FaceID-Cloud
Face Identification Leveraging Utility and Cloud Computing

Ricardo Caldeira and Luis Veiga

! Instituto Superior Técnico - UTL
2 INESC-ID Lisboa
ricardo.caldeira@ist.utl.pt luis.veiga@inesc-id.pt

Abstract. Detection and identification of human faces, mostly in photos,
has been an intense area of study in the past decades, with many strategies
being proposed with very impressive results. Yet, it is a computationally in-
tensive task, specially in videos that can reach a considerable size. Hence,
it is important to develop new solutions to improve the performance of face
identification methods. At the moment, one of the most promising IT tech-
nologies that can be used to achieve this result is Cloud Computing, allowing
for scalable and flexible systems to be built with an easy on-demand access
to virtual resources in a pay-as-you-go utility model. The purpose of this
work is to study the best way to achieve scalability in face identification by
integrating it in a cloud infrastructure. We propose a system that leverages
cloud resources to greatly improve facial identification performance in large
video databases, such as those found in social application (e.g Facebook®,
YouTube?).

Keywords: Video Face Identification, Cloud Computing, Utility Comput-
ing, Scalability, Virtualization, Service-Oriented Architecture

1 Introduction

Over the last couple of decades the world has been witnessing the evolution and ex-
pansion of the Information Technology (IT) area at a very fast rate, specially since
the appearance of the Internet and the World Wide Web. This led to the appear-
ance of several new paradigms that revolutionized the way information is processed,
among which there is Cloud Computing. Even though a newcomer, making its de-
but only during the last few years, all the major IT companies like Google, Amazon
and Microsoft are now aware of its power and usefulness for IT businesses. Given
the widespread of cloud technologies, its potentially limitless processing power and
storage, and the facilitated access to these resources on-demand, it is important to
design new cloud-based systems capable of presenting end-users with out-of-the-box
solutions that can be used from virtually any Internet-capable device.

In this context, facial identification of human faces in videos is one of the sub-
jects that could greatly benefit from exploiting the cloud potential, specially when
dealing with large databases of videos that can easily reach the terabytes. The nature
of this problem implies a massive computational effort from the start, since video
processing is by itself CPU consuming and the face identification algorithm on top
of it only worsens the situation. Yet, it can be seen as belonging to the class of the

3 http://wwwfacebook.com
4 http://www.youtube.com



generically dubbed “embarrassingly parallel” problems, meaning that it is easily di-
vided into sub-problems with few or no data dependencies between them. Knowing
this, the main focus of investigation is on how to bring the two sides together, or in
other words, how to implement a parallelized face identification algorithm on top of
the distributed environment of Cloud Computing, and it is with this goal in mind
that we propose a solution to the problem in the form of the system FacelD-Cloud.

This text will focus on exposing a possible solution for the problem of implementing
a facial identification system on top of a cloud infrastructure, describing the archi-
tecture and workflow of the planned system, and presenting the challenges found
along with our proposed way of addressing them. We start with a survey on previ-
ous works and state-of-the-art technologies related with this project in the Related
Work (see Section 2). Next, we describe the architecture of our solution and present
some implementation details in the Architecture (see Section 3). Finally, we present
some test results and conclude with a wrap-up of the work along with some final
remarks in the Conclusions (see Section 6).

2 Related Work

In this section, a brief overview is made on the cloud computing paradigm and some
of the most representative systems in this area. We also explore some face recogni-
tion methods, focusing on one of the earliest approaches by Turk and Pentland [4]
using eigenfaces for recognition, which our system will use. Some systems in this area
will also be described, focusing specially on the performance of database size vs. time.

Cloud Computing. During the past few years, the I'T world witnessed the birth and
growth of a new paradigm, commonly called Cloud Computing. It is difficult to
assign a precise date for its genesis, since the term “cloud” has already been used in
several contexts, describing large ATM networks in the 1990s for instance [6], and is
also based upon some already existing technologies like distributed computing, vir-
tualization or utility computing, which have been around for several years already/[5].
There are some properties that are commonly attributed to this concept:

e On-demand service provisioning. The possibility of obtaining and releasing
resources on the fly, following the real necessities of an application.

e Service Orientation. Most business models around the cloud are service-
driven, hence a strong emphasis is placed on Service-Oriented Architectures
(SOA), allowing business solutions to create, organize and reuse its comput-
ing components. Cloud Computing provides a flexible platform for enterprises
to build their SOA solutions, complementing each other [3].

e Scalability and Flexibility. In order to support a dynamic service provision-
ing, cloud infrastructures must be able to cope with very distinct conditions (e.g
hardware, software, location) and adapt to different requirements from a large
number of users.

e Pay-per-use utility model. An utility service model is usually applied to
Cloud Computing platforms, featuring a pay-per-use billing, where customers
pay solely for what they use, similar to common existing utilities such as water
supply or eletric power.

e Virtualization. Virtualization techniques provide the means to achieve most
of the above mentioned characteristics, namely by partitioning hardware and
thus acting as the base for flexible and scalable computing platforms.



