
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1879

SPECIAL ISSUE PAPER

A checkpointing-enabled and resource-aware Java Virtual Machine
for efficient and robust e-Science applications in grid environments

José Simão 2,3, Tiago Garrochinho 1,3 and Luís Veiga 1,3,*,†

1Instituto Superior Técnico, UTL, Portugal
2INESC-ID Lisboa, 1000 Lisboa, Portugal

3Instituto Superior de Engenharia de Lisboa, Portugal

SUMMARY

Object-oriented programming languages presently are the dominant paradigm of application development
(e.g., Java, .NET). Lately, increasingly more Java applications have long (or very long) execution times
and manipulate large amounts of data/information, gaining relevance in fields related with e-Science
(with Grid and Cloud computing). Significant examples include Chemistry, Computational Biology and
Bio-informatics, with many available Java-based APIs (e.g., Neobio).

Often, when the execution of such an application is terminated abruptly because of a failure (regardless
of the cause being a hardware of software fault, lack of available resources, etc.), all of its work already
performed is simply lost, and when the application is later re-initiated, it has to restart all its work from
scratch, wasting resources and time, while also being prone to another failure and may delay its completion
with no deadline guarantees.

Our proposed solution to address these issues is through incorporating mechanisms for checkpointing and
migration in a JVM. These make applications more robust and flexible by being able to move to other nodes,
without any intervention from the programmer. This article provides a solution to Java applications with long
execution times, by extending a JVM (Jikes research virtual machine) with such mechanisms. Copyright
© 2011 John Wiley & Sons, Ltd.

Received 2 March 2011; Revised 9 August 2011; Accepted 1 September 2011

KEY WORDS: virtual machines; checkpointing; migration; JVM; e-Science; resource-awareness; quality
of execution

1. INTRODUCTION

Object-oriented programming languages are, in current days, the dominant paradigm of applica-
tion development (mostly Java and .NET languages). They prevail in desktop applications, appli-
cation development itself (Eclipse), web application servlets, components, beans in application
servers, and even in games, mostly in mobile scenarios. More recently, there are also increasingly
more applications that have long (or very long) execution times and manipulate large amounts
of data/information. This is becoming more and more relevant in various fields related with
e-Science (mostly in the context of Grid and Cloud computing) where Java is becoming the
dominant language, albeit used by researchers (programmers) who are often not computer engi-
neers/computer scientists. Relevant examples include Chemistry, Computational Biology and
Bio-informatics [1–3], with many available Java-based APIs (e.g., Neobio [4])

Often, when the execution of one of those applications is terminated abruptly because of a failure
(regardless of it being caused by hardware of software fault, lack of available resources, etc.), all

*Correspondence to: Luís Veiga, INESC–ID, Rua Alves Redol 9 1000–029 Lisboa.
†E-mail: luis.veiga@inesc-id.pt

Copyright © 2011 John Wiley & Sons, Ltd.



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

of its work already carried out is simply lost, and when the application is later re-executed with the
same parameters and input (e.g., as in the case of a data-processing job), it has to restart its work
from scratch, wasting resources and time, and being prone to another failure, to delay its completion
with no deadline guarantees.

In a grid environment, applications running on a given node compete for the finite resources of
that machine (e.g. CPU, memory, input/output (I/O)). Each application is running to produce a set
of results on behalf of a given user, but not all users have some of the execution requirements or
some of the priorities to complete their work. The work of Silva et al. [5] classifies users in four
different types in order to apply differentiating policies to the work of these users. In academic insti-
tutions, for example, the same grid can be used to run e-Science applications by students in different
academic levels. Using the same infrastructure will have less costs and will be easy to maintain.
Nevertheless, the managers of the infrastructure will want to impose a high-level policy and give a
distinguished execution quality to different types of students. The mechanisms to obtain this qual-
ity of execution can range from restraining resource consumption in coarse grain (e.g. CPU usage,
physical memory allocated) to the migration of the application to another node.

A possible solution to solve these problems is through mechanisms of checkpoint and migration
of applications made available through a resource aware-enabled object-oriented virtual machine
(OO VM). With these mechanisms, an application becomes more robust as most of the work or
calculations already performed can be recovered, and the execution can be resumed from an earlier
point in time. It gains flexibility by being able to move to other nodes, without intervention from the
programmer, regulated by a global policy enforced to each OO VM.

Traditional mechanisms of checkpoint and migration are supported at different levels: (i) process
level (whether initiated by application with its own code or via specific libraries or as a facility
offered by the modified or extended operating system (OS) [6]); and (ii) system virtual machine
(System VM, e.g., Robert Bradford et al. [7]). These approaches are insufficient for the following
limitations: (i) they either require to store/transfer information that is not on the application itself
(e.g., information on the OS on which it runs); or (ii) limit the portability of it. Therefore, as the
majority of the object-oriented programming languages execute their applications on OO VM (also
known as high-level language virtual machine, e.g., JVM, .NET CLR), our solution proposes an
approach to the checkpoint and migration mechanisms at this level.

In particular, regarding System VM checkpointing technology, it overshoots our intended sce-
narios of OO-based e-Science applications because of the inherent overhead of saving the whole
memory of the machine (including the application, code and data of other running applications, the
VM code itself, all of the OS kernel, buffers and dynamic libraries, full hard-disk images). Our
solution, being tailored to OO VMs, saves only the relevant data to be able to restore the application
on another OO VM in another host.

There is already some research in the area of checkpoint and migration solutions at the OO
VM level; however, some existing solutions are embedded in the context of mobile agents
and for that, are very limited; that is, they only portray a single thread on a very limited
and controlled environment (e.g., MobileJikesRVM [8]). Other solutions either have efficiency
problems (e.g., JavaGo [9], JavaGoX [10], Brakes [11], ITS [12], that have a performance
penalty in applications runs exceeding an average of 300%), or they pass the responsibility
to the programmer (e.g., Web Agent based Service Providing (WASP) [13], Object Broker
Infrastructure for Wide Area Networks (OBIWAN) [14]) that must cooperate with the check-
pointing mechanisms, which limits transparency, or are solutions in which completeness is not
well addressed, and the problem is specifically related to the external state of an application (e.g.,
files, client sockets).

This article provides a novel solution to Java applications with long execution times by incor-
porating checkpoint and migration mechanisms in a JVM (Jikes RVM [15]). It is able to check-
point multithreaded applications, ensuring the checkpoint is a consistent snapshot of the execution
taking into account thread concurrency and synchronization, while avoiding application pause by
performing the checkpoint concurrently (or incrementally) alongside with the application execution.

