
Enhancing Online Communities with
Cycle-Sharing for Social Networks

Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Abstract The Internet has made it possible to exchange information more rapidly
on a global scale. A natural succeeding step was the creation of Social networks
where anyone in the world can share their experiences, content and current informa-
tion, using only their Internet enabled personal computer or mobile devices. Under
this scope there are many Social Networks such as Facebook, Orkut or Youtube
each one exporting their own APIs to interact with their users and groups databases.
Studies done on Social Networks show that they follow some properties like the
Small-World property. Meaning that traversing friendship relations, vast numbers
of other users could be reached from each single user (e.g., Friends of Friends),
even though users usually only interact (on a daily basis) with a restrict group of
friends. Considering that these networks could be regarded as enabling peer-to-peer
information sharing (albeit mediated by a centrally controlled infrastructure), em-
ploying them for cycle-sharing should be a great improvement for global distributed
computing, by allowing public-resource sharing among trusted users and within on-
line virtual communities. Resources from these types of networks can be used to
further advance studies in other areas which may be too computational intensive for
using a single computer or a cluster, e.g. to process data mined from the vary Social
Networks. We describe the design, the development and resulting evaluation of a
web-enabled platform, called CSSN: Cycle-Sharing in Social Networks. The plat-
form leverages a Social Network (Facebook) to perform discovery of computational
resources, thus giving the possibility for any user to submit his own Jobs for remote
processing. Walls, messages and comments in Facebook are used as the underly-
ing transport for CSSN protocol messages, achieving full portability with existing
Social Networks. Globally, CSSN gives the chance for common users to unleash
the untapped computing power hidden in Social Networks, and exploit it using the
cycle-sharing paradigm to speedup their own (or common) applications’ execution.

Nuno Apolónia, Paulo Ferreira and Luı́s Veiga
INESC ID Lisboa / Technical University of Lisbon, Rua Alves Redol 9, 1000-029 Lisboa, Portu-
gal, e-mail: nuno.apolonia@ist.utl.pt,paulo.ferreira@inesc-id.pt,luis.
veiga@inesc-id.pt

1

2 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

1 Introduction

The computing power has been significantly increased in the past few years, how-
ever there are still many computational problems that need an enormous and in-
creasing amount of computing resources, e.g. applications for scientific research,
financial risk analysis or multimedia video or image rendering and encoding. These
resources are composed by computing elements such as CPU, memory or data stor-
age, and all of them can be found in the millions of desktop computers all around
the World. In other words, the needed resources can be gathered from every house
hold or from offices and even from our daily devices, such as notebooks or mobile
phones.

The idea to use idle cycles for distributed computing was proposed in 1978 by the
WORM computing project at Xerox PARC [Sho98]. It was only after, that the scien-
tific community started to see the benefits that such systems can give. Furthermore,
the possibility of having supercomputers available was very tempting and made
the scientific community realize that they could harvest the idle processing time to
suite their own needs. These networks are called Grids [FKNT02], a combination of
computational resources from multiple administration domains. They employ coor-
dinated resource-sharing and problem solving environments, that made possible to
make distributed processing of large computational (and scientific) problems.

With the Internet, the available resources for such projects were extended.
Projects like SETI@Home [ACK+02], Folding@Home (folding.stanford.edu), Dis-
tributed.net (www.distributed.net) gathered the gigantic potential of using desktop
computers from any house hold (also known as global distributed computing), al-
lowing them to process their data much quicker than in traditional supercomputers.
This is usually done by Internet users willing to participate in such projects, that
install an application, which runs in the background when the computer has idle
cycles to spare.

A lesson to be taken from such projects is that to attract and keep users, such
projects should explain and justify their goals, research subject and impacts. Users
may not be interested in systems that would steal their idle cycles without their
consent (Plura Processing response to the Digsby Controversy in Wordpress.com).

Motivation: The Internet has also enabled information and content sharing by
using Peer-to-Peer (P2P) networks [TTP+07]. These networks are usually formed
by interconnected home desktop computers. They can be categorized in terms of
their formation as being structured or unstructured. Unstructured P2P systems are
characterized by having an underlying topology unrelated with the placement of the
contents, as opposed to Structured P2P systems where it is attempted to place the
contents in locations related with the content identification. Furthermore, optimiza-
tions were done to leverage the performance for locating contents and their scalabil-
ity (in terms of traffic load). The resulting systems are generally called Hybrid P2P
systems that highlight two types of users. The users that provide more bandwidth
are called super-peers and those with low bandwidths are called peers; the last ones
are connected to the super-peers [TTP+07].

Enhancing Online Communities with Cycle-Sharing for Social Networks 3

These networks raise challenges, such as efficient resource discovery. That is,
when a peer needs a resource it asks other peers for it. Some approaches try to
minimize the message traffic that can be generated, either by contacting fewer peers
(when information is spread to others), or by creating central nodes that have all or
partial information for locating the exact resource.

Moreover, the Internet has made it possible to exchange information more rapidly
in a global scale. One of the natural steps was the creation of Social Networks, where
any one in the world can share their experiences and information using only their
Internet enabled personal computer or mobile device (facebook.com/mobile). Under
this scope there are many Social networks such as Facebook (facebook.com), Orkut
(orkut.com) or Youtube (youtube.com) each one exporting their own APIs to interact
with their users and groups data bases, e.g. Facebook API1 and OpenSocial2. Also,
these networks have great potential for financial benefits, such as Advertising.

Furthermore, studies show that the Social Networks have some properties like
the Small-World property, meaning that there is a small group of users with high
connectivity to others and a much larger group with low connectivity. Besides that,
even the highly connected users only interact (on a daily basis) with a restrict group
of users [WBS+09]. Considering that these networks could be regarded as enabling
Peer-to-Peer information sharing (albeit mediated by a centrally controlled infras-
tructure), employing them for cycle-sharing should be a great improvement for
global distributed computing, by allowing public-resource sharing among trusted
users and within communities.

There are already projects that use Social Network concepts to improve perfor-
mance on other topics, such as PeerSpective [MGD06] which enhances search re-
sults with social information from friends.

Background: In our work, we developed and evaluated a Web-enabled platform,
called Cycle-Sharing in Social Networks (CSSN), that interacts with a Social Net-
work (Facebook) to be able to locate and search for idle resources among its users.
We leverage an existing middleware, Ginger [VRF07, SFV10] for task (called Gri-
dlets) creation and aggregation.

CSSN uses a Social Network already established in order to give beneficial re-
sults to communities willing to adopt the paradigm of cycle-sharing. Moreover, the
users in such networks are mostly linked with each other by friendship and common
interests, meaning that users may be more opened to share their resources with their
own friends.

The client application developed interacts with Facebook mostly by means of the
Graph interface which Facebook provides. This interface gives us access to users’
information, such as their friends, groups and Walls. These Walls are the main inter-
actions between the people that uses Facebook, meaning that they record messages
onto the Wall to be read by the users linked to them.

We designed a communication protocol to allow interaction among the CSSN
clients and execute Jobs (sets of tasks) successfully. This means that we use Face-

1 Facebook Developers: developers.facebook.com accessed on 05/01/2010
2 OpenSocial Web site: code.google.com/apis/opensocial accessed on 05/01/2010

4 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

book Walls (users/groups/Application Walls) to send and retrieve messages sent by
other CSSN clients. CSSN starts the discovery process by sending a Job search mes-
sage to the users’ Wall in order for the users’ friends to read and accept (or deny)
the request to use their idle resources. As we also want to gather users’ computers as
much as possible, we send messages to groups that have users which may be will-
ing to help (or have the Jobs’ requirements). Furthermore, we extend the reach of
gathering resources to contain friends of friends (FoFs), by contacting FoFs CSSN
clients.

In the development of CSSN, our concerns were with the resource discovery and
also the manner which a user could submit his own Jobs to be processed on others’
computers. Furthermore, to reach as many users and communities as possible we
used Java for portability purposes.

The evaluation of CSSN is comprised of several scenarios, where each one eval-
uates a portion of our works’ goals, in order to know the effects each carries.

In the last scenarios we augment the network size used, to become more realis-
tic in terms of users’ roles (friends, FoFs, group members). In addition, we create
Gridlets representing tasks to be performed by a known program (Pov-Ray)3 to ren-
der an image. These scenarios were made, in order to conclude that CSSN can gain
speedups against local execution; however it is demonstrated that CSSN can be hin-
dered by variables such as Facebook latency, and searching for resources may not
return positive results, or even that the number of Gridlets may surpass the number
of donating users.

Current Shortcomings: The public-resource sharing and cycle-sharing systems
that are widely used today, are not concerned with the common users’ needs. They
are mostly used for intensive computational projects (and proprietary) such as Fold-
ing@Home, PluraProcessing.

Other systems allow common applications to be executed; however, they do not
support users’ networks already established, meaning that they cannot use Social
networks to be able to gather resources to be used by other interested users (such
as friends or communities), while often do not provide a flexible sharing system
between users.

Some systems however are beginning to use technologies previously unavailable
to other projects, in order to cover more Internet users. Such systems can use the
users’ Browsers to do cycle-stealing instead of addressing the needs of the com-
mon users. Moreover, they use remote code embedded on Web sites and games (i.e.
Adobe Flash based games) to gain access to potential idle resources. Furthermore,
their resource discovery and scheduling are rudimentary, meaning that they do not
rely on established networks of users to do public-resource sharing; instead, users
may have to create their own networks. Also, their scheduling process is defined by
predesignated users and targets occasional users (which may not be aware of the
system).

