
Quality-of-Service for Consistency

of Data Geo-replication in Cloud Computing�

Sérgio Esteves, João Silva, and Lúıs Veiga

Instituto Superior Técnico - UTL / INESC-ID Lisboa, GSD, Lisbon, Portugal
sesteves@gsd.inesc-id.pt, {joao.n.silva,luis.veiga}@inesc-id.pt

Abstract. Today we are increasingly more dependent on critical data
stored in cloud data centers across the world. To deliver high-availability
and augmented performance, different replication schemes are used to
maintain consistency among replicas. With classical consistency models,
performance is necessarily degraded, and thus most highly-scalable cloud
data centers sacrifice to some extent consistency in exchange of lower la-
tencies to end-users. More so, those cloud systems blindly allow stale
data to exist for some constant period of time and disregard the seman-
tics and importance data might have, which undoubtedly can be used
to gear consistency more wisely, combining stronger and weaker levels of
consistency. To tackle this inherent and well-studied trade-off between
availability and consistency, we propose the use of V FC3, a novel consis-
tency model for replicated data across data centers with framework and
library support to enforce increasing degrees of consistency for different
types of data (based on their semantics). It targets cloud tabular data
stores, offering rationalization of resources (especially bandwidth) and
improvement of QoS (performance, latency and availability), by provid-
ing strong consistency where it matters most and relaxing on less critical
classes or items of data.

1 Introduction

The great success Internet achieved during the last decade has brought along the
proliferation of web applications which, with economies of scale (e.g., Google,
Facebook, and Microsoft), can be served by thousands of computers in data
centers to millions of users worldwide. These very dynamic applications need to
achieve higher-scalability in order to provide high availability and performance.
Such scalability is typically realized through the replication of data across several
geographic locations (preferably close to the clients), reducing application server
and database bottlenecks while also offering increased reliability and durability.

Highly-scalable cloud-like systems running around the world often comprise
several levels of replication, specially among servers, clusters, inter-data cen-
ters, or even among cloud systems. More so, the advantages of geo-distributed
micro-data centers over singular mega-data centers have been gaining significant

� Work supported by FCT (INESC-ID multiannual funding) through the PIDDAC
Program funds.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 285–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

lveiga
Rectangle

lveiga
Typewriter
This work was partially supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-EIA/108963/2008 and PEst-OE/EEI/LA0021/2011.

lveiga
Rectangle



286 S. Esteves, J. Silva, and L. Veiga

attention (e.g., [1]), as, among other reasons, network latency is reduced to end-
users and reliability is improved (e.g., in case of a fire or a natural catastrophe,
or simply network outage). With this current trend that brings higher number
of replicas, more and more data needs to be properly synchronized, carrying out
the need of having smart schemes to manage consistency while not degrading
performance.

In replication, the consistency among replicas of an object has been handled
through both traditional pessimistic (lock-based) and optimistic approaches [2].
Pessimistic strategies provide better consistency but cause reduced performance,
lack of availability, and do not scale well. Where optimistic approaches rely on
eventual consistency, allowing some temporary divergence among the state of the
replicas to favor availability and performance. Since it is not possible to fully
have the best of both approaches in a distributed environment with arbitrary
message loss, as stated in the CAP theorem [3], we envision that more can be
done to approximate consistency from availability. One path not yet significantly
explored, and that we intend to address in this work, consists of wisely and
dynamically strengthen and weaken consistency in accordance to the importance
of the data being replicated.

In the context of the web, replication has been extensively applied at the appli-
cation and database tiers, significantly improving the performance and reducing
workload. At the application level, popular in-memory caching solutions, such as
memcached [4], defy developers in the following ways: they do not offer transac-
tional consistency with the underlying database; and they offer only a key-value
interface, and developers need to explicitly manage the cache consistency, namely
invalidating cache data when the database changes. This management, which in-
cludes performing manual lookups and keeping the cache updated, has been a
major source of programming errors.

