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Abstract. This paper presents CoopSLA (Cooperative Semantic Local-
ity Awareness), a consistency model for cooperative editing applications
running in resource-constrained mobile devices. In CoopSLA, updates to
different parts of the document have different priorities, depending on
the relative interest of the user in the region where the update is per-
formed; updates that are considered relevant to the user are propagated
frequently, while less important ones are postponed. As a result, the
system makes a more intelligent usage of the network resources, since
1) fewer accesses to the network are issued, 2) bandwidth savings are
obtained by merging the delayed updates, and 3) reduced bandwidth
available is used more efficiently by propagating more relevant updates
sooner. These properties are of vital importance in the mobile environ-
ments we are addressing, in which devices have limited bandwidth and
battery power. We have implemented a collaborative version of Tex ed-
itor TexMaker using the CoopSLA approach. We present evaluation re-
sults that support our claim that CoopSLA is very effective in reducing
the overhead of replica synchronization without imposing limitations to
application models.

Keywords: Cooperative Editing, Optimistic Replication, Data Consis-
tency, Interest Management, Divergence Bounding.

1 Introduction

Cooperative editing applications enable geographically distributed users to con-
currently edit a shared document space over a computer network[3]. Recently,
these applications experienced an increase in popularity as a result of the ex-
pansion of the Internet and the rapid proliferation of mobile devices, such as
smart phones, PDAs and tablets[10]. These modern devices are now sophisti-
cated enough to allow its users to execute cooperative editing applications and
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participate in editing sessions alongside more powerful devices – like desktops or
laptops – possibly mediated by cloud infrastructures.

A critical technique to support these new heterogeneous environments – that
mix resource constrained and powerful devices, interacting over wired and wire-
less networks – is to replicate the application data at the users’ devices and
resort to optimistic protocols to manage the consistency of the shared state.
Optimistic replication[12] has the potential benefit of improving performance,
availability and usability by allowing faster (local) access to the data. It also
makes a more efficient use of the resources since it does not require constant ac-
cess to the network for synchronization purposes. Optimistic mechanisms have
been extensively applied to cooperative editing, in particular the Operational
Transformation paradigm[2, 15, 14, 7] and, more recently, Commutative Repli-
cated Data Types[9, 8, 18, 11, 19].

While the state-of-the-art solutions provide a fair compromise between con-
sistency and performance, they still neglect two important aspects that can be
leveraged to improve the performance and overall usability and experience of
cooperative editing applications. First, they do not consider the variable and
highly dynamic characteristics of group work, in which different users are in-
terested (and work on) different parts of the document space: i) a user is more
interested in the zone(s) of the document that he is editing and a few other
observation points, rather than the whole document space equally, and ii) his
interest in the different sections of the document space varies over time. Second,
optimistic systems based on eventual consistency are typically prone to some
level of uncertainty and disruption: while the system is ensured to converge in
the future, there is limited or no support to determine how current is the data
observed by the user, and to establish and enforce clear bounds or guarantees
on that currentness.

In this work we argue that it is possible to make a more efficient and scal-
able usage of the network resources by taking the users’ interest into account.
To address this issue, we propose CoopSLA (Cooperative Semantic Locality
Awareness), a consistency model that unifies several well-know concepts of the
distributed systems field: interest management, locality-awareness and bounded
divergence. In CoopSLA updates are assigned a per-user priority level based on
its semantic distance to the user’s observation point(s) (Interest Management).
Updates to regions closer to the observation points are considered more rele-
vant and, thus, are awarded higher priority; priority decreases as the distance
to the observation point increases (Locality-Awareness). In each priority level,
updates are managed according to a parametrizable, multidimensional consis-
tency space that determines when they must be propagated, establishing clear
and well-known bounds to the divergence between the different replicas of the
system (Bounded Divergence).

With CoopSLA, we are able to make a more intelligent and semantically
meaningful usage of the network resources: by postponing updates with less pri-
ority, the system can merge and aggregate them, minimizing accesses to the
network and reducing bandwidth; as a result of message aggregation, the la-



tencies of the more important messages are reduced at the expense of the less
relevant ones. These properties are of particular importance when mobile devices
are in use, because wireless networks provide low bandwidth with high latency,
which has a significant impact on performance and interactivity[6], and frequent
access to the network resources greatly increases battery consumption[4]. An-
other important aspect of CoopSLA is that it establishes bounds on the amount
of replica deviation allowed, providing users with stronger guarantees regarding
the actual consistency state of the document space.

