
A Classification of Middleware to Support Virtual Machines
Adaptability in IaaS

José Simão
INESC-ID Lisboa

Instituto Superior de Engenharia de Lisboa
jsimao@cc.isel.ipl.pt

Luís Veiga
INESC-ID Lisboa

Instituto Superior Técnico
Universidade Técnica de Lisboa

luis.veiga@inesc-id.pt

ABSTRACT
The Infrastructure-as-a-Service (IaaS) model makes exten-
sive use of virtualization to achieve workload isolation and
efficient resource management. In general, the underlying
supporting technologies are virtual machines monitors (e.g.
hypervisors). Isolation is a static mechanism, relying on
hardware or operating system support to be enforced. On
the other hand, resource management is dynamic and mid-
dleware must be employed to adapt VMs in order to fit their
guest’s needs.

Although the services offered by virtual machines are used
or extended in several works in the literature, the community
lacks an organized and integrated perspective of the mech-
anisms and strategies regarding resource management and
focusing on adaptation, which would allow for an effective
comparison on the quality of the adaptation process.

In this work we review the main approaches for adapta-
tion and monitoring in virtual machines deployments, their
tradeoff, and their main mechanisms for resource manage-
ment. We frame them into the control loop (monitoring,
decision and actuation). Furthermore, we propose a classifi-
cation framework that, when applied to a group of systems,
can help visually in determining their similarities and differ-
ences.

Categories and Subject Descriptors
A.1 [Introductory and Survey]; D.4.1 [Process Man-
agement]: Scheduling; D.4.2 [Storage Management]: Vir-
tual memory

Keywords
Virtualization, Resource-driven adaptability, Taxonomy

1. INTRODUCTION
Virtual machines (VM) are being used today both at the

system and programming language level. At the system level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’12 December XX, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1609-5/12/12 ...$15.00.

they virtualize the hardware, giving the ability to guest mul-
tiple instances of an operating system on multi-core architec-
tures, sharing computational resources in a secure way. At
the high level programming languages, and similarly to the
system level virtual machines, these VMs abstract from the
underlying hardware resources, introducing a layer that can
be used for fine grained resource control [13]. Furthermore,
they promote portability through dynamic translation of an
intermediate representation to a specific instruction set.

Virtual machines lay between guest systems and the un-
derlying physical support (i.e. host hardware or operating
systems) and are used to regulate resource usage, finding a
way to partition the available resources by the guests. Most
notably, VMs aim to optimize the operation of their guests,
eventually using different algorithms or different parameters
for each of them.

System level VMs, or hypervisors, are strongly motivated
by the sharing of low-level resources. In result of this, many
research and industry work can be found about how re-
sources are to be delivered to each guest operating sys-
tem. The partition is done with different reasonings, ranging
from a simple round robin algorithm, to autonomic behavior
where the hypervisor automatically distributes the available
resources to the guests that, given the current workload, can
make the best out of them. Among all resources, CPU [17,
6, 12] and memory [15, 8] are the two for which a larger
body of work can be found. Nevertheless, other resources
such as storage and network are also target of adaptation.

Virtual machines are not only a isomorphism between the
guest system and a host [14], but a powerful software layer
that can adapt its behavior, or be instructed to adapt, in
order to transparently improve their guests’s performance,
minimizing the virtualization cost. In order to do so, VMs,
and the middleware augmenting their services, can be framed
into the well known adaptation loop [11]: i) monitoring or
sensing, ii) control and decision, and iii) enforcement or ac-
tuation. Monitoring determines which components of the
VM are observed. Control and decision take these obser-
vations and use them in some simple or complex strategy
to decide what has to be changed. Enforcement deals with
applying the decision to a given component/mechanism of
the VM.

