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Abstract—Current clouds SLAs include compensation for
customers (i.e. resource renters) with credits when average
availability drops below a certain point. However, this credit
scheme is too inflexible because consumers lose a non measurable
quantity of performance and are only compensated later (i.e. in
the next charging cycle). We propose to schedule cloud isolation
and execution units, i.e. virtual machines (VMs), driven by the
partial utility of applying a certain amount of resources (CPU,
memory or bandwidth) to a given VM. This partial utility
metric, specified by the customer, allows the provider to transfer
resources between VMs. This is particularly relevant for private
clouds where resources are not so abundant. We have defined a
cost model that incorporates the partial utility the client gives
to a certain level of depreciation when VMs are allocated in
an overcommit environment. CloudSim, a state of the art cloud
simulator, was extended to support our partial utility-driven
scheduling model. Using simulation scenarios with synthetic and
real workloads, we show that our proposed scheduling strategy
brings benefits to providers (i.e. revenue, resource utilization) and
clients (i.e. workloads’ execution time) by incorporating a SLA-
based depreciation of computational power, allowing for more
VMs to be allocated.

Index Terms—Cloud Computing, Community Clouds, Service
Level Agreements, Utility-driven Scheduling

I. INTRODUCTION

Currently cloud providers provide a resource selection inter-
face based on abstract computational units (e.g. EC2 computa-
tional unit). This business model is known as Infrastructure-as-
a-Service (IaaS). Cloud users rent computational units taking
into account the estimated peak usage of their workloads.
To accommodate this simplistic interface, cloud providers
have to deal with massive hardware deployments, and all the
management and environmental costs that are inherent to such
a solution. These costs will eventually be reflected in the price
of each computational unit.

Today, cloud providers’ SLA already establish some com-
pensation in consumption credits when availability, or uptime,
fall below a certain threshold1. The problem with availability
is that, from a quantitative point of view, it is often equivalent
to all or nothing, i.e. either availability level fulfills the agreed
uptime or not. Even so, to get their compensation credits, users
have to fill a form and wait for the next charging cycle.

1http://aws.amazon.com/ec2-sla/
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Fig. 1: Cloud deployments: From heavy clouds to small, geo-
distributed near-the-client datacenters

Some argue that although virtualization brings key benefits
for the organizations, migrating all to a public cloud is not
the better option.2 A middle ground approach is to deploy
workloads in a private (or hybrid) cloud. Doing so has the
potential to limit costs on a foreseeable future and, also
important, keeps private data in-premises. Others propose to
bring private clouds even closer to users [1] to provide a more
environmentally reasonable, and cheaper to cool and operate,
cluster.

A. Overcommitted environments

Figure 1 shows what means to bring the cloud closer
to the user. Small, geo-distributed near-the-client datacenters
(private, shared) save money, the environment, and reduce
latency by keeping data on premises. This kind of vision is
sometimes referred as Community Cloud Computing (C3) [2],
which can take advantage of previous research in peer-to-peer
and grid systems [3]. Nevertheless, many of the fundamental
research and the technological deployments are yet to be
explored. From a resource management point of view, these
new approaches highlight two issues. In one hand, because
the deployment sites are more lightly resourced, overcom-
mitment will become more frequent. Techniques such as
dynamic resource allocation and accurate cost modeling must
be researched to manage this kind of clouds. Because of the

2Adopt the cloud, lose money. Virtualize your datacenter instead.
http://www.theregister.co.uk/2009/04/15/mckinsey cloud report/



federated and low-cost nature, overcommitment of resources
is perhaps a more common (and needed) scenario than in
public clouds. Second, in such environments there will be
many classes of users which, in most cases, are willing to
trade the performance of their workloads for a lower (or even
free) usage cost.

In a public cloud, overcommitting can be used to reduce
the number of machines requiring power when aiming to
reduce energy consumption [4]. In private clouds, given the
potential physical resource scarcity, the problem is even more
critical. To overcommit with minimal impact on performance
and maximum cost-benefits ratio, cloud providers need to
have a depreciation rationale relating how the depreciation of
resources will impact in the workload performance and user
satisfaction. While users can easily decide about their relative
satisfaction in the presence of resource depreciation, they can-
not easily determine how their workloads react to events such
as peak demands, hardware failures, or any reconfiguration in
general.