We designed and implemented a middleware layer that enforces the Coop-
SLA model on behalf of the applications. This allows current single-user appli-
cations to be more easily adapted to support collaborative features and relieves
programmers from the daunting task of designing and programming complex
network and replication protocols. Using the CoopSLA middleware, we imple-
mented a collaborative version of the popular Tex editor TexMaker. We present
experimental results that support our claim that CoopSLA is very effective and
flexible in reducing the overhead of replica synchronization without imposing
limitations to application models and traditional semantics.

The paper is organized as follows. Section 2 introduces relevant concepts and
describes the main assumptions of our work. Section 3 describes the CoopSLA
consistency model in detail. Section 4 presents the main architectural aspects
of the CoopSLA middleware. Section 5 overviews the implementation of our
solution. Section 6 presents and discusses the experimental results. Related work
is presented in Section 7. Finally, Section 8 concludes the paper.

2 System Model

In a cooperative editing session, multiple geographically distributed users con-
currently edit a shared document space – for example, a Latex project, a wiki
or a Word document. Common to these scenarios is a hierarchical structure of
semantic regions, which are logical sub-divisions of the document space (like a
folder, a file, or a \section of a Latex document). Also, semantic regions may have
logical references to other regions (e.g., a Latex \ref or a link on a webpage).
When considering the interest of a user, both the structure of the document
space and the references between its components must be taken into account.

We model the document space as a rooted directed graph G = (V,E). Each
vertex V corresponds to a semantic region of the document space and there is
an edge (vi,vj) between vertices vi and vj iff there is a relation between the
two. We consider two types of relations: a structural edge connects two vertices
that have a parent/child relation that is part of the hierarchical organization of
the document (in a Latex document, for example, a \chapter has a structural
relation with each of its child \section); a semantic edge is a non-structural edge
that connects two vertices that have an application-specific reference between
them (e.g., a \ref in a Latex document or a link in a web page). Structural edges
define a subgraph S of G corresponding to the tree structure of the document
space.



We define a function d : V × V → N0 over the graph that represents the
semantic distance between two vertices of the graph. The semantic distance
indicates the degree of correlation between two semantic regions of a document
according to some application-dependent and user-aware criteria. A lower value
denotes high correlation, while a higher value denotes low correlation.

We denote the participants of a cooperative editing session as cooperation
group and each participant is called node. Each node of the cooperation group
has a local view consisting of a full local replica of the shared application state
that may have bounded inconsistencies with relation to the latest state of the
application. Each replica consists of the document space graph G in which each
vertex also holds the contents of the corresponding semantic region. In this
context, we refer to a vertex of the graph as an object. Each object has one pri-
mary/master replica that holds its most recent value and one or more secondary
replicas that may have stale values. The consistency model makes no restrictions
as to which nodes of the cooperation group can be the master of an object.

3 A Semantic and Locality Aware Consistency Model

To capture the interest of a user in the different regions of a document, the
CoopSLA model incorporates the notion of a pivot. A pivot is a special object
that corresponds to a user’s observation point and according to which the con-
sistency requirements of the user’s view is managed. Broadly speaking, the pivot
determines, on a per-user basis, i) when an update to an object is allowed to
be postponed, and ii) under which conditions previously postponed updates are
required to be propagated to the user.

Different users have different pivots and each user may have multiple pivots,
each corresponding to a semantic region in which he is interested. In this section,
we describe the pivot-based CoopSLA consistency model in detail. For clarity,
we first describe the main concepts of the CoopSLA model considering only one
pivot (Sections 3.1 and 3.2). We briefly describe a generalization of the model
for multiple pivots in Section 3.3.