Adaptation is accomplished at different levels. As a conse-
quence, monitoring, control and enforcement are applied in
a way that have different impacts. For example, for the allo-
cation of processing resources, the adaptation can be limited
to the tuning of a parameter in the scheduling algorithm, the
replacement of the algorithm, or the migration of the guest

VM to another node.
In this work we present a framework to classify and help

understand the quality of resource monitoring and adap-
tation techniques in virtual machines. Because of space re-
strictions, this paper focus on system level virtual machines,
although the framework can also be applied to other virtual-
ization layers such as high level virtual machines (i.e. man-
aged runtimes). Section 2 presents the architecture of these
VMs, depicting the building blocks that are used in research
regarding resource usage and adaption. In Section 3 the clas-
sification framework is presented. For each of the resources
considered, and for each of the three steps of the adapta-
tion loop, we propose the use of a quantitative classification
regarding the impact of the mechanisms used by each sys-
tem. Furthermore, systems are globally classified regarding
the dependency on low level monitoring, the complexity of
control techniques and the latency of the enforcement mech-
anisms. We use this framework to classify state of the art
systems in Section 5. Section 6 closes the document present-
ing some conclusions based on the previous discussion.

2. VIRTUAL MACHINES FUNDAMENTALS
Virtual machines have their roots in the 60’s with the IBM

360 and 370 [2]. These systems provided a time-sharing en-
vironment where users had a complete abstraction of the
underlying hardware resources. IBM goal was to provide
better isolation among different users, providing virtual ma-
chines to each one. The architecture of the IBM System/370
was divided in three layers: the hardware, the control pro-
gram (CP) and the conversational monitor system (CMS).
The CP controlled the resource provision and the CMS de-
livered the services to the end user underpinned on these
resources. The same architecture can be found in mod-
ern System VMs [3] where CP’s role is given to the virtual
machine monitor (VMM). Figure 1 depicts these three lay-
ers, where CP’s role is given to the virtual machine monitor
(VMM). The VMM purpose is to control the access of the
guest operating systems running in each virtual machine to
the physical resources, virtualizing processors, memory and
I/O.

The next three sections will briefly describe how funda-
mental resources, CPU, memory and I/O are virtualized.
The systems discussed in Section 5 are based on the building
blocks presented here, extending them towards self-adaptation
based on resource usage.

2.1 Computation as a resource
In a VM, virtualization of computation concerns two dis-

tinct aspects: i) the translation of instructions if the guest
and host use a different Instruction Set Architecture (ISA)
ii) the scheduling of virtual CPUs to a physical CPU (or
CPU core on Symmetric Multiprocessors - SMP).

Instruction emulation (i.e. the translating from a set of in-
structions to another one) is common to both types of VMs.
In System VMs, emulation is necessary to adapt different
ISAs or in response to the execution of a privileged instruc-
tion (or a resource or behavior-sensitive instruction, even if
not privileged) in the guest OS. Adaptation in binary, and
byte code translation, is achieved by changing the transla-
tion technique (i.e. interpretation or compilation) and by
replacing code previously translated with a more optimized
one. These adaptations are driven by profiling information
gather during program execution.

CPU scheduling is a well known issue in operating sys-
tems.A VMM scheduler has additional requisites when com-
pared to the OS scheduler, namely the capacity to enforce a
resource usage specified at the user’s level. To achieve this,
the CPU scheduler must take into account the share (or
weight) given to each VM and make scheduling decisions
proportional to this share [6]. However, in these schedulers,
shares are not directly seen by the end user making it hard
to define a high level resource management policy. Section 5
presents systems that dynamically change the scheduler pa-
rameters to give the VMM guests the resources that best fits
their needs (e.g. performance, cost, energy consumption).

2.2 Memory as a resource
Memory is virtualized with a goal: give the illusion that

guests have an virtually unbounded address space. Because
memory is effectively limited, it will eventually end and the
guest (operating systems or application) will have to deal
with memory shortage. An extra level of indirection is added
to the already virtualized environment of the guest operat-
ing systems. Operating systems give to their guests (i.e.
processes) a dedicated address space, eventually bigger than
the real available hardware.

