
Transparent Scalability with Clustering for Java
e-Science Applications⋆

Pedro Sampaio, Paulo Ferreira, and Luis Veiga
psampaio@gsd.inesc-id.pt, {paulo.ferreira, luis.veiga}@inesc-id.pt

INESC ID/IST, Technical University of Lisbon, Portugal

Abstract. Since object-oriented programming has become dominant
in application development, there has been the recurring issue of an
impedance mismatch between the way programmers manipulate objects
in memory, and the way they are made persistent in secondary storage.

The two-decade long history of events relating object-oriented program-
ming, the development of persistence and transactional support, and the
aggregation of multiple nodes in a single-system image cluster, appears
to convey the following conclusion: programmers ideally would develop
and deploy applications against a single shared global memory space
(heap of objects) of mostly unbounded capacity, with implicit support
for persistence and concurrency, transparently backed by a possibly large
number of clustered physical machines.

In this paper, we propose a new approach to the design of OODB systems
for Java applications: (O3)

2 (pronounced ozone squared). It aims at pro-
viding to developers a single-system image of virtually unbounded object
space/heap with support for object persistence, object querying, trans-
actions and concurrency enforcement, backed by a cluster of multi-core
machines with Java VMs that is kept transparent to the user/developer.
It is based on an existing persistence framework (ozone-db) and the fea-
sibility and performance of our approach has been validated resorting to
the OO7 benchmark.

1 Introduction

Since object-oriented programming has become dominant in application devel-
opment, there has been the recurring issue of an impedance mismatch between
the way programmers manipulate objects in memory, and the way they are made
persistent in secondary storage. This mismatch has greater magnitude when us-
ing file APIs but it is actually more significant, due to its prevalence, when using
relational databases: the object-relational mismatch (addressed in [4], later re-
counted in [12]).

⋆ This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds, and research projects PTDC/EIA-EIA/102250/2008 and
PTDC/EIA-EIA/113613/2009.

Motivation and Background: To address the aforementioned mismatch, a num-
ber of object-oriented database (OODB) systems were developed that embodied
transparent (or orthogonal) persistence in existing programming languages (e.g.,
Gemstone [23] introduced transparent persistence in a Smalltalk dialect as early
as 1987). However, OODB systems did not achieve the expected predominance,
whose causes are still subject to controversy (complexity, unreadiness of pro-
grammers, absence of adoption by major players at the time,...) considered either
as advantages or disadvantages by different arguing sides. Nevertheless, some of
the principles they prescribed were later recovered, albeit in a more limited and
simplified fashion, with the widespread usage of object-relational mapping [13]
(current examples include OJB [2] and Hibernate [17]).

A few more years after, a kind of back-to-the-future trend emerged with the
development of new Java-related object persistence standards, such as JDO (Java
Data Objects [26]) and related technology. These (re-)introduced many concepts
from the original OODB systems to a global audience of Java programmers with
wide acceptance, re-evoking the early mismatch argument proposed roughly 20
years before (similar efforts have also been devised in the .NET world with
LINQ [7]).

Current Trends and Goals: A similar trend has also been taking place with
the rediscovery of the notion of a single-system image provided by the trans-
parent clustering of distributed OO storage systems (e.g., from Thor [21] with
caching and transactions ca. 1992, to present distributed VM systems such as
Terracotta).1 They allow to scale-out systems and overcome the limitations and
bottlenecks w.r.t. CPU, memory, bandwidth, availability, scalability, and afford-
ability of employing a single, even if powerful, machine, while attempting to
maintain the same abstractions and transparency to the programmers.

The two-decade long history of events relating object-oriented programming,
the development of persistence and transactional support, and the aggregation
of multiple nodes in a single-system image cluster [24], appears to convey the fol-
lowing conclusion: programmers ideally would develop and deploy applications
against a single shared global memory space (heap of objects) of mostly un-
bounded capacity, with implicit support for persistence and concurrency, trans-
parently backed by a possibly large number of clustered physical machines.