All or nothing resource allocation is not flexible enough for
these multi-tenant multi-typed user environments, especially
when users may not know exactly how many resources are
actually required. Users may be just as happy, or at least con-
tent, with slightly or even significantly reduced performance
if they are compensated by lower cost or almost cost-free.
From the provider or owner point of view, this is important if
there can be cost reductions and/or are environmental gains by
restricting resources, which will still be more favorable than
simply delaying or queuing their workloads as a whole.

Both memory and CPU/cores [5], [6] are common targets
of overcommitment. The two major approaches consist of
adapting the resources based on current observation of the
system performance [5], [7] or using predictive methods that
estimate the best resource allocation in the future based on past
observations [8]. These systems try to reach equilibrium in the
share allocated to each user targeting previously established
performance goals, based on offline profiling. They do not
consider the partial utility of applying resource allocation, i.e.
that reducing shares equally or in equal proportion may not
yield the best overall result. Others build a model to estimate
the costs of running workloads in the cloud but they assume
a specific kind of workloads (e.g. master-slave [9]) or assume
users are only satisfied by a certain amount of resources [10],
[11].

B. Scheduling Based on Partial-Utility

In this work we propose to schedule CPU processing capac-
ity to VMs (the isolation unit of IaaS) using an algorithm that
strives to account for user’ and provider’s potentially opposing
interests. While the users want their workloads to complete
with maximum performance and minimal cost, the provider
will eventually need to consolidate workloads, overcommitting
resources and so inevitably depreciating the performance of
some of them.

The proposed strategy takes the user’s partial utility specifi-
cation, which relates the user’s satisfaction for a given amount

of resources, and correlates it with the provider analysis of the
workload progress given the resources applied. This gives an
operational interval which the provider can use to maximize
the user satisfaction and the need to save resources. Resources
can be taken from workloads that use them poorly, or do not
mind in having an agreed performance degradation (and so pay
less for the service), and assign them to workloads that can
used them better, or belong to users with a more demanding
satisfaction rate (and so are willing to pay more).

We have implemented our algorithm as an extension to
scheduling policies of a state of the art cloud infrastructures
simulator, CloudSim [4], [12]. After extensive simulations
using synthetic and real workloads, the results are encour-
aging and show that resources can be taken from workloads,
improving global utility of the user renting cost and of the
provider infrastructure management.

In summary the contributions of this paper are the following:
• An architectural extension to the current relation between

cloud users and providers, particularly useful for private
and hybrid cloud deployments;

• A cost model which takes into account the clients’
partial utility of having their VMs depreciated when in
overcommit;

• Strategies to determine, in a overcommitted scenario, the
best distribution of workloads (from different classes of
users) among VMs with different execution capacities,
aiming to maximize the utility of the allocation;

• Extension of state of the art cloud simulator. Implemen-
tation and evaluation of the cost model in the extended
simulator.

C. Document roadmap

The rest of the paper is organized as follows. Section II
starts by framing our contributions with other related works.
In Section III we describe our utility model and in Section IV
the scheduling strategies are presented. Section V discusses
the extensions made to the simulation environment in order to
support our requisites. Section VI discusses the development
and deployment in the simulation environment of CloudSim,
and presents the results of our evaluation in simulated work-
loads. Section VII presents our conclusions and future work
to address.

II. RELATED WORK

With the advent of Cloud Computing, particularly with the
Infrastructure-as-a-Service business model, resource schedul-
ing in virtualized environments received a prominent attention
from the research community [13], [6], [14], [15], [16], [17],
addressed as either a resource management or a fair allocation
challenge.

The management of virtual machines, and particularly their
assignment to the execution of different workloads, is a critical
operation in these infrastructures. Although virtual machine
monitors provide the necessary mechanisms to determine how
resources are shared [18], finding an efficiency balance of



allocations, for the customer and the provider, is a non trivial
task.