Our techniques rely on two base mechanisms: on-stack replacement (OSR) and yield points,
existent in many other VM implementations (e.g. Sun HotSpot) and other VM technologies

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

(e.g. .NET CLR, Mono). Therefore, our techniques could be applied to other VMs. The main
objectives are focused on the problems of transparency and completeness and how these mech-
anisms can be activated according to low-level resource management and monitoring driven by
policies. Our proposed solution takes into account the following set of properties:

� Transparency: The mechanisms should not be constructed in such a way that impose respon-
sibilities to the programmer. So, no application changes are required. A controller program
(command line input) is provided, which communicates with the application-running envi-
ronment (VM) to take advantage of these mechanisms (that can be used by other users than
the developer himself). Applications should not realize changes of environment or that were
recovered using checkpoint or were transported to another environment using migration.
� Flexibility: Although there are no mandatory responsibilities to the programmer, we propose

an API that allows himself to control checkpoint and migration mechanisms in his application.
� Consistency: The state of an application remains free of inconsistencies, even after a

resume/rescue operation. In functional terms, the application continues its execution as if the
checkpoint or migration never happened (does not include temporal matters).
� Completeness: The mechanisms must portray the whole state of an application: code, data (e.g.

heap), execution state (e.g. stack, threads), external links (files, client sockets), state regarding
native execution (java native interface, JNI), and Java synchronization monitors. Note that it is
not intended to store/carry the whole virtual machine (VM) as a block. It is intended to only
take into account the minimum state relative to the application itself so that this minimum is
enough to reconstruct the execution state of the application on another virtual machine instance
(local or remote).
� Portability: Partly provided by the OO VM approach but it is necessary to have the VM

modified/extended in all machines/nodes. It is also desirable that the same VM source code
compiled in a particular OS and architecture may be able to use checkpoints generated by the
same VM compiled on other systems.
� Efficiency: The additional constant overhead, imposed during error-free execution, to the

performance of running applications should be minimized. The performance cost during the
activation of the checkpointing mechanisms should be proportional to the applications itself.
� Robustness: The mechanisms, at least, shall not affect the application or be a source of new

exceptions that were not envisioned by the developer (e.g., when it is not possible to do a
checkpoint or migration, the application must continue normally).

The rest of this paper is organized as follows. In Section 2, we overview the related work. In
Section 3, we describe the architecture and general vision of the components of the proposed
solution. In Section 4, we address the most relevant details of the implementation. In Section 5,
we present results obtained in the evaluation of the developed mechanisms, as a form to illus-
trate their feasibility, efficiency, and sources of overhead. In Section 6, we close the paper with
some conclusions.

2. RELATED WORK

In this section, we address the related work on checkpointing mechanisms and on resource
management in the context of OO VMs.

Checkpointing, restore, and migration mechanisms
Existent mechanisms for checkpoint and migration are implemented at different levels: System VM,
Process level, and OO VM, the main subject of this work. Naturally, the level of implementation
influences the type of information maintained; that is, depending on the level of implementation,
we can obtain checkpoint and migration of OSs (i.e., a complete machine or platform installation),
applications, or threads. Regardless of the level of implementation, the execution state that the
mechanisms have to persist can be divided into two parts: internal and external state. The internal
state includes pending signals, address space (heap, stack and any region mapped), and internal
registers. External state covers file descriptors, the actual contents of the files, and sockets.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

Regarding the internal state, the problem in general is more or less well addressed; however,
although not explicitly stated, some of the existing solutions require the execution environment to
be well defined and controlled (e.g., mobile agents, single-thread applications, required coopera-
tion of application code with checkpointing mechanisms). Conversely, for external state, solutions
already have some problems. They are either incomplete and may not work around the issue of files
mobility or address it simply by imposing the usage of a distributed file system. For some scenarios,
such as large-scale settings, it can be costly in terms of performance, or plainly incompatible, to be
dependent on a distributed file system [7].

As our work performs checkpointing at the OO VM level, we focus our discussion of related
work on VM level schemes. At this level, the vast majority of checkpoint and migration solutions
use a serialization mechanism provided by the VM itself. As an example, the serialization mecha-
nism of JVMs allows to store and retrieve the state of an object and also allows the transfer of the
same object between different machines/nodes. With only one mechanism, we can have information
persistence and transfer.

Object-oriented virtual machine checkpoint and migration solutions can be further subdi-
vided into two classes regarding their approach (both address threads and application data—
object heap):

� OO VM internal level: this approach fulfills the requirement of completeness by having access
to the whole execution state. However, these solutions have problems of portability (other VM
implementations also have to incorporate code changes in order to make the checkpointing
and restore mechanisms work). This approach is usually accomplished through modifications
or extensions of the OO VM’s own internal code, introducing new features from libraries and
providing checkpoint or migration. Examples of such solutions include Merpati [16], OCaml
Virtual Machine (OCVM) [17], Collaboration and Coordination Infrastructure for Personal
Agents (CIA) [18], MobileJikesRVM [8], Sumatra [19], JavaThread [20], Nomads [21],
ITS [12], and Jessica2 [22].
� OO VM application level: this approach has the main advantage of being portable (it needs no

modifications to be applied to VM code) but has serious efficiency issues (code expansion) and
does not meet the requirement of completeness. At this level, the application code (source code
or bytecode) is transformed by a preprocessor (or a bytecode enhancer) that adds new instruc-
tions to the application code (instructions which serve to capture or restore the application
state or trigger other code that performs it). Examples of such solutions include WASP [13],
JavaGo [9], JavaGoX [10], Brakes [11], and M-JavaMPI (Message Passing Interface) [23].

Additionally, some of these solutions, such as CIA [18] and M-JavaMPI [23], take advantage
of the debugging library provided by the JVM architecture, known as the Java Platform Debugger
Architecture (JPDA), to store and retrieve the execution state of an application. Nonetheless, JPDA,
when used to implement mechanisms of checkpoint and migration, has some limitations, the most
significant being that these solutions are only able to extract the state of a single thread.

Among the solutions already mentioned at the OO VM level, there are few that support check-
point or migration of applications. Next, we offer a brief comparison of those solutions with the
general view of the solution we propose in this article.

Merpati [16] is an application checkpoint solution. It cannot deal with application threads already
blocked prior to performing a checkpoint, and it cannot handle a state that does not belong to the
VM, as is the case of a native state. Our approach can deal with threads already blocked, and JNI-
related state is processed in such a way that it is not explicitly saved, but at the same time, we ensure
consistency of the VM and application upon restore.

OCVM [17] is a checkpoint solution designed for applications at the OO VM internal level,
although it is a very high level, which compromises its completeness, and is also very restricted in
scope because it does not target a VM with a widely used programming language such as Java.

Web analytics solution profiler [13] and OBIWAN [14] are solutions for the migration of mobile
agents, but they can deal with multiple threads. This solution manipulates Java source code in order
to add additional instructions to support migration. This has two main disadvantages: it does not sup-
port applications whose Java source code is not provided, and, maybe worse, it needs the assistance

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

of the programmer to address limitations of the solution, regarding when and where a checkpoint can
be performed and what data to be included in it. Our approach does not suffer from these limitations.

Lastly, M-JavaMPI [23] was designed to support application migration, but it employs JPDA as
the core of the solution, and for that reason, it can only support applications with a single thread. In
general, Merpati, WASP, and M-JavaMPI have transparency problems (in the worst case, they force
the programmer to modify his program in order to explicitly invoke the provided mechanisms, or
the programmer has to be aware of an additional programming model, e.g., MPI). The extraction of
external state is also an issue. Most solutions support neither sockets nor files; in most cases, appli-
cations are relocated simply by using a distributed file system, which raises performance, scalability,
and administrative issues in large-scale settings.

Resource monitoring and management in object-oriented virtual machines
Resource monitoring and management are required in OO VMs for Grid environments because of
two major reasons: (i) monitoring is required to obtain some kind of measurement of resource usage
by an application; and (ii) management is required in order to determine the amount of resources
should be awarded to an application and to enforce those limits somehow. Such mechanisms, regard-
ing low-level aspects of an execution environment, may need to be continuously or at least frequently
activated, enforced, or inquired. Therefore, their implementation must aim at minimizing the impact
to the overall application’s performance. The work of Sweeney et al. [24] aims to accomplish these
goals using hardware performance counters. Thus, the Jikes RVM was extended with a performance
monitor layer through a native C library. Although effective in monitoring, it does not support any
kind of enforcement on resource consumption restriction. Regarding the implementation, it is depen-
dent on a previous version of Jikes RVM employing a scheduling algorithm that mapsN VM threads
to M native threads.