Shortcomings of Current Solutions: Naturally, a number of works in the litera-
ture have contributed towards achieving such goals that we address in Section 2.
We briefly address existing shortcomings. While existing popular OODB sys-
tems (e.g., db4o [22], ozone-db [15]) and persistence frameworks (e.g., Hibernate,
JDO compliant) allow programmers to query the object store with declarative
languages (e.g., OQL, JDOQL, XQuery/XPath on XML documents containing
serialized objects), they do not accommodate the distribution/partition of object
graphs across different cluster machines. Replication is sometimes supported only
for fault-tolerance purposes, therefore the object heap cannot be increased by

1 http://www.terracotta.org

aggregating the memory of several machines. Actually, some earlier distributed
shared-memory OO systems (such as [21, 25, 27]) partially supported this but,
while offering persistence and some transactional support, they forced program-
mers to state the location of root objects, not offering any support for queries
(they only allow the transversal of object graphs through references). A current
distributed VM system enjoying moderate success with developers, Terracotta,
provides a single-system image to programs but employs local memory only for
caching, and secondary storage solely for object swapping purposes at the co-
ordinating node. Furthermore, it offers no support for queries over the objects
stored.

Contribution and Proposal: In this paper, we propose a new approach to the de-
sign of OODB systems for Java applications: (O3)

2 (pronounced ozone squared).
It aims at providing to developers a single-system image of virtually unbounded
object space/heap with support for object persistence, object querying, transac-
tions and concurrency enforcement, backed by a cluster of multi-core machines
with Java VMs that is kept transparent to the user/developer. While embodying
some of the principal goals of the original OODB systems (orthogonal persis-
tence, transparency to developers, transactional support), it reprises them in
the context of contemporary computing infrastructures (such as cluster, grid
and cloud computing), execution environments (namely Java VM), and applica-
tion development models, described next. It is based on an existing persistence
framework (ozone-db [15]).

In fact, today more and more applications are developed resorting to OO lan-
guages and execution environments, encompassing common desktop and web ap-
plications, commercial business applications on application servers, applications
for science and engineering (e.g., architecture, engineering, electronic system de-
sign, network analysis, molecular modeling), and even games, virtual simulation
environments. This is due to the universality of the programming model and
performance offered by present JIT2 technology. Such applications essentially
maintain, navigate and update object graphs with increasingly larger (main)
memory requirements, more than a single machine has available or can man-
age efficiently. For storage, reliability and sharing purposes, these objects graphs
also need be made persistent to a repository. Thus, being OO applications now
prevalent in most domains, improvements to their common underlying execution
environments (VMs and related middleware) can therefore have a wider impact
by offering scalability and performance gains transparently.

In short, we propose a platform that supports object persistence with no
impedance mismatch by providing single-system image view to the programmers.
The rest of the paper is organized as follows. In the next Section, we address
the relevant related work in some areas intersecting with our work goals. In
Section 3, we describe the architecture of (O3)

2. Section 4 describes the main
implementation details and Section 5 the performance results obtained with a

2 Just-in time compilation.

benchmark from the literature. Section 6 closes the paper with some conclusions
and future work.

2 Related Work

There is abundant work in the literature in a number of intersecting and over-
lapping themes related to the work proposed in this paper: i) OODB systems,
ii) object-relation mappers and persistence frameworks, iii) distributed shared-
memory systems, iv) distributed object-oriented systems and virtual machines,
v) cluster and parallel computing. We address each theme individually with pre-
vious work, within paper length limitations, regarding how the following relevant
properties are provided by the system: i) true single-system semantics (i.e., dis-
tributed aggregation of resources - namely memory, and distribution/partition
of object graphs across cluster machines), ii) transparency/orthogonality to de-
velopers w.r.t. object-orientation in the programming model and object persis-
tence, and iii) support for object querying (e.g., OQL), and object transversal
with declarative declarative languages (e.g., XQuery/XPath).

OODB Systems: OODB systems traditionally designate those systems
that are simultaneously database systems and object-based systems. They pro-
vide support for orthogonal (transparent) persistence of object graphs, query-
ing to the object store (usually a single server machine), and frequently object
caching. This is achieved without requiring an extra mapping step to a rela-
tional database. They also enable navigation through object graphs, type in-
heritance, polymorphism, etc.). Earlier examples include Exodus [10], O2 [19],
Gemstone [8]. Examples of recent work include ozone-db [15] and db4o [22].
They provide transparency and object querying. The main limitation of past
and current OODB systems is that they do not offer true single-system image
semantics. A repository must fit in its entirety on a single machine; other ma-
chines may only be used as backup replicas for fault-tolerance purposes, but the
object heap cannot be increased by aggregating the memory of several machines.