At the database level, tuples are replicated and possibly partitioned across
multiple network nodes, which can also execute queries on replicas. However,
adding more database servers to a RDBMS is difficult, since the partition of
database schemas, with many data dependencies and join operations, is non-
trivial [5]. This is where non-relational NoSQL databases come to take place.

High-performance NoSQL data stores emerged as an appealing alternative to
traditional relational databases, since they achieve higher performance, scala-
bility, and elasticity. For example, Google has built its own NoSQL database,
BigTable [6], which is used to store google entire web search system. Other solu-
tions include Cassandra [7], Dynamo [8], PNUTS [9] and HBase [10] (which we
focus on in this work).

To sum up, these several approaches to replication, existent in well-known
cloud systems and components, usually treat all data at the same consistency
degree and are blind w.r.t. the application and data semantics, which could and
should be used to optimize performance, prioritize data, and drive consistency
enforcement.

Given the current context, we propose the use of a novel consistency model
with framework and programming library support that enables the definition



Quality-of-Service for Consistency of Data Geo-replication 287

and dynamic enforcement of multiple consistency degrees over different groups of
data, within the same application, across very large scale networks of cloud data
centers. This model is driven by the different semantics data might have; and the
consistency levels can be automatically adjusted based on statistical information.
Moreover, this framework, named V FC3 (Versatile Framework for Consistency
in Cloud Computing), comprises a distributed transactional in-memory cache
and is intended to run on top of NoSQL high-performance databases. This way,
we intend to improve QoS, rationalize resource usage (especially bandwidth),
and deliver higher performance.

The remainder of this paper is organized as follows. Section 2 presents the
architecture of the V FC3 framework, and Section 3 its underlying consistency
model. In Section 4, we offer details of relevant implementation aspects. Then,
Section 5 presents a performance evaluation, and Section 6 reviews related work.

2 Geo-distributed Cloud Scenario and Architecture

The V FC3 consistency model was specially designed to address very large-scale
and dynamic environments (e.g., cloud computing) that need to synchronize
large amounts of data (either application logic or control data) between several
geographically dispersed points, while maintaining strong requirements about
the quality of service and data provided. Figure 1a depicts a scenario of geo-
replicated data centers where a mega data center needs to synchronize data with
micro data centers scattered throughout different regions. Such micro centers
replicate part of the central database, with only the more relevant data to a given
corresponding region. In more detail, Figure 1b shows the constituent parts of
the mega and micro data centers, where the V FC3 middleware operates and
how the interaction is carried out among data centers.

(a) Target environment (geo-
distributed data centers)

(b) data center detailed view

Fig. 1. V FC3 overall scenario and network architecture



288 S. Esteves, J. Silva, and L. Veiga

We present an archetypal architecture (Figure 2) of the V FC3 framework that
is capable of enforcing different degrees of consistency (or conversely, bounding
divergence) and runs atop very large-scale (peta-scale) databases residing in mul-
tiple data centers. The consistency constraints over the replicas are specified in
accordance to the data semantics and they can be automatically adjusted at run
time. Moreover, this framework comprises a distributed transactional in-memory
cache system enhanced with a number of more components, described as follows.

Fig. 2. V FC3 middleware architecture

Monitor and Control.
This component analyses all
requests directed to the database.
It decides from where to re-
trieve results to queries, cache
or database, and controls the
workflow when an update oc-
curs. It also collects statistics
regarding access patterns to
stored data in order to au-
tomatically adjust the diver-
gence levels.

QoS Engine. It maintains data structures and control meta-data to decide
when to replicate and synchronize data, obeying to consistency specifications.

Scheduler. This component verifies the time constraints over the data. When
the time for data being replicated expires, the Scheduler notifies the QoS engine.

Distributed Cache. It represents an in-memory, transactional and dis-
tributed database cache for: i) temporary storing frequently accessed database
items; and ii) keep tracking of which items need to be replicated.