Early3 work of Zhang et al. [5] uses a feedback control
model to equalize resource demand in a set of VMs (running
on top of a VMM). Their distinct idea is that VMs should
regulate themselves based on a single congestion signal (the
real time needed to update the virtual time clock), instead
of using complex resource management strategies. Profiling
VMs for cloud placement has been used in [19]. In e-science
scenarios, performance predictability in scheduling has been
addressed in [20] and [21].

The current trend is towards cloud computing infrastructures
(public, private, hybrid). Clouds inherit the potential for re-
source sharing and pooling due to their inherent multi-tenancy
support. In Grids, resource allocation and scheduling can be
performed mostly based on initially predefined, a priori and
static, job requirements [15]. In clouds, resource allocation can
also be changed elastically (up or down) at runtime in order
to meet the application load and effective needs at each time,
improving flexibility and resource usage.

In [22] a novel business model is proposed where unused
resources, i.e. system VM instances, can be rented to sec-
ondary users whose workloads may execute intermittently.
Kingsher [23] is a cost-aware elasticity provisioning system
targeting application owners who want to select the provider
with the best configuration to support their peak workloads
(i.e. maximum number of requests/second successfully han-
dled), minimizing the application owner cost.

Resource management can also be based on microeconomic
game theory models, mostly in two directions: i) forecast
the number of virtual machines (or their characteristics) a
given workload will need to operate [9], [11] and ii) change
allocations at runtime to improve a given metric such as
workload fairness or provider energy costs [24], [17]. Auction-
based approaches have also been proposed in the context of
provisioning VMs [22], [25] when available resources are
less abundant than requests. Commercial systems such as the
Amazon EC2 Spot Instances have adopted this strategy.

Still, most works until now have been focused on finding
resource allocations in the most efficient way for the provider
[13], [26], [8], [10], usually based on energy and/or cooling
and environmental costs. Few works consider that the cus-
tomer accepts a negotiable performance during the workload
execution. This type of flexibility usually requires the adoption
of an economic or cost theoretical model. Besides the work
in [8], Cloudpack [17] provides support for users to specify
workloads in a way they can declare their quantitative resource
requirements and temporal flexibilities.

Our work is the first that we are aware of that clearly
accepts and incorporates in the economic model the notions of
partial utility degradation in the context of VM scheduling in
virtualized infrastructures, such as data centers, public, private
or hybrid clouds. It demonstrates that it can render benefits

3The word early is to be understood as in the beginning of the modern
virtualization era, after a hibernation of more than 30 years following IBM’s
virtual machine in the 70’s

for the providers as well as reduce user dissatisfaction in a
structured and principled-based way, instead of the typical all-
or-nothing approach of queuing or delaying requests, while
still able to prioritize user classes in an SLA-like manner.

III. A PARTIAL UTILITY MODEL FOR CLOUD SCHEDULING

To schedule VMs based on the partial utility of the
clients we have to define the several elements that con-
stitute our system model. The provider can offer several
categories of virtual machines, more compute or memory
optimized. In each category (e.g. compute optimized) we
consider that VMs are represented by the set VMtypes =
{VMt1 , V Mt2 , V Mt3 , . . . V Mtm}. Elements of this set have
a transitive less-than order, where VMt1 < VMt2 iff
virtual-power(VMt1) < virtual-power(VMt2). The function
virtual-power represents the provider’s metric to advertise each
VM computational power. For example, Amazon EC2 uses
the Elastic Computation Unit (ECU) which is an aggregated
metric of several proprietary benchmarks. Other examples
include the HP Cloud Compute Unit (CCU).

Current cloud providers determine a price for a charging
period, e.g. $ / hour, for each VM type. This value, determined
by the function Price(VMti), is the monetary value to pay
when a VM of type ti is not in overcommit with other VMs
(from the same type or not). Considering that for a given VM
instance, vm, the type (i.e. element of the set VMtypes) can
be determined by the function VMType(vm), the price can
be determined by Pr(VMType(vm)).