O/R Mappers and Persistence Frameworks: O/R mappers [13] and
OO persistence frameworks comprise more recent approaches to achieve per-
sistence in object-oriented systems, albeit with less flexibility, by leveraging
existing relational databases, employing object-relational mapping. Examples
include OJB [2], Hibernate [17], and implementations of the JDO (Java Data
Objects) [26] specifications. LINQ.Net [7] is a related proposal for object per-
sistence in Windows platforms. Most allow object querying using various lan-
guages (e.g., OQL, LINQ integrated with C#). Transparency to developers is
mostly provided, albeit the dependence on external RDBMS, usually requiring
the identification of specific tables or views. As with classical OODB systems,
single-system image semantics is not supported, as RDBMS are usually confined
to a single high-performance machine (with possible backups).

Distributed Shared-Memory Systems: One of the earliest ways of pro-
viding single-system image semantics was through the use of distributed shared-
memory (DSM). This was achieved by leveraging virtual memory support in the

architecture, translating global virtual addresses into physical addresses of local
pages or triggering access to remote ones. Influential examples of DSM systems
include Munin [6] and TreadMarks [18]. Nonetheless, they lacked transparency
since developers needed to be aware of consistency models and algorithms (e.g.,
release consistency) different from those they were used to [20]. This was also
a source of some overhead and performance penalties. No support for object
persistence nor object querying was available.

Distributed OO Systems and VMs: Akin to DSM systems, distributed
object systems were able to aggregate memory (heaps) of several machines across
the network in order to offer applications a shared object space with uniform
referencing across process boundaries, together with some runtime services (e.g.,
micro transactions, long-running transactions, possibly while disconnected using
cached and replicated objects, distributed garbage collection). Examples include
work in Thor [21], and OBIWAN [27], and Sinfonia [1]. These systems provide
object persistence and transparency to developers w.r.t. programming model.
However, support for single-system image semantics is not fully supported since
distribution is made known to application developers, who must know where spe-
cial (root) objects are located in the network. No object querying is supported,
only root object look-up.

The same approach can be applied to the notion of a virtual machine for
an object oriented language. A distributed virtual machine aggregates the re-
sources of machines in a cluster, able to provide, e.g., a Java VM with a larger
heap encompassing part (or all) of the individual machines’ object heaps. This
provides a single-system image with shared global object space [9], with virtually
unbounded memory available to applications. Examples include cJVM [3], Jes-
sica [28] and Terracotta (which, albeit its success, holds the entire object graph
in a coordinator machine and employs others solely for caching). Persistence is
not offered at all or is limited to support for object swapping. Furthermore, no
support for object querying is provided.

Cluster and Parallel Computing: Current scientific computing and in-
tensive data processing is also performed relying on the execution of parallel
computations, e.g., in the context of Grid and cluster computing, by employing
approaches that do not manipulate object graphs. Examples include MPI proto-
cols [16], and programming/application models such as Map-Reduce [14]. These
approaches allow queries over data and may offer persistence but only in files or
tabular data (e.g., Google FS, BigTable), not object-oriented storage. Therefore,
as object-oriented application developers are concerned, they do not offer trans-
parency as they must adhere to such specific protocols, programming models,
and data structures (no support for transversal of object graphs). Support for
single-system image semantics is limited with MPI (a single, coordinator node
holds the complete data in memory, e.g., a matrix), while BigTable supports it by
partitioning the entire store over all cluster nodes but not with object-oriented
data.

3 Architecture

In this section, we describe the architecture of (O3)
2. It is an extension of an

existing middleware, ozone-db [15], simply because it is open-source and we can
leverage some of its properties: persistence in object storage, transparency to
developers who just have to code Java applications, support for transversal on
object graphs using both a programmatic, as well as a declarative and query-
based approach (using XML, W3C-DOM, and allowing XPapth/XQuery usage).

However, ozone-db lacks support for single-system image semantics, i.e., cur-
rently an object store must reside fully in a single server machine, and objects
cannot be cached outside this central server (in some small installations, appli-
cations and object server are collocated in the same physical machine).