Other important characteristics of cloud systems are the service and deployment
models. On the former there are three main accepted types: Infrastructure-as-a-
Service (IaaS) providing virtualized hardware (CPU, disk, network); Platform-
as-a-Service (PaaS) providing a complete software platform to develop and deploy
applications; Software-as-a-Service (SaaS) where complete applications are pro-
vided to end-users.

About the deployment models, there are also three most used types: Public clouds
are owned by organizations selling services and offered to the general public or large
industry groups; Private clouds allow companies to build clouds on top of their
own or leased infrastructures; Hybrid clouds try to leverage the advantages of both
Public and Private clouds [6].

We now expose some of the most representative cloud systems available:

e Amazon Web Services. AWS is one of the most known cloud solutions avail-
able, providing mainly TaaS and also PaaS with a 99.95% uptime on a public
deploy model. Its main features are elastic resource provisioning and load balanc-
ing, multiple operating systems and software packages, several storage solutions,
availability zones, all accessible through SOAP/REST APIs. Yet, VMs are man-
aged by developers.

e Microsoft Windows Azure. Windows Azure provides essentially a complete
PaaS service to developers, with development tools and automatic deployment
and management of VMs, and uptime guarantees starting on 99.9%.

e FEucalyptus. It is an open-source cloud solution, allowing all types of deploy-
ment and providing IaaS. It it very similar to AWS, featuring a compatible API
and some features such as elastic IPs, automatic scaling and load balancing.
Some components present some coupling, so its not easily tuned or extended to
a company’s needs (e.g. different file system).

e OpenNebula. Another open-source cloud infrastructure, similar to Eucalyp-
tus. Unlike the latter, OpenNebula does not focus on AWS features, although
providing a subset of its Query API. Besides dynamic resizing and partition-
ing of heterogeneous resources, it has a centralized management which brings
both advantages and disadvantages. It has good support for extension, with low
coupling between components.

e OpenStack. The youngest open-source cloud platform (of this group) providing
TaaS services on public and private deployments and supported by more than
150 companies. It features a shared-nothing design, multiple network models,
distributed scheduler and asynchronous architecture, with several storage op-
tions and EC2/S3 compatible APIs. It has a modular design with low-coupling
between components and can integrate with legacy or third-party technologies.

Face Recognition. During the last 40 years, the problem of face recognition by com-
puters has been the subject of extensive research, with several techniques being
suggested. Yet, humans still have better results in this area. During the last decade,
the great improvements in computing power have brought new possibilities, enabling
techniques that 30 years ago were simply not feasible, CPU- and memory-wise. Sim-
ply put, face recognition, or identification, tries to solve the problem of, given a still
or video picture, detecting and classifying existing human faces using a database of
known faces. A few representative systems in this area are now described, bearing in



mind that the recognition results are not directly comparable since the tests were
performed on different datasets under distinct conditions. These systems represent
3 types of strategies to deal with the problem (holistic-based, feature-based and
hybrid) and so cannot be seen as the state-of-the-art on this area:

e Eigenfaces. Proposed by Turk and Pentland [4], its core idea is to handle face
images as a whole (holistic approach), extracting relevant information to classify
unkown faces with a model built from an existing training face database. A
dimensionality reduction is applied (each pixel is considered a dimension) using
Principal Component Analysis (PCA) to improve time performance. From this
reduction result the eigenvectors of the set of face images, called “eigenfaces”
by the authors. Eigenfaces enable the projection of face images on the new
dimensions as a small weight vector, which can be used for classification using
some distance measure (e.g Euclidean distance). According to the authors, this
algorithm reached 96% accuracy over lighting variations, 85% over orientation
variation and 64% over size variation.

e Hidden Markov Model. Another approach was proposed by Nefian and
Hayes [1] using Hidden Markov Models (HMM). The rationale is to map dif-
ferent face features (e.g eyes, mouth) to states on an HMM (as opposed to an
holistic approach) and build a face model from training data, which is applied
for classification. The authors argue that this approach outperforms the original
Eigenfaces algorithm by 11%, reaching 84% on their testing database.

e View-based Modular Eigenfaces. There are also systems that use both
holistic- and feature-based approaches, like the one proposed by Pentland et
al. [2]. In this system, the concept of ”eigenfaces” is extended to individual
facial features, resulting in ”eigenfeatures”. The usage of both kinds of informa-
tion (eigenfaces and eigenfeatures) reached a 98% recognition rate on the test
database.