The VMM can be managing multiple VMs, each with his
guest OS. Therefore, the mapping between physical and real
addresses must be extended because what is seen by an OS
as a real address (i.e. machine address), can now change each
time the VM hosting the OS is scheduled to run. The VMM
introduces an extra level of indirection to the virtual → real
mapping of each OS, keeping a real → physical to each of
the running VMs.

When the VMM needs to free memory it has to decide
which page(s) from which VM(s) to reclaim. This deci-
sion might have a poor performance impact. If the wrong
choice is made, the guest OS will soon need to access the
reclaimed page, resulting in wasted time. Another issue re-
lated to memory management in the VMM is the sharing of
machine pages between different VMs. If these pages have
code or read-only data they can be shared avoiding redun-
dant copies. Section 5 present the way some relevant sys-
tems are built so that their choices are based on monitored
parameters from the VM’s memory utilization.

3. ADAPTATION TECHNIQUES USED IN
IAAS SYSTEMS

In a software system, adaptation is regulated by moni-
toring, analyzing, deciding and acting [11]. Generically, the
adaptability loop consists of three major steps: monitor,
decision and action [11]. The monitor phase collects data
from sensors. The decision phase determines what needs to
be changed. Decisions made inside or outside the VM de-
termine the complexity of the process. Finally, the action
phase, applies the decision using the available effectors.

Adaptability mechanisms are not only confined to VM’s
internal structures but also to systems that externally recon-
figure VM’s parameters or algorithms. An example is the
work of Shao et al. [12] to regulate VCPU to CPU mapping
based on the CPU usage of specific applications.

The VMM has built in parameters to regulate how re-
sources are shared by their different guests. These param-
eters regulate the allocation of resources to each VM and
can be adapted at runtime to improve the behavior of the

Hardware (CPUs, memory, I/O

devices)

Operating System

Native

Application1

Native

Applicationn

...

HW

OS1

App App

OSn

App

...

App

Virtual Machine Monitor

(a)

HW

OS1

App App

OSn

App

...

App

Virtual Machine Monitor

(b)

HW

C1
... Cn

...

OS

HLL VM

Native

Application

(c)

Figure 1: Virtualization layers

applications given a specific workload. The adaptation pro-
cess can be internal, driven by profiling made exclusively
inside of the VMM, or external, which depends on applica-
tion’s events such as the number of pending requests. In this
section, the two major VMM subsystems, CPU scheduling
and Memory Manager, will be framed into the adaptation
processes.

3.1 CPU Management
An example of an exclusively inside activity is the CPU

scheduling algorithm. To enforce the weight assigned to each
VM, the hypervisor has to monitor the time of CPU assigned
to each VCPUs of a VM, decide which VCPU(s) will run
next, and assign it to a CPU [3, 6]. An example of an in-
side and outside management strategy is the one employed
by systems that monitor events outside the hypervisor (e.g.
operating systems load queue, application level events) [17,
12], use their own control strategy, such as linear optimiza-
tion, control theory [10] or statistical methods [7]. Neverthe-
less, such systems act on mechanisms inside the hypervisor
(e.g. weight assigned to VMs, number of VCPUs).

3.2 Memory Management
The memory manager virtualizes hardware pages and de-

termines how they are mapped to each VM. To establish
which and how many pages each VM is using, the VMM
can monitor page’s utilization using either whole page or
sub-page scope. The monitoring activities aims to reveal
how pages are being used by each VM and so information
collected relates to i) page utilization [15, 16] and ii) page
contents equality or similarity [15, 3]. Application perfor-
mance (either by modification of the application or external
monitoring) is also considered [8].

Because operating systems do not support dynamic changes
to physical memory, the maximum amount of memory that
can be allocated is statically assigned to each VM. Never-
theless, when total allocated memory exceeds the one that
is physically available, the VMM must decide which clients
must relinquish their allocated memory pages in favor of the
current request. Decisions regarding memory pages alloca-
tion to each VM are made using i) shares [15], ii) history
pattern [16] or iii) linear programming [8].

