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Abstract. Cloud computing has been dominated by system-level vir-
tual machines to enable the management of resources using a coarse
grained approach, largely in a manner independent from the applica-
tions running on these infrastructures. However, in such environments,
although different types of applications can be running, the resources are
often delivered in a equal manner to each one, missing the opportunity to
manage the available resources in a more efficient and application aware
or driven way.
Our proposal is QoE-JVM supporting Java applications with a glo-
bal and elastic distributed image of a high-level virtual machine (HLL-
VM), where total resource consumption and allocation (within and across
applications in the infrastructure) are driven by incremental gains in
quality-of-execution (QoE), which relates the resources allocated to an
application and the performance the application can extract from having
those resources. In this paper, we discuss how critical resources (memory
and CPU) can be allocated among HLL-VMs, so that Cloud providers
can exchange resource slices among virtual machines, continually ad-
dressing where those resources are required, while being able to deter-
mine where the reduction will be more economically effective, i.e., will
contribute in lesser extent to performance degradation.

1 Introduction

Workloads running on cluster-enabled infrastructures (e.g. Cloud computing) are
supported by different levels of virtualization. In these environments, applica-
tions running on high-level language virtual machines (e.g. JVM, CLR) make use
of services provided by the operating system, which shares hardware resources
through the underlying hypervisor (e.g. Xen, VMWare Server). The complexity
of this execution stack makes the allocation of resources fitting the application’s
needs (e.g. execution time, monetary cost) a challenging task.

System virtual machines provide tools and programmatic interfaces to de-
termine the management policy of the fine-grained resources they control (e.g.
memory reservation, CPU proportional share). Nevertheless, we are still far from
being able to influence an application behavior, effectively (wide range and im-
pact), efficiently (low overhead) and flexibly (with no or little intrusive coding).



As more applications target managed runtimes, high level language virtual-
ization is a relevant abstraction layer that has not been properly explored to
enhance resource usage, control, and effectiveness. Therefore, a managed envi-
ronment must adapt itself to the execution of applications, being executed by
multiple tenants, with different (and sometimes dynamically changing) require-
ments in regard to their quality-of-execution (QoE). QoE aims at capturing the
adequacy and efficiency of the resources provided to an application according
to its needs. It can be inferred coarsely from application execution time for
medium running applications, or request execution times for more service driven
ones such as those web-based, or from critical situations such as thrashing or
starvation. Also, it can be derived with more fine-grain from incremental indica-
tors of application progress, such as amount of input processed, disk and network
output generated, execution phase detection or memory pages updates.

QoE can be used to drive a VM economics model, where the goal is to in-
crementally obtain gains in QoE for VMs running applications requiring more
resources or for more privileged tenants. This, while balancing the relative re-
source savings drawn from other tentants’ VMs with perceived performance
degradation. To achieve this goal, certain applications will be positively dis-
criminated, reconfiguring the mechanisms and algorithms that support their
execution environment (or even engaging available alternatives to these mecha-
nisms/algorithms). For other applications, resources must be restricted, impos-
ing limits to their consumption, regardless of some performance penalties (that
should also be mitigated). In any case, these changes should be transparent to
the developer and specially to the application’s user.

Existing work on adaptability in cluster-enabled runtimes does not properly
support the proposed scenario. Existing public runtimes (Java, CLR) are not
resource-aware, as they are mostly bounded by the underlying operative system.
On the other hand, in the research community, the proposed runtimes are fo-
cused on accounting resource usage to avoid application’s bad behavior, and do
not support the desired reconfigurability of their inner mechanisms [12, 4]. There
is no notion of resource effectiveness in the sense that when there are scarce re-
sources, there is no attempt to determine where to take such resources from
applications (i.e. either isolation domains or the whole VM) where they hurt
performance the least. Others have recently shown the importance of adaptabil-
ity at the level of HLL-VMs, either based on the application performance [14] or
by changes in their environment [11]. Nevertheless, they are either dependent on
a global optimization phase, limited to a given resource, or make the application
dependent on a new programming interface.