A. Depreciation factor and Partial utility

For each VM the provider can determine which is the
depreciation factor, that is, which percentage of the VM
virtual power is diminished because of resource sharing and
overcommit with other VMs. For a given VM instance, vm,
the depreciation factor is determined by the function Df(vm).
In scenarios of overcommit described in the previous section,
each user can choose which fraction of the price he will
pay when workloads are executed. When overcommit must
be used, the same client will pay as described in Equation 1,
where the function Pu represents the partial utility the owner
of the VM gives to the depreciation. Both the depreciation
factor and the partial utility are percentage values.

Cost(vm) =

Pr(VMType(vm)) · (1−Df(vm)) · Pu(Df(vm)) (1)

For example, if Df(vm) is 20% and Pu(Df(vm)) is 100%
it means that the client is willing to accept the overcommit
of 20% and pay a value proportional to the degradation.
But if in the same scenario Pu(Df(vm)) is 50% it means
the client will only pay half of the value resulting from the
overcommit, i.e. Pr(VMType(vm)) × (1 − 0.2) × 0.5 =
Pr(VMType(vm))× 0.4.

In general, overcommit can vary during the renting period.
During a single hour, which we consider the charging period,
a single VM can have more than one depreciation factor as
depicted in Figure 2. In this example, during the first hour no
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Fig. 2: Scenario where depreciation varies during renting
period

depreciation is necessary while during part of the third hour
and the fourth hour, the provider needs to take 20% of the
computation power. So, because a VM can be hibernated or
destroyed by their owners, and new VMs can be requested, the
depreciation factor, given by Df , must also depend on time.
To take this into account, Dfh(vm, i) is the inth depreciation
period of hour h. This is similar to the epoch concept of [17]
but more fine grained and usable in the partial utility model
as described next.

B. Classes for prices and partial utility

Clients can rent several types of VMs and choose the class
associated to each one. Classes have two proposes. The first
is to establish a partial utility based on the overcommit factor.
The second is to set the base price for each VM type. Clients,
and the VMs they rent, are organized into classes which are
represented as a set C = {C1, C2, C3, . . . , Cn}. Elements of
this set have a transitive less-than order (<) where C1 < C2

iff base-price(C1) < base-price(C2). The function base-price
represents the base price for each VM type. The class of
a given virtual machine instance vm is represented by the
function class(vm), while the owner (i.e. the client who is
renting the VM) can be determined by owner(vm).

Each class determines, for each overcommit factor, the
partial utility degradation. Because the overcommit factor
can have several values we define R as a set of ranges:
R = {]0..0.2[, [0.2..0.4[, [0.4..0.6[, [0.6..0.8[, [0.8..1]}. The
Pu function must be rewritten to take into account the class of
the VM and the interval of the overcommit factor, as presented
in definition 2. Doing so, Pu is a matrix of partial utilities.
Each provider can have a different matrix which it advertises
so that clients can choose the best option.

Pu : C ×R→ [0..1] (2)

The Pr function for each VM must also be extended to
take into account the VM’s class, in addition to the VM’s
type. We redefine the Pr function as presented in Equation 3.
Similarly to the matrix of partial utilities, each provider can
have a different price matrix.

Pr : C × VMtypes → < (3)

In summary, the proposed partial utility model and the
associated cost structure is based on three elements: i) the
base price of each VM type, ii) the overcommit factor, iii) the
partial utility degradation class associated to each VM.

C. Total costs

For a given client, the total cost of renting is simply
determined by the total cost of renting each VM, as presented
in Equation 4, where RentVMs(c) represent the VMs rented
by client c.

RentingCost(c) =

RentVMs(c)∑
vm

VMCost(vm) (4)

The cost of each VM is presented in Equation 5 where N is
the number of hours the VM was running, and P the number
of depreciation periods in hour h. If after allocation the VM’s
depreciation factor remains constant, the P equals 1.