(O3)
2 provides single-system image semantics by employing a cluster of ma-

chines executing middleware that: i) aggregates the memory of all machines into
a global uniformly addressed object heap, ii) modifies how object references are
handled in order to maintain transparency to developers, regardless of where
objects are located across the cluster, iii) manages object allocation and place-
ment in the cluster globally, with support for inclusion of more specific policies
(e.g., caching objects in client machines for disconnection support). We first
describe the fundamental aspects regarding original ozone-db architecture and
then describe the architecture of (O3)

2, and the referred mechanisms.

3.1 Background: ozone-db Base Architecture

The ozone-db is an open source object oriented database project, totally written
in Java and aimed to allow the execution of Java applications that manipulate
graphs of persistent objects in a transactional environment (including optimistic
long-running transactions). Ozone-db has a sizable user base of application de-
velopers, and numerous applications ported to make use of persistent objects
(e.g., [5]). The main goal of ozone-db is to provide object persistence and trans-
actional support in a transparent way to programmers and without requiring ex-
ternal technology such as RDBMS. The middleware is completely implemented
in Java, portable, and executes on virtually all implementations of the Java
VM. A ozone-db database (or object repository) is in essence a server machine
that manages and maintains the object repository. Programmers develop object
oriented applications in a traditional, straightforward way. Ozone-db also has
support for object graphs stored in XML repositories, compatible with W3C-
DOM, suitable for XPath declarative transversal and XQuery object querying.

The ozone-db overall architecture is depicted in Figure 1, displaying the four
main entities involved in executing an application. Broadly, all objects manipu-
lated by applications (except those newly created) reside in the server memory
(and ulteriorly made persistent to disk). Object methods are also executed at
the server. Client applications mostly execute user interface code, hold variables
and calculate expressions outside of methods of persistent objects. Client and
server are independent applications but in many scenarios they actually execute
on the same physical machine.

Transport

Client
Server

Storage System

Object

Object

Object

Object

Object

Object

Fig. 1. ozone-db overall architecture

Client: represents the application launched by the user that manipulates
the object repository. The client connects to the ozone-db server to address
the persistent objects that are stored in the object database. The objects are
loaded in the server when first accessed by client applications and are invoked
by the client remotely. A client side ozone-db Java library is loaded with the
applications.

Transport: represents information transfer between client and server, mainly
for method invocations, parameters and results. It implements a protocol simi-
lar to, yet simpler than, the Java Remote Method Invocation (RMI). It depends
only on the Java serialization mechanism, hence it is portable to virtually any
Java VM implementation.

Server: represents the instance of the OODB system that performs overall
management of object repository, holds objects in memory, and executes their
methods, while they are being manipulated by client applications (that, as said,
invoke them remotely). It manages client connections, security, and concurrency
control with transactions initiated by client applications. The server rules the
access of several clients to the persistent objects, while guaranteeing their con-
sistency in a transactional environment.

Storage: represents how ozone-db ensures the physical persistence of the
objects in the database. Its implementation relies solely on the server’s file sys-
tem, ensuring its portability to most platforms. To optimize access, a repository
may be scattered across a number of individual files, each one containing a set of
objects.3 It is an aggregation of objects in a way to simplify storage organization
and optimize read and write access, as well as I/O bandwidth of the file system.

With ozone-db architecture, it is possible to instantiate the server and client
applications in the same machine or in different ones, depending on the comput-
ing resources available to the user, the size of the object repository, number of
applications and application instances. The access to objects stored in the server
is mediated by proxy objects, a common approach in most related systems. They
make the remote access to server objects transparent to applications, which need
not be made aware of the different physical location of the objects being manip-
ulated. Figure 2 illustrates a common example situation where an application is

3 A bunch or cluster in ozone-db terminology

connected to a server, and manipulates objects being instantiated there, usually
a fraction of a larger graph of objects kept persistent in the database storage.

