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Abstract—Resource management in Cloud Computing has
been dominated by system-level virtual machines to enable the
management of resources using a coarse grained approach,
largely in a manner independent from the applications run-
ning on these infrastructures. However, in such environments,
although different types of applications can be running, the
resources are delivered equally to each one, missing the oppor-
tunity to manage the available resources in a more efficient and
application driven way. So, as more applications target managed
runtimes, high level virtualization is a relevant abstraction layer
that has not been properly explored to enhance resource usage,
control, and effectiveness.

We propose a VM economics model to manage cloud infras-
tructures, governed by a quality-of-execution (QoE) metric and
implemented by an extended virtual machine. The Adaptive and
Resource-Aware Java Virtual Machine (ARA-JVM) is a cluster-
enabled virtual execution environment with the ability to monitor
base mechanisms (e.g. thread scheduling, garbage collection,
memory or network consumptions) to assess application’s perfor-
mance and reconfigure these mechanisms in runtime according
to previously defined resource allocation policies. Reconfiguration
is driven by incremental gains in quality-of-execution (QoE), used
by the VM economics model to balance relative resource savings
and perceived performance degradation.

Our work in progress, aims to allow cloud providers to
exchange resource slices among virtual machines, continually
addressing where those resources are required, while being able
to determine where the reduction will be more economically
effective, i.e., will contribute in lesser extent to performance
degradation.

I. INTRODUCTION

In recent years, the use of Grids, Utility and Cloud Com-
puting, shows that these are approaches with growing interest,
as well as scientific and commercial impact. At the same
time, managed object oriented languages (e.g., Java, C#) are
becoming increasingly relevant in the development of large
scale solutions, leveraging the benefits of a virtual execution
environment to provide modular, reconfigurable and robust
solutions.

The fusion of these two topics is a very active research
area, and solutions have been proposed to federate Java virtual
machines (either extended VMs or supported on middleware),
aiming to provide a single system image [1]. If this image
has elasticity in the sense that resources are made available
proportionally to the effective need, and if these resources
are accounted/charged as they are used, we can provide an

object oriented virtual machine (OO-VM) across the cluster,
as an utility. If these changes are made dynamically (instead
of explicitly by their users) we will have an adaptive and
resource-aware virtual machine, that can be offered as a value-
added Platform-as-a-Service (PaaS).

Therefore, such a cluster-enabled managed environment can
adapt itself to the execution of applications, from multiple
tenants, with different (and sometimes dynamically changing)
requirements in regard to their quality-of-execution (QoE).
QoE aims at capturing the adequacy and efficiency of the
resources provided to an application according to its needs.
It can be inferred coarsely from application execution time
for medium running applications, or request execution times
for more service driven ones such as those web-based, or from
critical situations such as thrashing or starvation. Also, it can
be derived with more fine-grain from incremental indicators
of application progress, such as execution phase detection [2],
memory pages updates, amount of input processed, disk and
network output generated. In our ongoing work, we are still
focusing only on application execution times.

QoE can be used to drive a VM economics model, where the
goal is to incrementally obtain gains in QoE for VMs running
applications requiring more resources or from more privileged
tenants. This, while balancing the relative resource savings
drawn from other tenants’ VMs with perceived performance
degradation. To achieve this goal, we must be able to positively
discriminate certain applications, and for this, on others we
may need to restrict resource usage, imposing limits to their
consumption, regardless some performance penalties (that
should also be mitigated). Additionally, we can reconfigure
the mechanisms and algorithms that support their execution
environment (or even engaging available alternatives to these
mechanisms/algorithms) [3]. In any case, these changes should
be transparent to the developer and specially to the applica-
tion’s user.