Some systems relax requirements on low-level precision in exchange by portability. The profiling
framework of Binder [25] performs static instrumentation to core runtime libraries and dynamically
instruments the rest of the code. Thus, the instrumented code can periodically call pure Java agents
to process and collect profiling information.

Other high-level VMs have been either extended or designed explicitly to integrate some
form of resource accounting [26–28]. An influential work was the Multi-tasking Virtual Machine
(MVM) [26], on the basis of the HotSpot VM. It supports isolated computations (isolates), similar to
different address spaces, to be performed within a single instance of the VM. Furthermore, MVM is
able to impose different constrains regarding consumption of specific isolates. MVM resource man-
agement work is related, and probably inspired, with the Java Specification Request (JSR) 284 [29].
Still, MVM only runs on Solaris on top of SPARC’s hardware. Our work builds upon this JSR work,
implementing it in the context of a widely accessible VM.

The work in [27] and [28] enables precise memory and CPU accounting. Nevertheless, they do
not provide an integrated interface to define any resource consumption policy, which may involve
VM, system, or class library resources.

3. ARCHITECTURE

In a grid where nodes maybe running multiple e-Science applications, it is important to regulate the
Quality of Execution (QoE) of each application because they may be running workloads with differ-
ent user and application priorities and deadline requirements. Although related, the goals expressed
by the QoE requirements are of a different nature than those of the requirements expressed in Service
Level Agreements and QoS. Both service level agreements and QoS are normally associated with
commercial service providers. These agreements focus on the quality or number of transactions that
the provider is expected to accomplish and on the downtime a user is willing to accept. They are
expressed as legal contracts, and failure to meet them results in penalties for the provider.

In e-Science infrastructures, the goals are more relaxed because no commercial service is being
provided. Nevertheless, we can still express the intended (or ideal) amount of resources an applica-
tion should be provided in order to run according to its priority. Therefore, it is of most relevance

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

that such systems incorporate mechanisms to enforce usage policies or even resource booking, as
emphasized by the recommendations of the Networking, Computing Capacity, and Data Storage
System subgroups formed by the Department of Trade and Industry Steering Group to address the
issues and challenges related to the development of a UK e-Infrastructure for research [30].

The major element of our work is an enhanced OO VM capable of checkpointing, restoration,
and migration of applications. The activation of these mechanisms is regulated by a QoE Controller.
On the basis of execution requirements (e.g., CPU, memory and network usage), the QoE controller
can apply two coarse grained measures: (i) checkpoint and suspension of a VM; and (ii) migration
of the application execution state to another node. To avoid disturbing the applications whose QoE
is to be favored, our solution is to apply the former mechanisms to the VMs executing applications
with lower priority, restraining them from using the shared resources or promoting their migration
to another available or default node.

In case of migration for load balancing, our scheduling is based on receiving periodic information
regarding the load of each host, broadcast over the local area network. Each host selects a target ran-
domly from those whose load is below the median, to balance the load while preventing suddenly
overloading one or two least loaded hosts.

Next, we describe the main aspects of the architecture of the checkpoint-enabled OO VM. We
start with an overview description of the mechanisms for checkpoint/restore/migration and resource
regulation and then with the internal architecture of the extended VM. In Figure 1, we present the
overview of the features supported by this work:

1. Checkpoint and its corresponding restore. This operation collects all the necessary informa-
tion (and only that) about the application and VM runtime so that it can be suspended and later
restored. The checkpoint can be made to the local or distributed file system.

2. Migration between two nodes. The migration is done directly between two nodes.
3. Monitoring and control of VM resources. Resource usage is reported to the QoE controller,

which can restrain their usage or apply coarse grain actions (i.e. checkpoint/suspend or
migrate) to guarantee execution quality, in that node, to relevant applications.

The architecture of this work presented in Figure 2 consists of a set of components that focus on
the transparency and completeness properties described earlier and/or on data transfer. There are
three primary components:

� Application: Executing in the context of an extended VM with mechanisms to support
checkpoint, restore, and migration.

Figure 1. High-level architecture with mechanisms usage overview.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

Figure 2. Virtual machine architecture in one node.

State extraction captures the execution state related with all threads within the applica-
tion. Checkpoint has the obligation to stop all threads (to guarantee consistency), calls the
state extraction, and finally saves the state persistently into a file system. Migration calls the
checkpoint and sends that execution state via network.

State restoration has the responsibility to rebuild the execution state in a newly created appli-
cation, which corresponds to reconstructing and resuming the execution of all stack frames
(a stack frame corresponds to a call to a subroutine that has not yet terminated with a return)
for all threads and when ready, restart execution. Restore guarantees that the newly created
application can initiate state restoration and additionally, if requested, obtains the state from
a file system. A migration daemon is used in migration, which receives the state from the
network. When the state is available, the migration daemon calls a restoration with that state.
CheckpointTo and migrationTo methods/services are triggered by the controller. A

special thread is listening in a specific socket, which makes it possible to receive external
orders. When triggered, corresponding commands are passed into the checkpoint or the migra-
tion internal components. MigrateFrom and restoreFrom triggers are just simple input
channels to receive execution state information.
� VM controller: Command line program, which communicates with the application to take

advantage of the mechanisms developed. It is from this that a user controls the mechanisms
developed on an application, parameterizing it with commands/instructions depending on the
desired result. This lower-level controller, one for each running VM, is instructed and inquired
by the QoE Controller running on the node.
� Migration service: Service present on all nodes, which aims to receive migrated applications.

This server also responds to requests for classes and files transfer that are handled on demand.

In order to use checkpoint and migration mechanisms externally, the VM controller must discover
the socket port that the application (i.e., the VM running it) is listening (to receive checkpointTo
or migrationTo trigger instructions). The VM controller also listens in a specific socket port and
sends an OS signal [31] to the application (using its process identification, e.g., Unix Process ID).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

Note again that in this case, we regard as the application the whole process running the VM instance
executing the application. Interactions are actually performed by VM code. When the application
receives that signal, it performs a callback by connecting to the controller by socket, and from that
moment, it is possible to exchange messages between both.

In case of application migration, the interaction between the various components is done as
follows. The application VM instance communicates with the remote migration service to initiate
a migration. This service is responsible for starting a newly created VM instance (that will restore
the checkpointed application) that will listen on a given socket (internal Migration Daemon). Once
the state can be transferred, the migration service responds to the original application with the port
it must send the state to. From this moment on, the state is transferred from the original application
to the newly created application directly.

4. IMPLEMENTATION

The mechanisms of checkpoint, migration, and resource management were developed in the Jikes
RVM (release 3.1.0). Jikes RVM is a VM designed to run Java programs, whose distinctive feature
compared with other JVMs is also implemented in Java. Nonetheless, unlike other JVMs, Jikes
RVM does not need to rely on a second JVM to bootstrap and run.

In this section, we focus on the implementation details that provide better understanding of the
solution developed. First, we describe how the execution state can be saved persistently on a disk
and transferred across networks. State extraction and restoration is detailed taking into account the
consistency property. Then, we highlight the most relevant implementation differences regarding
the concurrent version of the checkpoint mechanism. Finally, the mechanisms used by the QoE
controller to monitor and control resources are described.