This paper presents the QoE model which we use to determine from which
tenants resource scarcity will hurt performance the least, putting resources where
they can do the most good to applications and the cloud infrastructure provider.
We describe the integration of this model into QoE-JVM, a distributed execu-
tion environment where nodes cooperate to make an efficient management of
the available local and global resources. At a lower-level, the QoE-JVM is a
cluster-enabled runtime with the ability to monitor base mechanisms (e.g. thread



scheduling; garbage collection; CPU, memory or network consumptions) to as-
sess application’s performance and the ability to reconfigure these mechanisms
at runtime. At a higher-level, it drives resource adaptation according to a VM
economics model based on aiming overall quality-of-execution through resource
efficiency.

Section 2 presents the rationale of our adaptations metrics, based on QoE
and resource effectiveness. Section 3 discusses the overall architecture of QoE-
JVM and how the application progress can be measured transparently along
with the type of resources that are relevant to be adapted at runtime. Section 4
describes the current implementation effort regarding an adaptive managed run-
time. Section 5 shows the improvements in the QoE of several well known ap-
plications, and the cost of the modifications made to the runtime. Section 6
relates our research to other systems in the literature, framing them with our
contribution and Section 7 closes and makes the final remarks about our work.

2 QoE-JVM Economics

Our goal with QoE-JVM is to maximize the applications’ quality of execution
(QoE). We initially regard QoE as a best effort notion of effectiveness of the
resources allocated to the application, based on the computational work actually
carried out by the application (i.e., by employing those allocated resources). To
that end the Cobb-Douglas [6] production function from Economics to motivate
and to help characterize the QoE, as decribed next.

We are partially inspired by the Cobb-Douglas [7] production function (hence-
forth referred as equation) from Economics to motivate and to help characterize
the QoE. The Cobb-Douglas equation, presented in Equation 1, is used in Eco-
nomics to represent the production of a certain good.

Y = A ·Kα · Lβ (1)

In this equation, P is the total production, or the revenue of all the goods
produced in a given period, L represents the labor applied in the production and
K is the capital invested.

It asserts the now common knowledge (not at the time it was initially pro-
posed, ca. 1928) that value in a society (regarded simplistically as an economy)
is created by the combined employment of human work (labour) and capital (the
ability to grant resources for a given project instead of to a different one). The
extra elements in the equation (A, α, β) are mostly mathematical fine-tuning
artifacts that allow tailoring the equation to each set of real-life data (a frequent
approach in social-economic science, where exact data may be hard to attain and
to assess). They take into account technological and civilization multiplicative
factors (embodied in A) and the relative weight (cost, value) of capital (α) and
labour (β) incorporated in the production output (e.g., more capital intensive
operations such as heavy industry, oil refining, or more labour intensive such as
teaching and health care).



Alternatively, labour can be regarded, not as a variable representing a mea-
sure of human work employed, but as a result, representing the efficiency of the
capital invested, given the production output achieved, i.e., labour as a multiplier
of resources into production output. This is usually expressed by representing
Equation 1 in terms of L, as in Equation 2. For simplicity, we have assumed
all the three factors to be equal to one. First, the technological and civilization
context does not apply, and since the data center economy is simpler, as there
is a single kind of activity, computation, and not several, the relative weight of
labour and capital is not relevant. Furthermore, we will be more interested in the
variations (relative increments) of efficiency than on efficiency values themselves,
hence the simplification does not introduce error.

L =
Y

K
(2)

Now, we need to map these variables to relevant factors in a cloud computing
site (a data center). Production output (Y ) maps easily to application progress
(the amount of computation that gets carried out), while capital (K), associ-
ated with money, maps easily to resources committed to the application (e.g.,
CPU, memory, or their pricing) that are usually charged to users deploying ap-
plications. Therefore, we can regard labour (considered as the human factor, the
efficiency of the capital invested in a project, given a certain output achieved) as
how effectively the resources were employed by an application to attain a certain
progress. While resources can be measured easily by CPU shares and memory
allocated, application progress is more difficult to characterize. We give details
in Section 3 but we are mostly interested in relative variations in application
progress (regardless of the way it is measured), as shown in Equation 3, and
their complementary variations in production cost per unit, PCU .

∆ L ≈ ∆ Y

∆ K
, and thus ∆ PCU ≈ ∆ K

∆ Y
(3)

We assume a scenario where, when applications are executed in a constrained
(overcommitted) environment, the infrastructure may remove m units of a given
resource, from a set of resources R, and give it to another application that can
benefit from this transfer. This transfer may have a negative impact in the ap-
plication who offers resources and it is expected to have a positive impact in the
receiving application. To assess the effectiveness of the transfer, the infrastruc-
ture must be able to measure the impact on the giver and receiver applications,
namely somehow to approximate savings in PCU as described next.

Variations in the PCU can be regarded as an opportunity for yield regarding
a given resource r, and a management strategy or allocation configuration sx,
i.e., a return or reward from applying a given strategy to some managed resource,
as presented in Equation 4.

Y ieldr(ts, sa, sb) =
Savingsr(sa, sb)

Degradation(sa, sb)
(4)



Because QoE-JVM is continuously monitoring the application progress, it is
possible to incrementally measure the yield. Each partial Y ieldr, obtained in a
given time span ts, contributes to the total one obtained. This can be evaluated
either over each time slice or globally when applications, batches or workloads
complete. For a given execution or evaluation period, the total yield is the result
of summing all significant partial yields, as presented in Equation 5.

TotalY ieldr(sa, sb) =

n∑
ts=0

Y ieldr(ts, sa, sb) (5)

The definition of Savingsr represents the savings of a given resource r when
two allocation or management strategies are compared, sa and sb, as presented in
Equation 6. The functions Ur(sa) and Ur(sb) relates the usage of resource r, given
two allocation configurations, sa and sb. We allow only those reconfigurations
which offer savings in resource usage to be considered in order to calculate yields.

Savingsr(sa, sb) =
Ur(sa) − Ur(sb)

Ur(sa)
(6)

Regarding performance degradation, it represents the impact of the savings,
given a specific performance metric, as presented in Equation 7. Considering the
time taken to execute an application (or part of it), the performance degradation
relates the execution time of the original configuration, P (sa), and the execution
time after the resource allocation strategy has been modified, P (sb).

Degradation(sa, sb) =
P (sb) − P (sa)

P (sa)
(7)

Each instance of the QoE-JVM continuously monitors the application progress,
measuring the yield of the applied strategies. As a consequence of this process,
QoE, for a given set of resources, can be enforced observing the yield of the ap-
plied strategy, and then keeping or changing it as a result of having a good or a
bad impact. To accomplish the desired reconfiguration, the underlying resource-
aware VM must be able to change strategies during execution, guided by the
global QoE manager. The next section will present the architecture of QoE-
JVM detailing how progress can be measured and which resources are relevant.
Section 4 shows how existing high-level language virtual machines can be ex-
tended to accommodate the desired adaptability.

3 Architecture

Figure 1 presents the overall architecture of our distributed JVM platform as a
service for Cloud environments. Our vision is that QoE-JVM will execute appli-
cations with different requisites regarding their QoE. Target applications have
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Fig. 1: Overall architecture

typically a long execution time and can spawn several execution flows to paral-
lelize their work. This is common in the field of science supported by informatics
like economics and statistics, computational biology and network protocols sim-
ulation.

QoE-JVM is supported by several runtime instances, eventually distributed
by several computational nodes, each one cooperating to the sharing of resources.
For an effective resource sharing, a global mechanism must be in place to make
weak (e.g. change parameters) or strong (e.g. change GC algorithm, migrate run-
ning application) adaptations [16]. QoE-JVM encompasses a distributed shared
objects middleware, a reconfigurable high-level language virtual machine (HLL-
VM), and, at the bottom, available reconfigurable mechanisms of system level
virtual machine (Sys-VM). In this architecture, the operating system (OS) ser-
vices are only used, not extended.

In this article, we emphasize the extensions made to a HLL-VM, in order to
support monitoring and control of resources along with the adaptive mechanisms.
Regarding the other two lower levels of the platform stack (OS and hypervisor)
our work focus is on using existing APIs to maximize portability of current
solutions and acceptability, in particular using the management API of current
hypervisors. The hypervisor’s internal components are depicted at the bottom of
Figure 1. Some of then can be directly configured, as it is the case of parameters
regarding the CPU scheduler or the ballooning mechanism to reclaim guest’s
memory. Guest operating systems provide several internal tools that typically do
not have a remote API and are mostly used for profiling proposes, not to influence
the application behavior. A well known exception is the priority parameter of
OS processes (e.g. the nice parameter of a linux process).

Each instance of an HLL-VM is enhanced with services that are not available
in regular VMs. These services include: i) the accounting of resource consump-
tion, ii) dynamic reconfiguration of internal parameters and/or mechanisms, and
iii) mechanisms for checkpointing, restore and migration of the whole applica-
tion. These services should and must be made available at a lower-level, inside
an extended HLL-VM, for reasons of control, interception and efficiency. They



are transparent to the application, and so, the extended HLL-VM continue to
run existent applications as they are. To effectively apply the economic model
presented in Section 2 it is necessary to quantify the application progress met-
ric, what resources are relevant and which extensions points exist or need to be
created inside the HLL-VM.

3.1 Progress monitoring

We classify applications as request driven (or interactive) and continuous process
(or batch). Request driven applications process work in response to an outside
event (e.g. http request, new work item in the processing queue). Continuous pro-
cessing applications have a target goal that drives their calculations (e.g. align
DNA sequences). For most non-interactive applications, measuring progress is
directly related to the work done and the work that is still pending. For exam-
ple, some algorithms to process graphs of objects have a completed objects set,
which will encompass all objects when the algorithm terminates. Other examples
would be applications to transform video encoding, where the number of frames
processed is a measure of progress.

There is a balance between application semantics and transparency of progress
measuring. While the number of requests in a request driven application gives
the best notion of progress, it will not always be possible to acquire that in-
formation. On the other hand, low level activity, such as I/O or memory pages
access, is always possible to acquire inside the VM or the OS. The following
are relevant examples of metrics that can be used to monitor the progress of an
application, presented in a decreasing order of application semantics, but with
an increasing order regarding transparency.

– Number of requests processed: This metric is typically associated with
interactive applications, like Bag-of-tasks environments or Web applications;

– Completion time: For short and medium time living applications, where
it is not possible to change the source code or no information is available to
lead an instrumentation process, this metric will be the more effective one.
This metric only requires the QoE-JVM to measure wall clock time when
starting and ending the application;

– Code: instrumented or annotated: If information is available about the
application high level structure, instrumentation can be used to dynamically
insert probes at load time, so that the QoE-JVM can measure progress using
a metric that is semantically more relevant to the application;

– I/O: storage and network: For application dependent on I/O operations,
changes in the quantity of data saved or read from files or in the informa-
tion sent and received from the network, can contribute to determine if the
application reached a bottleneck or is making progress;

– Memory page activity: Allocation of new memory pages is a low level
indicator (collected from the OS or the VMM) that the application is making
effective progress. A similar indication will be given when the application is
writing in new or previous memory pages.



CPU Mem Net Disk Pools

Counted number of
cores

size - - size (min,
max)

Rate cap per-
centage

growth/
shrink rate

I/O rate I/O rate -

Table 1: Implicit resources and their throttling properties

Although QoE-JVM can measure low level indicators as I/O storage and
network activity or memory page activity, Section 5 uses the metric completion
time because the applications used to demonstrate the benefits of our system
have a short execution time.

3.2 Resource types and usage

We consider resources to be any measurable computational asset which applica-
tions consume to make progress. Resources can be classified as either explicit or
implicit, regarding the way they are consumed. Explicit resources are the ones
that applications request during execution, such as, number of allocated objects,
number of network connections, number of opened files. Implicit resources are
consumed as the result of execution the application, but are not explicitly re-
quested through a given library interface. Examples include, the heap size, the
number of cores, network transfer rate.

Both types of resource are relevant to be monitored and regulated. Explicit
and implicit resources might be constrained as a protection mechanism against
ill behaved or misusing application [12]. For well behaved application, restraining
these resources further below the application contractual levels will lead to an
execution failure. On the other hand, the regulation of implicit resources deter-
mines how the application will progress. For example, allocating more memory
will potentially have a positive impact, while restraining memory will have a neg-
ative effect. Nevertheless, giving too much of memory space is not a guarantee
that the application will benefit from that allocation, while restraining mem-
ory space will still allow the application to make some progress. In this work
we focus on controlling implicit resources because of their elastic characteristic.
QoE-JVM can control the admission of these resources, that is, it can throttle
resource usage. It gives more to the applications that will progress faster if more
resources are allocated. Because resources are finite, they will be taken from (or
not given to) other applications. Even so, the QoE-JVM will strive to choose the
applications where progress degradation is comparatively smaller.

Table 1 presents implicit resources and the throttling properties associated
to each one. These proprieties can be either counted values or rates. To regulate
CPU and memory both types of properties are applicable. For example, CPU
can be throttled either by controlling the number of cores or the percentual cap.
Memory usage can be regulated either through a fixed limit or by using a factor



to shrink or grow this limit. Although the heap size cannot be smaller than the
working set, the size of the over committed memory influences the application
progress. A similar rational can be made about resource pools.

4 The Adaptive Managed Runtime

Controlling resource usage inside a HLL-VM can be carried out by either i)
intercepting calls to classes in the classpath that virtualize access to system
resources or ii) changing parameters or algorithms of internal components. Ex-
amples of the first hook type are classes such as java.util.Socket (where
the number of bytes sent and received per unit of time can be controlled)
and java.util.concurrent.ThreadPoolExecutor class (where the parameters
minimum and maximum control the number of threads). An example of the
second hook type is the memory management subsystem (garbage collection
strategy, heap size).

We have implemented the JSR 284 - Java Management API, delegating re-
source consumption decisions to a callback, handled by a new VM component,
the Resource Management Layer (RML), either allowing, denying it (e.g. by
throwing an exception) or delaying it which allows not breaking application se-
mantics. In a previous work [19] we describe the details to enforce the JSR-284
semantics and basic middleware support to spawn threads in remote nodes (i.e.,
across the cluster). In this paper we show how the yield-driven adaptation pro-
cess, discussed in Section 2, can be used to govern global application and thread
scheduling and placement, regarding other two fundamental resources - heap size
and CPU usage.

4.1 Memory: yield-driven heap management

The process of garbage collection relates to execution time but also to allocated
memory. On the CPU side, a GC algorithm must strive to minimize the pause
times (more so if stop-the-world type). On the memory side, because memory
management is virtualized, the allocated memory of a managed language runtime
is typically bigger than the actual working set. With many runtimes executing
in a shared environment, it is important to keep them using the least amount of
memory to accomplish their work.

Independently of the GC algorithm, runtimes can manage the maximum heap
size, mainly determining the maximum used memory. The memory management
system of the research runtime Jikes RVM [1] uses a built-in matrix to determine
how the heap will grow, shrink or remain unchanged, after a memory collection.
The growing factor is determined by the ratio of live objects and the time spent
in the last GC operation. The default rates determine that the heap shrinks
about 10% when the time spent in GC is low (less than 7%) when compared
to regular program execution, and the ratio of live objects is also low (less than
50%). This allows for savings in memory used. On the other hand, the heap will
grow for about 50%, as the time spent in GC also grows and the number of



live objects remains high. This growth in heap size will lead to an increase in
memory used by the runtime, aiming to use less CPU time because the GC will
run less frequently.

Considering this heap management strategy, the heapsize is the resource
which contributes to the yield measurement. To determine how the workloads
executed by each tenant react to different heap management strategies, such
as, more heap expander or more heap saving, we apply the Equation 6. The
memory saving (Savingshsize) is then found comparing the results of applying
two different allocation matrices, Mα and Mβ , as presented in Equation 8. In
this equation, Uhsize represents the maximum number of bytes assigned to the
heap.

Savingshsize =
Uhsize(Mα) − Uhsize(Mβ)

Uhsize(Mα)
(8)

4.2 CPU: yield-driven CPU ballooning

A similar approach can be extended to CPU management employing a strategy
akin to ballooning4. In our case, the ballooning is carried out by taking CPU
from an application by assigning a single core and adjusting the CPU priority
of its encompassing JVM instance. This makes the physical CPUs available for
other VMs. This is achieved by engaging the Resource Management Layer of our
modified JVM that, ultimately, either interfaces with the OS, or with a system
VM, such as Xen [3], lowering CPU caps.

Thus, regarding CPU as the resource, the savings in computational capability
(that can be transferred to other tenants) can be measured in FLOPS or against a
known benchmark as Linpack. The savings are found by comparing two different
CPU shares or priorities, CPUα and CPUβ , as presented in Equation 9. In this
case Uflops give us the total CPU saved, e.g., relative to the number of FLOPS
or Linpack benchmarks that can be run with the CPU ‘saved’.

Savingsflops =
Uflops(CPUα) − Uflops(CPUβ)

Uflops(CPUα)
(9)

The next section presents the impact of these modifications in the runtime
and the results of applying our resource management strategy related to heap
management and CPU share.

5 Evaluation

In this section we discuss how the resource management economics, presented
in Section 2, were applied to manage the heap size and CPU usage regarding

4 Employed by virtual machine monitors in system VMs, prior to migration, by having
a kernel driver allocating memory pages excessively, in order to drive the guest OS
to swapping and reduce the amount of useful pages in guest physical memory. This
allows the core working set of the guest VM to be obtained with a grey-box approach.
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Fig. 2: Default (M0) and alternative matrices to control the heap growth.

different types of workloads. We evaluated our work using Intel(R) Core(TM)2
Quad processors (with four cores) and 8GB of RAM, running Linux Ubuntu
9.04. Jikes RVM code base is version 3.1.1 and the production configuration was
used to build the source code.

5.1 Heap Size

The default heap growing matrix (hereafter known as M0) is presented in Fig-
ure 2.a. In this, and in the remaining matrices, 1.0 is the neutral value, rep-
resenting a situation where the heap will neither grow nor shrink. Other val-
ues represent a factor of growth or shrink, depending if the value is greater or
smaller than 1, respectively. To assess the benefits of our resource management
economics, we have setup three new heap size changing matrices. The distinctive
factors are the growth and decrease rates determined by each matrix.

Matrices M1 and M2, presented in Figure 2.b and 2.c, impose a strong
reduction on the heap size when memory usage and management activity is low
(i.e. few live objects and short time spent on GC). Nevertheless they provide very
different growth rates, with M1 having a faster rate when heap space is scarce.
Finally, matrix M3 makes the heap grow and shrink very slowly, enforcing a more
rigid and conservative heap size until program dynamics reach a high activity
point (i.e. high rate of live objects and longer time spent on GC) or decrease
activity sharply.
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Fig. 3: Results of using each of the matrices (M0..3), including savings and degra-
dation when compared to a fixed heap size.

Each tenant using the Cloud provider infrastructure can potentially be run-
ning different programs. Each of these programs will have a different production,
i.e. execution time, based on the capital applied, i.e. growth rate of the heap.
To represent this diversity, we used the well known DaCapo benchmarks [5], a
set of programs which explore different ways of organizing programs in the Java
language.

To measure the yield of each matrix we have setup an identity matrix (all
1’s), that is, a matrix that never changes the heap size. Figures 3.a shows the
maximum heap size (left axis) after running the DaCapo benchmarks with con-
figuration large and a maximum heap size of 350 MiBytes, using all the matrices
presented in Figure 2. In the right axis we present the maximum and minimum
of resource savings, as defined in Equation 6. These values were obtained for
each of the matrices when compared to the identity matrix with heap size fixed
at 350 MiBytes. The resource savings are above 40% for the majority of the
workloads, as can be seen in more detail in Table 2.

In Figure 3.b we present the evaluation time of the benchmarks (left axis)
and the average performance degradation (right axis), as defined in Equation 7,



Matrix M0 M1 M2 M3

Sav Deg Yield Sav Deg Yield Sav Deg Yield Sav Deg Yield
xalan 2.3% 0.8% 3.1 53.7% 5.5% 9.7 57.9% 5.4% 10.7 57.9% 6.9% 8.4

hsqldb 7.1% 20.2% 0.4 2.3% 16.4% 0.1 34.4% 16.2% 2.1 31.6% 11.1% 2.9
jython 76.8% 1.9% 39.9 77.7% -1.9% -40.4 80.5% -2.9% -27.5 83.8% 0.8% 104.6

pmd 68.5% 3.6% 18.9 75.4% 5.9% 12.8 82.7% 11.8% 7.0 81.3% 5.1% 16.1
lusearch 53.1% 18.3% 2.9 58.4% 19.3% 3.0 72.4% 42.0% 1.7 73.8% 42.8% 1.7
luindex 84.1% -2.8% -30.4 86.6% -2.5% -34.6 90.8% 4.3% 21.3 85.7% -4.3% -20.1

bloat 76.3% 14.8% 5.2 80.2% 34.4% 2.3 84.7% 18.2% 4.6 85.2% 14.2% 6.0
antlr 83.5% 7.9% 10.5 86.6% 8.9% 9.7 89.4% 9.4% 9.5 85.7% 8.5% 10.0

fop 83.0% 2.7% 30.7 84.9% 1.0% 89.0 85.7% 2.7% 31.7 85.7% 1.8% 48.1

Table 2: The yield of the matrices presented in Figure 2

regarding the use of each of the ratio matrices. Degradation of execution time
reaches a maximum of 35% for lusearch, Apache’s fast text search engine library,
but stays below 25% for the rest of the benchmarks. Table 2, summarizes the
yield, as defined in Equation 4, when using different matrices to manage the
heap size.

Two aspects are worth nothing. First, under the same resource allocation
strategy, resource savings and performance degradation vary between applica-
tions. This demonstrates the usefulness of applying different strategies to specific
applications. If the cloud provider uses M2 for a tenant running lusearch type
workload it will have a yield of 1.7. If it uses this aggressive saving matrix in
xalan type workloads (Apache’s XML transformation processor) it will yield
10.7, because it saves more memory but the execution time suffers a smaller
degradation. Second, a negative value represents a strategy that actually saves
execution time. Not only memory is saved but execution time is also lower. These
scenarios are a minority though as they may simply reveal that the 350 MiBytes
of fixed heap size is causing to much page faults for that workload.

5.2 CPU

Our system also takes advantage of CPU restriction in a coarse-grained approach.
Figure 4 shows how five different Java workloads (taken from the DaCapo bench-
marks) react to the deprivation of CPU (in steps of 25%), regarding their total
execution time. Figure 5 shows the relative performance slowdown, which repre-
sents the yield of allocating 75%, 50% and 25%, comparing with 100% of CPU
allocation. Note that, comparing with previous graphics, some applications have
longer execution times with 0% CPU taken because they are multithreaded and
we used only 1 core for this test.

As expected, the execution time grows when more CPU is taken. This enables
priority applications (e.g. paying users, priority calculus applications) to run
efficiently over our runtime, having the CPU usage transparently restricted and
given to others (a capability in itself currently unavailable in HLL-VMs). Finally,
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we note that 3 applications (pmd, luindex and lusearch) have yields greater
than 1 when CPU restriction is equal or above 50%, as they stay below the
neutral efficiency line in Figure 5, due to memory or I/O contention.

6 Related work

Adaptability is a vertical activity in current systems stack. System-wide VMs,
high level language VMs and special propose middleware can all make adap-
tations of their internal mechanisms to improve the system performance in a
certain metric.

These three levels of virtualization have different distances to the machine-
level resources, with a increasing distance from system-wide VMs to special pur-
pose middleware. The dual of this relation is the transparency of the adaptation
process from the application perspective. A system-wide VM aims to distribute
resources with fairness, regardless of the application patterns or workload. On
the other end is the middleware approach where applications use a special pur-
pose programming interface to specify their consumption restrictions. As more



applications target high level language VMs, including the ones running on cloud
data centers, this virtualization level, which our work encompasses, has the po-
tential to influence high impact resources (akin to system-wide VMs), using
application’s metrics (akin to the middleware approach) but still with full trans-
parency. This section presents work related to these three virtualization levels,
focusing on adaptations whose goal is to improve the application performance
by adapting the infrastructure mechanisms.

In [18], Sharma et al. present a way to dynamically provision virtual servers
in a cloud provider, based on pricing models. They target application owners
(i.e. suppliers of services to end users) who want to select the best configuration
to support their peak workloads (i.e. maximum number of requests per second
successfully handled), minimizing the cost for the application’s owner. Sharma’s
work uses different mechanisms to guarantee the provisioning of resources, which
include: readjusting CPU, memory caps and migration. To make good decisions
they need to know, for each application, what is the peak supported by each
provider’s configuration, which is dependent on real workloads. Furthermore,
because changes to virtual servers configuration is driven by the number of re-
quests per second, it can miss the effective computation power needed by each
request.

Shao et al. [17] adapts the VCPU mapping of Xen [3] based on runtime
information collect at each guest’s operative system. The numbers of VCPUs
is adjusted to meet the real needs of each guest. Decisions are made based
on two metrics: the average VCPU utilization rate and the parallel level. The
parallel level mainly depends on the length of each VCPU’s run queue. Shao’s
work on specific native applications. We believe our approach has the potencial
to influence a growing number of applications that run on high-level language
virtual machines and whose performance is also heavily dependent on memory
management. PRESS [13] tries to allocate just enough resources to avoid service
level violations while minimizing resource waste. It tracks resource usage and
predicts how resource demands will evolve in the near future. To that end, it
employs a signal processing or a statistical method to detect pattern, adjusting
resource caps (with a tolerance factor) based on this analysis.

Ginko [14] is an application-driven memory overcommitment framework which
allows cloud providers to run more system VMs with the same memory. For each
VM, Ginkgo collects samples of the application performance, memory usage, and
submitted load. Then, in production phase, instead of assigning the same amount
of memory for each VM, Ginko takes the previously built model and, using a
linear program, determines the VM ideal amount of memory to avoid violations
of service level agreements. Our approach does not need a global optimization
step each time we need to transfer resources among VMs.

High level languages virtual machines are subject to different types of adap-
tation regarding the just in time (JIT) compiler and memory management [2].
Nevertheless, most of them are hard coded and cannot be influenced without
building a new version of the VM. In [9], Czajkowski et al. propose to enhance
the resource management API of the Multitask Virtual Machine (MVM) [10],



forming a cluster of this VMs where there are local and global resources that can
be monitored and constrained. However, Czajkowski’s work lacks the capacity
to determine the effectiveness of resource allocation, relying on predefined allo-
cations. In [15], a reconfigurable monitoring system is presented. This system
uses the concept of Adaptable Aspect-Oriented Programming (AAOP) in which
monitored aspects can be activated and deactivated based on a management
strategy. The management strategy is in practice a policy which determines the
resource management constraints that must be activated or removed during the
application lifetime.

In [20] the GC is auto-tuned in order to improve the performance of a MapRe-
duce Java implementation for multi-core hardware. For each relevant benchmark,
machine learning techniques are used to find the best execution time for each
combination of input size, heap size and number of threads in relation to a given
GC algorithm (i.e. serial, parallel or concurrent). Their goal is to make a good
decision about a GC policy when a new MapReduce application arrives. The de-
cision is made locally to an instance of the JVM. The experiments we presented
are also related to memory management, but our definition of QoE (as presented
in Section 2) can go beyond this resource.

At the middleware level, Coulson et al. [8] present OpenCom, a component
model oriented to the design and implementation of reconfigurable low-level
systems software. OpenCom’s architecture is divided between the kernel and
the extensions layers. While the kernel is a static layer, capable of performing
basic operations (i.e. component loading and binding), the extensions layer is a
dynamic set of components tailored to the target environment. These extensions
can be reconfigured at runtime to, for example, adapt the execution environment
to the application’s resource usage requisites. Our work handles mechanisms at
a lower level of abstraction.

Duran et al. [11] uses a thin high-level language virtual machine to virtual-
ize CPU and network bandwidth. Their goal is to provide an environment for
resource management, that is, resource allocation or adaptation. Applications
targeting this framework use a special purpose programming interface to specify
reservations and adaptation strategies. When compared to more heavyweight ap-
proaches like system VMs, this lightweight framework can adapt more efficiently
for I/O intensive applications. The approach taken in Duran’s work bounds the
application to a given resource adaptation interface. Although in our system the
application (or the libraries they use) can also impose their own restrictions, the
adaptation process is mainly driven by the underlying virtual machine without
direct intervention of the applications.

7 Conclusions

In this paper, we described the ongoing research to design QoE-JVM. It aims
at offering a distributed execution environment, each executing an extended
resource-aware runtime for a managed language, Java, and where resources are
allocated based on their effectiveness for a given workload. QoE-JVM has the



ability to monitor base mechanisms (e.g. CPU, memory or network consump-
tions) in order to assess application’s performance and reconfigure these mech-
anisms in runtime.

Resource allocation and adaptation obeys to a VM economics model, based
on aiming overall quality-of-execution (QoE) through resource efficiency. Essen-
tially, QoE-JVM puts resources where they can do the most good to applications
and the cloud infrastructure provider, while taking them from where they can
do the least harm to applications.

We presented the details of our adaptation mechanisms in each VM (for
memory, CPU) and their metrics. We experimentally evaluated their benefits,
showing resources can be reverted among applications, from where they hurt
performance the least (higher yields in our metrics), to more higher priority or
requirements applications. The overall goal is to improve flexibility, control and
efficiency of infrastructures running long applications in clusters.
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