Our research work plan addresses the extension of high-
level language virtual machines (e.g., Java VMs such as
Jikes RVM [4] and OpenJDK) to operate more flexibly and
efficiently in multi-tenancy scenarios such as those of cloud
computing infrastructures. This entails three sets of require-
ments:

1) Enhancing current VMs with capabilities to accurately
monitor resource usage and enforce constrains in re-



source management mechanisms;
2) Empower VMs with elasticity and horizontal scaling

allowing VM runtimes to dynamically and transparently
span several physical machines (or system-level virtual
machines);

3) Enable overall resource management to be driven by
finer-grained transfer of resources among tenants, try-
ing to reconcile QoE parameters and instant resource
consumption.

We propose an Adaptive and Resource-Aware Java Virtual
Machine (ARA-JVM), a cluster-enabled virtual execution
environment with the ability to monitor base mechanisms (e.g.
thread scheduling, garbage collection, memory or network
consumptions) to assess application’s performance. Armed
with this information, ARA-JVM decides how to reallocate
(and if needed reconfigure) such mechanisms in runtime
according to previously defined resource allocation policies.
At a lower-level, the cluster-enabled runtime must have the
ability to monitor base mechanisms to assess application’s
performance and the ability to reconfigure these mechanisms
in run-time. At a higher-level, we drive resource adaptation
according to a VM economics model based on aiming overall
quality-of-execution (QoE) through resource efficiency, e.g.,
expressed in previously defined resource allocation policies
and priorities.

ARA-JVM operates by continuously awarding resources
to those tenants requiring or entitled to more, but while
incrementally drawing them from the tenants where resource
scarcity will hurt performance the least. In essence, putting
resources where they can do the most good to applications
and the cloud infrastructure provider, taking them from where
they can do the least harm to applications.

II. RELATED WORK

Adaptability is a vertical activity in current systems stack.
System-wide VMs, high level language VMs and special
propose middleware can all make decisions based on different
profiling information, adapting some of their internal mecha-
nisms to improve the system performance in a certain metric.

These three levels of virtualization have different distances
to the machine-level resources, with a increasing distance from
system-wide VMs to special purpose middleware. The dual
of this relation is the transparency of the adaptation process
from the application perspective. A system-wide VM aims to
distribute resources with fairness, regardless of the application
patterns or workload. On the other end is the middleware ap-
proach where applications use a special purpose programming
interface to specify their consumption restrictions. As more
applications target high level language VMs, including the
ones running on cloud data centers, this virtualization level,
which our work encompasses, has the potential to influence
high impact resources (akin to system-wide VMs), using
application’s metrics (akin to the middleware approach) but
still with full transparency.

In this section we survey work related to these three
virtualization levels, focusing on adaptations whose goal is

to improve the application performance by adapting the in-
frastructure mechanisms.

a) System Virtual Machines: Shao et al. [5] adapts the
VCPU mapping of Xen [6] based on runtime information
collected by a monitor that must be running inside each guest’s
operative system. They adjust the numbers of VCPUs to meet
the real needs of each guest. Decisions are made based on two
metrics: the average VCPU utilization rate and the parallel
level. The parallel level mainly depends on the length of each
VCPU’s run queue. The adaptation process uses an addictive
increase and subtractive decrease (AISD) strategy. Shao et al.
focus their work on specific native applications. We believe
our approach has the potential to influence a growing number
of applications that run on high level virtual machines and
whose performance is also heavily dependent on memory
management.

In [7], Sharma et al. present a way to dynamically provision
virtual servers in a cloud provider, based on pricing models.
They target application owners (i.e. suppliers of services to end
users) who want to select the best configuration to support their
peak workloads (i.e. maximum number of requests per second
successfully handled), minimizing the cost for the application’s
owner. Sharma’s work uses different mechanisms to guarantee
the provisioning of resources, which include: readjusting CPU,
memory caps and migration. To make good decisions they
need to know, for each application, what is the peak supported
by each provider’s configuration, which is dependent on real
workloads. Furthermore, because changes to virtual servers
configuration is driven by the number of requests per second,
it can miss the effective computation power needed by each
request.

b) High Level Virtual Machines: High level virtual ma-
chines have been augmented or designed from scratch to
integrate resource accounting [8], [9]. MVM [9] is based on
the Hotspot virtual machine. It supports isolated computations,
akin to address spaces, to be made in the same instance of the
VM. This abstraction is called isolate. Another distinguishing
characteristic is the capacity to impose constrains regarding
consumption of isolates. The resource management done in
MVM is related to the Java Specification Request 284 [10].
Our work builds on this JSR and uses a widely accessible VM
(MVM only runs on Solaris on top of SPARC’s hardware). The
work in [8] enables precise memory and CPU accounting.
Nevertheless they do not provide an integrated interface to
determine the resource consumption policy, which may involve
VM, system or class library resources.