Execution state: disk persistence and transfer
Most solutions discussed in related work at OO VM level use a serialization mechanism sup-
ported by the VM, on which they develop the checkpoint or migration mechanisms. This solu-
tion is no different. We are taking advantage of the Java serialization mechanism, implemented
by GNU’s Not Unix (GNU) CLASSPATH (http://www.gnu.org/software/classpath/) and sup-
ported in Jikes RVM, to persist and carry the information related to the execution state of a
running application.

However, Java serialization requires that every class that must be serialized implements the
Serializable interface. Thus, we would have to trust all application classes that implemented
that interface, and consequently, we would give responsibilities to the programmer to do it so (violat-
ing the property of transparency). However, this interface serves only as a tag to mark which classes
are serializable or not because taking, for example, the Thread class, this class has dependencies
on the environment it runs on (OS, system calls, or native library dependencies) and cannot be auto-
matically serialized. Because our solution addresses the issue of mobility of such objects, activating
the default serialization internally, there is no need for application code to explicitly implement this
or any other interfaces.

Consistency
To obtain a consistent state of the VM for its checkpoint, it is required to ensure that all nonsystem
threads are stopped (we only need to take into account application threads). Jikes RVM has support
for yield points, which are inserted automatically by the just-in-time (JIT) compiler, on method pro-
logues, epilogues, and loop back edges. These yield points are safe points where the VM can take
control over a thread in order to make it stop because in such points, threads are not changing the
VM state or executing any application instructions (bytecodes).

In the Jikes RVM, threads are classified either as system threads (e.g., GC, Finalization) or as
application threads. The threads of the Checkpoint Restore and Migration (CRM) mechanisms are
also classified as a system. When there is a checkpoint request, all nonsystem threads are signaled

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

to stop, and this is handled by the method checkBlock, called when the execution reaches a
yield point.

This would be sufficient for threads that are not blocked. But, if a thread is already blocked (e.g.,
in a read from input), then it cannot reach a yield point. This would prevent the VM from ever being
able to perform the checkpoint. However, if a thread is already blocked, it is in a safe point by the
same reasons of yield points (thus called effectively safe). So, if all threads are in safe points or are
effectively safe, the VM can be stopped in a consistent state, with some additional care.

It is true that effectively safe threads are indeed running (as far as the VM is concerned, they are
in the midst of executing a bytecode instruction). But, when the native operation is finished, the
thread returns to the control of the VM, and it will be blocked on a yield point before continuing,
enforcing the desired property of consistency.

Execution state: stack frames saved
Figure 3 shows which stack frames are saved for each type of thread. Shaded stack frames are the
ones only saved. The black fill marks the first frame to be saved.

A thread in a safe point has always the same first stack frame but effectively safe threads do not.
However, every time a thread is effectively safe it enters into internal VM code and is forced to save
the frame pointer (FP, stack pointer that points to the last created frame) and the instruction pointer
(IP, pointer that points to the next instruction to be executed) pointers.

Effectively safe threads are always restored in the same safe point. If a thread returns from its
effectively safe state while in state extraction (Figure 3, transition from thread #2 to #3), then, on
restore, it will appear as if it never advanced the execution (it will look exactly like thread #2), which
is the desired state.

Execution state: extraction
We are taking advantage of OSR [32] to extract and restore the execution state of the threads of a
running application. OSR makes it possible to take a stack frame from the stack and substitute it
with another one.

Figure 3. Safe and effectively safe thread examples.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

Jikes RVM has support for two JIT compilers: baseline and optimized. Baseline stack frames
are fully observable and easily extracted, but optimized ones are not. The optimized compiler has a
more intricate operation and chooses points in a code where OSR can occur (points where the rele-
vant OSR maps are created), and for that, we currently only support baseline stack frame extraction.
We are aware of the work done in [33] that disabled some optimizations without losing significative
performance, but we also know that this solution only works 60% of the times. So, future work must
address the full support of optimized stack frame extraction.

Baseline stack frame extraction is done as follows. First, it analyzes bytecodes in order to
determine the type of locals and stack operands at a certain bytecode index, just like a common
bytecode verifier. The produced result has to be adjusted with GC maps because there can be object
variables (references) that may be uninitialized at the current bytecode index. Additionally, the
numbers of locals and stack operands are counted. When ready, the baseline state extractor uses
both type/number of locals and stack operands to retrieve the full data from the stack frame. The
structures of the information retrieved are the following:

� Local and stack operand variables (includes method arguments and reference to object this).
� Bytecode IP.
� Compiler type (baseline or optimized).
� Method name (composed by class/descriptor/method (e.g. mypackage.myclass/

(I)V/mymethod)).
� Next stack frame execution state.

Execution state: restoration
On restore, every stack frame execution state is recompiled with a special prologue with the
following additional bytecode instructions that have the following responsibilities:

� Recover local and stack operand variables from the checkpointed stack frame
� For every checkpointed stack frame, recursively, recreate it by invoking its prologue code.
� And finally after that, recover the bytecode IP preserved.

After recompilation, for every checkpointed thread, a new thread reruns all compiled stack frames in
the same order as they were before, and when finished, the thread automatically blocks to make the
restore consistent. When all threads are ready, the VM can restart with the previously checkpointed
execution state.

Execution state: threads and thread synchronization state
The checkpoint must include information identifying the application threads and their
synchronization-related state in order to resume later the application execution correctly, with the
same number of threads, with the same synchronization context (e.g., monitors owned by each
thread, waiting or blocked on a monitor). Because neither the Thread nor the RVMThread (thread
internal representation, object that represents a thread within the VM) class is serializable, and also
the information regarding internal synchronization locks has very strong environment dependencies,
we are faced with two alternatives:

1. Create a special externalized version of the object with the minimum required information
(represented only by primitive data types), which allows the reconstruction of the object on
restore, include all the monitors; or

2. Avoid serializing the object, walking back the thread stack to a frame position where the object
had not yet been created. This is only possible when code on restore is deterministic and can
recreate all the information like it was before. We prefer this kind of solution for the thread
synchronized state.

A thread within synchronized methods or statements can be in one of the three states: monitor
owner, blocked in the entry set, or blocked in the wait set. Because we avoid saving internal synchro-
nization locks on restore, they have to be recreated. The owner of the lock on restore must always
reacquire it again, and this is enforced. Entry and wait set threads are walked back to a stack frame

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

that on restore reruns the lock and wait code again, which makes them lock in the right set. It is true
that the order in both sets can be different from the old state, but monitor owner competition is very
implementation dependent, and for that, this is not a requirement as it is usually regarded as bad
programming to rely on relative speed of threads for correctness in an application.

Saving and restoring external files and connections
In the Java Class Library, all streaming I/O is done through implementations of the
interfaces InputStream and OutputStream. The classes FileInputStream and
FileOutputStream are the less specialized ones that provide the abstraction to deal with
streaming file I/O. Although a file can be accessed through other types, which decorates the behavior
of these two (e.g., BufferedInputStream), all reads or writes will eventually come down to
the two previously mentioned classes. In this hierarchy, the only types with dependencies to native
resources are the classes FileInputStream and FileOutputStream, namely the operative
system file descriptor.

When the checkpoint mechanism is activated and there are open files, a thread can be either
blocked in a read/write operation or just have the file opened. In the former case, the thread is effec-
tively safe because it is blocked in a native operation. In the latter, it is in a safe state because
it is blocked following a yieldpoint. To handle both cases, the serialization of objects of type
FileInputStream and FileOutputStream has to be carried out in a proper manner. In
Listing 1, we show an example of how to serialize the type FileInputStream.