3 Pov-Ray web site: povray.org accessed on 13/10/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 5

Contribution: Our main contribution is the CSSN platform with its architecture,
messaging protocol, system monitor and client application. It performs resource and
service discovery on top of a Social Network already established. Furthermore,

CSSN needs to be able to gather idle cycles from users’ computers and commu-
nities that would be willing, and capable of executing a Job, in order to achieve
cycle-sharing on a Social Network. It can also allow common users to use the cycle-
sharing paradigm to speedup their own (or common) applications’ execution with-
out needing to create a new network. Meaning that, CSSN can use an already estab-
lished network as in case of Social Networks (Facebook, MySpace, among others)
to interact between users to share their idle cycles.

2 Related Work

This section offers a review on relevant works and technologies more related to
our focus, addressing: i) Social Networks, ii) peer-to-peer networks, Grids and Dis-
tributed Computing, and iii) deployment mechanisms and code execution via the
web.

Social Networks: Social Networks are popular infrastructures for communi-
cation, interaction and information sharing on the Internet. Anyone with a desktop
computer and a Browser can access such Web sites, like Facebook, MySpace, Orkut,
Hi5, YouTube, LinkedIn and many more (List of Social Networks on Wikipedia.org). They
are used to interact with other people for personal or business purposes, sending
messages, posting them on the Web site, receiving links to other Web sites or even
sharing files between people.

Like in real life social interactions [Sco88] people tend to interact with many
others along their lives, some of those are called friends with whom the interaction
may be daily. In the Social Networks, the basic (real life) behaviors or interaction
patterns still apply. By grouping people in the same areas or topics, it is easier to ex-
ploit those interactions, because people understand better what the distributed tasks
will accomplish and are willing to participate. Social Networks have already began
to sprout new ideas to exploit them for uses other than human interactions, such as
using it for enhancing Internet search [MGD06] and leveraging infrastructures to
enable ad-hoc VPNs [FBJW08].

Small-World networks can be described by the following properties: the local
neighborhood is preserved; and the diameter of the network, quantified by the aver-
age shortest distance between two vertices, increases logarithmically with the num-
ber of vertices. It is then possible to connect any two vertices in the network through
just a few links [ASBS00]. Growing of such networks can be hindered by two fac-
tors: Aging of the vertices, where vertices no longer connect to newer vertices; Cost
of adding links to the vertices or the limited capacity of a vertex, adding links to the
networks may not be possible if there are constraints of space/time.

6 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Many Social Networks also have ways of connecting users without being linked
as friends; such connections are called groups or communities, where knowledge
is exchanged within a specific topic of interest. The creation of such groups and
their subsequently taking shape and evolution over time is inherent in the structure
of society; this means that people have the tendency of coming together to share
knowledge on a particular theme [Bac06]. We give special focus on Facebook and
OpenSocial, explained by their size and possibility of access to user databases, by
means of the APIs they export. Facebook claims to have 500.000.000 (as of July 21
of 2010) users and MySpace (one Web site that uses the OpenSocial API) claiming
to have more than 130.000.000 registered users. The potential of these networks for
global distributed computing is best compared to other networks.

The Facebook API and the OpenSocial API enables Web applications to interact
with the server using a REST-like interface4 or in case of Facebook also a Graph
interface.5 This means that the calls from outside applications are made over the
Internet by sending HTTP GET and POST requests.

An example of a Facebook application is Progress Thru Processors.6 It executes
a BOINC system to do distributed computing, when the computer has idle cycles to
spare. Through the applications’ interface on Facebook it is able to track contribu-
tions from users and share updates with friends to intentionally promote distributed
projects to other users. PeerSpective7 is a Social Network-based Web Search. It
tries to merge the Social Networking with search engines, to improve their ranking
system, by understanding how people perform searches. They employ the search re-
sults, made by friends, into the ranking system. Overall, they claim that the system
can be leveraged to improve the quality of search results for a given group of people.
The system works by indexing search content and querying friends for their searches
including the extra results, which may be relevant to the question, on the search
Web page. A lesson to be taken is that “Social Networks can organize the world of
information according to the tastes and preferences of smaller groups of individu-
als” [MGD06]. Social Cloud [CCRB10] is described as being a model that inte-
grates Social Networking, cloud computing [AFG+10] and volunteer computing. In
this model, users can acquire the resources (in this project the only resource consid-
ered is disk space) by exchanging virtual credits, making a virtual economy over the
social cloud computing. Users can gather resources from their friends (either by vir-
tual compensation, payment, or with a reciprocal credit model [MBAS06]), which
allows this model to approach the objectives of public-resource sharing. Further-
more, they state that there are a number of advantages gained by leveraging Social
Networking platforms, such as gaining access to a huge user community, exploit-
ing existent user management functionality, and rely on pre-established trust formed
through user relationships. However, the trusting relationship of friends, may not be
always the case8 in Social Networks such as Facebook.

4 Representational State Transfer: tinyurl.com/6x9ya accessed on 05/01/2010
5 OpenGraph Protocol: opengraphprotocol.org accessed on 23/08/2010
6 Progress Thru Processors: facebook.com/progressthruprocessors accessed on 05/01/2010
7 PeerSpective: peerspective.mpi-sws.org accessed on 05/01/2010
8 How Facebook could make cloud computing better: tinyurl.com/237ddem accessed on 15/10/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 7

Peer-to-Peer networks, Grids and Distributed Computing: Peer-to-Peer
(P2P) networks and Grids are the most common types of sharing systems. They
evolved from different communities to serve different purposes [TTP+07]. The
Grid systems interconnect clusters of supercomputers and storage systems. Nor-
mally they are centralized and hierarchically administrated, each with its own set of
rules regarding resource availability. Resources can be dynamic and thus may vary
in amount and availability during time, and have to be known beforehand among the
network. Grid systems were created by the scientific community to run computation
intensive applications that would take too much time in normal desktops (without
being distributed) or on a single cluster, e.g. large scale simulations or data analysis.

P2P networks are typically made from house hold desktop computers or com-
mon mobile devices, being extremely dynamic in terms of resource types and whose
membership can vary in time with more intensity than with Grids. P2P networks are
normally used for sharing files, although there are a number of projects using those
kinds of networks for other purposes, such as sharing information and streaming
(e.g. Massive Multi-player Online games using P2P [KLXH04] to alleviate server
load, distributing tasks as SETI@Home [ACK+02], data streaming for watching
TV9). The nodes (or peers) are composed by anonymous or unknown users un-
like in Grids, which raises its own problems with security or even with forged re-
sults [TTP+07].

Both Grid and P2P systems have been converging by relaxing rules from Grid
systems and opening P2P applications for more computation, and not simply stor-
age. These two distributing systems have different resources, which may indicate a
different level of computing power of the nodes comprising each one. However, it
is easier to leverage more desktop computers than to have large supercomputers at
our disposal. This can make P2P systems aggregate more computing power than the
Grid systems.

In Unstructured P2P systems, the placement of contents (Files) is completely
unrelated to the overlay topology and they must be located (or searched). These
systems, such as Gnutella10 and (FastTrack) KaZaA [LKR04], are generally more
appropriate for accommodating highly-transient node populations. To search for re-
sources it is common to use methods such as Flooding [PFM+05], Dynamic Query-
ing11, Random walks [TR03], direct searches [LCC+02] (if statistical information
is available) or forwarding indices [CGM02]. Moreover, they have obvious impli-
cations regarding availability, scalability and persistence [ATS04]. Structured P2P
systems are an attempt to improve the scalability issues regarding locating content,
that the unstructured systems suffered from, by controlling where contents should be
placed at all times. For supporting searches these systems use namely a distributed
routing table (also presented as DHT - Distributed Hash Table) [Man03], for queries
to be efficiently routed to the peer that has the content or the information where the
content is located. Every peer that joins the network has partial information where
to find the contents (CHORD [SMK+01], CAN [RFH+01], Pastry [RD01]) mean-

9 PPStream: ppstream.com accessed on 05/01/2010
10 Gnutella Protocol: tinyurl.com/yaz95ep accessed on 07/01/2010
11 Dynamic Querying Protocol: tinyurl.com/6jh958q accessed on 05/01/2010

8 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

ing that peers need more information to join the network. These systems are more
scalable in terms of traffic load, but still need more auto-organizational capabilities.

There are also hybrid approaches created to make up for the lacks that each
approach has and still retain their benefits. A common optimization to unstructured
systems is to have two types of peers (or nodes): the super-peers (peers with higher
bandwidth) which would form a unstructured overlay network and the leaves (peers
with low bandwidth) connected to the super-peers. Thus, flooding of messages are
only passed through the super-peers and does not cause problems with peers which
cannot handle too many search requests [TTP+07]. Kademlia [MM02] uses a group
of peers (that are near each other) known as buckets to locate files, avoiding some
flooding problems. Also peers may have the ability to change their positioning, en-
abling them to become part of the overlay network used to coordinate the P2P struc-
ture. Furthermore, some hybrid systems use a central server to bootstrap the peers
(i.e. eDonkey network [OBBO04]).