VMCost(vm) =
N∑

h=1

P∑
p=1

Pr(class(vm), V MType(vm))

P

·(1−Dfh(vm, p))

·Pu(class(vm), Dfh(vm, p)) (5)

The provider’s revenue is given by how much all clients pay
for the VMs they rent. The provider wants to maximize the
revenue by minimizing the depreciation factor imposed to each
virtual machine. Because there are several classes of VMs,
each with a particular partial utility for a given depreciation
factor, the provider scheduler must find the allocation that
maximizes (5). There are different ways to do so which we
analyze in Section IV.

D. Practical scenario

As a practical scenario we consider that the partial utility
model has three classes (High, Normal, Low) according to
their willingness to relinquish resources in exchange for a
lower payment. More classes could be added but these three
illustrate:

• High users that represent those with more stringent
requirements, deadlines, and that are willing to pay more
for a higher performance assurance but in exchange
demand to be compensated if they are not met. Com-
pensation may include not simply refund but also some
level of significant penalization.

• Normal users who are willing to pay but will accept some
depreciation for the sake of lesser payment and other
externalities such as reduced carbon footprint impact, but
have some level of expectation on execution time, and

• careless Low users who do not mind waiting for their
workloads to complete if they pay less;

Partial utility profiles could also be organized around cloud
providers, and assume that each provider would be specialized
in a given profile. For example, flexible would represent
shared infrastructures with no obligations, and many well
dimensioned private clouds; business public clouds or high-
load private or hybrid clouds; critical clouds where budgets



and deadlines of workloads are of high relevance, and penalties
are relevant; SLA-Oriented top scenario where penalties should
be avoided at all cost. For simplicity we focus on a single cloud
provider that supports several classes of partial utility which
clients can choose when renting VMs.

For the three classes of our example, the cloud provider can
define a partial utility matrix, represented by M in (6).

M =



High Medium Low

[0..0.2[ 1.0 1.0 1.0
[0.2..0.4[ 0.6 1.0 1.0
[0.4..0.6[ 0.4 0.8 1.0
[0.6..0.8[ 0.0 0.6 0.8
[0.8..1] 0.0 0.0 0.6

 (6)

The provider must also advertise the base price for each type
of VM. We assume there are four types of virtual machines
with increasing virtual power, for example, micro, small,
regular and extra. The matrix presented in (7) determines
the base price ($/hour) for these types of VMs.

P =


High Medium Low

micro 0.40 0.32 0.26
small 0.80 0.64 0.51
regular 1.60 1.28 1.02
extra 2.40 1.92 1.54

 (7)

IV. PARTIAL UTILITY BASED SCHEDULING FOR IAAS
DEPLOYMENTS

In general, the problem we have described is equivalent to a
bin packing problem [27]. So, the schedules must impose con-
strains on what would be a heavy search problem. Algorithm 1
presents what is hereafter identified as the base allocation
algorithm. It looks for the host with more available cores and
checks if it has available computational power, i.e. available
number of millions of instructions per second (MIPS). It will
eventually fail if no host is found with the number of requested
MIPS, regardless of the class of each VM.

Algorithm 1 Base allocation
Require: hosts list of available hosts
Require: vm VM to be allocated

1: function BASESCHEDULING(hosts,vm)
2: allocated← false
3: tmpHosts← hosts
4: while allocated 6= true & SIZE(tmpHosts) ≥ 1 do
5: maxCores← 0
6: for all h ∈ tmpHosts do
7: if AVAILABLECORES(h) > maxCores then
8: maxCores← AVAILABLECORES(hosts[i])
9: freeHost← h

10: end if
11: end for
12: allocated← TRYALLOCATE(freeHost, vm)
13: tmpHosts← tmpHosts− {freeHost}
14: end while
15: return allocated
16: end function

Algorithm 2 checks if a VM can be allocated in a given host
(h), that is, it returns true if there are still available computa-
tional power in host h. If allocation cannot be done it returns
false. Function allocV mMipsInCores tries to allocate vm
in the available cores. It will fail if the computational power
(MIPS) of the VM is bigger than the cores of the host. It
will end successfully if the VM can fit in any core, eventually
shared with other VMs.