3.1 Consistency Field

Each user’s pivot p has a position in the application graph (p ∈ V ). p can
change throughout the execution of the application, mirroring the dynamic in-
terest of the user in the document space. Moreover, a pivot generates a discrete
consistency-field composed of n consistency zones z1, ..., zn where: z1 is the inner
zone of radius r1 and centered in p; each zone zi ∈ {z2, ..., zn−1} corresponds to
the area with outer radius ri and inner radius ri−1 (the radius of zone zi−1); the
outer zone zn corresponds to the area beyond rn−1, the radius of zone zn−1. It
follows that the consistency zone zo of object o at semantic distance d(p, o) from
pivot p in the consistency-field is given by

zo =

 z1 iff d(p, o) ≤ r1
zi, 1 < i ≤ n− 1 iff ri−1 < d(p, o) ≤ ri
zn iff rn−1 ≤ d(p, o)

(1)



D

A

E F G

\chapter{A}
...
\section{B}
...
\subsection{E}
...
\subsection{F}
...
\section{C}
...
\subsection{G}
...
\section{D}

(a) Example document structure and corresponding 
graph representation with consistency requirements.

(b) Corresponding consistency zones.

B C C

G

A

D

B E

F

Z
1

Z
2

Z3

Z4

Fig. 1. Example of Consistency Zones in a document structure.

Figure 1 shows a simple example of a consistency field. The user’s descending
order of interest, based on which the consistency field is defined, is described in
Table 1; the table explains how, taking into account current pivot position, each
section of document is mapped to a given consistency zone.

In this example, the user is editing section C of a Latex document (left side
of Figure 1(a)); as a result, the pivot is placed in the corresponding C vertex of
the application graph (right side of Figure 1(a)). The consistency field generated
(left side of Figure 1(b)) assigns the highest priority to updates to section C,
the current editing section. Updates to sections A e G (respectively, the parent
and child sections of C) have lower priority than C, but higher than sections B
and D – the sections that are two graph hops away from C. Updates to section
E and F have the lowest priority.

3.2 Consistency Requirements

Each consistency zone zi has a corresponding consistency degree ci that specifies
the consistency requirements of the objects located within that zone. Consis-
tency degrees respect the property ci > ci+1, meaning that consistency degree

Priority Description Zone

1 Current editing section z1
2 Parent and child sections of current editing section z2
3 Close sections – sections two graph hops away. z3
4 Remaining sections z4

Table 1. Example user interest.



ci of consistency zone zi enforces stronger consistency than degree ci+1 of zone
zi+1. It follows from this property that consistency degrees (and, consequently,
requirements) become weaker as their semantic distance to the pivot increases.
Consistency degrees are described by 3-dimensional consistency vectors (κ) that
limit the maximum divergence between the local replica of an object and the
latest state of the object:

– Time (θ): Specifies how long (in seconds) an object is allowed to remain
without being refreshed with its latest value.

– Sequence (σ): Defines the maximum number of updates to an object that
are allowed to be postponed (missing updates).

– Value (ν): Specifies the maximum percentage divergence between the con-
tents of the local replica of an object and its primary replica. Value is an
application-dependent metric calculated by a special purpose function de-
fined by the application’s programmers.

CoopSLA guarantees that an object is updated whenever at least one of the
previous criteria is about to be violated. Consider, for example, a consistency
vector κ = [0.25, 6, 20]; an object within the consistency zone corresponding
to κ is guaranteed to be, at most, 0.25 seconds outdated, 6 updates behind the
primary replica or with contents diverging 20% from the object’s latest value.

3.3 Model Generalization

CoopSLA allows the definition of multiple pivots for each user. For example, if
a user is editing multiple files, each one of the editing points in the different
files may correspond to a different pivot. Furthermore, different pivots may have
different consistency requirements, as it is natural that the current editing point
is more relevant to the user. In a multi-pivot setup, an object’s consistency zone
is assigned with relation to its closest pivot.

The model also allows the definition of multiple views per user, which al-
lows different sets of objects to be characterized with different consistency re-
quirements regarding the same pivot. Consider a pivot that corresponds to the
paragraph currently being edited by the user. In this scenario, a user may be
more interested in sections he created than in sections created by other users,
regardless of how close they are to the user. With multiple views, user created
objects may be assigned more strict consistency requirements.

4 Architecture

CoopSLA is implemented by a middleware layer that abstracts the program-
mers from the aspects related to network communication and consistency en-
forcement. The middleware follows a client-server architecture, in which clients
edit the shared document space and the server propagates updates to each client
according to its consistency specifications. In this section we describe the main
architectural aspects of the CoopSLA middleware. We start by presenting an
overview of the system, after which we describe how it represents the document
space internally and how the consistency model is enforced.