Session Manager. It manages the configurations of the consistency con-
straints over the data through extended database schemas (automatically gen-
erated) defined for each application.

Application Adaptation: Applications may interact with the V FC3 frame-
work by explicitly invoking our libraries, but V FC3 can also automatically adapt
and intercept the invocation of other libraries, such as the HBase API, where de-
velopers need only change the declarations referencing the HBase libraries (also
being automated), with remaining code unmodified. Legacy code is adapted
by using annotations or pre-processor directives, during loading-time, where
database tier code is transformed into calls to V FC3 API.

Caching: The V FC3 framework comprises a distributed and transactional in-
memory cache system to be used at the application-level. It has two main pur-
poses: i) keep tracking of the items waiting for being fully replicated and ii)
temporarily store both frequently used database items and items within the
same locality group (i.e., pre-fetch columns of an hot row), in order to im-
prove read performance. Specifically, this cache stores partial database tables,
with associated QoS constraints, that are very similar from the ones in the



Quality-of-Service for Consistency of Data Geo-replication 289

underlying database, but with tables containing many less rows. Moreover, the
V FC3 cache is completely transparent to applications; it guarantees transac-
tional consistency with the underlying database and the data is automatically
maintained and invalidated, relieving developers from a very error-prone task.

This cache can be spanned across multiple application servers within the
same data center, so that it can grow in size and take advantage of the spare
memory available in the commodity servers. Although the work is distributed,
it still gives a logical view of a single cache. The partition of data follows an
horizontal approach, meaning that rows are divided across servers and the hash
of their identifiers works as key to locate the servers in which they should be
stored. Hence, this cache is optimized for our target database systems, since rows
constitute indexes in the multi-dimensional map and every query must contain
a row identifier (apart from scans). Furthermore, each running instance of the
V FC3 cache knows all others running on neighbor nodes.

Replication: The V FC3 framework handles the whole replication process asyn-
chronously, supporting the two general used formats, statement-based and row/
column-based. However, if the statement-based strategy is used, the element
(row, column, or table), referenced in a query, with the more restrictive QoS
constraints will command the replication of the statement, leading other data
with less restrictive constraints to be treated at stronger consistency degrees
(which can be useful for some use cases). When a maximum divergence bound,
associated to an element (row, column, or table), is crossed, the changed items,
and only these, within that element are broadcasted to the other interested
servers. These modified items are identified through dirty bits.

The system constantly checks bandwidth usage of messages exchanged with
other nodes. The framework can trigger data replication and synchronization on
low bandwidth utilization periods, even if consistency constrains do not impose
it. Replication messages, using the column-based strategy, contain the necessary
indexes to identify items placement within the database map and are compressed
with gzip.

3 Consistency Model

The V FC3 consistency model is inspired on our previous work [11]. It defines
three-dimensional consistency vectors (κ) that can be associated with data ob-
jects. κ bounds the maximum objects divergence; each dimension a numerical
scalar defining the maximum divergence of the orthogonal constraints: time (θ),
sequence (σ), value (ν).

Time: Specifies the maximum time a replica can be without being updated
with is latest value. Considering θ(o) provides the time (e.g., seconds) passed
since the last replica update of object o, constraint κθ, enforces that θ(o) < κθ

at any given time.
Sequence: Specifies the maximum number of updates that can be applied to

an object without refreshing its replicas. Considering σ(o) indicates the number



290 S. Esteves, J. Silva, and L. Veiga

of applied updates, this sequence constraint κσ enforces that σ(o) < κσ at any
given time.

Value: Specifies the maximum relative difference between replica contents or
against a constant (e.g., top value). Considering ν(o) provides that difference
(e.g., in percentage), this value constraint κν enforces that ν(o) < κν at any
given time. It captures the impact or importance of updates on the object’s
internal state.