Garbage collection is known to have different performance
impacts in different application [11]. Several strategies have
been used to improve execution time of a program running
in a high level virtual machine. Historically this improvement
has been accomplished by new algorithms. Recent work takes
advantage of interactions with the operative system (e.g. Hertz
et al. [12] try to avoid page faults) and experiment with
different configuration for a family of algorithms (e.g. Soman
et al. [13] switch the GC algorithm at previously defined points
or taking into account the available memory).



Singer et al. [14] discuss the economics of GC, relating heap
size and number of collections with the price and demand law
of micro-economics - with bigger heaps there will be less
collections. This relation extends to the notion of elasticity to
measure the sensitivity of the heap size to the number of GCs.
They devise an heuristic based on elasticity to find a tradeoff
between heap size and execution time.

In [15] the GC is auto-tuned in order to improve the
performance of a MapReduce [16] Java implementation for
multi-core hardware. For each relevant benchmark, machine
learning techniques are used to find the best execution time
for each combination of input size, heap size and number of
threads in relation to a given GC algorithm (i.e. serial, parallel
or concurrent). Their goal is to make a good decision about
a GC policy when a new MapReduce application arrives. The
decision is made locally to an instance of the JVM.

Our work is also related to memory management inside
a high level virtual machine, but the definition of QoE (as
presented in Section I and further detailed in Section III)
expands beyond this resource and can be used in other levels
of the execution stack.

c) Middleware: Duran et al. [17] uses a thin high
level virtual machine to virtualize CPU and network band-
width. Their goal is to provide an environment for resource
management, that is, resource allocation and/or adaptation.
Applications targeting this framework use a special purpose
programming interface to specify reservations and adaptation
strategies. When compared to more heavyweight approaches
like system VMs, this lightweight framework can adapt more
efficiently for I/O intensive applications. Though, the approach
taken in Duran’s work bounds the application to a given
resource adaptation interface.

Although in our system the application (or the libraries they
use) can also impose their own restrictions, the adaptation
process is mainly driven by the underlying virtual machine
without direct intervention of the applications.

III. PROPOSED APPROACH

The architecture of ARA-JVM is presented in Figure 1.
Our vision is that ARA-JVM will execute applications with
different requisites regarding their quality-of-execution (QoE).
Target applications have typically a long execution time and
can spawn several execution flows to parallelize their work.
This is common in the field of science supported by informat-
ics like economics and statistics, computational biology and
network protocols simulation.

ARA-JVM is supported by several runtime instances, each
one cooperating to the sharing of resources. For an effective
resource sharing, a global mechanism must be in place to
make weak (e.g. change parameters) or strong (e.g. change GC
algorithm, migrate running application) adaptations [3]. The
first building block above the operating system in each node is
a process-level managed language virtual machine, enhanced
with services that are not available in regular VMs. These
services include: i) the accounting of resource consumption,
ii) dynamic reconfiguration of internal mechanisms, and iii)

mechanisms for checkpointing, restore and migration of the
whole application. These mechanisms should and must be
made available at a lower-level, inside an extended VM, for
reasons of control, interception and efficiency.

The second building block aggregates individual VMs, as
the ones described above, to form a cluster with a distributed
shared object space. It gives running applications support for
a single system image semantics, across the cluster, regarding
the object address space. Techniques like byte code enhance-
ment/instrumentation or rewriting are used, so that unmodified
applications can operate in a partitioned global address space,
where some objects exist only as local copies and others are
shared in a global heap.