SETI@Home [ACK+02] aims at using globally distributed resources to analyze
radio wave signals that come from outer space, hoping to find radio signals origi-
nated from other planets on our galaxy.

For this project, having more computing power means it is possible to cover a
greater range of frequencies, instead of using supercomputers which owners did
not have in abundance [ACK+02], they found a way that lets them use computers
around the world to calculate those wave signals.

The wave signals are divided in small units of fixed size to be able to distribute
among the BOINC clients (that would be located in any user computer operating as
a screen saver when there are idle cycles). Then, each client computes the results
in its spare time and sends it to the central server asking for more work to do. In
this process, clients only need to be able to communicate with the server when they
finish computations (or for asking more data). The client (application) is platform
independent, in order to reach as many Internet users as possible. A ranking system
allowed users to compete against other users, to motivate them to use this system.
Thus, the most important lesson of SETI@Home project was that to attract and keep
users, such projects should explain and justify their goals, research subject and its
impact. BOINC (Berkeley Open Infrastructure for Network Computing) [And04]
is a platform for distributed computing through volunteer computers; it emerged
from the SETI@Home project and became useful to other projects.12 Although each
project has its’ own topic and therefore their own computational differences, the
BOINC system used for each project (client application) has to be unique.

Folding@Home [LSSV09] is an example of a BOINC system that studies pro-
tein folding, determining whether proteins assemble (or fold) themselves for a cer-
tain task or function; misfolding, which occurs when proteins do not fold correctly;
and related diseases such as Alzheimer’s, ALS, Huntington’s, Parkinson’s disease,
and many types of Cancers. The system uses distributed computing to simulate time
scales, thousands to millions of times longer than previously achieved, which allows
them to simulate actual protein folding and direct their approach to examine folding
related diseases.
12 BOINC projects: boinc.berkeley.edu/projects.php accessed on 13/10/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 9

Another example of a BOINC system is the climateprediction.net [SKM+02],
that employs climate models to predict the Earth’s climate up to 2100 and to test
the accuracy of such models. This allows to improve understanding of how sensi-
tive climate models are to small changes, e.g., in carbon dioxide and sulphur cycles.
The project has many similarities with other BOINC systems, but the computational
tasks are different. Distributed Computing Projects embody another approach to
leverage spare cycles across the Internet. The first relevant projects to distributed
computing were distributed.net and GIMPS. Distributed.net uses computers from
all around the world to do brute-force decryption of RSA keys, and attempt to solve
other large scale problems. The initial project was to break the RC5-56bits algo-
rithm, which took 250 days to locate the key (0x532B744CC20999). Other con-
sequential projects like RC5-64bits, Optimal Golomb Rulers (OGR-24, OGR-25,
OGR-26), which is a mathematical term given to a set of whole numbers where no
two pairs of numbers have the same difference, have also been concluded with vary-
ing times of 100 to 3000 days, and currently they are trying to break the RC5-72bits
algorithm and find the OGR-27.

The GIMPS13 project uses the same concept of distributed computing to search
for Mersenne prime numbers; these numbers are of the form 2P − 1 where P is
a prime. The last known Mersenne prime (47th) that was found is 243,112,609 − 1,
which has about 12.8 million digits. Both projects use its own Client and Server
applications, following the same idea as the BOINC projects.

There are many other projects for distributed computing (List of Distributed Com-
puting projects on Wikipedia.org). However, all of them have only one topic of re-
search (for each project), meaning that each system does not have the flexibility
of changing its own research topic. With BOINC Extensions for Community Cycle
Sharing (nuBOINC [SVF08]), users without programming expertise may address
the frequent difficulties in setting up the required infrastructures for BOINC sys-
tems and subsequently gather enough computer cycles for their own project. The
nuBOINC extension is a customization of the BOINC system, that allows users to
create and submit tasks for distributed computing using available commodity ap-
plications. They try to bring global distributed computing to home users, using a
public-resource sharing approach.

The main concept of Ginger (Grid Infrastructure for Non-Grid Environments)
[SFV10, VRF07, RRV10] is that any home user may take advantage of idle cycles
from other computers, much like SETI@Home. However, by donating idle cycles
to other users to speedup their applications, they would also take advantage of idle
cycles from other computers, to speedup the execution for their own applications. To
leverage the process of sharing, Ginger introduces a novel application and program-
ming model that is based on the Gridlet concept. Gridlets are work units containing
chunks of data and the operations to be performed on that data. Moreover, every
Gridlet has an estimated cost (CPU and bandwidth) so that they can try to be fair
for every user that executes these Gridlets. This project also tries to span the bound-
aries of the typical grid usage, enabling the Internet users to take advantage of the
Grid features, previously unavailable to the common user. The project also employs

13 The Great Internet Mersenne Prime Search: mersenne.org accessed on 05/01/2010

10 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

a P2P model to provide a large-scale deployment in a self-organized way. Social-
P2P [LAM07] is a social-like P2P algorithm for resource discovery. It mimics the
way humans interact in Social Networks. Knowledge is passed on among people
in these networks as a means of sharing information; moreover, people recall infor-
mation in memory to find the right persons to interact with, when searching for a
given resource. However, in most circumstances, people recall something because
they had similar knowledge, or in the same context of the requesting resource, in-
stead of actually knowing about it. A person may be recalled solely because of the
information topics of the requested resource. Social-P2P makes use of this informa-
tion in order to direct searches appropriately, by having community-based networks,
and mimicking human interactions in Social Networks. This algorithm serves as a
demonstration that human interaction strategies are successful for resource discov-
ery in P2P networks. Nevertheless, in their simulations, a dynamic environment with
only probabilistic request structure and file sharing was considered.

Deployment Mechanisms and Code Execution via the Web: To navigate
through Web sites, for common users, the most common way is to use a Web
Browser (i.e. Internet Explorer, Chrome among others). Browsers are user applica-
tions (named clients) that follow generally a client-server architecture and they play
an important role to access Internet content and achieve communication between
people [BTM07].

Furthermore, browsers and running applications contact servers by using a stan-
dard protocol named HTTP (Hypertext Transfer Protocol).14 This protocol is used
for retrieving interlinked resources, called hypertext documents. This protocol fol-
lows a request-response sequence of messages, where the basic request methods (or
verbs) are GET, POST, PUT and DELETE to, respectively, request a representation
of the specified resource, submit data to be processed to the identified resource (this
may result in the creation of a new resource or its update), submit a document to be
stored in the server, and delete a document stored within the server.

Other languages can also be used either on the client or on the server, to gen-
erate HTML dynamic content [Goo98], e.g. Asynchronous JavaScript and XML
(AJAX)15 being client side, Hypertext Preprocessor (PHP)16 being server side.

AJAX [CPJ05] is an integration of consolidated technologies, such as JavaScript
and XML, used to obtain new functionality and more control over the Browsers’
contents. It is generally used to develop Web applications, that serves to interact
with Web servers without the users’ knowledge or perception. It is able to provide
the user with a continuous method of interaction (within the browser environment),
meaning that the Javascript module fetches Web contents and displays it to the user
without having to switch to another Web page (also called non flickering effect).

Representational State Transfer (REST) [FT02] is a style of software architecture
for distributed Hypermedia (including graphics, audio, video, plain text and hyper
links) systems. The main concept is that existing resources can be referenced with
a global identifier (e.g. URI in HTTP), and also the exchange of a representation of

14 HTTP 1.0 specification: www.ietf.org/rfc/rfc1945.txt accessed on 05/01/2010
15 AJAX article: adaptivepath.com/ideas/e000385 accessed on 05/01/2010
16 PHP Web site: php.net accessed on 05/01/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 11

a resource can be applied without any constraint of state. However, the client may
need to understand the format which the information (representation) is returned.
Typically, the format used can be one of the following: HTML that consists of a
document format with structural markers, XML generally used to represent arbitrary
data structures, for example in Web services, and JSON (JavaScript Object Notation)
as a lightweight data-interchange format, made in order to ease the computational
parsing of data. The last one is generally used on the Web, because it is simpler for
Browsers to parse and generate it, consuming less CPU time than other formats.

The Open Graph protocol was originally created at Facebook, and it is an exten-
sion to the HTTP protocol in order to enable Web pages to become rich objects in a
social environment. Any Web site can use this technology to organize information in
a structured way, similar to Facebook pages. Also, it is built on standards (RDFa)17

to create a more semantically aware Web.
The idea of integrating distributed computing with Web browsers has already

surfaced on the Internet. An example to this, is the Collaborative Map-Reduce;18

this application code uses Javascript to interact with the Web server, requesting jobs
to be fulfilled by the users’ Browser and posting the results back on the server. This
method does not account for the lack of resources that the users’ computers might
have, or even a cycle-sharing environment. Furthermore, their concern was only
to apply the Map-Reduce algorithm [DG08] on the data collected from the server.
The Collaborative Map-Reduce, would then use this algorithm combined with the
processing power from users’ computers from all over the World, to perform the
algorithm steps while the user is browsing a Web site.