Evaluation and Enforcement of Divergence Bounds: The evaluation of
the divergence vectors σ and ν takes place every time an update request is
received by the middleware. Upon such event, it is necessary to identify the af-
fected tables/rows/columns, increment all of the associated vectors σ and verify
if any σ or ν is reached when compared with the reference values (i.e., the max-
imum object allowed divergences). If any limit is exceeded, all updates since
last replication are placed in a FIFO-like queue to be propagated and exe-
cuted on other replicas. When there are multiple versions for the same mapping
(table/row/column), the most recent ones are propagated first.

To evaluate the divergence vector, θ, V FC3 uses timers (each node holding one
timer per application) to check, e.g., every 1 second, if there is any object that
should be synchronized (timestamp about to expire). Specifically, references to
modified objects (identified by the dirty bits) are held in a list ordered ascending
by time of expiration, which is the time of the last object synchronization plus
θ. The Scheduler component, starting from the first element of the list, checks
which objects need to be replicated. As the list is ordered, the Scheduler has
only to fail one check to ignore the rest of the list; e.g., if the check on the first
element fails (its timestamp has not expired yet), the Scheduler does not need
to check the remaining elements of the list.

We consider 3 main events, perceived by the Monitor and Scheduler, that
influence the enforcement and tuning of QoS, with their handling workflow de-
scribed next.

Upon Read Event: 1) Try to fetch results from cache with sufficient QoS; 2)
On success, return results immediately to the client application; 3) Otherwise,
perform query on the database, return the respective results to the application,
and store the same results in cache.

Upon Write Event: 1) Perform update on the database; 2) Update the cache;
3) Update θ and increment σ on table, column, or row; 4) Verify if the divergence
bound, κ, is reached; 5) If so, the data is replicated to the other nodes, θ receives
a new timestamp, and σ is reset.

Upon Time Expiration Event: 1) The data is replicated to the other in-
terested nodes, θ is timestamped, and σ goes to 0.

Dynamic Adjustment of Consistency Guarantees: Users can specify in-
tervals of values on the QoS vectors to let the framework automatically adjust
the consistency intensity. This adjustment, performed by the QoS Engine com-
ponent, is based on the observation of the frequency of read and write operations
to data items during a given time frame. The general idea behind this is that
many write operations, performed on different nodes over the same object (or



Quality-of-Service for Consistency of Data Geo-replication 291

replica), will cause conflicting accesses, and thus it is necessary to guarantee
stronger consistency. Conversely, few updates, or updates concentrated only on
one node, allow weakening consistency guarantees within the specified vector in-
tervals. The frequency of read operations also contributes to tuning. Many read
operations on data that is mainly written in other nodes will strengthen consis-
tency; if the data is written in the same nodes, consistency is relaxed. Conversely,
few reads, or reads concentrated on one node, will weaken consistency.

Concurrent Updates: When two or more updates occur simultaneously over
the same data in different data centers, both are preserved as the all data items
are versioned. We resort mostly to last-writer-wins rule and handlers to make
data centers converge on the same values. If stronger agreement is needed in
more critical (and restricted) data, rotating leases allow data centers to perform
writes without contention.

4 Implementation Details

As a proof of concept, we developed, in Java, a prototype of V FC3 to demon-
strate the advantages of our consistency model when deployed as a replication
middleware for high-performance databases (i.a., not supporting a full relational
model). Although the framework may be adapted to other storages, our tar-
get, in the scope of this particular work, is BigTable [6] open-source Java clone,
HBase [10]. This database system is a sparse, multi-dimensional sorted map,
indexed by row, column (includes family and qualifier), and timestamp; the
mapped values are simply an uninterpreted array of bytes. It is column-oriented
and designed to scale into the petabyte, while ensuring that write and read per-
formance remain constant. In the following we provide the more relevant details
of the V FC3 implementation.