Data collected from running application on top of ARA-
JVM can be used as input to a policy decision point, where
policies are evaluated in order to determine a certain rule
outcome. The other purpose of collecting this data is to infer a
profile for a given application. Such profiles will result in the
automatic use of policies for a certain group of applications,
aiming to improve their performance. The effects, positive or
negative, of applying such policies are then used to confirm,
or reject, the level of correlation between the profile and the
applications.

Yield driven adaptation model:

Our current research work takes an infrastructure-centric
approach in the sense that we want to transparently transfer
resource allocation between applications running in the cluster,
minimizing the perceived impact in their execution. We advo-
cate a way for each application owner to specify that, when
the application is executing in a constrained environment,
the infrastructure may remove m units of a given resource,
from a set of resources R, and give it to another application
that can benefit from this transfer. This transfer may have
a negative impact in the application who offers resources
(although intended to be the minimum across the possible
alternatives), while it is expected to have a positive impact
in the receiving application. To assess the effectiveness of the
transfer, the infrastructure must be able to measure the impact
on the giver and receiver applications.

For each controlled resource, ARA-JVM dynamically
adapts its parameters to make an efficient management of
resources in the cluster. In general, there is a yield regarding
a given resource Rj from the set of resources R, and a
management strategy Sx, i.e., a return or reward from applying
a given strategy to some managed resource. Given that the
yield may be known only partially, for a given time span ts,
as the application executes continually, we define it as:

Y ieldts(R,Sa, Sb) =
resource savings(R,Sa, Sb)

performance degradation(Sa, Sb)
(1)

The resource savings represents the savings of a given
resource when two allocation or management strategies are
compared. Regarding performance degradation, it represents
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Fig. 1: Architecture of the ARA-JVM

the impact of the savings, given a specific performance metric.
Considering the time taken to execute an application (or part
of it), the performance degradation relates the execution time
of the original configuration and the execution time after the
resource allocation strategy has been modified.

For a given execution or evaluation period, the total yield
is the result of summing all significant partial yields:

Y ield(R,Sa, Sb) =

n∑
ts=0

Y ieldts (2)

In addition to periodic evaluation, phase detection in man-
aged programs [2] could also be used to trigger evaluation
and adaptation. Phase detection is a well researched topic,
and is typically used to drive JIT compiler optimizations.
Nevertheless, these techniques could be used to change the
strategy used in other components of the VM, like the garbage
collector, or instruct lower virtualization layers (e.g. operative
system, hypervisor) to change their policies (e.g. scheduling).

IV. ON GOING DEVELOPMENT AND RESULTS

In our current research work, we are addressing two key
lines of work to incorporate the QoE metric and the VM eco-
nomics model in virtual machines. Currently, we are working
on:

• Having a managed language virtual machine with the
capacity to monitor and restrain the use of resources,
based on a dynamic policy, defined declaratively outside
the VM;

• Finer-grained transfer of resources among tenants, using
different strategies in managing the resource consumption
decision inside the virtual machine.

Resource management inside a managed language VM:

We have chosen to extend the Jikes RVM [4], a research
Java Virtual Machine, to be resource-aware. The resources that
can be monitored in a virtual machine can be either specific
of the runtime (e.g. number of threads, number of objects),

which we call intrinsic resources, or be strongly dependent
on the underlying operating system (e.g. CPU usage), which
we call extrinsic resources.

To unify the management of such disparate types of re-
sources, we have implemented JSR 284 - The Resource
Management API [10] - in the context of Jikes RVM. This API
was designed to be used by applications running on top of a
Java VM, so that they can determine the resource consumption
policy.

We propose to use the same principles for managing inter-
nals components of the virtual machine, transparently to the
applications. So, we have defined a XML syntax to express
the following policy elements: resource consumption event
(e.g. garbage collection triggered, new thread created), action
when the event happens, action if the event is allowed (i.e. if
the resource can be consumed), action if the event is denied
(e.g. change GC parameter, throw exception, change thread
allocation site). Currently the policy must be loaded when the
VM starts but we intend to give the possibility of changing it
during runtime.