4.1 Overview

Following the CoopSLA replication model (see Section 2), the server holds a
full replica of the shared application state (i.e., the application graph G). The
server stores the primary replica of every object in the system and, thus, always
has the most recent version of the objects. When the server receives a client
update it applies it to its primary replica immediately; in contrast, it postpones
propagating the received updates to the clients, as long as their consistency
requirements are respected.

A client consists of the editing application stacked on top of the middleware.
It receives the input from the user, applies it to its local replica and submits
the corresponding update to the server. Clients do not communicate directly
with each other; update propagation is exclusively performed by the server.
Each client holds a full replica of the data; however, unlike the server, these are
secondary and, as a result, may have stale values that are managed according
to each client’s consistency specification.

The main task of the server is to enforce the CoopSLA consistency model.
This requires it to continuously monitor client updates and collect information
about the current consistency state of each client. Periodically, and when up-
dates are received at the server, it executes a validation algorithm that uses the
collected data to verify if the consistency requirements of the clients are still
met; if not, the server propagates the postponed (possibly merged) updates to
the clients that would, otherwise, violate their consistency specification.

4.2 Data Representation

The CoopSLA middleware represents the contents of each object of the graph
as a TreeDoc Commutative Replicated Data Type (CRDT)[9]. By doing so, we
enable replicas to converge without the need for complex conflict resolution pro-
tocols, which further enhances the relaxed synchronization properties provided
by CoopSLA. As a result of using TreeDoc, our system follows an operation trans-
fer design. This means that the update messages exchanged during an editing
session consist of add or remove operations, instead of the actual data.

Updates that have not yet been propagated to a client are stored at the
server in a per-client update queue. When adding a new update to a queue,
the server automatically merges add/remove operations that cancel each other.
Even by just using this mechanism, the results (Section 6) proved to be very
encouraging. Alternative (or complementary) merging solutions are still being
implemented and are out of the scope of this paper.

4.3 Monitoring Client Activity

To enforce the consistency model the server stores, for each client ci, the client’s
consistency specification (pivots, zones and degrees) and consistency state table
ψci . The latter stores, for each object oi: 1) the time elapsed since ci last received
updates regarding oi (ψci [θ, oi]), 2) the number of updates to oi that have not



yet been sent to ci (ψci [σ, oi]), and 3) the value of oi the last time updates to it
were sent to ci (ψci [ν, oi]).

Enforcing each client’s consistency specifications requires the server to keep
track of the following critical events:

Content updates. When the server receives a content update (and add or
remove request) it adds it to the update queues of the clients and updates the
sequence state ψci [σ] of every client ci. Next, it verifies if the new value of
the sequence metric of ci has reached the bound specified in ci’s consistency
specification; if so, it marks oi as dirty in ci’s dirty table. When processing the
next round of the validation algorithm, the server verifies that oi is dirty and, as
a result, refreshes the client’s state by propagating the updates needed to ensure
the client’s consistency specifications are met.

Structure updates. Modifications to the structure of a document change the
distances between its regions. As a result, the placement of the objects within the
consistency fields of the clients change and new consistency requirements have to
be considered; thus the server is required to update its internal data structures
accordingly. Furthermore, because a structure update is also an update to the
document, the server also updates and re-evaluates the sequence state ψci [σ] of
each client for every object that moved to a different consistency zone.

Pivot movement. As with structure updates, when a pivot moves the compo-
sition of its consistency zones change, resulting in new consistency requirements.
As a result, the server has to update the internal data structures representing
that client accordingly, as well as re-evaluating, for every object that moved to
a different consistency zone, the sequence state of the client. Note that in this
case ψci [σ] is not updated, since the movement of the pivot does not modify the
document space.

4.4 Consistency Enforcement

In each periodically executed round of the consistency validation algorithm, the
server checks if any update received since the last round resulted in a violation of
a client’s consistency specification. If so, the identified updates are propagated
to the client.

The validation algorithm verifies, for each client ci and each object oi, if the
object is within the limits imposed by the consistency zone defined by the client’s
pivot(s). Because ci may have multiple views and multiple pivots, the server must
first identify which pivot pi enforces the strongest consistency requirements for
oi. Then, it identifies the consistency zone of pi where oi lies, retrieving the
corresponding consistency vector κi.