Schema and Database Management: V FC3 requires the registration of
each application, which includes providing the schema of the required databases.
For each table, row, column (and optionally sets of rows and columns), therein,
it is necessary to specify the maximum object divergence, κ. Otherwise, the
default κ will be used meaning no divergence at all. This schema can be built
manually, specifying tables and columns, or simply introduced as the standard
auto-generated XML-based schema (given by the HBase Schema Manager tool),
which can be processed by V FC3. After this, the user should create and associate
divergence bounds with database objects (i.e., tables/rows/columns) through
code annotations, XML specification or a UI.

W.r.t. the creation of divergence bounds, users may specify intervals of val-
ues as elements for vectors, rather than scalar constants, so that consistency
constraints can be automatically adjusted within an interval. The association
of κ with: i) tables is useful when the semantics of the data therein contained
indicates that the data should be treated at the same consistency level (e.g.,
a guest list); ii) rows is beneficial to handle single records independently; iii)
columns may be practical if they are supposed to hold very large values, such as



292 S. Esteves, J. Silva, and L. Veiga

media content. Furthermore, the vector ν is only applied on numeric values, and
thus text or byte fields are initially precluded and supported only as byte-wise
differences (e.g., number of different characters in a string). After the association
of divergence bounds with schemas, a similar database is created in the domain
of the V FC3 framework for caching and tracking purposes. This database also
contains the QoS attributes and a dirty bit for each cell telling if the cell was
modified since the last synchronization occurred.

QoS Management: Different applications may specify overlapping QoS con-
straints; in this case, more restricted constraints override any others. Thus, such
a scenario may happen: application1 requires κ1,x and κ1,y, and application2 re-
quires κ2,y (κ1,y > κ2,y). It could make no sense for application1 to have different
consistency levels for the items x and y (as κ1,y is overridden by κ2,y). To tackle
this, we also allow users to define groups over items that should be handled
at the same consistency level, i.e., ensuring atomicity upon serial consistency
constraints, over a set or rows and/or columns, to comply with the application
semantics. In the previous example, and considering application1 grouped x and
y, κ1,x is thus assigned with the value of κ1,y.

The QoS constraints, referring to the data consistency levels, are specified
along with standard HBase XML schemas and given to the middleware with an
associated application. Specifically, we introduced in the relative XSD the new
element vfc3, which can be used inside the elements table, column family, or row,
to specify data requirements in relation to a table, column, or row. The vector
ν is optional. Enhanced XML schemas are known by all data centers.

Library Support and API: In order to adapt HBase client applications, we
provide a similar API to HBase,1 where we only changed the implementation of
some classes in order to redirect HBase calls to the V FC3 framework, namely
Configuration.java, HBaseConfiguration.java, and HTable.java were modified to
delegate the HBase configurations to V FC3. V FC3 performs the management
of the multiple distributed stand-alone HBase instances (without the Hadoop
replication) in a transparent manner.

Cache and Metadata: The cache uses similar data structures to HBase itself,
such as the ConcurrentHashMap, but with extensions to include metadata (the
divergence bound vectors) and living in memory (albeit its state can be persisted
in the underlying HBase for reliability purposes). The size of the cache and
number of items to replace is configurable and new implementations of the cache
eviction policy can be provided (default is LRU). Also, the types of the vector
elements can be configurable.

5 Evaluation

This section presents the evaluation of the V FC3 framework and its benefits when
compared with the regular HBase/Hadoop replication scheme. All tests were

1 http://hbase.apache.org/apidocs/overview-summary.html

http://hbase.apache.org/apidocs/overview-summary.html


Quality-of-Service for Consistency of Data Geo-replication 293

conducted using machines with an Intel Core 2 Quad CPU Q6600 at 2.40GHz,
7825MBofRAMmemory, andHDDSATA II 7200RPM16MB.As for the network,
we scattered nodes around two different and relatively distant locations and the
available bandwidth was around 60Mbps (downstream and upstream). Moreover,
each node/machine had a standalone HBase instance running under V FC3.