If we explore the application of face recognition to the area of our work, there are
not many known systems that explore the same problem of improving recognition
raw performance (database size over time). Nonetheless, we mention some systems
based on cloud or grid computing:

e Faces of Facebook®. This work is focused on the raising of new privacy con-
cerns from the convergence of face recognition, cloud computing and online social
networks. It tries to recognize persons by searching facebook profiles, powered
by cloud infrastructures. Although the goals between this system and ours are
different, cloud computing is a central piece on both.

e Grid-Based Parallel Elastic Graph and Template Matching. These
systems parallelize the Elastic Graph and Template Matching algorithms so that
they can run in grids, surpassing the eigenfaces algorithm in time performance
when the database has 500 faces or more (Elastic Graph) and when the grid has
more than 10 nodes (Template). This result show that scheduling activities and
network delay have a big impact on small databases.

e Other systems. Other representative examples of face recognition in the Web
2.0 era are the automatic photo tagging features on Facebook®, Google’s Picasa

® https://media.blackhat.com/bh-us-11/Acquisti/BH_US_11_Acquisti_Faces_of _Facebook_Slides.pdf
5 https:/ /blog.facebook.com /blog.php?post=467145887130



Web Album? or Apple’s iPhoto®. Unfortunately, these are proprietary systems

and not much information is available.
Although some efforts are being made to bring face recognition and cloud computing
together, none of the above mentioned systems are dealing with video face recog-
nition, which is a subject that comes with an increased complexity in terms of the
necessary processing power and network utilization. We think that cloud computing
is the ideal solution to this problem, as the problem is highly parallelizable, but the
sheduling effort and resource management (network, storage) are the most difficult
challenges.

Also, as the main purpose of this work is not to advance the state-of-the-art in face
recognition accuracy by itself, we deliberately chose one of the simplest approaches
for our system (eigenfaces), while leaving ”software hooks” for better algorithms to
be added.

Data Store

(HDFs)

3 Architecture

FacelD FacelD
We start by presenting a high-level view -

of the system’s components and their
relations in Fig. 1, describing each one

FacelD
and their interactions in more detail af-

terwards. In this diagram, each soft-
ware component is represented either V=" 4

by a rectangle or a cylinder and is not
necessarily assigned to a single VM in-
stance in exclusivity, meaning that sev- Fig. 1: Component Interaction Diagram

eral components can coexist in the same

node. There are six main components in the system: FaceID-Monitor, which co-
ordinates the whole system; FaceID-Master, which handles new jobs; FacelD-
Slave/MSlave, which performs processing tasks; Database, where all processed
data is kept; Datastore, where raw data is placed (videos, chunks); WebServer,
which is merely a front-end for clients to interact with the system.

Database
FacelD
Cloud Mslave (Hbase)
Front-End Raw

Client

3.1 System Topology

Since there are several different components, with very different types of tasks and
interactions, we add another layer of abstraction and group them according to their
type of responsibilities: Management, Computation, Storage and Web Interaction
(Fig.. This separation is important to clearly identify responsibilities and to achive
loose coupling between the components. A brief description is provided:

Management. Due to the elastic nature of the virtualized resources, it emerges
that a centralized way to manage resources is needed, or at least semi-centralized
way of accounting for a larger systems spawning different geographic regions. It
should be simple for a client to launch a new task by contacting a centralized known

" https:/ /picasaweb.google.com/
8 http://www.apple.com/ilife/iphoto/



component. To accomplish this we provide the component FaceID-Monitor, respon-
sible for managing all the system’s resources, allocating and deallocating VMs on
demand by interfacing with the cloud infrastructure’s front-end component.

Another responsibility of the monitor is to assign and manage priorities between
jobs, which will condition the order of execution in case of a loaded system. There
are three main rules to be followed when assigning priorities to jobs, which are pre-
sented by order of importance (i.e. rules appearing first on the list are applied first
and win when in conflict with others):

1. Jobs derived from real-time user requests take precedence over background batch
workloads, unless otherwise specified by an administrator.

2. Small jobs take precedence over large jobs, where a small job corresponds to
videos that fit in less than one chunk, in an attempt to answer the most requests
in the shortest time. This rule does not hold if a large job has already been
postponed for more than an heuristically calculated threshold (e.g. time-waiting
over video size).

3. Finally, the ground rule is that older jobs take precedence over newer jobs, with
a timestamp assigned by the monitor.

We are aware that the monitor represents a single point of failure for the system.
Nonetheless, in case of failure, all the running jobs should terminate successfully,
despite the impossibility of accepting new jobs until the monitor recovers. Three
types of failures can happen that would stop the monitor component: node failure,
cloud middleware failure and the monitor application itself crashing. We delegate
the responsibility of recovering from the first two situations to the cloud infrastruc-
ture, focusing on the third problem. A simple solution is to insert a very small and
robust application on the same VM node of the monitor which will receive suspected
notifications from other components when the monitor is not responding, and will
take action in order to put it back on a correct state. The monitor recovers the
system state through the database and small local snapshots.