Next, each dimension of the identified κi is tested. Verifying time (θ) and
sequence (σ) is straightforward: for σ, the server simply checks if the object has



been previously marked as dirty (Section 4.3); for θ, it tests if the time elapsed
since the last time ci was updated with the latest version of oi exceeds θκi

.

To verify ν, on the other hand, the server has to compare the current value
of oi with the client’s ψci [ν, oi], which would require it to store, for every client,
a copy of every object. To avoid the memory overhead of such a solution, the
server takes a snapshot of an object whenever updates regarding that object are
propagated to a client. Before taking a snapshot, however, it first verifies if a
snapshot of the object already exists; if it does, the server uses it, avoiding an
unnecessary copy of the object and saving memory.

5 Implementation

We implemented a prototype of the CoopSLA middleware and extended the
Linux version of the Latex editor Texmaker1 on top of it. In this section we
describe the main implementation details of the middleware (Section 5.1) and
the extension to Texmaker (Section 5.3) and explain how programmers interact
with the middleware and specify the CoopSLA consistency settings (Section 5.2).

5.1 Middleware

Each semantic region of the application graph is represented by an SRegion
object that contains a list of children subregions and a TreeDoc with the contents
of the region it represents. SRegions are uniquely identified by the server; this
identifier is used by clients to access the semantic region represented by the
object. The list is ordered by the semantic order of the children subregions
in the document space. SRegions also hold a programmer provided DataUnit
object containing application-specific information. It may be used, for example,
to implement links and references between SRegions.

Implementing the object snapshot approach described in Section 4.4 requires
rounds, snapshots and objects to be versioned. The round number rv is an integer
number that is incremented in every round. Snapshot and object versions are
assigned based on round versions: snapshot versions correspond to the rv of the
round in which the snapshot was taken; object versions correspond to the rv of
the round in which the object was last updated. To dispose of snapshots that
are no longer referenced we hold a list of the clients that reference the snapshot
and collect the latter when the list becomes empty.

To save memory, the per-client pending updates queues do not store actual
updates. Instead, it points to the updates stored in the global queue. Thus, the
global queue holds the updates received since the last round, as well as any
update that has not yet been sent to a client (i.e., is still referenced by a client’s
queue). When an update is no longer referenced by any client’s queue, it is
discarded.

1 http://www.xm1math.net/texmaker/



5.2 Interfacing with Programmers

In our current implementation, programmers describe the consistency require-
ments using an XML file. When the client application starts, it invokes an API
registration function with the path to the XML file as its argument. The Coop-
SLA client then parses the file and sends a registration request to the server.

Programmers control the structure of the document by adding or removing
semantic regions using API functions (addSRegion/removeSRegion). Both func-
tions receive the parent of the new region, the region type and, optionally, a set
of semantic links to other regions. The region type is an application-dependent
string value used to identify the objects consistency zone for a particular pivot
(explained later in this section).

Programmers must provide two additional functions to be called by the mid-
dleware when checking a client’s consistency: valueDiff and getConsistency-
Zone. The valueDiff function is used to verify the value metric. It returns the
(application-specific) percentage difference between two versions of an object.
getConsistencyZone is a functions that, given a pivot, a graph object and the
graph path between the pivot and the object, returns the consistency zone of
the object regarding the pivot.

5.3 CoLaTex

To validate our system, we have extended the Tex editor Texmaker with co-
operative capabilities using its add-ons feature. Our add-ons consist of simple
functions that intercept the user’s modifications to the local replica of the shared
document, insert the updates received from the server into the Latex document
and track the user’s editing position.

We defined one pivot for each open file, each corresponding to the semantic
region being edited by the user within that file. We implemented an add-on that
allows the user to manually assign a region of the document to a consistency
zone. Our valueDiff function returns the percentage difference in number of
characters between two versions of an object. Table 2 describes the consistency
zones we used defined; the getConsistencyZone function returns the consis-
tency zone of an object based on the following considerations:

– Consistency Zone 0 includes the region in which the pivot is placed and its
direct children, i.e., the ones that are one graph-hop below the pivot.

Zone Time (θ) Sequence (σ) Value (ν)

1 1 sec. 1 update 1%

2 10 sec. 15 updates 5%

3 40 sec. 100 updates 30%

4 2 min. 750 updates 60%

5 5 min. 1000 updates 90%
Table 2. Consistency Zones



– Consistency Zone 1 contains the direct parent – the region one graph-hop
above the pivot – and indirect children – identified by traversing the graph
downwards from the pivot, excluding the direct children – of the pivot.