To evaluate the performance of our replication middleware we modified and
adapted the YCSB benchmark [12] to work with V FC3, thereby only redirecting
the imports of some classes. Our scenario consisted of running this benchmark,
with three different workloads (95/5, 5/95, and 50/50 %updates/%reads), to
measure the overall latency and throughput (operations/second) for series of
1000, 10000, 50000, and 100000 operations (reads and writes), assuming in each
case that 25, 50, 75, and 100% of the data is critical and required maximum con-
sistency. The non-critical data was associated with σ and ν constraints, meaning
its replication could be postponed and not all versions of the data are required.
Additionally, the case of 100% means full replication, i.e., the same as using the
regular HBase replication.

The (straight) lines of figures 3a, 3c, and 3e show that the overall latency is
reduced with V FC3 (25, 50, and 75%) when compared with HBase full replica-
tion (100%): i) latency gains were almost linear (latency of single operations is
nearly constant, especially for writes), e.g., under heavy updates, for 100000 ops.,

1000 

10000 

50000 
100000 

0 

200 

400 

600 

800 

1000 

25 
50 

75 
100 

800-1000

600-800 

400-600 

200-400 

0-200 

Overall Latency 

critical data 

se
co

nd
s 

(a) Overall Latency - Update Heavy

1000 

10000 

50000 
100000 

0 

200 

400 

600 

25 
50 

75 
100 

400-600 

200-400 

0-200 

Throughput 

critical data 

op
er

at
io

ns
/s

ec
 

(b) Throughput - Update Heavy

1000 

10000 

50000 
100000 

0 

50 

100 

150 

200 

25 
50 

75 
100 

150-200

100-150

50-100 

0-50 

Overall Latency 

critical data 

se
co

nd
s 

(c) Overall Latency - Read Heavy

1000 

10000 

50000 
100000 

0 

500 

1000 

1500 

25 
50 

75 
100 

1000-1500 

500-1000 

0-500 

Throughput 

critical data 

op
er

at
io

ns
/s

ec
 

(d) Throughput - Read Heavy

1000 

10000 

50000 
100000 

0 

50 

100 

150 

200 

250 

25 
50 

75 
100 

200-250

150-200

100-150

50-100 

0-50 

Overall Latency 

critical data 

se
co

nd
s 

(e) Overall Latency - 50/50 Up-
date/Read

1000 

10000 

50000 
100000 

0 

500 

1000 

1500 

25 
50 

75 
100 

1000-1500 

500-1000 

0-500 

Throughput 

critical data 

op
er

at
io

ns
/s

ec
 

(f) Throughput - 50/50 Up-
date/Read

Fig. 3. V FC3 throughput and latency performance



294 S. Esteves, J. Silva, and L. Veiga

the gain was about 200 sec. every time critical data decreased; ii) from 10000 to
100000 ops., in all workloads, the latency increased linearly for each critical data
segment; iii) for 1000 ops., the latency is not stable as the critical data increases,
except for the first workload that incurs a slight improvement through the criti-
cal data axis (naturally, workloads with more updates will favor V FC3, even for a
small number of ops.); iv) the level of critical data is almost irrelevant in workloads
under heavy reads, and the gains therein are mostly supported by our cache; v)
the effects of the non-critical data replication were almost not noticed, since most
of these data allowed version loss through vector σ (and the cache also absorbed
some of these latencies); and vi) in a workload with a balanced mix of reads and
writes, the average latency gain with V FC3 is very satisfactory.

Figures 3b, 3d, and 3f show that the gains of throughput are more accentuated
when critical data represents a smaller slice (25% in this case). Plus, the number
of ops. only affected significantly the throughput for smaller amounts of critical
data (e.g., from blue to green lines in the Read Heavy workload). The throughput
for full replication was practically the lowest, comparing with other critical data
levels, and almost the same in the non read heavy workloads (irrespective of
the number of operations). Also, single read operations have higher latency than
write operations (practically zero sec. since they are written in memory first on
HBase) and that explains the instability on the Read Heavy figure.