Client Server 1

Database
fig:DetalheArquitect

ura5
fig:DetalheArquitect

ura5 Obj1

Obj2

Obj3

Application

Ozone -DB
Library

Application

Ozone-DB
Library

Obj5

Obj7

Obj6

Obj3_S
Obj3_C

Obj3_C Proxy na client for the Obj3

Obj3_S Proxy in the server for the Obj 3

Fig. 2. typical ozone-db application manipulating a graph of objects at the server

3.2 (O3)
2 Architecture

The current architecture of ozone-db offers a number of interesting properties
but still suffers from important limitations. Mainly, its deployment is limited to
a single server machine which may become a bottleneck in terms of memory,
CPU, and I/O bandwidth. A medium range server machine may have 4 or 8 GB
of main memory (with some operating system configurations and architectures,
only half of that is available to applications and for that matter, to the Java
VM object heap), one or two quad-core CPUs (with technology such as hyper
threading, the number of hardware concurrent threads can double the number
of cores), and several large capacity hard disks. While for small and medium
size applications, such resources may be enough, they quickly become scarce
when applications manipulate larger object graphs and/or several applications
are executing concurrently.

Therefore, it would be advantageous to be able to aggregate the available
memory of several server machines for increased scalability, and their extended
CPU capability for increased performance. Furthermore, for a limited number of
highly accessed objects, they should be cached at the client machine (eventually
also with persistence), also for increased performance. In essence, allowing this
while ensuring transparency to the application developers and compatibility with
ozone-db, will provide the intended single-system image semantics. This requires
that all interventions be made within the scope of (O3)

2 middleware, without
imposing customized Java VMs nor modifications to Java application code. This
last option might even be unfeasible, as applications may be distributed in byte-
code format only.

Fig. 3. typical application in the (O3)
2 architecture with a larger graph of objects at

the servers, and a subset of objects cached locally

Figure 3 describes a typical scenario of application execution in (O3)
2. Re-

garding the example portrayed in Figure 2, we highlight the following differences:
i) the object graph is distributed in main memory and in storage, partitioned
among a group of servers (for simplicity, only three are shown), this being com-
pletely transparent to applications that need not know the server group mem-
bership, and ii) a set of heavily accessed objects can reside in a local caches
at clients, for improved performance and bandwidth savings (and, additionally
some support for disconnection). In Figure 3, the application while connected
to Server 1 has accessed objects A, B, C and D of the graph with relevant fre-
quency. Therefore, these objects are cached at the client in order to improve
performance.

The extensions to ozone-db required by the (O3)
2 architecture are performed

at the following levels described in the following paragraphs: i) transport, ii)
server, and iii) storage, leaving the application interface unchanged for trans-
parency w.r.t. developers.

Regarding transport, its architecture must be extended in order to be able
to fulfill the following additional requirements. Method invocations on objects
(originally simply relayed always to servers via proxies) must be registered to

determine frequently accessed objects that could (and should) be cached locally.
Subsequent invocations are performed against the cache and do not result in
immediate communication with the servers, reducing server load and increasing
execution speed. Several replacement policies may be used (not the topic of this
work); currently a threshold of invocations is used to trigger caching of an object
and the cache is preemptively flushed periodically.

The (O3)
2middleware running at servers is designed in the following manner.

Each server now holds in its main memory only a fraction of the objects cur-
rently in use. The graph of objects is thus scattered across all servers to improve
scalability w.r.t. available memory capacity and performance by employing extra
CPUs to perform object invocation. The servers are launched in sequence and
join a group before the cluster becomes available for client access. Regardless of
object placement strategy, once a client gets a reference to an object, its proxy
targets directly the server where the object is loaded. Two strategies may be
adopted for object management and placement:

Coordinated: One of the servers acts as a coordinator holds a primary copy
of metadata in memory, registering object location (indexed by objectID) and
locking information (clients can be connected to any server, though, e.g., with
some server side redirecting scheme). This information is lazily replicated to
the other servers in the cluster. Modifications to this information (namely for
locking) are only performed by the primary. This enables greater flexibility at
the expense of some overhead. The coordinator may trigger migration of subsets
of objects among servers, may decide to keep the the memory occupation of
all servers leveled or, in alternative, only start to allocate objects in a server
when the heap of the servers currently in use reaches certain thresholds. This
will make the information in some proxies invalid but all servers check with the
coordinator for new object location. On method return, the proxy at the client
is reset appropriately.