– Consistency Zone 2 comprises the regions that belong to the same \chapter
as the pivot. If there is no explicit \chapter defined, we consider that the
document has one implicit chapter of which every section is a part of.

– Consistency Zone 3 includes the top-level sections of the remaining chap-
ters (\chapter) of the document. If the document does not have chapters,
zones two and three are merged and zone four is awarded the consistency
specifications originally defined for zone three.

– Consistency Zone 4 contains the regions that do not belong to any of the
previous zones.

6 Evaluation

We conducted a series of tests to experimentally validate our claim that Coop-
SLA makes a more efficient use of network resources by exploiting the locality of
interest of users. In particular, we intended to quantify the savings that Coop-
SLA obtains regarding the overall bandwidth required to propagate the updates
generated during an editing session and the access frequency to the network re-
sources. In the following sections we detail the experiments conducted. We first
describe the configuration of the simulation environment, and then present and
analyse the results obtained.

6.1 Simulation Environment

Clients are simulated by running a predetermined number of parametrized edit-
ing bots. Editing bots perform text insertions (write or paste), deletions (erase
or cut) and browse through the document space. Table 3 shows the decision tree
that models the behaviour of the bots used in our experiments.

Each simulation consisted in a five minute run during which bots executed
according to their decision tree, propagating the corresponding updates to the
server. The server monitored inbound and outbound messages, storing per-client
and overall values regarding bandwidth and number of exchanged messages.
Unless told otherwise, the results presented were obtained using the consistency
requirements described in Table 2. For simplicity, we chose to have only on pivot
per-client in the experiments.

Add Remove Move

Read Write Paste Erase Cut To sides Up/down

60% 15% 3% 8% 3% 8% 3%
Table 3. Bot decision tree.
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Fig. 2. Used bandwidth.

We compared CoopSLA with a baseline TreeDoc implementation that prop-
agates updates to every user as soon as they arrive at the server. Throughout
this section we refer to this system as Total Consistency (TC), due to its eager
propagation approach.

The tests were conducted on Intel Core 2 Quad machines with 8GB Ram run-
ning Ubuntu Linux. The server executed on a dedicated machine with no other
user-level application running; clients were deployed on up to three machines.
The computers were connected through a LAN.

6.2 Evaluation Results

In the first set of experiments, we measured bandwidth and number of accesses
to the network at both the clients and the server. In these simulations we varied
the number of clients and the type of document space edited. We considered
three types of documents that differ mainly in size and structural complexity:
an article, a PhD thesis and a book.

Figure 2 presents the results obtained regarding bandwidth. We plotted the
results of both CoopSLA and TC for an increasing number of users and the
three types of documents we consider (article, thesis and book). The figures
show that CoopSLA is able to effectively reduce bandwidth usage both at the
client and the server side. Moreover, it shows that as the number of clients and
the size of the documents increase, CoopSLA is increasingly more efficient in ob-
taining bandwidth savings. This behaviour shows the scalability of the system,
and is especially relevant considering that as an editing project grows in size,
it is more likely that more users will cooperatively access it. The main reason
for these results is that in larger documents the average distance between the
editing regions of the users is higher; as a result, the probability of postponing
and, eventually, merging updates also increases. This fact is particularly evident
if we make a pairwise comparison between CoopSLA and TC for each document
type. With the article (CoopSLA Article and TC Article), the bandwidth sav-
ings obtained by CoopSLA are minimal, because the probability that an update
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occurs in a client’s pivot region (and, consequently, is propagated immediately)
is high2. If the document grows in size and complexity, the bandwidth savings
obtained by CoopSLA increase greatly: approximately 45% less bandwidth with
the thesis document (CoopSLA Thesis and TC Thesis) and 65% with the book
(CoopSLA Book and TC Book).

Another important conclusion that can be inferred from Figure 2 is that
CoopSLA is able to efficiently minimize one of the main drawbacks of the CRDT
approach, the size overhead of path identifiers. When a document is represented
as a CRDT, the size of the TreeDoc path identifiers increases as the document
grows. Because update messages exchange path identifiers, when a document
grows in size, the update messages follow the same pattern. Without CoopSLA,
the larger the document is, the larger update messages are; as a result, the
bandwidth required to update clients increases. With CoopSLA, on the other
hand, we take advantage of the accumulation of postponed messages at the
server to merge them before propagating them to the clients.

While the overall traffic generated by the clients is influenced by the specific
characteristics of TreeDoc, the number of update messages issued by each client
depends only on the editing pattern of the users. By measuring the number of
messages exchanged over the network, we are able to clearly isolate and analyse
the individual contribution of CoopSLA. Figure 3 shows the results of these
measurements for both CoopSLA and TC.

The results further confirm the ones regarding bandwidth. Figure 3 shows
that CoopSLA is able to reduce the number of messages received by each client
and those savings increase with the size and complexity of the edited document.
Again, these results are a direct consequence of CoopSLA’s ability to leverage
the accumulation of low-priority postponed messages by merging those that can-

2 Note, however, that we could have obtained better results by configuring the con-
sistency requirements of the pivot region to a less strict setting. We analyse the
influence of varying the parameters of CoopSLA later in this section.



2 3 5 8 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Relaxed Regular Aggressive TC

# clients

B
a

n
d

w
id

th
 (

K
B

)

(a) Average per-client inbound bandwidth.

2 3 5 8 10 15 20
0

10000

20000

30000

40000

50000

60000

70000

80000

Relaxed Regular Aggressive TC

# clients

B
a

n
d

w
id

th
 (

K
B

)

(b) Total server outbound bandwidth.

Fig. 4. Bandwidth usage with different consistency requirements.

cel each other. As a result, CoopSLA discards unnecessary messages that would
have, otherwise, been propagated immediately to each client. This behaviour
is desirable not only because it has a direct influence on the reduction of the
bandwidth requirements, but also because it means that mobile devices using
CoopSLA make a less demanding usage of the network resources, which con-
tributes to reduce battery consumption. Furthermore, these results provide an
encouraging indication of how CoopSLA would work with different operation-
transfer strategies, like OT or other CRDT implementations.

The results presented so far misleadingly indicate that when a document is
small, there is no advantage in using CoopSLA. However, CoopSLA allows ap-
plication programmers to specify consistency requirements arbitrarily, as they
see fit for their applications. As long as possible, a programmer should try to
relax the consistency requirements, always ensuring the application provides the
required levels of interactivity. If necessary, however, the programmer can define
more demanding requirements. To show the flexibility of CoopSLA, we mea-
sured the bandwidth usage of three CoopSLA consistency specifications that
differ in update propagation aggressiveness, as described in Table 4. The Re-
laxed specification provides the weaker guarantees; in particular, it does not not
require high-priority updates to be propagated immediately. Aggressive is the
most demanding specification; it requires high-priority updates to be immedi-

Zone Relaxed Regular Aggressive

1 {θ=5,σ=10,ν=5} {θ=2,σ=5,ν=5} {θ=1,σ=1, ν=1}
2 {θ=20,σ=30,ν=10} {θ=10,σ=10,ν=5} {θ=5,σ=5,ν=5}
3 {θ=40,σ=100,ν=50} {θ=40,σ=100,ν=30} {θ=15,σ=15,ν=20}
4 {θ=120,σ=750,ν=60} {θ=90,σ=300,ν=60} {θ=30,σ=50 ν=50}
5 {θ=300,σ=1500,ν=90} {θ=180,σ=750,ν=80} {θ=60,σ=150,ν=50}

Table 4. Consistency Zones.



ately propagated and the remaining zones to be updated frequently. Regular is
an intermediate specification that provides more relaxed consistency than Ag-
gressive, but stricter than Relaxed.

Figure 4 shows the results obtained; the bar labelled TC corresponds to the
version of the baseline TreeDoc implementation that does not use CoopSLA,
while the remaining bars correspond to the three specifications of Table 4. The
measurements were made using the Thesis document. As expected, the figure
shows that CoopSLA is more efficient when the consistency requirements are
more relaxed. This happens because relaxed consistency requirements allow for
a larger volume of updates to be retained at the server for longer periods; as
a result, the probability that two updates can be merged increases. Conversely,
when we increase the aggressiveness of the requirements, we reduce the volume
of updates that are retained at the server, thus reducing merge efficiency. How-
ever, even considering that CoopSLA is less effective with stronger consistency
requirements, the results show that even a fairly strict set of requirements is able
to obtain more than 20% bandwidth savings over the version that does not use
CoopSLA.