Regarding network usage, we reduced the number of messages and also the
volume of data with V FC3. Note that only the last versions of the data were
sent (like what typically happens) when σ expired; and the middleware synchro-
nization performed compression and agglomeration of replication messages when
they were inside a same small time window. For 25, 50, and 75% of critical data
we saved on average about 75, 48, and 20% respectively, since we mostly relied
on the σ vector (message skip).

For evaluating the cache component, we relied on different workloads (taken
from the YCSB benchmark) performing 100000 operations each: a) 50%/50%
reads and writes (e.g., session store recording recent actions); b) 95%/5% reads/
write mix (e.g., photo tagging); c) 100% reads; d) read latest workload (e.g.,
user status updates on social networks); e) read-modify-write (e.g., user database
activity). The cache size was 30% of the size of each workload.

0 20000 40000 60000 80000 100000 120000 

a 

b 

c 

d 

e 

VFC3 

No Cache

Cache Performance 

Runtime (milliseconds) 

Fig. 4. Cache Performance

Figure 4 shows that our cache is
effective and can reduce latency and
save communication hops. Not sur-
prisingly, the workload d obtained
best results; i.e., since we read the
most recently inserted records and
have LRU as the cache eviction pol-
icy. For the other workloads, the gains
were good, between 23-35% (a and b
at the extremes). Note that the cache
size and eviction policy can impact



Quality-of-Service for Consistency of Data Geo-replication 295

these results; so these parameters should be adjusted to better suit the target
applications.

The average hit rate of the cache for all experimented workloads was about
51% (except for d, which had 77%), revealing that V FC3 cache can significantly
improve performance, by avoiding expensive trips to the database, for a set of
typical scenarios.

6 Related Work

Many work has been done in the context of replication, transactional and consis-
tency models. Our model is based on those already established (standard book
[13]) and can be seen as an extension of them by allowing multiple levels of
consistency.

In [14], a system is presented for detection-based adaptation of consistency
guarantees. It takes a reactive approach to adjust consistency: upon detection
of inconsistencies, this system tries to increase the current consistency levels so
that they satisfy certain requirements. Contrastingly, we follow in V FC3 a more
proactive approach by trying to avoid inconsistencies from the beginning.

In [15], authors propose three metrics to cover the consistency spectrum (nu-
merical order, order error, and staleness) which are expressed by a logical unit
(conit). However, it could be difficult to associate conits with the application-
specific semantics, specially in terms of granularity; whereas our work goes with
a more fine-grained approach, capturing the semantics from the data itself.

In [16], authors propose creating different categories of data that are treated at
different consistency levels. They demonstrate through the TPC-W benchmark
that object-based data replication over e-commerce applications can definitely
improve availability and performance. We go further with V FC3, whereas we
do not have such a restrictive model regarding target applications and degrees
of consistency.

In [17], authors propose a system that allows developers to define consistency
guarantees on the data (instead of at the transaction level) that can be auto-
matically adjusted at runtime. Different strategies are explored to dynamically
adjust consistency by gathering temporal statistics of the data. Moreover, those
strategies are driven by a cost model, which associates penalty costs with differ-
ent degrees of consistency. This project shares our goals of having a data-driven
consistency model, however it could be difficult to associate (real) costs with
transactions; and they provide only 3 consistency levels. In V FC3, consistency
degrees are not pre-categorized and hence can be used to fine-tuning and better
optimize the overall system performance.

Caching at the application-level can significantly improve the performance of
both web servers and underlying databases, since it can save expensive trips to
the data base (e.g., [4,18]). The granularity may vary, storing partial database
tables, SQL queries, entire webpages, arbitrary content, etc. The major prob-
lems: i) they usually do not provide transactional consistency with the primary
data; and ii) application developers have to manually handle consistency and



296 S. Esteves, J. Silva, and L. Veiga

explicitly invalidate cache items when the underlying data changes (a very error-
prone task). In V FC3, we offer a complete solution that transparently handles
consistency and data is always updated w.r.t. the local database.

Regarding cloud data stores, Amazon S32 and BigTable provide eventual con-
sistency. PNUTS [9] argue that eventual guarantees do not suit well its target
applications; they provide a per-record timeline consistency: all updates to a
record are applied in the same order over different replicas. Conflicting records
cannot exist at the same time as it is allowed by Dynamo [8].

7 Conclusion

This paper presented a novel consistency model and framework capable of en-
forcing different degrees of consistency, accordingly to the data semantics, for
data geo-replication in cloud tabular data stores.

We implemented and evaluated a prototype architecture of the V FC3 frame-
work revealing promising results. It is effective on improving QoS, thereby re-
ducing latency, bandwidth and augmenting throughput for a set of key (and
typical) workloads; this, while maintaining the requirements about the quality
of data provided to end-users.

To the best of our knowledge, none of the existing solutions in the areas of web-
caching, database replication offer a similar flexible and data-awareness control
of consistency to provide high-availability without compromising performance.
Most of them only allow one level of stale data to exist, that is usually configured
per application, and follow a blind approach w.r.t. the data that could require
or not strong consistency guarantees; while other solutions, that share some of
our goals, impose fixed consistency levels that and limited number of application
classes or categories.

References

1. Church, K., Greenberg, A., Hamilton, J.: On delivering embarrassingly distributed
cloud services. In: HotNets (2008), CR-ENS-GRID

2. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37, 42–81
(2005)

3. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000)

4. Fitzpatrick, B.: Distributed caching with memcached. Linux Journal 2004, 5 (2004)
5. Coulouris, G.F., Dollimore, J.: Distributed systems: concepts and design. Addison-

Wesley Longman Publishing Co., Inc., Boston (1988)
6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2006, vol. 7, p. 15. USENIX Association,
Berkeley (2006)

2 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/


Quality-of-Service for Consistency of Data Geo-replication 297

7. Lakshman, A., Malik, P.: Cassandra: structured storage system on a p2p network.
In: Proceedings of the 28th ACM Symposium on Principles of Distributed Com-
puting, PODC 2009, p. 5. ACM, New York (2009)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP 2007, pp. 205–220. ACM, New York (2007)

9. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1, 1277–1288 (2008)

10. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media (2011)
11. Veiga, L., Negrão, A., Santos, N., Ferreira, P.: Unifying divergence bounding and

locality awareness in replicated systems with vector-field consistency. J. Internet
Services and Applications 1, 95–115 (2010)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, pp. 143–154. ACM, New York (2010)

13. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

14. Lu, Y., Lu, Y., Jiang, H.: Adaptive consistency guarantees for large-scale repli-
cated services. In: Proceedings of the 2008 International Conference on Network-
ing, Architecture, and Storage, pp. 89–96. IEEE Computer Society, Washington,
DC (2008)

15. Yu, H., Vahdat, A.: Design and evaluation of a continuous consistency model for
replicated services. In: Proceedings of the 4th Conference on Symposium on Oper-
ating System Design & Implementation, OSDI 2000, p. 21. USENIX Association,
Berkeley (2000)

16. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application specific data
replication for edge services. In: Proceedings of the 12th International Conference
on World Wide Web, WWW 2003, pp. 449–460. ACM, New York (2003)

17. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in the
cloud: Pay only when it matters. PVLDB 2, 253–264 (2009)

18. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: GlobeCBC: Content-
blind result caching for dynamic web applications. Technical Report IR-CS-022,
Vrije Universiteit, Amsterdam, The Netherlands (2006)


	Quality-of-Service for Consistency of Data Geo-replication in Cloud Computing
	Introduction
	Geo-distributed Cloud Scenario and Architecture
	Consistency Model
	Implementation Details
	Evaluation
	Related Work
	Conclusion