After deciding that a new configuration must be applied to
a set of VMs, the VMM can enforce i) page sharing [15] or ii)
page transfer between VMs. Page sharing relies on the mech-
anisms that exist at the VMM layer to map real → physical
page numbers. On the other hand, the page transfer mech-
anism relies on the operating systems running at each VM,
so that each operating system can use its own paging policy.
This is accomplished using a balloon driver installed in each

VM [3, 15].

3.3 Adaptation loop techniques
Figure 2 presents the techniques used in the adaptation

loop. They are grouped into the two major adaptation
targets, CPU and memory, and then into the three major
phases of the adaptability loop.

4. CLASSIFICATION FRAMEWORK
To understand and compare different adaptation processes

we now introduce a framework for classification of VM’s
adaptation techniques. It addresses the three classical adap-
tation steps. Each of this steps makes use of the different
techniques described in the discussed in the previous sec-
tion. We call it RCI framework because the analysis and
classification of the techniques for each of these steps re-
volves around three fundamental aspects: Responsiveness,
Comprehensiveness and Intricateness.

Responsiveness Represents how fast the system is able
to adapt, thus it gets smaller as the following metrics in-
crease: i) overhead of monitoring, ii) duration of the decision
process, iii) the latency of applying adaptation actions.

Comprehensiveness Takes into account the breadth and
scope of the adaptation process. In particular, it regards: i)
the quantity or quality of the monitored sensors, ii) the to-
tality of the elements considered for decision process, and iii)
the number of different effectors that the system can engage.

Intricateness Addresses the depth of the adaption pro-
cess. In particular, it regards low-level implications, inter-
ference and complexity of: i) the monitoring process, ii)
decision strategy, and iii) enforcing actions.

These aspects were chosen, not only because they en-
compass many of the relevant goals and challenges in VM
adaptability research, but mainly because they also embody
a fundamental underlying tension: that a given adaptation
technique aiming at achieving improvements on two of these
aspects, can only do so at the cost of the remaining one. We
came across this observation during the process of analyzing
and classifying the techniques and systems studied.

Initially, we realized that no technique was able to com-
bine full comprehensiveness and full intricateness, and still
be able to perform without significant overhead and latency
(possibly even requiring off-line processing). Later, we con-
firmed that full responsiveness always implies some level of
restriction either to comprehensiveness or to intricateness.
This RCI conjecture is yet another manifestation in systems
research where the constant improvement on a given set of
properties, or the behavior of a given set of mechanisms, can
only come at an asymptotically increasing cost. This always
forces designers to choose one of them to degrade in order

Figure 2: Techniques used by System VMs to monitor, control and enforce

to ensure the other two.
A paramount example is the CAP conjecture (or CAP the-

orem) [5], portraying the tension in large-scale distributed
systems among (C)onsistency, (A)vailability, and tolerance
to (P)artitions. Another example one is the tension, in
the domain of peer-to-peer systems, among high availability,
scalability, and support for dynamic populations [4].

Additionally, we also note that the tension inherent in the
RCI conjecture is also present, at a higher-level of abstrac-
tion, among monitoring, decision, and action. The more the
emphasis (regarded as an aggregate value of all RCI aspects)
is given to two of the steps in the control loop, the less em-
phasis is possible to the remaining one, without breaking
the viability and feasibility of the approach. We call this
derived conjecture that applies to whole systems (and not
to individual adaptation techniques) the MDA conjecture,
for Monitoring, Decision and Action.

5. SYSTEMS AND THEIR CLASSIFICATION
In this section we briefly survey middleware used to pro-

vide resource usage adaptability for guests running on top
of virtual machines. These systems rely on VMs capacity to
adapt and are typically proposed to operate in multi-tenant
infrastructures.

Xen [3]. In Xen each VM is called a domain. A special
domain0 (called driver domain) handles I/O requests of all
other domains (called guest domain) and runs the admin-
istration tools. Because Xen’s core solution is developed
by the open source community, several works have studied
Xen’s scheduling strategies, for example in face of intensive
I/O. Others propose adaptation strategies to be applied by
the VMM regarding CPU to VCPU mapping or dynamically
changing the scheduling algorithms parameters.