Listing 1. Serialization for instances of FileInputStream.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

When a thread is reading a file, it is effectively safe. In this case, the thread holds (indirectly) a
reference to a FileChannelImpl and a FileDescriptor. To avoid having to serialize these
two objects, the execution state extraction begins only in the caller of the method that was reading
or writing the file when a checkpoint was requested. When restored, the thread will repeat the I/O
operation from the beginning, avoiding consistency problems.

The running thread is essentially unaware that the actual OS file descriptor has changed because
the the file was reopened. It uses the same stream reference whose file cursor was reset to the
previous position before the checkpoint.

The same takes place with streaming over client sockets; they are reconnected on restore to the
previous addresses (except there are no cursors), for example for applications that are fetching data
or sending results to a key-value store. Thus, while preventing immediate exception and failure on
the next send/receive operation after restore, we still depend on the application communication pro-
tocol to be able to progress correctly. Our current work does not target server-like applications, and
so, we do not aim for that functionality.

The contents of, alternatively according to configuration, open files or the current directory are
eagerly copied to the destination node, or if so configured, file accesses are redirected back to the
original host (without supporting further levels of chaining).

Additional issues with the Java Native Interface
A thread with JNI state is just like an effectively safe thread. State extraction starts on the last frame
that makes the JNI call. If JNI returns, it will block. On restore, it will happen as if that JNI call
never happened and so is repeated again. This stays consistent within the VM.

4.1. Concurrent checkpointing

Our checkpoint mechanism can also run concurrently with the main program, preventing full pause
of the application during checkpointing, thus further reducing the overhead experienced by appli-
cations. There are two main implementation issues regarding concurrent (or incremental) check-
pointing: (i) ensuring checkpoint consistency because the application continues executing while the
checkpoint is created; and (ii) avoiding excessive resource consumption (CPU, memory) because
of the extra load of executing the application and the checkpointing mechanism simultaneously,
which could lead to thrashing and precluding the very performance gains sought by executing the
checkpointing concurrently.

The first issue is related with isolation and atomicity. The checkpoint, while being carried out
concurrently, must still be atomic with regard to the running application. This means that it must
reflect a snapshot of the execution state that would also be obtained with the application paused or
suspended (while the application is not modifying its state). Otherwise, there could co-exist in the
snapshot objects checkpointed at different times, making the whole object graph inconsistent and
violating application invariants. In essence, the challenge in this operation is that the application’s
working set (and VM’s internal structures) will change while the checkpointing is being carried out.
If the changes were to be reflected into the data being saved, the checkpoint would be useless for
being inconsistent.

The second issue stems from the fact that if we want to simultaneously freeze a clone of the appli-
cation state in time (to be able to save it in the checkpoint concurrently), while the application keeps
executing and accessing the original object graph, it would potentially almost double the memory
occupied by the VM. Furthermore, performing the serialization of the clone object graph will cause
contention for the CPU, with the application code that is simultaneously being executed (although
the OS is able to interleave their execution with some degree of efficiency).

Fortunately, two aspects of current architectures help when dealing with these issues: (i) lazy
memory duplication, as embodied in copy-on-write mechanisms provided by the memory manage-
ment modules in modern OSs; and (ii) the increasing prevalence of multicore hardware, available in
most computers today. These two aspects are leveraged to ensure concurrent checkpointing offers
smaller overhead to applications running.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

In fact, the original and clone version of the object graph need not exist physically in their entirety.
To efficiently support this, we use the copy-on-write mechanism that allows two processes to share
the whole of the address space, with pages modified by one of them copied on demand. Currently,
our implementation in Linux relies on Linux’s system call, fork(), which has the desired seman-
tics [34]. In Windows, the same primitive and semantics is available through the Portable Operating
System Interface for Unix subsystem, thus ensuring portability across the two OSs. Therefore,
the memory overhead will be bounded to the memory pages containing objects that are modified
during the checkpointing. Because of the locality in memory accesses during application execution
(locality-of-reference and working set principles), this amount is limited.

Figure 4 illustrates how the concurrent checkpoint progresses, along with the application, in com-
parison with the serial (nonconcurrent) approach. With serial checkpointing, the total execution time
of an application is, expectably, the sum of the time performing its calculations or processing (here-
after calculation time), with the time to perform a checkpoint (once in the figure) multiplied by the
number of checkpoints taken. Therefore, checkpointing is always in the critical path regarding the
total execution time, precluding so frequent checkpointing (for instance, very large working sets and
not very long executions, probably only once at mid execution time).

With concurrent checkpointing, most of the checkpointing time is removed from the critical path
regarding total execution time (only the time to setup the child VM remains). This makes it feasi-
ble to perform checkpoints more frequently, without significantly penalizing application execution
times, thus reducing even more the amount of lost computation (lost work) whenever a failure
takes place.

The internal functioning is as follows. When checkpoint is triggered, the VM calls fork() to
create a child VM, that is, another process, sharing the whole address space, responsible solely for
carrying out the actual checkpointing operation. The copy-on-write semantics ensures that the child
VM’s working set will be consistent, even while the parent VM continues to update data because of
application execution. When checkpointing is complete, the child VM terminates as it is no longer
required. The additional overhead of creating a new process is counterbalanced, manyfold, by the
fact that the application no longer needs to be paused during checkpoint creation.

This strategy can be used in other VMs besides Jikes RVM. In most cases, it will even be simpler
to do so because most other VMs are implemented using the operative system native language, C.
Nevertheless, in the Jikes RVM, these operations (fork and akin) are also efficiently supported
by the available JIT compilers. When a properly annotated method is called, the JIT compiler will
generate a call to a C language stub, using the platform’s underlying calling convention. Our stub
then calls fork(), with reduced overhead, and returns the result to the calling VMs (i.e., parent
or child).

Figure 4. Each concurrent checkpoint runs in a child virtual machine. tcalculation is the free run time, without
any checkpoint. ttotal is the total execution time, considering either serial or concurrent checkpoint.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

Listing 2. Notification policies of CPU usage.

4.2. Policies in the QoE controller

The management of a given resource implies the capacity to monitor its current state and to be
directly or indirectly in control of its use and usage. The resources that can be monitored in a VM
can be either specific of the runtime (e.g., number of threads, number of objects) or be strongly
dependent on the underlying architecture and OS (e.g., CPU usage). To unify the management of
such disparate types of resources, we have started the implementation of JSR 284—The Resource
Management API [29] in the context of Jikes.

The JSR 284 elements are resources, consumers, and resource management policies. Resources
are represented by their attributes (ResourceAttributes interface). For example, resources
can be classified as Bounded or Unbounded. Unbounded resources have no intrinsic limit on the
consumption of the resource (e.g., number of threads). The limits on the consumption of unbounded
resources are only those imposed by application level resource usage policies. Resources can also be
Bounded if it is possible to reserve a priori a given number of units of a resource to an application.
A Consumer represents an executing entity that can be a thread or the whole VM. Each consumer is
bound to a resource through a resource domain. Resource domains impose a common resource man-
agement policy to all consumers registered. This policy is programmable through callback functions
to the executing application. Although consumers can be bound to different resource domains, they
cannot be associated to the same resource through different domains.