Another example of distributed computing using Web browsers is Plura Process-
ing,19 which is a proprietary executable code made to enable idle cycle-stealing. Its
main idea is that everyone that browses the Internet, has idle cycles that could be
used for other purposes, and thus they “steal” idle cycles from users’ computers to
perform determined tasks. It is claimed that users can sacrifice their CPU time, even
without their knowledge, to benefit computationally intensive projects (much like
SETI@Home). However, this approach may not be best to suite the users, because
they need to understand the tasks’ relevance (Plura Processing response to the Digsby Con-
troversy in Wordpress.com). Moreover, they use simple Web pages and games (Adobe
Flash based) to embed their processing code to execute the needed tasks.

Analysis: Social Networks, are popular infrastructures for communication, in-
teraction and information sharing on the Internet. A user only needs his/her Internet
enabled device (e.g., desktop computers, notebooks, mobile phones) to access Web
sites, such as Facebook, MySpace, Orkut, LinkedIn, and many others, to be able to
send or receive personal or business information.

P2P networks, on the other hand, are mostly used for file sharing between users
(either with desktop computers, or mobile devices). However, these networks can
also be used in other situations, such as cycle-sharing.

17 RDFa standard: www.w3.org/TR/rdfa-in-html access on 23/08/2010
18 Collaborative Map-Reduce in the browser: tinyurl.com/ad248t accessed on 05/01/2010
19 Plura Processing: pluraprocessing.com accessed on 05/01/2010

12 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Some global distributed computing projects make use of distributed comput-
ing technologies, to solve their computer resource shortage (CPU time), by using
the millions of Internet enabled users’ computers all over the world. On all these
projects, we can say that they do not have the flexibility to change their own research
topic (the goal of their data processing), and also only used to further advance their
own research.

While there are other systems that give the ability of cycle-sharing to common
users, each of them employ their own platforms to enable common applications to be
executed on peers, not Social Networks. Moreover, some systems allow interaction
only on P2P networks, meaning that their networks have to be created by the users.

3 Architecture

Fig. 1 Cycle-Sharing in Social Networks global overview.

This work uses a Social Network (Facebook) to discover resources for the exe-
cution of Jobs (which are composed of Gridlets [VRF07]) submitted by the users,
and to discover computer full capabilities (e.g. processor information) and users’
profiles, such as the groups which they belong to and their friends.

Users should be able to install CSSN, which is a Web-enabled platform, (Fig. 1)
into their computers. Then, the user has the ability to log in into their Facebook ac-
count, by means of the Facebook Connect, which is a Web page given by Facebook
to enable the log in process for outside applications (known as Facebook applica-
tions).

Afterwards, the client application is able to interact with the Social Network
server, meaning that it intercepts/sends messages from/to other users or groups,
while also discovering users’ computer profiles by contacting the Graph server. The
client application also gives the user the ability to initiate a Job, by using CSSN user
interface.

Enhancing Online Communities with Cycle-Sharing for Social Networks 13

To actually locate resources through the Social Network, CSSN has the ability
of searching local resources, by means of the SIGAR library, that gives information,
such as processors status, memory available, among others. Such information is
sent to other users upon request, or it can also be sent to the users’ Wall, in order for
everyone (people that has the ability to see the Wall) to get access to it. Note that
this information may contain the programs that can be executed by a computer in
the network to process Gridlets.

Cycle-Sharing in Social Networks must also have access to friends and groups
through the Social Network API. It advertises users’ availability to others, sending
messages and scheduling tasks (i.e. search for information, Gridlet acceptance) on
them (Friends, Friends of Friend, Groups) in order to execute the tasks when users
can spare their idle cycles (usually when they are in a idle or away state).

The main approach for CSSN is to have a client application split into two parts:
one that interacts with the Social Network; and another to interact with the users
and the Ginger Middleware (in order to create and regroup Gridlets, which is out of
the scope of this work [VRF07]).

Design Requirements: The client application interacts with the Social Network
(Facebook) through Web Protocols named Graph and REST (which are an added
layer to the HTTP protocol). As Facebook is still developing the Graph protocol
and discontinuing the usage of REST, current operations within the client application
makes use of the first protocol, although some operations can only be executed by
REST. This requires that the client application has to understand both protocols and
interact at the same level (Graph or REST), which is dealt with the RestFB library.20

Another requirement for CSSN is to know the computer’s information that it
should have at its disposal, such as number of processors, available memory, or the
programs that can be executed to process Gridlets.

Moreover, in order for CSSN to not interfere with the users normal usage of their
computer or Facebook page, the CSSN client schedules Gridlets according to user
preferences, meaning that friends have priorities for executing their Gridlets. Also,
to prevent overuse of the computer, while the user is in an Online state, CSSN is
able to stop its activities, i.e., the processing of requests and Gridlets only happens
when there are idle cycles to spare. The CSSN client also removes any unnecessary
posts that could prevent the normal usage of the Facebook page.

CSSN Architecture: The CSSN architecture, depicted in Fig. 1, relies on an
interaction with the Social Network through the Social Networks’ API (Graph or
REST protocols) for the purpose of searching and successfully executing Jobs; with
the Ginger Middleware for Gridlet creation and aggregation; and also the user’s
operating system to acquire the information and hardware states that are needed.

Jobs are considered to be tasks initiated by the users, and containing more than
one Gridlet to be processed in someone else’s computer; all Jobs state what they
require in order to execute those Gridlets, so that the client application can search
for specific users or groups.

20 RestFb Web site: restfb.com accessed on 24/08/2010

14 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Fig. 2 Cycle-Sharing in Social Networks module view.

A Gridlet, contains the information necessary to process it, meaning that it has
the data file(s) to be transferred to another user and the arguments to be given to
the executable program. The process of creating and aggregating the Gridlets is
managed by the Ginger Middleware and is outside the scope of this work [VRF07].

The architecture for CSSN is comprised of a set of components depicted in Fig.
2, and described as follows.

CSSN (GUI): this module performs the main interaction with the user via a
graphic interface. It is responsible to establish the connection to Facebook, by start-
ing the Facebook Connect module. It also loads all the necessary information onto
the client application, such as the configuration of priorities, the Jobs that have been
submitted, accepted and Gridlets in progress.

The user can submit a new Job using the GUI interface, which is responsible for
starting the chain of events for processing that Job (search for users, acceptance and
execution of Gridlets).

Facebook Connect (Embedded browser): this component authenticates the user
to Facebook (it displays the Web page given by Facebook for that purpose). Then,
it extracts the necessary access token for consequent access to the Facebook server.
This token is given by Facebook to everyone that accepts this Facebook application,
and has to be renewed within a determined time frame (the time frame is given by
Facebook and not specific for every token). Furthermore, it makes use of the JDIC
library21 to display the Web site for the user’s authentication.

Messaging: this is the main module for interacting with the Social Network. It
makes use of the RestFb library, that creates the JSON or XML objects, which are
required to access Facebook Graph/REST functions. This module also contains the

21 JDIC: https://jdic.dev.java.net accessed on 15/10/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 15

options necessary to read and write to the users/groups/Application Wall (or feeds)
Posts or Comments and removing them as well; to gather information such as users’
Facebook ID, friend lists and groups lists; and also to search for public Objects
(Groups, Users).

Furthermore, some Facebook restrictions may apply to the interactions between
the module and the Social Network, such as limiting the size of the messages, in-
ability to erase Posts or Comments (made by other users).

The module also contains the schemas applied to the messages sent and retrieved,
to specify what actions should be taken.

Jobs Manager: this is the module that runs a cycle of the following tasks (named
“checking” cycle).

Verifying submitted Jobs that the user has in progress, and it assembles Gridlets
to send to other users.

Check for new Jobs from the users’ Wall, groups’ Wall or Registration Post that
can be processed by the users’ machine, making sure that the required properties of
the Gridlets are compatible, and thus accepting a Job.

Verify accepted Jobs, meaning that after accepting a Job a Gridlet message
should have been sent to the user, although it is not guaranteed that the request-
ing user still has Gridlets to be processed.

Check for Job completion, when the client application has submitted a Job or a
Gridlet it should be able to detect if it has been completed. When a Gridlet is not
completed successfully, the module can re-send it to someone that has accepted the
Job.

Check for messages that the client application needs to redirect to its friends, this
method is necessary because Facebook restricts conversations to only the users that
are considered friends.

Check for messages that have been redirected to the user, in order for CSSN to
answer on the Registration Post (in the Applications’ Wall), that was made prior
by the requesting user. This adds the functionality of reaching other people rather
than only the users’ friends, also the content of these messages should be requests
to fulfill a Job or to send their computer information to the requesting user.

Also, after CSSN has acquired a Gridlet message, it hands it to the scheduler
module (described later) for ulterior execution. Moreover, this module has the task
to remove all the Posts that are no longer necessary. This module can be stopped if
the computer is in a Online state, in order to not interfere with the normal computer’s
usage.

Discovery: this module searches for friends and groups, in order to reach as many
people as possible, to complete a Job. It sends messages to friends so that they can
redirect those to their own friends (Friends of Friends method), while also sending
messages to groups of interest for that specific Job.

This module is responsible to register the user in the Applications’ Wall, meaning
that every user has a Post on this Wall, in order for other users, (that are unable to
directly contact them), to interact as if they were friends.

User/HW States: this module determines the state of the local resources, and
takes in consideration the processors’ idle times, the Internet connectivity (that is

16 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

essential to all processes) and the users Facebook state, in order to yield execution
to a later time, when the processor has idle cycles to spare. In addition, it sends
the state of the CSSN client (Online, Offline, Idle) to the Social Network in order
to inform other users of its state. The state Online should be active when the user
has decided that the client application should run. The Idle takes place when the
computer has idle cycles to spare, but it does not take into account the fact that the
computer is being used and also if the user does wish that the client application
needs to be Offline, the latter state prevails. The Offline state means that the client
application does not process any messages or Gridlets, stopping all processes related
to this fact, because either there is no Internet connection (which is needed on the
overall process) or that the user explicitly does not want CSSN to be running.

This module uses a submodule, named Hardware Monitor depicted in Fig. 2, that
is comprised of the SIGAR library, which reports the system information needed to
determine the availability of the resources.

Scheduler: this module is an addition to the Gridlet processing, making use of
the priority lists, while also stopping its process when the computer does not have
idle cycles.

The priority lists consists of friends and other people added by the user, in order
for the client application to use the idle cycles on Gridlets belonging to the people
with the highest priorities. Meaning that some Gridlets waits for a conclusion of
others even if they arrived first.

This module starts a submodule that is responsible for processing the Gridlet;
it performs data transfer, executes the program that processes the data and upon
completion informs the originator of the Gridlet state, by sending a message to
Facebook telling where it should retrieve the completed Gridlet or if the Gridlet
was not completed successfully (may occur when there is an error on the executing
program or client application).

CSSN Communications: CSSN interacts with the user and the Social Network,
and therefore a protocol or flow of communication has to be established. The fol-
lowing demonstrates how the creation and execution of the Gridlets is being carried
out.

The task for creating a Job, which can be comprised of several Gridlets, is ini-
tiated by the user, by submitting the Job on the CSSN GUI. The information for
a Job consists of the following items: the program that executes the Gridlets; the
commands or arguments that are given to that program; the data file(s) that the
client application needs to transfer; the number of Gridlets that comprises the Job
(although this should be determined by the Ginger Middleware); and what are the
requirements to execute the Gridlets.

A search for resources is specified by the Gridlets requirements, e.g., a Job that
consists of generating a image on POV-Ray, which needs 4 processors and 2048Mb
of memory. The client application uses this information in order to gather users that
have such resources (including the processing application) available.

After the user submits a Job, CSSN starts to perform the actions to complete it,
such as sending a message onto the users’ Facebook Wall and waiting for other users

Enhancing Online Communities with Cycle-Sharing for Social Networks 17

to respond to it; starting the discovery process that is able to find friends and groups
that would be interested and or have the capability of executing the specified Job (as
illustrated in Fig. 3).

Fig. 3 Example of the Computer Information message on Facebook

There is an impossibility of directly contacting people and groups that are not in
the friends’ domain, such as Friends of Friends (FoFs). To handle this, CSSN client
routes messages to the users’ friends, in order for them to forward those messages
to their own friends, making then viable to contact FoFs. The scale for this type
of messaging could be larger, i.e. the message could reach people that are our Nth
degree friend, but it may end up Spamming users, and such actions are considered
as a violation of the Facebook Use terms.22 As such, CSSN only goes as further as
FoFs (2nd degree). The client application only contacts the users’ groups that are
able to help for the specific Job. It searches for computer information in order to
determine the ones capable of processing the Job.

The discovery mechanism of CSSN tries to gather as much computer information
as possible, and sends messages to the corresponding users and groups. Meanwhile
the Job part stays alert for incoming messages on the users’ Wall that may carry
requests or stating availability.

The people that receive messages (FoFs) and are not capable of directly contact-
ing the originator, use the Registration Post on the Applications’ Wall to respond
to the redirected messages. This serves as a means of interaction with everyone
that has the Facebook application (client application), which enables the process of
searching for people outside the scope of friendship.

Their client applications then tries to match their own information to the expected
Jobs and accept them accordingly, by sending an Accept or Deny message back to
the originator. If the Job has been accepted, the client application tries to fetch a
Gridlet in order to execute it locally.

22 Facebook Use Terms: facebook.com/terms.php accessed on 26/08/2010

18 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

The transfer of Gridlet’s data occurs after a client application has retrieved the
Gridlet message, and determined that it has idle cycles to execute it. The transfer
can employ a direct connection between the CSSN clients (acting as peers). This
may also be carried out by having a repository server or by sending the data file
along with the message (if permitted by the Social Networks’ Use terms).

If the CSSN client determines that the execution of a Gridlet has failed, due to
the processing program returning an error code, it sends a message to the originator
informing that the Gridlet could not be completed. In case the error was within the
client application, such as a client application crash, CSSN can still reacquire the
Gridlet from the users’ Wall, to repeat it, if the message was not deleted.

Afterwards, the originator of the Job receives all the Gridlets that have been pro-
cessed, using the same means of transfer, and pass them to the Ginger Middleware
for aggregation.

Prototypical example: We describe a more detailed example of a Job submis-
sion and the steps CSSN takes to process it, as depicted in Fig. 4.

Fig. 4 CSSN Prototypical example

A user submits a Job, using the CSSN GUI, with the following properties.
The client application needs to execute the program named pvengine64.exe,

with the arguments “-A0.3 -W1280 -H720 -D -O’$dir.output$balcony rend.bmp’
-P +Q9 +R5 /EXIT /RENDER ’$dir.exec$balcony.pov’ ”, meaning that the Pov-
Ray program will render an image with 1280x720 dimensions, using Anti-aliasing,
with high quality and it requires the file balcony.pov to start the process, which
should be downloaded from 127.0.0.1:52392/balcony.pov. The user also speci-
fies what the program needs, such as “TotalCores=2”, “MemorySize=1024”, “Pro-
gram=pvengine64.exe” and the number of Gridlets that comprises this Job.

CSSN then starts the search for resources using the specified requirements; the
requirements should be as accurate as possible to search for specific groups and
users. To locate the resources, a client starts by sending a Job search message to the
users’ Wall. Meanwhile, it also requests the computers information (CI discovery)

Enhancing Online Communities with Cycle-Sharing for Social Networks 19

from the people that are in the user’s groups, in order to know which of the groups
would be willing to accept the Job. Also, it tries to send a message to the user’s
friends in order for them to redirect to their own friends (FoFs method), waiting
for a reply on the Applications’ Wall. The last message contains the information
necessary to redirect it, i.e. the Post ID for which it should be sent, and the type of
message that the user should send (in this case their computer information).

Afterwards, CSSN reads the responses to the Job search, which can be accept
or deny messages, meaning that even if someone would have the requirements to
process the Gridlets, a user may not have idle cycles to spare, and thus denying the
request. For the users that accept the Job, CSSN sends a Gridlet message; until all
the Gridlets have been sent, this message is then received by the processing client
application.

The client application does not verify the correct completion of the Gridlets, al-
though this process should be included in order to give greater reliability assurance.
However, the reassignment of a Gridlet occurs in case the processing client appli-
cation encounters an error while executing it, sending an error message back to the
originator.

In this example, the client application uses a direct transfer method to send the
“balcony.pov” file, although other methods can be used such as sending the file to a
Web server and retrieving the results with the same method. Moreover, the Gridlet
message contains the necessary information in order for this client application to
locate and retrieve the necessary data to be processed.

The CSSN client receiving a request, before it downloads the data file, needs to
consider the execution of the Gridlet, according to the computers’ state and from
whom it has originated, creating a queue of Gridlets when necessary.

From this example, the client application receiving the request, would then call
the program pvengine64.exe, that the user specified its location on the “Programs
List”, i.e. D:\Pov-ray\bin\pvengine64.exe, with the right arguments, waiting until
the process finishes. After that, it sends a message to the originators’ client appli-
cation informing that it has completed and where it should retrieve the resulting
file, this process also uses the same method as for the transfer of “balcony.pov” file,
although it is also considered that other methods can be used.

To finish the interactions between the two users, the originators’ client applica-
tion sends a message to the users’ Wall that has completed the Gridlet, thanking
them for the time they have spent on it, when this is not possible (FoFs case) the
message is sent to the originator users’ Wall, in order to have a record of people that
helped in a Job.

The originator of the Job requires that every Gridlet finishes, before it can pass
them to the Ginger Middleware. Thus, it waits for all completion messages before
it can erase the resulting messages from Facebook. Moreover, while the originator
client application is performing this overall process, it also listens for Job search
messages that can appear on friends and groups, in order to give its own idle cycles
to other users.

20 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

4 Implementation

The implementation of CSSN aims for a simple use by the end-users. Also, the dif-
ferent types of operating systems lead us to favor portability; therefore, we used
Java as the main language. We chose to use Facebook over other alternatives, such
as OpenSocial-based networks, because Facebook has a higher number of registered
users than any other Social Networks. Another consideration was the fact that Face-
book exports its own API and many libraries (such as RestFB) have been created to
facilitate the usage of the API.

This section gives an insight on how the technologies were used, such as
Graph and REST protocols. It also explains the schemas used for the messages
sent/received to/from the Social Network chosen. The section ends with a view of
some of the constraints that CSSN suffered from using Facebook as the Social Net-
work for users’ interactions.