Xen includes three scheduling algorithms: Borrow Vir-
tual Time (BVT), Simple Earliest Deadline First (SEDF)
and Credit [1, 6]. The former two are deprecated and will
probably be removed. Credit is a proportional fair sched-
uler. This means that the interval of time allocated for each

VCPU is proportional to its weight, excluding small alloca-
tion errors. Additionally to weight, each domain has a cap
value representing the percentage of extra CPU it can con-
sume if his quantum has elapsed and there are idle CPUs. At
each clock tick the running VPCUs are charged and eventu-
ally some will loose all their credit and tagged as over while
the others are tagged under. VCPUs tagged as under have
priority in scheduling decisions. Picking the next VCPU to
run on a given CPU, Credit looks, in this order, a under
VCPU from the local running queue, a over VCPU from
the local running queue or a under VCPU from the running
queue of a remote CPU, in a work-stealing inspired fashion.

Friendly Virtual Machines (FVM) [17]. The Friendly
Virtual Machines (FVM) aims to enable efficient and fair
usage of the underlying resources. Efficient in the sense that
underlying system resources are nor overused or underused.
Fairness in the sense that each VM gets a proportional share
of the bottleneck resource. Each VM is responsible for ad-
justing its demand of the underlying resources, resulting in
a distributed adaptation system.

The adaptation strategy is done using feedback control
rules such as Additive-Increase and Multiplicative-Decrease
(AIMD), driven by a single control signal - the Virtual Clock
Time (VCT) to detect overload situation. VCT is the real
time taken by the VMM to increment the virtual clock of a
given VM. An increase in VCT means that the host VMM
is taking longer to respond to the VM which indicates a
contention on a bottlenecked resource. Depending on the
nature of the resource the VCT will evolve differently as
more VMs are added to the system. For example, with more
VMs sharing the same memory, more page faults will occur,
and even a small increase in the number of page faults will
result in a significant increase in VCT.

A VM runs inside a hosted virtual machine, the User Mode
Linux, an so, two types of mechanisms are used to adapt
VM’s demand to the available underlying resources. FVM
imposes upper bounds on i) the Multi Programming Level
(MPL) and on ii) the rate of execution. MPL controls the

number of processes and threads that are effectively running
at each VM. When only a single thread of execution exists,
FVM will adapt the rate of execution forcing the VM to
periodically sleep.

HPC computing [12]. Shao et al. adapts the VCPU map-
ping of Xen [3] based on runtime information collected by a
monitor that must be running inside each guest’s operating
system. They adjust the numbers of VCPUs to meet the
real needs of each guest. Decisions are made based on two
metrics: the average VCPU utilization rate and the paral-
lel level. The parallel level mainly depends on the length
of each VCPU’s run queue. The adaptation process uses an
addictive increase and subtractive decrease (AISD) strategy.
Shao et al. focus their work on native applications represen-
tative of high performance computing applications.

Ginko [8]. Ginko is an application-driven memory over-
commitment framework which allows cloud providers to run
more System VMs with the same memory. For each VM,
Ginkgo uses a profiling phase where it collects samples of
the application performance, memory usage, and submitted
load. Then, in production phase, instead of assigning the
same amount of memory for each VM, Ginko takes the pre-
viously built model and, using a linear program, determines
the VM ideal amount of memory to avoid violations of ser-
vice level agreements. This means that the linear program
will determine the memory allocation that, for the current
load, maximizes the application performance (e.g. response
time, throughput).

Auto Control [10]. Padala et al. proposes a system which
uses a control theory model to regulate resource allocation,
based on multiple inputs and driving multiple outputs. In-
puts are applications running in a VMM and can spawn sev-
eral nodes of the data center (i.e. web and DB tier can be
located in different nodes). Outputs are the resource alloca-
tion of CPU and disk I/O caps. For each application, there is
an application controller which collects the application per-
formance metrics (e.g. application throughput or average
response time) and, based on the application’s performance
target, determines the new requested allocation. Because
computational systems are non linear, the model is adjusted
automatically, aiming to adapt to different operating points
and workloads. Based on each application controller out-
put, a per node controller will determine the actual resource
allocation. It does so by solving the optimization problem
of minimizing the penalty function for not meeting the per-
formance targets of the applications. To evaluate their sys-
tem, applications were instrumented to collect performance
statistics. Xen monitoring tool (i.e. xm) was used to collect
CPU usage and iostat was used to collect CPU and disk
usage statistics. Enforcement is made by changing Xen’s
credit scheduler parameters and a proportional-share I/O
scheduler.

PRESS [7]. PRESS is an online resource demand predic-
tion system, which aims to handle both cyclic and non-cyclic
workloads. It tracks resource usage and predicts how re-
source demands will evolve in the near future. To detect re-
peating patterns it employs signal processing techniques (i.e.
Fast Fourier Transform and the Pearson correlation), look-

ing for a signature in the resource usage history. If a signa-
ture is not found PRESS uses a discrete-time Markov chain.
This technique allows PRESS to calculate how the system
should change the resource allocation policy, by transiting to
the highest probability state, given the current state. In [7]
the authors focus on CPU usage. So, The prediction scheme
is used to set the CPU cap of the target VM. The evalu-
ation was made based on a synthetic workload applied to
the RUBiS benchmark, built from observations of two real
world workloads.

VM3 [9]. The work in VM3 aims at measuring, modelling
and managing shared resources in virtual machines. It oper-
ates in the context of virtual machine consolidation in cloud
scenarios proposing a benchmark (vConsolidate). It places
emphasis on balancing quickness of adaptation and the in-
tricateness and low-level of the resources monitored, while
sacrificing comprehensiveness by being restricted to deciding
migration of virtual machines among cluster nodes.

5.1 Analysis
In Figure 3 we analyze the responsiveness, comprehen-

siveness and intricateness aspects for the different adaption
techniques used in System VMs, and in the context of the
adaptation steps monitoring, decision and action in System
VMs. In the former, to find a system’s RCI, we assign a
R, C and I to each technique and sum the values regarding
each technique used by the system. The later, is a second
order analysis in the sense that the value for M, D and A of
a system is found by averaging the RCI values of each of his
techniques.

These results allows us to make four major conclusions.
First, different systems have a different RCI coverage. Sec-
ond, intricateness seems to dominate although responsive-
ness is also high in most systems. Third, systems with larger
responsiveness and intricateness are less comprehensive. Fi-
nally, decision strategies and effectors are similar while mon-
itoring techniques are more heterogeneous.

6. CONCLUSIONS
In this work we reviewed the main approaches for adapta-

tion and monitoring in virtual machines, their tradeoffs, and
their main mechanisms for resource management. We frame
them into the control loop (monitoring, decision and actu-
ation). Furthermore, we proposed a novel taxonomy and
classification framework that, when applied to a group of
systems, can help visually in determining their similarities
and differences. Supported by this, we presented a com-
prehensive survey and analysis of relevant techniques and
systems in the context of virtual machine monitoring and
adaptability.

This taxonomy was inspired by two conjectures that arise
from the analysis of existing relevant work in monitoring and
adaptability of virtual machines. We presented the RCI con-
jecture on monitoring and adaptability in systems, identify-
ing the fundamental tension among Responsiveness, Com-
prehensiveness, and Intricateness, and how a given adapta-
tion technique aiming at achieving improvements on two of
these aspects, can only do so at the cost of the remaining
one. Then we presented a derived conjecture, the MDA con-
jecture identifying a related tension, in the context of whole
systems, among emphasis on monitoring, decision and ac-
tion. Regarding future work, we plan to apply the frame-

R

CI

FVM

Ginko

AutoControl

Press

HPC

VM3

a.

M

DA

FVM

AutoControl

Ginko

Press

HPC

VM3

b.

Figure 3: Relationship of emphasis on responsiveness, comprehensiveness and intricateness regarding a. adap-
tion techniques and b. the adaptation steps monitoring, decision and action in System VMs.

work to other virtualization layers, such as high level virtual
machines (i.e. managed runtimes), adding new systems to
the analyses and new adaptation techniques.

Acknowlegments. This work was partially supported by
national funds through FCT - Fundação para a Ciência e
a Tecnologia, under projects PTDC/EIA-EIA/102250/2008,
PTDC/EIA-EIA/108963/2008, PTDC/EIA-EIA/113613/2009,
and PEst-OE/EEI/LA0021/2011

7. REFERENCES
[1] http://wiki.xen.org/wiki/credit scheduler, visited at

3-10-2012.

[2] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks.
Architecture of the ibm system/360. IBM J. Res.
Dev., 8:87–101, April 1964.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37:164–177,
October 2003.

[4] Charles Blake and Rodrigo Rodrigues. High
availability, scalable storage, dynamic peer networks:
Pick two. In Michael B. Jones, editor, HotOS, pages
1–6. USENIX, 2003.

[5] Eric A. Brewer. A certain freedom: thoughts on the
cap theorem. In Andréa W. Richa and Rachid
Guerraoui, editors, PODC, page 335. ACM, 2010.

[6] Ludmila Cherkasova, Diwaker Gupta, and Amin
Vahdat. Comparison of the three cpu schedulers in
xen. SIGMETRICS Perform. Eval. Rev., 35:42–51,
September 2007.

[7] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press:
Predictive elastic resource scaling for cloud systems.
In Network and Service Management (CNSM), 2010
International Conference on, pages 9 –16, oct. 2010.

[8] Michael Hines, Abel Gordon, Marcio Silva, Dilma Da
Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory
overcommit with ginkgo. In CloudCom ’11: 3rd IEEE
International Conference on Cloud Computing
Technology and Science, 2011.

[9] Ravi Iyer, Ramesh Illikkal, Omesh Tickoo, Li Zhao,

Padma Apparao, and Don Newell. Vm3: Measuring,
modeling and managing vm shared resources.
Computer Networks, 53(17):2873–2887, December
2009.

[10] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin,
Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad
Singhal, and Arif Merchant. Automated control of
multiple virtualized resources. In Proceedings of the
4th ACM European conference on Computer systems,
EuroSys ’09, pages 13–26, New York, NY, USA, 2009.
ACM.

[11] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive
software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst., 4:14:1–14:42, May 2009.

[12] Zhiyuan Shao, Hai Jin, and Yong Li. Virtual machine
resource management for high performance computing
applications. Parallel and Distributed Processing with
Applications, International Symposium on, 0:137–144,
2009.

[13] José Simão, João Lemos, and Lúıs Veiga. A2-VM : A
cooperative Java VM with support for
resource-awareness and cluster-wide thread scheduling.
In OTM Conferences, volume 7044 of Lecture Notes in
Computer Science, pages 302–320. Springer, 2011.

[14] Jim Smith and Ravi Nair. Virtual Machines: Versatile
Platforms for Systems and Processes. Morgan
Kaufmann, 2005.

[15] Carl A. Waldspurger. Memory resource management
in vmware esx server. SIGOPS Oper. Syst. Rev.,
36:181–194, December 2002.

[16] Zhao Weiming and Wang Zhenlin. Dynamic memory
balancing for virtual machines. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE
’09, pages 21–30, 2009.

[17] Yuting Zhang, Azer Bestavros, Mina Guirguis,
Ibrahim Matta, and Richard West. Friendly virtual
machines: leveraging a feedback-control model for
application adaptation. In Proceedings of the 1st
ACM/USENIX international conference on Virtual
execution environments, VEE ’05, pages 2–12, New
York, NY, USA, 2005. ACM.