Algorithm 2 Try to allocate VM in host
Require: host host used for allocation
Require: vm VM to be allocated

1: function TRYALLOCATE(host,vm)
2: allocated← false
3: availableMips← AVAILABLEMIPS(host)
4: requestedMips← REQUESTEDMIPS(vm)
5: if availableMips ≥ requestedMips then
6: ALLOCVMMIPSINCORES(host, requestedMips)
7: allocated← true
8: end if
9: return allocated

10: end function

When there are no hosts that can be used to allocate the
requested VM some depreciation strategy must be used, while
maximizing the renting cost as defined in Section III. This
means that the provider can use different strategies to do
so giving priority to bigger or smaller VMs (regarding their
virtual power) or to classes with higher base price.

We have developed four strategies/heuristics to guide our
utility-driven algorithm. They differ in the way a host and
victim VM is selected for depreciation. All start by looking
for the host with more resources available, that is, with more
unitary available cores and with more total computation power
(MIPS). After a host is selected a VM must the chosen from
the list of allocated VMs in that host. This VM (the victim)
is selected either by choosing the smallest VM (which we call
min strategy) or the one with the biggest size (which we call
max strategy). There is also the possibility to instead look for
VMs smaller than the VM which is trying to be allocated.

In resume there are four allocation strategies: min, max,
min-class, max-class which we evaluate in Section VI.

V. IMPLEMENTATION DETAILS

We have implemented and evaluated our partial utility
model on a state of the art simulator, CloudSim [12].
CloudSim is a simulation framework that must be program-
matically configured, or extended, to reflect the characteristics
and scheduling strategies of a cloud provider. The framework
has an object domain representing the elements of a data center
(physical hosts, virtual machines and execution tasks). Extensi-
bility points include the strategy to allocate physical resources
to VMs, allocate execution tasks to resources available at each
VM. Furthermore, at the data center level, it is possible to
define how VMs are allocated to hosts (including energy-aware
policies [4]) and how execution tasks are assigned to VMs.

Regarding the CloudSim’s base object model we have added
information to the VM type regarding its partial utility class.



Number of hosts Cores Hz Memory (Gbytes)

10 2 1860 4
10 2 2660 4

TABLE I: Hosts configured in the simulation

VM type Virtual power Memory (Gbytes)

micro 0.5 0.63
small 1 1.7

regular 2 3.75
extra 2.5 0.85

TABLE II: Characteristics of each VM type used in the
simulation

The scheduling algorithms were implemented as extensions
of the type that determines how a VM is assigned to a host
(VmAllocationPolicy). It can use different matrices of
partial utility classes and VM base prices, defined in the type
that represents the partial utility-driven datacenter.

The type in CloudSim that represents the dynamic use of
the available (virtual) CPU is the Cloudlet type. Because
cloudlets represent work being done, each cloudlet must run
in a VM with the appropriate type, simulating work being
done on several VMs with different computational power.
So, regarding the Cloudlet class we added information
about which VM type must be used to run the task. To
ensure that each cloudlet is executed in the correct VM
(depreciated or not), we also created a new broker (extended
from DatacenterBroker).

VI. EVALUATION

In this section we evaluate the proposed scheduling based on
partial utility. To do so, we first describe the small datacenter
used in the simulation and the VM types whose base price
was already presented in Section III-D. The datacenter is
characterized by the number and type of hosts as described
in Table I. Available VM types are presented in Table II.

A. Utility Unware Allocation

Figures 3 and 4 show the effects of using two different
allocations strategies but still without taking into account
each client’s partial utility. Common to both experiences is
the algorithm of allocating VMs, which chooses the host
with more cores available, as described in Algorithm 1. The
difference is the VMM scheduler. In Figure 3 each VMM (one
for each host) allocates one or more cores to each VM and
does not allow sharing of cores by different VMs. In Figure 4
each VMM (one for each host) allocates one or more cores to
each VM and, if necessary, allocates a share of the same core
to a different VM.