Decentralized: No server needs to act as coordinator for the metadata.
When an object is about to be loaded from persistent store, its objectID is fed
to a hash function that determines the server where it must be placed, and where
its metadata will reside. This is a deterministic operation that all servers in the
cluster can perform independently. A simple round-robin approach would be
correct but utterly inefficient as it would not any locality of reference. Instead,
a tunable parameter in the hashing function decides broadly how many objects
created in sequence (i.e., a subset of objects with very high probability of having
references among them) are placed at a server before allocation is performed at
another server. When objects are invoked later, this locality will be preserved.
The overhead in this approach is lower at the expense of reduced flexibility as
objects may not be migrated among servers.

Regarding storage, the persistent storage of objects is also balanced among
the servers in the cluster using subsets of objects as the quanta of deployment.
Currently, servers and storage must adhere to the same strategy of the two just
described. With coordination, metadata contains information about location of

the object itself (its contents). In the decentralized approach, when an object
is about to be loaded from the store (when they are being accessed by the
application for the first time), the hashing function is used to decide the server
responsible for loading the enclosing subset of objects from disk and maintain
those objects in its memory heap.

4 Implementation

This section describes the most relevant implementation details of (O3)
2. The

application interface of ozone-db is unchanged, therefore applications need not
be modified, nor even recompiled. The major aspects addressed are: i) server
group management, and ii) object referencing.

Server Group Management: The (O3)
2 middleware running at each

server in the cluster includes new classes OzoneServer, and OzoneCluster that
allow each server to reference and communicate with other servers, and main-
tain information about the identity and number of servers cooperating in the
(O3)

2 cluster. Presently, cluster management and fault-tolerance operate with
the following approach. A designated cluster manager (just for these purposes
but that may double as coordinator as described in Section 3) keeps OzoneCluster
data updated and forwards notifications to the other servers. Any server, upon
communication error may denounce another server to the cluster manager. Af-
ter re-verification (to avoid wasted work) by the primary, the server is deemed
as failed and a new instance of (O3)

2 is may be launched to take its place.
To avoid the penalty of reloading all objects from persistent store, each server
may have its own backup server to whom it propagates object invocations and
modifications to metadata.

Object Referencing: Object referencing allows servers to redirect accesses
to objects loaded in other servers. To avoid performing this repeatedly, after the
appropriate server for an object is determined (via coordinated or decentralized
strategies), an object proxy is set up in order to reference that server directly,
without further indirection. The proxy just created is then returned to the client.
Object tables and object metadata classes are extended to include attributes
referencing OzoneServer objects, to register object location.

This process is described next. In the original ozone-db architecture, when
a reference of an object proxy does not exist in memory, it is necessary to load
it. This is done by instructing the server to load de the object as the following
pseudo-code illustrates:

...

if (RefProxyObj == NULL)

RefProxyObj = LoadProxyObjInServer();

...

return RefProxyObj;

In (O3)
2 implementation an extra step is inserted that triggers the determi-

nation of the server where the object proxy is, according to the specified strategy

(others may be developed by extending this behavior). Only after that, a mes-
sage is sent to the determined server to load the object in memory. The follow
pseudo-code illustrates this:

...

if (RefProxyObj == NULL) {

server = FindServer();

RefProxyObj = LoadProxyObjInServer(server);

}

...

return RefProxyObj;

This extra-step is necessary because the object graph is distributed/partitioned
among all servers in the (O3)

2cluster.
The way users connect to the database, delete objects from the database and

delete whole stores is not affected.

5 Evaluation

The evaluation of (O3)
2 was performed by executing a known benchmark for

OODBs (OO7 [11]) with dimension of objects, number of references and in-
creased in order to make execution times longer (topping at 200 roughly sec-
onds). Both the original ozone-db and (O3)

2 architecture were used to execute
the benchmark tests in two scenarios: i) single server, and ii) two-node cluster
(when testing ozone-db, only one of the machines is actually used as server, the
other as a client). The machines used are Intel Core2 Quad with 8 GB RAM
and 1 TB HD each, running Linux ubuntu server edition for extended address
space for applications. The tests purpose is to show that (O3)

2 clustered archi-
tecture, while improving scalability and memory capacity, does not introduce
significant overhead in application execution, and that it reduces memory usage
in the servers.

The tests evaluate memory usage at each server and execution time for three
OO7 benchmark tests: i) consecutive object creation, ii) complete transversal of
an object graph, and iii) transversal of the object graph searching for an object
(matching). The test database of OO7 consists of several linked objects in a tree
structure as depicted in Figure 4. The tree structure has three levels, 2000 or
4000 child objects for the two first levels, and either 40000 or 200000 references
among those objects to simulate different object graph densities.

The results in Figure 5 show that total memory usage is similar across the
configurations for create and transversal tests. These tests occupy the most mem-
ory and (O3)

2 does not introduce relevant overhead. Note that memory occu-
pation is reduced as servers are added because with 3-node (O3)

2 cluster, the
memory effectively used by each server is roughly half of the total shown. With
ozone-db, all objects are loaded at one of the machines, the other only used to of-
fload client application (hence slightly reduced memory usage). This shows that
for the most memory intensive tests with (O3)

2, the global memory available for

Complex objects

Simple objects

Data

Fig. 4. Tree structure of the testing database

0

50000

100000

150000

200000

create traversal match

ozone-db single server 2000 objs., 40000 refs.

ozone-db single server 2000 objs., 200000 refs.

ozone-db single server 4000 objs., 200000 refs.

ozone-squared 3-node cluster 2000 objs., 40000 refs.

ozone-squared 3-node cluster 2000 objs., 200000 refs.

ozone-squared 3-node cluster 4000 objs., 200000 refs.

mem (KB)

Fig. 5. Memory usage tests

applications can indeed by multiplied without any significant overhead at each
server instance.

In the case of original ozone-db, when the objects are 4000 and the references
are 200000 it is not possible to execute the application, because the server has
not enough memory. The tests show that with (O3)

2it is possible to execute this
test without applications crash.

The improvements in the matching test are due to additional factors. Original
ozone-db, when searching objects preloads all object and metadata. In (O3)

2,
this is performed on demand, and failed matches are garbage collected and mem-
ory occupation is kept significantly lower. This is relevant for the performance
of object querying which is also improved with (O3)

2.
The results in Figure 6 show that total execution times for the benchmark

tests remain similar across configurations. This demonstrates that (O3)
2 man-

1

10

100

1000

10000

100000

1000000

create traversal match

ozone-db single server 2000 objs., 40000 refs.

ozone-db single server 2000 objs., 200000 refs.

ozone-db single server 4000 objs., 200000 refs.

ozone-squared 3-node cluster 2000 objs., 40000 refs.

ozone-squared 3-node cluster 2000 objs., 200000 refs

ozone-squared 3-node cluster 4000 objs., 200000 refs.

time (ms)

log scale

Fig. 6. Execution time tests

agement of several servers and distribution/partitioning of object graphs does
not introduce any noticeable overhead to application execution times. However,
we must bear in mind that OO7 benchmark is a single threaded application. If
there are multiple threads in execution and/or multiple applications accessing
the database, the extra CPU capability leveraged by (O3)

2 will keep processors’
load low and increase system throughput, if not reduce individual application
execution times.

6 Conclusion

The impedance mismatch between the way programmers manipulate objects in
memory, and the way they are made persistent in secondary storage has been
a two-decade long history of events relating object-oriented programming, the
development of persistence and transactional support, and the aggregation of
multiple nodes in a single-system image cluster.

In this paper, we propose a new approach to the design of OODB systems
for Java applications: (O3)

2 (pronounced ozone squared) that addresses the
limitations of previous work in the literature. It provides developers with a single-
system image of virtually unbounded object space/heap with support for object
persistence, object querying, transactions and concurrency enforcement, backed
by a cluster of multi-core machines with Java VMs. Transparency regarding
developers and their interface with the OODB system is untouched. Applications
need not be modified nor recompiled. Our approach has been validating by
employing a benchmark (OO7) relevant in the literature.

Future work includes more refined strategies for object placement (namely
based on traces of previous runs of the same application) and address the in-
completeness and unsoundness of the memory management of persistence stores
in ozone-db (based on explicit delete operations).

References

1. M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm
for building scalable distributed systems. 21 st ACM SOSP, 2007.

2. Apache Foundation. Apache object relational bridge - OJB, 2002.
3. Yariv Aridor, Michael Factor, Avi Teperman, Tamar Eilam, and Assaf Schuster. Transparently

obtaining scalability for java applications on a cluster. Journal of Parallel and Distributed
Computing, 60(10):1159 – 1193, 2000.