The consumption of resources can be monitored or regulated by policies outside the VM, namely
by the QoE controller. When instantiated, the notification and regulation policies are implementa-
tions of the Notification and Constraint interfaces of JSR 284, respectively. Notification
policies will determine which mechanism will be activated. Listing 2 shows an example of a gen-
eral notification policy that takes into account a window of n observations. This policy can be
bounded to different resource domains, including the one that regulates CPU usage. At the end of

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

the code snippet, we illustrate how this policy could be instantiated to determine the migration of
the application running in a VM reporting a CPU usage above 75% for the last 5 observations.

Changes to the VM and classpath
Our first experiences were done in order to have control on the spawning of new threads, a common
source of CPU contention and performance degradation when multiple applications are running. We
made modifications to the Jikes runtime classes and extended the GNU classpath. The Jikes boot
sequence was augmented with the setup of a resource domain to manage the creation of application
level threads. VM threads (e.g., GC, finalizer) are not accounted. The Jikes component responsible
for the creation and representation of system level threads was extended to use the callbacks of the
previously mentioned resource domain, such that the number of new threads is determined by a
policy defined declaratively outside the runtime.

All native system information, including CPU usage, is currently obtained using the kernel
/proc filesystem. Calls are made using the mechanism already presented in Section 4.1.

Finally, a new package of classes was integrated in the GNU classpath in order for applications
to specify their policies. These classes interact with the resource-aware underlying VM so that
the application can add their own resource consumption policies, if needed. Nevertheless, policies
can be installed with total transparency to the application. With this infrastructure, all consumable
resources monitored, or directly controlled by the VM and class library, can be constrained by
high-level policies defined externally to the VM runtime.

5. EVALUATION

The evaluation of our work focuses mainly on those mechanisms that can have a greater impact
on performance, namely the checkpointing, restore, and migration mechanisms introduced in the
Jikes RVM. These mechanisms are evaluated using a combination of the following: (i) synthetic
micro-benchmarks to evaluate the performance and bottlenecks of individual mechanisms; and (ii)
macro-benchmarks to evaluate the perceived impact of our solution in the execution of real life
applications.

Micro-benchmarks: state extraction, checkpointing, restore, and migration
Currently implemented mechanisms have been tested regarding their performance. We created
test programs that carry out a micro-benchmark of all internal components (state extraction and
restoration, checkpoint, restore, and migration) presented in CRM-OO-VM architecture.

The results of micro-benchmarks depicted in Figures 5 and 6 were executed with several
combinations of the three relevant parameters manipulated by the implemented mechanisms:

� Number of stack frames in the running application (50–300) for all tests.
� Number of heap objects referenced by those stack frames (50–300 for regular sized objects,

750–1250 for large objects, 50–300 for very large objects).
� Average size of the objects in the heap.

The times measured in these figures are expressed in seconds, unless otherwise noted, and are
average values computed across multiple runs with outliers discarded on an Intel(R) Core(TM)2 Duo
CPU T9300 @ 2.50GHz, with 1 GB RAM, in a local network with a transfer speed of 100 MB/s.

Three groups of tests were made in order to discover possible bottlenecks and evaluate the cost
associated with the operation of each internal component. The first group evaluates the typical appli-
cation with few data (first three samples in the graphs). The second group evaluates applications with
more objects of larger size. Finally, the third group evaluates applications with few objects but of
very large size. This allows us, in summarized form, to study the load caused by increasing numbers
of objects and of increased size, both individually as well as combined.

From these results, some conclusions can be drawn. First, the results are very encouraging because
the imposed latency is very small regarding the long execution times of the intended applications.
Secondly, applications with large graphs of objects referenced from the stacks only suffer perfor-
mance penalties in the state extraction component. This can be observed in Figure 5, samples from

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

0

0.2

0.4

0.6

0.8

1

1.2

<1k <1k <1k 10k 10k 10k 100k 100k 100k

50 150 300 750 1000 1250 50 150 300

50 150 300 50 150 300 50 150 300

State extraction

State restoration

Object average size

Object number

Stack frame number

Time (sec)

Group #3Group #2Group #1

Figure 5. Internal component benchmarks: state extraction and restoration.

0

0.5

1

1.5

2

2.5

3

3.5

4

<1k <1k <1k 10k 10k 10k 100k 100k 100k

50 150 300 750 1000 1250 50 150 300

50 150 300 50 150 300 50 150 300

Checkpoint

Migration

Restore

Object average size

Object number

Stack frame number

Time (sec)

Group #1 Group #3Group #2

Figure 6. Internal component benchmarks: checkpoint, restore, and migration.

group number 2. The reason why this happens is that we need to perform type inference over stack
frames. This still is a time consuming operation because we need to transverse the runtime type
information of each analyzed object.

In Figure 6, serialization and de-serialization mechanisms (used in the checkpointing and restore
components, respectively) caused the greatest overhead to the mechanisms, which is expected. For
applications that have some large objects, checkpointing time rose above 2 s. For this reason, it
is worth to explore an incremental/differential checkpointing approach as we intend to pursue. We
highlight that, within a cluster setting, the actual cost of migration with data transfer is very reduced
as can be observed in more detail in Figure 7. We need to highlight that the serialization mechanisms
implemented in the GNU classpath have much lower performance than those in Sun JVM; thus, we
believe these results can be further improved.

We also performed some tests on migration over the network to illustrate the usage of the imple-
mented mechanisms in a large scale scenario (such as in Grid and Cloud computing), where jobs
consisting of applications running on OO VMs can be checkpointed, restored, and migrated (or
replicated), to more available nodes, possibly on a different location. These operations can be done
without the complexity and overhead of having to checkpoint the entire operating system where the
OO VM is executing (as it would be the case with System VM checkpointing).

The results presented in Figure 8 show, as it was expected, that the most significant source of
overhead is migration itself, that is, the transfer of the checkpoint data. In order to reduce this, we
compressed the checkpoint, and the checkpoint, compression, and migration combined took 25%
less time.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

1304.8

1857.5

3425.8

17.4 34.0 55.2

956.1

1475.5

2513.0

0

500

1000

1500

2000

2500

3000

3500

4000

600 1200 2400

T
im

e 
(m

se
c)

Checkpoint Migration Restore

#Stack Frames

Figure 7. Checkpoint, restore, and migration execution for a large number of stack frames.

31

302

591

41

395

802

0

100

200

300

400

500

600

700

800

900

5002 50002 100002

T
im

e 
(s

ec
)

Checkpoint size (KByte)

Total time of migration with compression

Total time of migration without compression

Figure 8. Migration, with and without compression.

9.5

7.3

9.5

5.1

8.2 9

5.71

7.7

1.7

5.3

0.1

2.2

0.1

3.0
2.0

0.3

1.4

0.1
0.6

0.1
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

O
ve

rh
ea

d
 (

%
)

Example applications

Baseline Optimized

Figure 9. DaCapo benchmarks of the CRM-enabled virtual machine.

Macro-benchmarks: impact of solution on running applications
To evaluate the global overhead of our solution in the execution of real workloads, we used the
DaCapo [35] benchmarks. The results presented in Figure 9 are very encouraging because the over-
head is always below 10%, much lower than other solutions presented in Section 2 (e.g., [9–12])
that add an average 300% to the execution time of the applications. This overhead reflects the cost
of updating internal information, during application execution, regarding the ownership of syn-
chronization objects (as described in Section 4), which is needed when checkpointing is activated.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

0,0120,017 0,0120,016

61,573

23,312

62,012

23,571

0

10

20

30

40

50

60

70

MonteCarlo PISOR

T
im

e 
(m

in
u

te
s)

Long execution applications

Checkpoint Restore Normal execution Execution with checkpoint mechanisms

Figure 10. Application with a very long running time. SOR, successive over-relaxation.