As expected, the core sharing algorithm promotes better
resource utilization because the maximum effective allocation
is 75% of the datacenter which compares with 71% maximum
utilization of the other strategy. Nevertheless, in both cases, the
datacenter starts rejecting the allocation of new VMs when it
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Fig. 3: Base algorithm with cores not shared between different
VMs. Resource utilization ratio (effective allocation), potential
allocation and requested but not allocated MIPS.
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Fig. 4: Base algorithm when cores are shared between different
VMs. Resource utilization ratio (effective allocation), potential
allocation and requested but not allocated MIPS.

is about at 66% of its capacity, as can be observed by the
difference between the potential allocation and the effective
allocation series. The effective allocation yet continues to
increase, at a slower rate, because there are still VMs that
can be allocated. Figure 5 shows the counting of VM failures
grouped by the VM type and VMM scheduling strategy. The
datacenter rejects VMs of type high and small.

B. Utility-driven Allocation

In utility driven allocation all requested VMs will eventually
be allocated until the datacenter is overcommitted by a factor
that can be defined for each provider. We used several synthetic
workloads with an increasing number of VMs trying to be
allocated, as in the experimentations of the previous section.
Each requested VM has a type (e.g. micro) and a partial utility
class (e.g. high). We considered VM’s types to be uniformly
distributed (realistic assumption). Regarding the partial utility
class distribution profile, in each workload, there are 20% of
high, 50% of medium and 30% of low.

First we compare our approaches with the base algorithm
described in Section IV regarding the number of VMs that
were requested but not allocated. Figure 6 shows that while
the base algorithm fails to allocate some VMs when 40 or more
VMs are requested, the other four utility-driven strategies can
allocate all requests.
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To further investigate the benefits of the proposed ap-
proaches we must evaluate how available resources are uti-
lized, the revenue of the provider and the execution time of
workloads. Figure 7 shows the percentage of resource utiliza-
tion with an increasing number of VMs being requested for
allocation. Two observations are worth noting. First, although
with base allocation strategy some VMs are not scheduled, as
demonstrated in Figure 6, others can still be allocated and can
use some of the remaining resources. Second, it is clear that
our four strategies achieve better resource utilization, while
allocating all VMs, and that strategy min is the one that can
better occupy available resources. Regarding revenue for the
provider, Figure 8 further demonstrates the benefits of using
a depreciation and utility-driven approach, showing that the
provider’s revenue can indeed increase if the rejected VMs
(above 40) are allocated.

Finally, and regarding the execution time, we have evaluated
the scheduling of VM resources to each profile based on
the partial utility. The data used is from workloads executed
during 10 days by thousands of PlanetLab VMs provisioned
for multiple users [4], [28]. The average execution times are
presented in Figure 9. The results shows that with more VMs
allocated, even if depreciated, as it is the case, the average
execution time of tasks running on those VMs is below the
execution times achieved with the base strategy.
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Fig. 7: Compared resource utilization
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VII. CONCLUSION

There is an increasing interest in small, geo-distributed
and near-the-client datacenters, what is sometimes known as
Community Cloud Computing (C3). In these deployments,
overcommitting resources is a relevant technique to lower
environmental and operational costs. Nevertheless, users may
be just as happy, or at least content, with slightly or even
significantly reduced performance if they are compensated by
lower cost or almost cost-free.

In this paper we have proposed a cost model take takes
into account the user’s partial utility specification when the
provider needs to transfer resources between VMs. We devel-
oped extensions to the scheduling policies of a state of the art
cloud infrastructures simulator, CloudSim [4], [12]. The cost
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Fig. 9: Compared average execution time



model and partial utility-driven strategies were applied to the
oversubscription of CPU. We have measured the provider’s
revenue, resource utilization and client’s workloads execution
time. Results show that, although our strategies depreciate
the computational power of VMs when resources are scarce,
they overcome the classic allocation strategy which would
not be able to allocate above a certain number of VMs. As
future work we want to extend the scheduling process to
incorporate progress information collected from workloads,
such that resources can also be taken from workloads that use
them less efficiently. This will need some extensions to the
execution model of CloudSim. We also plan to incorporate
this approach in private cloud solutions such as Eucalyptus.4
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