7 Related Work

In this section we discuss prior work on the two topics that are more closely
related with our work: divergence bounding and consistency in cooperative edit-
ing.

7.1 Divergence Bounding in Optimistic Replication

Designers of replicated systems typically choose between pessimistic and opti-
mistic consistency models[12]. In many cases, however, neither the performance
overheads imposed by strong consistency neither the lack of limits for inconsis-
tency are acceptable to applications. An interesting alternative called divergence
bounding consists in allowing updates to be managed optimistically, but define
under which conditions replicas are required to converge and how to enforce that
convergence. Real time guarantees[1], for example, allows replicas to remain stale
for a specified maximum time, before they are required to synchronize. Order
bounding, another simple solution, limits the number of updates that can be
applied to a local replica without synchronization[5].

The TACT[21] framework proposes a multi-dimensional approach to diver-
gence bounding that unifies in a single model three metrics: real-time guarantees,
order bounding and a novel metric called Numerical Error that bounds the total
number of updates, across all replicas, that can proceed before replicas are forced
to synchronize. Our work distinguishes from TACT by embodying the notion of
locality-awareness into the consistency model. This allows our system to im-
plicitly assign different priorities to different updates that may vary throughout
execution.



Vector Field Consistency (VFC ) [13, 17] is a consistency model for mobile
multiplayer games that enables replicas to define their consistency requirements
in a continuous consistency spectrum. The novelty of the VFC model is that it
combines multi-dimensional divergence bounding with locality-awareness to im-
prove the availability and user experience while effectively reducing bandwidth
usage. Consistency between replicas strengthens as the distance between objects
decreases. To define these mutable divergence bounds, around pivots there are
several concentric ring-shaped consistency zones with increasing distance (ra-
dius) and decreasing consistency requirements (increasing divergence bounds).
Then, in each zone, like in TACT, programmers define a 3-dimensional vector:
time, sequence, value.

7.2 Consistency in Cooperative Editing

The issue of maintaining replica consistency in cooperative applications has been
extensively studied in the last two decades. The most representative solutions fall
into the Operational Transformation (OT)[2, 15, 14, 7, 16, 20] category. In OT,
each locally generated operation is associated with a timestamp and broadcast
to the remaining sites. Then, each remote update received is transformed (e.g., by
adjusting its insert/delete index) in order to commute with concurrent operations
already applied to the shared document. As a result, transformed operations can
be executed without re-ordering previous applied operations.

OT transforms updates in order to make them commute. A recently intro-
duced alternative is to make every operation automatically commutative by rep-
resenting the document as a Commutative Replicated Data Type (CRDT)[9, 8,
18, 11, 19]. The CRDT approach considers that a document is composed of a
sequence of immutable and uniquely identified elements that can be any non-
editable component of a document, like a character or a graphics file. Commuta-
tivity is achieved by designing an identifier space that ensures that it is always
possible to create a new identifier between two existing ones[9].

To the best of our knowledge, neither approach (OT or CRDTs) considers
the dynamically changing interest of the users in the different semantic regions of
a document; instead, they propagate every update with the same static priority.
Moreover, CoopSLA can use either OT or CRDT as building blocks for update
propagation. As described in Section 4.2, in our current implementation we used
CRDTs.

8 Conclusion

In this paper we presented a semantic and locality aware consistency model
for cooperative editing applications. Our model, named CoopSLA, explores the
heterogeneous and dynamic interest of users in different regions of a document
space in order to reduce communications between the participants of an editing
session. CoopSLA assigns, on a per-user basis, different priorities to different up-
dates, based on the semantic distance between the place in the document where



the update is performed and the places in which the user is more interested.
Updates with high priority are sent frequently to the client, while low priority
updates are postponed and, when possible, merged. Each priority level is char-
acterized by a multidimensional consistency degree that defines how many and
how long updates to a particular object are allowed to be postponed.

We implemented a middleware layer enforcing CoopSLA and extended the
popular Tex editor TexMaker with cooperative features using it. We conducted
a series of tests to experimentally evaluate the performance of CoopSLA. The
results presented in this paper support our claim that CoopSLA is very effec-
tive in reducing the overhead of replica synchronization without constraining
application models and respecting their consistency need.
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