Although this a constant cost, results show that the relative overhead to maintain this information is
limited, with both compilers used.

Nonetheless, the applications used in the DaCapo benchmarks do not fully reflect applications
with a long running time or within the scientific domain. For these reasons, the last series of tests
regarding the CRM mechanisms were made in applications implementing the Successive Over-
Relaxation (SOR) and the MonteCarlo Pi algorithms, both with a long running time. The results
are presented in Figure 10. These applications use the same type of elementary tasks of e-Science
applications, showing that any application with a long uptime period can benefit from checkpointing
without a significant overhead. The setup for these tests was the following: for the SOR application,
we used a matrix of 100�100 and 1�106 iterations; for the MonteCarlo Pi, the iteration count was
100� 1012. The checkpoint was performed every 5 min.

Because the time spent in the checkpoint operation is much smaller than the application total exe-
cution time, the total time of the SOR application, with and without checkpointing, differs in less
than half a minute. For the MonteCarlo Pi, the difference is even smaller. These results demonstrate
the contribution of our solution to a fast recovery in the presence of failures. That is, if a failure
occurs during the execution of these long running applications, the last checkpoint could be used,
avoiding starting execution from scratch.

Concurrent checkpoint evaluation
To evaluate the concurrent checkpoint specifically, we set up two different checkpoint scenarios
using SOR, which we identify as Test 1 and Test 2 checkpoints. Compared with the previous test
using SOR (in Figure 10), these tests use a much larger array (instead of 100 equations) so that
larger amounts of data need to be saved while keeping the number of iterations to 7500, for running
times close to 2 h. We intend to show that with concurrent checkpointing available, it is possible
and efficient to do checkpoints on larger applications and/or do it more frequently. Thus, for each
of these classes of tests, SOR was run with a matrix of 3000, 3600, and 4200 equations. The two
available cores were used to fully exploit the concurrent checkpointing. We averaged 5 executions
of each test.

The distinguishing factor between these two types of tests is the event or reason triggering each
checkpoint. In Test 1, the checkpoint is done when a percentage of the work is completed. In
Figures 11, 13, and 15, checkpoint is done at 20%, 40%, 60%, and 80% of the computation progress.
From this data, we conclude the following: (i) the overhead of concurrent checkpoint is negligible—
less than 0.5% in all configurations; and (ii) the overhead of the serial checkpoint has a decreasing
impact on the application’s execution time as the number of total iterations increases. This evi-
dent decrease is because of the fact that as computation time increases, the fixed number of serial
checkpoints taken (4) will have progressively smaller impact on the total execution time.

Nevertheless, as application total execution time increases, triggering checkpoint with percentage
of progress may lead, in case of a failure, to significant loss of work performed and of data (i.e.,
all the computation done since the previous checkpoint and its results). Furthermore, the percentage
of progress may be difficult to estimate in most applications and would require explicit checkpoint
invocation by programmers.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

SOR

SOR + concurrent 

SOR + serial

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

11.32 22.54 33.77 45.01 56.27

11.33 22.55 33.78 45.02 56.28

24.63 40.30 51.53 62.77 74.03

118% 79% 53% 39% 32%

0.08% 0.04% 0.03% 0.02% 0.02%

0%

40%

80%

120%

160%

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

Minutes

SOR SOR + concurrent SOR + serial

Serial overhead Concurrent overhead

Figure 11. Test 1 - checkpoint - 3000 equations.

SOR

SOR + concurrent

SOR + serial

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

16.30 32.56 48.76 64.90 81.08

16.37 32.63 48.82 64.97 81.15

42.20 58.45 74.65 90.79 106.98

159% 80% 53% 40% 32%

0.42% 0.21% 0.14% 0.11% 0.08%

0%

40%

80%

120%

160%

200%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Minutes

Figure 12. Test 2 - checkpoint - 3000 equations.

SOR

SOR + concurrent

SOR + serial

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

22.17 44.20 66.19 88.22 110.25

22.22 44.25 66.25 88.27 110.31

57.21 79.23 101.23 123.26 145.29

158% 79% 53% 40% 32%

0.24% 0.12% 0.08% 0.06% 0.05%

0%

40%

80%

120%

160%

200%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Minutes

Figure 13. Test 1 - checkpoint - 3600 equations.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

To avoid all these, the checkpoint should be triggered whenever a given time has elapsed, for
example roughly every 5 min. This scenario is represented by Test 2 checkpointing. Results are
presented in Figures 14, 15, and 16. Here, because longer executions imply more checkpoints taken

SOR

SOR + concurrent ckp

SOR + serial ckp

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

11.32 22.54 33.77 45.01 56.27

11.32 22.54 33.77 45.01 56.28

15.76 35.86 55.97 76.08 96.22

39.21% 59.08% 65.73% 69.04% 71.00%

0.00% 0.01% 0.01% 0.01% 0.01%

0.00%

20.00%

40.00%

60.00%

80.00%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Minutes

Figure 14. Test 2 - checkpoint - 3600 equations.

SOR

SOR + concurrent ckp

SOR + serial ckp

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

16.30 32.56 48.76 64.90 81.08

16.31 32.60 48.82 64.99 81.20

22.78 51.98 81.13 110.22 139.35

39.72% 59.66% 66.39% 69.83% 71.86%

0.08% 0.13% 0.14% 0.15% 0.15%

0.00%

20.00%

40.00%

60.00%

80.00%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Minutes

Figure 15. Test 1 - checkpoint - 4200 equations.

SOR

SOR + concurrent ckp

SOR + serial ckp

Serial overhead

Concurrent overhead

1500 3000 4500 6000 7500

22.17 44.20 66.19 88.22 110.25

22.18 44.23 66.25 88.29 110.35

30.93 70.47 109.99 149.54 189.09

39.51% 59.46% 66.16% 69.50% 71.50%

0.05% 0.07% 0.08% 0.08% 0.09%

0.00%

20.00%

40.00%

60.00%

80.00%

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

Minutes

Figure 16. Test 2 - checkpoint - 4200 equations.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



A CHECKPOINTING-ENABLED AND RESOURCE-AWARE JAVA VIRTUAL MACHINE FOR E-SCIENCE

(with 5 min periodicity), the serial checkpoint now increasingly stretches the total execution time
of the application (up to 70% more, broadly), whereas the overhead introduced by the concurrent
checkpoint always remains very low.

So, to applications that need frequent checkpoints, given their longer total execution time and
larger working set size, the concurrent checkpoint is a very effective alternative. Furthermore, given
that all approaches described in the literature are serial in nature, their performance would always
be much worse than our new proposal, added to the fact that they also lack on transparency and
completeness, namely (i) either imposing the usage of an API, (ii) requiring extension of class code
by programmers, or (iii) not supporting multithreaded and cooperative synchronized applications.

6. CONCLUSION

Today, more and more applications in e-Science fields (Chemistry, Bio-informatics) are developed
in Java. They usually have long execution times and process vast amounts of data. When they fail
during long executions, all performed work is lost, unless programmers explicitly implement some
form of intermediate save of results already calculated. However, they are often designed by non-
computer scientists, and such an explicit approach is frequently limited and incomplete and must be
re-implemented each time over.

In this paper, we described a solution to these problems (CRM-OO-VM) by extending a JVM with
checkpointing (serial and concurrent), restore, and migration mechanisms that can be employed with
transparency to the programmers that need not modify their applications. The proposed solution was
implemented, and we evaluated its adequacy and performance, with encouraging results.