Technology Employed: For the purpose of interacting with the Graph and REST
servers, the client application makes use of the RestFb library, that gives a simple
and flexible way of connecting to them and conceal the use of XML or JSON ob-
jects.23 However, the functions (using REST) or connections (using Graph) have to
be known, in order to use this library, e.g. to read the Posts on a users’ Wall using
the Graph protocol, we need a users’ ID or Name in order for the library to access
Facebook and retrieve that users’ Wall.

The IDs generated for each object are dependent on the previous objects, mean-
ing that the UID for a Comment on a Post on a Users’ Wall would become
“UserID PostID CommentID” which uniquely identifies the Comment belonging
to the Post of that particular users’ Wall.

Moreover, Facebook gives the possibility for external client applications to au-
thenticate a user by means of their own Facebook Connect system, which is a Web
page dedicated for the Log in process. Also, for the client applications to gain access
to Facebook pages, it has to be authorized by the users and given an access token,
generated by the use of the OAuth 2.0 protocol.24

For the purpose of displaying the Facebook Connect Web page, we make use
of the JDIC library. This enables us to display a Web site25 to the users for the
authentication process.

As CSSN also needs to gather the information about the local resources of the
users’ computer, we make use of the SIGAR library.26 This allows us to easily access
a list of local resources each time it is called, such as CPUs, cores, memory. Also, it
gives us the ability to know the current states of those resources, i.e. it can give us
the available memory at the requesting time, or even the current idle time for each of
the available cores or CPUs. This library is also useful for the fact that it can work
in multiple environments, such as Windows, Linux, among others, making possible
the portability of CSSN to other systems.

23 JSON: json.org accessed on 15/10/2010
24 Facebook Authentication methods: tinyurl.com/24edrkg accessed on 27/08/2010
25 Tese CSSN Application Facebook Page: tinyurl.com/6duzlmc accessed on 15/10/2010
26 SIGAR library: hyperic.com/products/sigar accessed on 15/10/2010

Enhancing Online Communities with Cycle-Sharing for Social Networks 21

Message Schemas: CSSN uses Facebook to send and retrieve messages via
the Facebook API. It reads Posts (messages that are contained in the users’ Wall,
groups’ Wall) and Comments (messages contained within the Posts), and writes
other messages on users’ Wall (which is a space that contains messages) either as
Posts or Comments.

Posts can only be used between users that are considered friends or in known
groups, and therefore the people and groups that the user cannot directly contact, do
so via the Applications’ Wall by commenting on users’ Posts (Registration Post).
This Post is either created by the users or it can be created automatically by the
client application when it needs to reach FoFs. This method is used to bypass the
inability of contacting other people rather than just direct friends.

In CSSN we make use of the RestFB library, which gives us the flexibility of
contacting Facebook without knowing JSON objects are being sent. Also, the library
gives us a generic Java object that it uses to map the JSON objects to it. However,
some Facebook objects cannot be mapped to a generic Java object, which requires
us to create Java objects compatible with the JSON objects, in order to acquire the
information sent from Facebook.

For the communication between the client applications using Facebook, we use
our own Schemas. Much because Facebook does not allow some types of message
schemas, such as XML based.

Fig. 5 Example of Job Search message on Users’ Wall

These Schemas make use of an ordinary separator of Strings, as depicted in Fig.
5. Regarding messages that can be longer than the limit imposed by Facebook, such
as the Computer information messages (Fig. 3), they are split into various messages
and an indicator of more messages alike is inserted in the schema (“PartX-Y”),
which is read by the client application, informing it is not the only part that has to
be fetched, and it needs to fetch Y messages.

These Schemas are very simple and human readable, in order for Facebook to al-
low them on the Web site, and not consider them as “Spam” or other type of blocked
messages. They are also human readable to assure the users what information is be-
ing sent to other users.

The Schemas represented in Fig. 5 and Fig. 6 gives us the idea of how it appears
to the users in their Walls and in the registration Post in the Applications’ Wall
(FoFs method) respectively. Moreover, these messages are comprised of the Jobs’
requirements and the JobID in case of the Applications’ Wall (which contains the
UserID). Also, in Fig. 6 we can see that the user has responded to the Job Search
with an accept message.

22 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Fig. 6 Example of Job Search and Acceptance messages in Applications’ Wall

CSSN Constraints: The decision of using Facebook as the Social Network for
interactions between people, has brought some constraints due to the limitations that
Facebook enforces, either with the Use Terms or their API.

In order to interact between users, the client application normally uses the Posts
method, which can not be guaranteed between users that are not friends. As such,
we use the method of redirecting messages, by sending it to a friends’ Wall, so that
the users’ client application can direct it to the proper Wall, meaning its friends
(the FoFs method). To reduce traffic “spam” we avoid loops in message exchanges
among users who are friends.

In the case of sending messages, Facebook has limited the size of the messages
that can be sent by outside applications (in the order of 420 characters), and the
method used to circumvent it was to split messages in smaller ones, making the
client application verify from all the Posts their message type and from whom they
belong to.

5 Evaluation

In this section we present the evaluation of CSSN regarding its performance, stabil-
ity and viability for using a Social Network to achieve public-resource sharing. Our
focus is demonstrating the practicality of resource and service discovery, by recruit-
ing as many users as possible to execute Gridlets. We also evaluate integration with
the normal usage of the Social Network, which in the user’s point of view would be
the amount of information perceived in the Social Network, which should be kept
minimal. Finally, as CSSN is designed to provide idle cycles to be used to process

Enhancing Online Communities with Cycle-Sharing for Social Networks 23

the upcoming Gridlets with real world applications, the client application was tested
with ray-tracing jobs in a “more realistic” environment as described in this section.
In order to perform all the tests we constructed several scenarios, where the envi-
ronment for each would change. In these scenarios we changed the number of users
involved and also their roles, i.e. in scenario 1, as depicted in Fig. 7, we considered 2
friends, 2 FoF and a group with 3 users, where one of them was a FoF. The number
of Gridlets as 7 and the processing time is only 5 minutes for each Gridlet.

In scenario 2, as depicted in Fig. 10, a “more realistic” scenario is considered,
where there are Friends, FoF and other people connected by a Group, while also
increasing the number of Jobs to 2, and the total number of Gridlets to 15, with the
same processing time for each Gridlet as before.

For the last scenario, we considered to execute Gridlets in a real program (Pov-
Ray) which renders an image, to understand exactly the consequences of the added
overheads of CSSN to the overall process.

Fig. 7 CSSN Scenario 1 View

Scenario 1: Scenario 1 bring us a view of a Social Network, where the user
Starter is connected to two Friends, which are connected to one FoF each and a
group with three other people, where one of them is a FoF. The number of Gridlets
is 7 and their processing time is of only 5 minutes.

For this scenario we assume that the client applications have “registered” in the
Applications’ Wall, that each of the group members has already accepted group
membership and that the client application is already running in the users’ comput-
ers. Moreover, we assume that the time to process a realistic Gridlet can be more
than 5 minutes and therefore the time spent is sufficient to determine the viability of
using the Social Network to achieve our works’ goals, and also the processing time
of a Gridlet data does not change the inherited overheads of CSSN. In this scenario
the requirements to process a Gridlet are “TotalCores=2; MemorySize=4078; Pro-
gram=Gridlet.exe”, and each CSSN client that processes the Gridlet is able to accept
its conditions (however they still need to assess if they have idle cycles to spare).
In the results for this scenario, as depicted in Fig. 8, we can see that the times to
complete a Job were in the order of 11 minutes. Although, in Test 1 the user FoF2

24 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Fig. 8 Total times for Scenario 1

did not receive the last Gridlet as it was supposed to, and in Test 4 the user FoF2
crashed and recovered the last Gridlet in time to repeat its execution and complete
it. These situations show that the total times will be hindered by the fact that people
are not always in a Away state and also by giving more than one Gridlet to the same
user, the Job will have longer completion times. However, we cannot always expect
to find as many users as the number of Gridlets needed to complete a Job.

Fig. 9 Communication Times for Scenario 1

We can also see that the overhead of CSSN is minimal considering the processing
time of the Gridlets, which makes it possible to have speedups on data processing.
However, we cannot estimate the exact added time of the Social network usage,
since these times can vary with the Social Networks’ traffic load at the time of use.

Figure 9 explains in detail how much time each task takes in relation with the
starting point. It can take less than 1 minute for users’ client applications to find and
accept new Jobs. The higher spikes are caused by the fact that the client application
only found the Gridlet some minutes later due to its Offline state and between the
found tasks and completed tasks (for each user) we can see the processing time of
the Gridlet (5 minutes).

Scenario 2: Scenario 2 is an attempt to test CSSN in a more realistic environ-
ment, having a more complex network of users. As depicted in Fig. 10, we have two

Enhancing Online Communities with Cycle-Sharing for Social Networks 25

Fig. 10 CSSN Scenario 2 View

users who start a Job (User 1 and 6), where User 1 has three Friends (User 2, 7 and
15), User 6 has two Friends (User 8 and 15). User 2 and 15 have each a FoF not
connected to anyone else. Also, we created a group with six people (User 1, 2, 4, 5,
6 and 7). The layout of this network is made in a attempt to maximize the diversity
of the users’ roles, making it possible for a Job request to reach any kind of users.

In this scenario, User 1 and 6 start a Job each, that contains 8 and 7 Gridlets
respectively, making a total of 15 Gridlets to be processed by any of the users in this
network. The client application does not restrain itself to gather only one Gridlet for
each Job, however it only accepts a Job request per user for each Wall (Group, Wall,
Applications’ Wall) that the Job request appears in. This means that, for example,
User 7 can accept Jobs from the Group it is connected to, from its friend (User 1),
and its friend (User 8), where the latter connection is of FoF to User 6; thus, in this
network it could acquire four Gridlets.

Fig. 11 Total times for Scenario 2

For this scenario we assume that each Job has less Gridlets than users that can be
connected to a user submitting requests (e.g., User1 and User6), in order to simulate
a larger network where the user could have potentially hundreds of connections,
that could either accept or deny the request. Each client application must already be
“registered” in the Applications’ Wall, the group members already established and

26 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

the client application be running prior to the Jobs submissions. Furthermore, the two
Jobs are started roughly around the same time in order for the client applications to
retrieve the Gridlets in any given order.

The results for scenario 2, as depicted in Fig. 11, bring us closer to understand
how CSSN performs in a realistic environment. In this scenario, we can see that the
total times can vary depending on factors such as number of Gridlets, users states
(Offline versus Online), number of users/groups involved, Social Network latency
and use of concurrent Gridlets (or Gridlet queue).

The times on this scenario are around 16 minutes to complete both Jobs; however,
we can see that in Test 1 and 5 the Job initiated by User 6 was completed 5 minutes
earlier than in the other tests, this is due to the fact that the Gridlets were evenly
distributed among the available users.

Fig. 12 Communication Times for Scenario 2 Test 4

In Test 4, as depicted in Fig. 12 we can see the added time due to the Social Net-
work latency, where two of the Gridlets were retrieved only after all other Gridlets
were already processed, and thus hindering CSSN performance.

Fig. 13 CSSN Scenario 3 View

Scenario 3: Scenario 3 was designed in order to evaluate the performance with
a real program that renders images. In this scenario, as depicted in Fig. 13 we have

Enhancing Online Communities with Cycle-Sharing for Social Networks 27

one friend, one FoF and two users in a group (not counting with the user Starter)
where one of them is the friend. The goal of this scenario is to know if CSSN can
function with a real processing program, such as Pov-Ray, which is used in the
tests. For each test the number of Gridlets to be completed is 4 and their execution
times in the processing computers are undefined, as they depend on the computers’
hardware states and capabilities. However, the first data file (for Test 1) is smaller
than the second one (used in Test 2) and Test 3 uses the same file as the second test,
but with different rendering options. Furthermore, we use a direct transfer method
to retrieve the data files in both ways (Starter to User and vice versa) for each test.
Also, we assume that the client applications are running prior to the start of the Job.

Fig. 14 Rendering Test Times for Scenario 3

Test 1 is initiated with the property arguments as being:
“-A0.3 -W1280 -H720 -D -O’$dir.output$abyss rend.bmp’ -P +Q9 /EXIT /RENDER ’$dir.exec$
abyss.pov’ ”
and the program property as “pvengine64.exe”, which in every CSSN is defined (by
the user) in the “Programs list”.

For Test 2, the arguments property is altered to become:
“-A0.3 -W1280 -H720 -D -O’$dir.output$balcony rend.bmp’ -P +Q9 +R5 /EXIT /RENDER
’$dir.exec$balcony.pov’ ” and with the same program parameter as the latter test.

In Test 3 we modify the arguments property to be:
“-A0.0 -W3921 -H2767 -R200 -D -O’$dir.output$balcony render.bmp’ -P +Q9 /EXIT /RENDER
’$dir.exec$balcony.pov’ ”, which modifies the images properties, such as anti-aliases,
resolution and how many rays POV-Ray will supersample with when it is anti-
aliasing, in order to have a longer running Gridlet, and also the program property
still remains the same.

The results for scenario 3 confirmed that CSSN can gain speedups against local
execution, as depicted in Fig. 14, where we have the total times of Test 1 around 6
minutes, Test 2 around 14 minutes and Test 3 with 81 minutes.

Furthermore, in all the tests the friend user processes 2 Gridlets, meaning that it
queues one to be processed when it has idle cycles to spare. We can also see in Fig.
15 that although each task can take some time to execute, the average performance
can be acceptable for Gridlets that have higher processing times.

28 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

Fig. 15 Communication Times for Scenario 3

Moreover, the first test suffers from communication latency, i.e. the task FoF
Accept (accepting the Job from the Applications’ Wall) takes more time to execute
than in the second test.

Test 3 demonstrates that with longer running Gridlets, the variables that hinder
the overall performance can be amortized by the difference that it would take to
process all the data in the user’s computer.

Discussion: When comparing with local execution, CSSN decreased the total
processing time, compared to what it would have consumed in the users’ computers,
meaning that CSSN achieves overall speedups on Jobs.

We can also state that the overhead that CSSN imposes on the overall process
is minimal compared to the time it takes to process a Gridlet, which in realistic
terms it can be more than 1 hour. However, times can be hindered from the fact that
searching for resources may not return positive results, or that the total resources
available are less than the number of Gridlets to be processed, or even that latency
of Facebook servers may vary with their global traffic load.

We can also conclude that the number of messages varies with the number of
users (friends, FoFs and groups) that comes in contact with the Job, while varying
with the number of Gridlets comprising the Job.

We can state that the number of messages sent to Facebook are proportionally
increased by the number of users in the network, meaning that a Job may receive as
many accepts and denies messages as users in the network. Although, the user may
not be aware of this in the long run, because those messages are erased when they
are no longer needed, making a clean environment in Facebook, meaning that we
can accomplish our goal of making CSSN viable to use Facebook without hindering
the usage of the Social Network.

We can also conclude that the method used to contact FoFs hinders the total
times, although in our tests the delays were not significant as compared to the overall
process.

Moreover, we can confirm that the users can donate their resources (CPU time)
for other users’ consumption and for users’ groups that would have interest in ac-

Enhancing Online Communities with Cycle-Sharing for Social Networks 29

quiring more processing power. Also, takes advantage of other users’ resources with
the same interests (or in the same groups) to further speedup their own programs.

In conclusion, even with the latency variables and excess messages introduced
by the interaction between users, using a Social Network, CSSN can definitely use
the dispersed and idle resources available on these networks to speedup application
execution, that would take more time in the users’ computer.

6 Conclusion

In this project we presented a new method of resource and service discovery through
the use of a Social Network. It is also considered that by making use of a Social
Network already established, we can involve more people to donate their comput-
ers’ idle cycles. Also, we analyzed Peer-to-Peer networks and Grids to understand
the related problems like efficient resource discovery, while also analyzing Social
Networks and user interactions to understand how we can achieve our works’ goals.

The idea of distributed computing has enabled other projects to create environ-
ments to execute common applications used by desktop computer users. Anyone
can join or create its own network to share and receive idle cycles for its own usage.
However, this may not be practical for common users, because they might not have
the resources or capabilities to gather enough users (or computers) for their prob-
lems. This idea suites small networks within communities, or enterprises in order to
gather idle cycles for common applications’ execution.

Social Networks were a step forward for user interactions in the Internet, since
Web sites, such as Facebook and MySpace are used for personal or business inter-
actions at any given time, i.e. friends interactions or advertising.

Studies done to these networks demonstrate that they follow some properties
of Small-World networks. On these networks a user can reach another with just a
few links; more, there is a small group of users with many links (to others) and
a larger group with fewer links. We can also see this in a P2P perspective, where
users with many links are super-peers connected by users with fewer links (peers).
This lead us to believe that we could utilize these networks for other purposes, other
than messaging and interaction, much like using P2P networks for global distributed
computing.

Our work describes Cycle-Sharing in Social Networks (CSSN), a Web-enabled
platform, which is designed to use Facebook, to search for potential idle resources
available on this type of network, also enabling public-resource sharing within a
Social Network.

The main approach for CSSN is to have a client application split into two parts.
One that interacts with the Social Network using REST or Graph protocols; and
another to interact with the users’ computers for local resource discovery, and the
Ginger Middleware for creation and aggregation of Gridlets.

CSSN main concern is to actually achieve resource and application discovery,
while being able to perform resource sharing; thus, our works’ primary concerns

30 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

were to utilize users’ computers in a way that would help common users to share
their resources (when not needed) and to use others’ resources to gain computational
cycles for their own applications. After a successful submission of a Job, the CSSN
requesting client starts a search for resources that could meet the requirements of
that particular Job. Moreover, it sends a Job Search message to the users’ friends, to
groups which could have the capabilities to process the Job, and also to the users’
friends of friends (FoFs).

We evaluated CSSN with scenarios to determine how it would manage in such
environments. Several scenarios were created in order to test CSSN regarding its
performance, stability and viability for using a Social Network to achieve cycle-
sharing, and resource and application discovery. These ranged from a simple one to
derive speed-up and latency measurements, to more sophisticated ones with more
diverse user’s roles, and employing real applications such as Pov-Ray.

With the obtained results, we can conclude that while the total times for process-
ing a Job gained speedups against local execution in the users’ computers, this can
be hindered by some variables: latency of Facebook servers, the fact that search-
ing for resources among Social Networks users may not return positive results, and
that the total number of available resources is less than the number of Gridlets that
comprises a Job.