Experiments with memory management:

The research runtime Jikes RVM [4] uses a built-in matrix
to determine how the heap will grow, shrink or remain
unchanged, after a memory collection. The growing factor is
determined by the ratio of live objects and the time spent in
the last GC operation.For example, a growing rate of 1.0 will
maintain the same heap size, while a growing rate of 1.2 or 0.8
will increase or decrease the heap size in 20%, respectively.

Preliminary Results:

Figure 2.a shows the default growing rates of the heap for
each series of live objects. The default rates determine that the
heap shrinks about 10% when the time spent in GC is low (less
than 7%) when compared to regular program execution, and
the ratio of live objects is also low (less than 50%). This allows
for savings in memory used. On the other hand, the heap will
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Fig. 2: Different heap growing rate matrices which have a different returned yields
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Fig. 3: These two groups of graphics correspond to DaCapo’s large configuration in which we used heapmin = 53Mbytes
and heapmax = 315Mbytes.

grow for about 50%, as the time spent in GC also grows
and the number of live objects remains high. This growth in
heap size will lead to an increase in memory used by the
runtime, aiming to use less CPU because the GC will run less
frequently.

To assess the benefits of our resource management eco-
nomics we have setup two new heap size changing matrices,
which we call heap saving matrices. The distinctive factor
is the growth/decrease rate determined by each matrix. While
matrix M1, presented in Figure 2.b imposes a strong reduction
on the heap size when memory usage and management activity
is low (i.e. few live objects and short time spent on GC),
matrix M2, in Figure 2.c, enforces a constant heap size unless
the program dynamics reach an high activity point (i.e. high
rate of live objects and longer time spent on GC).

Figure 3 shows some preliminary results of running dif-
ferent applications from the DaCapo benchmarks [18] (with
configuration large) using the default matrix and the two
new previously presented. Figure 3.a (left axis) shows the
final heap size after running the benchmarks with the three
different matrices. Series Savings (M1) and Savings (M2)
(right axis) represent the resource savings obtained for each
of these matrices (M1 and M2) when compared to the default
matrix. These savings go up to 71%. The minimum saving in
this configuration is 18%. In Figure 3.b (left axis) we present
the evaluation time of the benchmarks and the performance

degradation (right axis) regarding the use of each of the ratio
matrices. Degradation of execution time reaches a maximum
of 35% for lusearch but below 10% for most of the
remainder benchmarks.

From these experiments and the collected results we can
see that the returned yield has different magnitudes across
applications (e.g. jython 17.56, pmd 3.10), but has always a
“positive” impact, that is, percentual resource savings always
overcome percentual performance degradation, by a factor
never lower than 1.85. We think these experiments demon-
strate the usefulness of applying different strategies to specific
applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we described the ongoing research to design
an Adaptive and Resource-Aware Java Virtual Machine (ARA-
JVM ). Resource allocation and adaptation obeys to a VM eco-
nomics model, based on aiming overall quality-of-execution
(QoE) through resource efficiency, e.g., expressed in previ-
ously defined resource allocation policies. The QoE model
governs cloud infrastructures to continuously exchange (more
fine-grained) resource slices among virtual machines, award-
ing resources to those tenants requiring or entitled to more,
while being able to determine where the resource reduction
will be more economically effective, i.e., will contribute in
lesser extent to performance degradation.



We presented the details of our adaptation mechanisms in
each VM. Preliminary experimentations where done to manage
memory. The benefits were evaluated, showing resources can
be reverted among applications, from where they hurt perfor-
mance the least (higher yields in our metrics), to more higher
priority or requirements applications.

The more vast goal is to improve flexibility, control and effi-
ciency of infrastructures running long applications in clusters.
To this end we have some challenges to address: i) determine
how application’s phases can influence our economic model;
ii) determine how the model can be applied to control other
layers of the virtualization stack, such as the hypervisor;
iii) enhance the model to take into account several running
applications.
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