In the future, we intend to test our solution in more demanding scenarios of load balancing across
clusters and investigate the adoption of a similar approach in the context of .NET-related VMs.

ACKNOWLEDGEMENT

This work has been supported by FCT (INESC-ID multi annual funding) through the PIDDAC Program
funds, and FCT projects PTDC/EIA-EIA/108963/2008, and PTDC/EIA-EIA/113613/2009.

REFERENCES

1. Holland RCG, Down TA, Pocock MR, Prlic A, Huen D, James K, Foisy S, Dräger A, Yates A, Heuer M, Schreiber
MJ. Biojava: an open-source framework for Bioinformatics. Bioinformatics 2008; 24(18):2096–2097.

2. Gront D, Kolinski A. Utility library for structural Bioinformatics. Bioinformatics 2008; 24(4):584–585.
3. López-Arévalo I, Bañares-Alcántara R, Aldea A, Rodríguez-Martínez A. A hierarchical approach for the redesign of

chemical processes. Knowledge and Information Systems 2007; 12(2):169–201.
4. Sérgio Anibal de Carvalho J. Sequence alignment algorithms. Master’s thesis, School of Physical Sciences &

Engineering, King’s College London, September 2003.
5. João Nuno S, Paulo F, Luís V. Service and resource discovery in cycle-sharing environments with a utility algebra.

International Symposium on Parallel & Distributed Processing, 2010; 1–11.
6. Milojicic DS, Douglis F, Paindaveine Y, Wheeler R. Process migration. ACM Computing Surveys 2000; 32:241–299.
7. Bradford R, Kotsovinos E, Feldmann A, Schiöberg H. Live wide-area migration of virtual machines including local

persistent state. Proceedings of the 3rd international conference on virtual execution environments - VEE ’07, 2007;
169–179.

8. Cabri G, Leonardi L, Quitadamo R. Enabling Java mobile computing on the IBM Jikes research virtual machine.
Proceedings of the 4th international symposium on Principles and practice of programming in Java, 2006; 62–71.

9. Sekiguchi T, Masuhara H, Yonezawa A. A simple extension of Java language for controllable transparent migration
and its portable implementation. Coordination Models and Languages, 1999.

10. Sakamoto T, Sekiguchi T, Yonezawa A. Bytecode transformation for portable thread migration in Java. Lecture Notes
in Computer Science 2000; 1882:16–28.

11. Truyen E, Robben B, Vanhaute B, Coninx T, Joosen W, Verbaeten P. Portable support for transparent thread
migration in Java. Lecture notes in computer science 2000; 1882:29–43.

12. Bouchenak S, Hagimont D. Pickling threads state in the Java system. Third European Research Seminar on Advances
in Distributed Systems, 1999.

13. Ffinfrocken S. Transparent migration of Java-based mobile agents. Springer 1998; 147:26–37.
14. Ferreira P, Veiga L, Ribeiro C. Obiwan: design and implementation of a middleware platform. IEEE Transactions

on Parallel and Distributed Systems 2003; 14(11):1086–1099.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



J. SIMÃO, T. GARROCHINHO AND L. VEIGA

15. Alpern B, Attanasio CR, Barton JJ, Burke MG, Cheng P, Choi JD, Cocchi A, Fink SJ, Grove D, Hind M, et al. The
Jalapeno virtual machine. IBM Systems Journal 2000; 39(1):211.

16. Suezawa T. Persistent execution state of a Java virtual machine. Proceedings of the ACM 2000 conference on Java
Grande, 2000; 160–167.

17. Agbaria A, Friedman R. Virtual-machine-based heterogeneous checkpointing. Software: Practice and Experience
2002; 32(12):1175–1192.

18. Illmann T, Krueger T, Kargl F, Weber M. Transparent migration of mobile agents using the Java platform debugger
architecture. Lecture Notes in Computer Science 2001; 2240:198–212.

19. Acharya A, Ranganathan M, Saltz J. Sumatra: a language for resource-aware mobile programs. Lecture Notes in
Computer Science 1997; 1222:111–130.

20. Bouchenak S, Hagimont D, Krakowiak S, De Palma N, Boyer F. Experiences implementing efficient Java thread
serialization, mobility and persistence. Software: Practice and Experience 2004; 34(4):355–393.

21. Suri N, Bradshaw JM, Breedy MR, Groth PT, Hill GA, Jeffers R. Strong mobility and fine-grained resource control
in NOMADS. Lecture Notes in Computer Science 2000; 1882:2–15.

22. Lau FCM. JESSICA2: a distributed Java virtual machine with transparent thread migration support. Proceedings of
the IEEE International Conference on Cluster Computing; 381–388.

23. Ma RKK, Wang CL, Lau FCM. M-JavaMPI: A Java-MPI binding with process migration support. The Second
IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002; 1–9.

24. Sweeney PF, Hauswirth M, Cahoon B, Cheng P, Diwan A, Grove D, Hind M. Using hardware performance monitors
to understand the behavior of Java applications. Proceedings of the Third USENIX Virtual Machine Research and
Technology Symposium, 2004; 57–72.

25. Binder W, Hulaas J, Moret P, Villazón A. Platform-independent profiling in a virtual execution environment.
Software Practice and Experience 2009; 39:47–79.

26. Czajkowski G, Hahn S, Skinner G, Soper P, Bryce C. A resource management interface for the Java platform.
Software Practice and Experience 2005; 35:123–157.

27. Suri N, Bradshaw JM, Breedy MR, Groth PT, Hill GA, Saavedra R. State capture and resource control for Java:
the design and implementation of the aroma virtual machine. Proceedings of the 2001 Symposium on JavaTM
Virtual Machine Research and Technology Symposium - Volume 1, JVM’01, USENIX Association, Berkeley, CA,
USA, 2001; 11–11.

28. Back G, Hsieh WC, Lepreau J. Processes in kaffeos: isolation, resource management, and sharing in Java. Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementation, San Diego, California, 2000;
333–346.

29. Czajkowski G et al. Java specification request 284—resource consumption management API, 2009.
30. Backway P et al. The vision for networks, data storage systems and compute capability, January 2006.
31. Stevens RW, Rago SA. Advanced Programming in the UNIX(R) Environment, 2nd Edition. Addison-Wesley

Professional: Upper Saddle River, NJ, 2005.
32. Fink SJ, Qian F. Design, implementation and evaluation of adaptive recompilation with on-stack replacement. In

Proceedings of the international symposium on code generation and optimization: feedback-directed and runtime
optimization,CGO ’03. IEEE Computer Society: Washington, DC, USA, 2003; 241–252.

33. Quitadamo R, Leonardi L. The issue of strong mobility: an innovative approach based on the IBM Jikes research
virtual machine. PhD thesis, University of Modena and Reggio Emilia, 2008.

34. Tanenbaum AS. Modern Operating Systems, 3rd edition. Prentice Hall Press: Upper Saddle River, NJ, USA, 2007.
35. Blackburn SM, Garner R, Hoffman C, Khan AM, McKinley KS, Bentzur R, Diwan A, Feinberg D, Frampton

D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss JEB, Phansalkar A, Stefanović D, VanDrunen T,
von Dincklage D, Wiedermann B. The DaCapo benchmarks: Java benchmarking development and analysis. In OOP-
SLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications. ACM Press: New York, NY, USA, October 2006; 169–190.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe


