Par 2012 Parallel Processing, vol. 7484, 2012.

[8]. P. Gibbons and E. Korach, “Testing shared memories,” SIAM J.
Computing, vol. 26, no. 4, 1997.

[9]. Jeremy Lau, Matthew Arnold, Michael Hind, “A Loop
Correlation Technique to Improve Performance Auditing,” in
Proc. 2010 ACSC.

[10]. H. Wada, A. Fekete, L. Zhao, K. Lee and A. Liu, “Data
consistency properties and the trade-offs in commercial cloud
storages: the consumers’ perspective,” in Proc. 2011 CIDR.