However, with functional and quantitative evaluation, we can conclude that the
results are encouraging despite the overheads introduced by the variable Facebook
latency, and the intermediate messaging among FoFs. In fact, with CSSN, Jobs are
completed faster than in the user’s computer, also releasing it for other tasks. The
performance gains would increase with longer running Gridlets (more realistically
about 1 hour) by amortizing overheads attributable to Facebook and communication.

We can conclude that our works’ goals have been successfully met. It is possi-
ble to utilize a Social Network to perform resource and service discovery, and also
global distributed computing. Furthermore, by introducing the concept of global re-
source sharing to Social Network users, we believe that any common user can utilize
CSSN to make use of idle resources scattered across the World to further advance
process parallelization and continue decrease in processing waiting times. We also
hope that this project may contribute to the study and advancements made to novel
cycle-sharing models.

Future work: In the future, we plan to augment the testing scenarios to address
the issues of having a realistic environment, completing it with results of real peo-
ples’ usage and longer running Gridlets. We intend to extend the use of processing
programs to include more common applications, such as video encoding, among
others.

Moreover, we believe that Jobs completion and the search for resources would
benefit with requirements’ semantics, increasing the chance to direct Gridlets to
peoples’ computers that would satisfy the requirements.

Also, the use of topic ontologies would greatly help in determining the number of
users that may be able to help in a Job, while also focusing on those users that have
more interest in such topics. Thus, CSSN could search for specific groups using the

Enhancing Online Communities with Cycle-Sharing for Social Networks 31

Jobs’ topics as a point of reference, in order to obtain the groups that would be more
favorable to that particular Job.

Furthermore, we could extend the parameters of cycle-sharing to perform a form
of advance scheduling: CSSN would request resources before starting a Job in order
to avoid the lack of resources, and decrease the overheads attributable to resource
discovery in the Job search requests.

Moreover, to continue further development of CSSN and study on our works’
goals, we plan to support other Social Networks, to perform cycle-sharing between
the users. Also, we plan to substitute the need of having a stand-alone application,
by embedding the CSSN client with the Browser, in order to gather resources and
process Gridlets while the users are navigating through the Social Network or the
Internet.

Acknowledgements: This work was supported by national funds through FCT Fundação
para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2011 and project PTDC/EIA-
EIA/102250/2008.

References

[ACK+02] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: an
experiment in public-resource computing. Communications of the ACM, 45(11):56–61,
2002.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A.
Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of
the ACM, 53(4):50–58, 2010.

[And04] D.P. Anderson. BOINC: A system for public-resource computing and storage. In
proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10. IEEE Computer Society, 2004.

[ASBS00] L.A.N. Amaral, A. Scala, M. Barthelemy, and HE Stanley. Classes of small-world
networks. Proceedings of the National Academy of Sciences of the United States of
America, 97(21):11149–11152, 2000.

[ATS04] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribu-
tion technologies. ACM Computing Surveys (CSUR), 36(4):335–371, 2004.

[Bac06] L. Backstrom. Group formation in large social networks: membership, growth, and
evolution. In KDD 06: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 44–54. ACM Press, 2006.

[BTM07] F. Boldrin, C. Taddia, and G. Mazzini. Distributed Computing Through Web Browser.
In IEEE 66th Vehicular Technology Conference, 2007. VTC-2007 Fall, pages 2020–
2024, 2007.

[CCRB10] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. Social Cloud: Cloud Computing
in Social Networks. In 2010 IEEE 3rd International Conference on Cloud Computing,
pages 99–106. IEEE, 2010.

[CGM02] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Interna-
tional Conference on Distributed Computing Systems, volume 22, pages 23–34. IEEE
Computer Society; 1999, 2002.

[CPJ05] D. Crane, E. Pascarello, and D. James. Ajax in action. Manning Publications Co.
Greenwich, CT, USA, 2005.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

32 Nuno Apolónia, Paulo Ferreira and Luı́s Veiga

[FBJW08] R. J. Figueiredo, P. Boykin, P. Juste, and D. Wolinsky. Integrating overlay and so-
cial networks for seamless p2p networking. In Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2008. WETICE’08. IEEE 17th, pages 93–
98. IEEE, 2008.

[FKNT02] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for distributed system
integration. IEEE Computer, 35 (6), pages 37–46, 2002.

[FT02] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture.
ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[Goo98] D. Goodman. Dynamic HTML: the definitive reference. O’Reilly & Associates, Inc.
Sebastopol, CA, USA, 1998.

[KLXH04] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for massively
multiplayer games. In IEEE INFOCOM, volume 1, pages 96–107. IEEE, 2004.

[LAM07] L. Liu, N. Antonopoulos, and S. Mackin. Social peer-to-peer for resource discovery. In
Parallel, Distributed and Network-Based Processing, 2007. PDP’07. 15th EUROMI-
CRO International Conference on, pages 459–466. IEEE, 2007.

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proceedings of the 16th international conference on
Supercomputing, pages 84–95. ACM New York, NY, USA, 2002.

[LKR04] J. Liang, R. Kumar, and K.W. Ross. Understanding kazaa. Manuscript, Polytechnic
Univ, 2004.

[LSSV09] S. M. Larson, D. Snow, M. Shirts, and S. Pande Vijay. Folding@home and
genome@home: Using distributed computing to tackle previously intractable problems
in computational biology. Arxiv preprint arXiv:0901.0866, 2009.

[Man03] G.S. Manku. Routing networks for distributed hash tables. In Proceedings of the 22nd
annual symposium on Principles of distributed computing, pages 133–142. ACM New
York, NY, USA, 2003.

[MBAS06] M. Mowbray, F. Brasileiro, N. Andrade, and J. Santana. A reciprocation-based econ-
omy for multiple services in peer-to-peer grids. In Peer-to-Peer Computing, 2006. P2P
2006. 6th IEEE International Conference on, pages 193–202. IEEE, 2006.

[MGD06] A. Mislove, K.P. Gummadi, and P. Druschel. Exploiting social networks for internet
search. Proceedings of the 5th Workshop on Hot Topics in Networks (HotNets-V),
Irvine, CA, pages 79–84, 2006.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based
on the xor metric. Proceedings of IPTPS02, Cambridge, USA, 1:53–65, 2002.

[OBBO04] A. O’Connor, C. Brady, P. Byrne, and A. Olivré. Characterising the eDonkey Peer-
to-Peer File Sharing Network. Computer Science Department, Trinity College Dublin,
Ireland, Tech. Rep, 2004.

[PFM+05] C. Papadakis, P. Fragopoulou, E. Markatos, E. Athanasopoulos, M. Dikaiakos, and
A. Labrinidis. A feedback-based approach to reduce duplicate messages in unstruc-
tured peer-to-peer networks. Integrated Workshop on GRID Research, pages 103–118,
2005.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In Middleware 2001, pages 329–350. Springer,
2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-
addressable network. In Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages 161–172.
ACM, 2001.

[RRV10] P.D. Rodrigues, C. Ribeiro, and L. Veiga. Incentive mechanisms in peer-to-peer net-
works. In 15th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems (DPDNS), 24th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2010). IEEE, 2010.

[Sco88] J. Scott. Social network analysis. Sociology, 22(1):109, 1988.

Enhancing Online Communities with Cycle-Sharing for Social Networks 33

[SFV10] JN Silva, P. Ferreira, and L. Veiga. Service and resource discovery in cycle-sharing
environments with a utility algebra. In Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–11. IEEE, 2010.

[Sho98] S. Shostak. Sharing the universe- Perspectives on extraterrestrial life. Berkeley, CA:
Berkeley Hills Books., 1998.

[SKM+02] D. Stainforth, J. Kettleborough, A. Martin, A. Simpson, R. Gillis, A. Akkas, R. Gault,
M. Collins, D. Gavaghan, and M. Allen. Climateprediction. net: Design principles
for public-resource modeling research. In Proceedings of the 14th IASTED Interna-
tional Conference on Parallel and Distributed Computing Systems, pages 32–38. ACTA
Press, Calgary, 2002.

[SMK+01] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 149–160. ACM, 2001.

[SVF08] J. Silva, L. Veiga, and P. Ferreira. nuboinc: Boinc extensions for community cycle
sharing. In Proceedings of the 2008 Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASOW ’08, pages 248–253, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[TR03] D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer search methods.
In Proceedings of the 6th International Workshop on the Web and Databases, pages
61–66. Citeseer, 2003.

[TTP+07] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennanen,
K. Popov, V. Vlassov, and S. Haridi. Peer-to-Peer resource discovery in Grids: Models
and systems. Future Generation Computer Systems, 23(7):864–878, 2007.

[VRF07] L. Veiga, R. Rodrigues, and P. Ferreira. GiGi: An Ocean of Gridlets on a ”Grid-for-
the-Masses”. In Proceedings of the 7th IEEE International Symposium on Cluster
Computing and the Grid, pages 783–788. IEEE Computer Society, 2007.

[WBS+09] C. Wilson, B. Boe, A. Sala, K.P.N. Puttaswamy, and B.Y. Zhao. User interactions
in social networks and their implications. In Proceedings of the 4th ACM European
conference on Computer systems, pages 205–218. ACM, 2009.