4. Malcolm P. Atkinson, François Bancilhon, David J. DeWitt, Klaus R. Dittrich, David Maier, and
Stanley B. Zdonik. The object-oriented database system manifesto. In Hector Garcia-Molina
and H. V. Jagadish, editors, SIGMOD Conference, page 395. ACM Press, 1990.

5. Richard T. Baldwin. Views, objects, and persistence for accessing a high volume global data
set. In MSS ’03: Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS’03), page 77, Washington, DC, USA, 2003. IEEE
Computer Society.

6. J. Bennet, J. Carter, and W. Zwaenepoel. Munin: Dist. shared memory based on type-specific
memory coherence. In ACM Symposium on Principles and Practice of Parallel Programming,
volume 30 of ACM SIGPLAN Notices, pages 168–176. ACM Press, March 1990.

7. Don Box and Anders Hejlsberg. The linq project: .net language integrated query. Technical
report, March 2006.

8. P. Butterwoth, A. Otis, and J. Stein. The GemStone object database management system.
Communications of the ACM, 34(10):64–77, October 1991.

9. Rajkumar Buyya, Toni Cortes, and Hai Jin. Single system image. Int. J. High Perform.
Comput. Appl., 15(2), 2001.

10. Michael J. Carey and David DeWitt. The architecture of the EXODUS extensible DBMS. In
Proc. Int. Workshop on Object-Oriented Database Systems, pages 52–65, Pacific Grove, CA
(USA), September 1986. IEEE.

11. Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The oo7 benchmark. In SIGMOD
Conference, pages 12–21.

12. M.J. Carey and D.J. DeWitt. Of objects and databases: A decade of turmoil. In PROCEED-
INGS OF THE INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES,
pages 3–15. Citeseer, 1996.

13. M.J. Carey, D.J. DeWitt, J.F. Naughton, M. Asgarian, P. Brown, J.E. Gehrke, and D.N. Shah.
The BUCKY object-relational benchmark. ACM SIGMOD Record, 26(2):146, 1997.

14. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems Design
& Implementation, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

15. Falko Braeutigam and Gerd Mueller and Per Nyfelt and Leo Mekenkamp. The ozone-db Object
Database System, www.ozone-db.org, 2002.

16. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 2.1.
University of Tennessee, Knoxville, 2008.

17. W. Iverson. Hibernate: A J2EE (TM) Developer’s Guide. 2004.
18. P. Keleher, A. Cox, and W. Zwaenepoel. TreadMarks: Dist. shared memory on standard work-

stations and operating systems. Proc. of the 1994 Winter USENIX Conf., January 1994.
19. C. Lecluse, P. Richard, and F. Velez. O2, an object-oriented data model. In SIGMOD ’88:

Proceedings of the 1988 ACM SIGMOD international conference on Management of data,
pages 424–433, New York, NY, USA, 1988. ACM Press.

20. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transac-
tions on Computer Systems, 7(4):321–359, November 1989.

21. Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in thor. In
International Workshop on Distributed Object Management, pages 79–91, 1992.

22. J. Paterson, S. Edlich, H. Hörning, and R. Hörning. The Definitive Guide to db4o. 2006.
23. D.J. Penney and J. Stein. Class modification in the GemStone object-oriented DBMS. ACM

SIGPLAN Notices, 22(12):117, 1987.
24. GF Pfister, I.B.M.A. Workstations, S. Div, and TX Austin. The varieties of single system image.

In Advances in Parallel and Distributed Systems, 1993., Proceedings of the IEEE Workshop
on, pages 59–63, 1993.

25. M. Shapiro, P. Ferreira, and N. Richer. Experience with the PerDiS large-scale data-sharing
middleware. Lecture notes in computer science, pages 55–69, 2001.

26. Sameer Tyagi, Michael Vorburger, Keiron McCammon, and Heiko Bobzin. Core java data ob-
jects. Prentice Hall PTR / Sun Microsystems Press, 2004.

27. L. Veiga and P. Ferreira. Incremental replication for mobility support in OBIWAN. In Dis-
tributed Computing Systems, 2002. Proceedings. 22nd International Conference on, pages
249–256, 2002.

28. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. Jessica2: A distributed java virtual
machine with transparent thread migration support. In IEEE Fourth International Conference
on Cluster Computing, Chicago, USA, September 2002.