Finally, the diagram in Fig. 2 shows another type of component in the management
area, FacelD-MSlave, which are a special type of slaves whose master is the monitor
itself. The monitor can use M-slaves to perform heavier management subtasks such
as online training of the eigenfaces data or statistics gathering.

Storage. There are essentially two types of data that need to be stored: raw video
and processed information, such as knowledge about people and videos, and eigen-
faces related data. Hence, two different storage schemes are used according to the
type of data.

To store raw video, a large distributed data store is sufficient, following a write-
once-read-many access model for the stored files. Most regular distributed file sys-
tems could be used, but since scalability is part of the main goals of this work, the
Hadoop Distributed File System (HDFS)? was chosen, as it is capable of scaling
up to thousands of datanodes. The choice of HDFS as the raw datastore is also
connected with the need for a database system to store the information produced
by the processing of videos. Both relational (SQL-based) and key/value (NoSQL)
databases were considered, but the former are known to manifest some scalability

9 http://hadoop.apache.org/hdfs/



problems, while the later scales better and is much less complex in terms of data
access (at the cost of query and data integrity functionalities). Therefore, we decided
to use HBase!'? from the Hadoop ecossystem, which runs on top of HDFS.

The system has dedicated storage nodes which do not take part in computation jobs,
being always available and having sufficient space to accommodate all the necessary
data. It is important to clearly separate data nodes from computation nodes, given
that they have different allocation strategies. Data nodes will typically not be allo-
cated and deallocated on demand like computation nodes, being much less dynamic.
The expansion of storage space is performed by system administrators by adding
new VM nodes and informing HDFS of its location.

Finally, there is still one issue that must be address concerning the lack of some
querying functionality by HBase. In a key/value database, joins must be performed
by the client application, meaning that one needs at least the double of database
round-trips to perform an operation concerning two tables. To partially reduce this
inefficiency, we propose to add a stub application to the nodes running HBase, called
FaceID-DBStub or stub, which will perform improvements to queries transparently
to database clients, such as an in-memory cache for “hot” cells or others (e.g. index).
This stub will leave room for future improvements and even facilitate a database mi-
gration to a new platform.

Computation. This group comprises the FaceID-Master and FaceID-Slave compo-
nents, which are allocated on demand by the monitor and are responsible for the
processing of video material and application of the face identification algorithms.
A master is instantiated whenever there is no other free master that can handle a
new job that arrived. It fetches the video and stores chunks of it in the datastore,
asking the monitor for the necessary resources (slaves) to continue the job, and waits
to merge the processed information that the slaves will write on the database.

The slaves’ function is simply to apply the face identification algorithm on the video
chunks assigned to them by the master and storing the results in the database.

Web Interaction. There is only one component in this group, the Web Server,
which provides a user interface to interact with the system. This component acts as
a middle-man between users and the system, simply contacting the system monitor
when submitting new jobs and displaying the results to the user.

3.2 Work Units

In this system, there are two basic units of work, jobs and tasks. The former
correspond to the processing of one video, and have a single master component
assigned to it which coordinates the whole operation. The latter correspond to the
partition of the videos in chunks and are assigned to the available slaves, which can
be assigned more than one task.

3.3 Workflow

To better describe the execution of a job in the system, the steps taken for its
completion are explained in detail:
1. A client contacts the Web Server and provides a URL/URI for the video.

10 http://hbase.apacher.org



2. The web server contacts the system monitor in order to submit the new job.

3. The monitor checks the system state for masters who do not have an assigned
job. If such a master exists, the job will be assigned to it. If not, a new master
component is instantiated by communicating with the Cloud Front-end.

4. The Web Server is given information about the master and sends it the job
information.

5. If the video is already known to the system, the last step is executed. Else, the
master downloads the video from the given URL/URI, stores it in chunks in
the raw datastore and fills the new information on the database to start the
processing. It then requests slaves from the monitor.

6. Upon receiving the complete information, the master distributes the load be-
tween them and waits for termination. Dynamic load balance may be performed
by the master if some slaves end their work earlier.

7. Each slave fills in its processed information in the database.

8. The master merges the results from every slave and creates a final list of people
that were identified in the video, storing this information in the database.

9. The answer is then delievered to the Web Server that presents it to the client.
This workflow describes the basic interaction with the system, but some other typical
interaction could include queries for videos where a person appears. In both cases, in
order to avoid some expensive database access, results would only be partially shown
(e.g. 10 at a time), starting with the ones with highest confidence level. Other results
would be requested on-demand by the user, but hopefully most times the first 10
will be enough.

Data Model. Since the chosen database is column-oriented, the data model is be
very simple and adapted to this type of database, containing only 5 tables:

e Videos: general information about videos, chunk location and people identified
in frames.

e People: general information about people, the videos on where a person appears,
feature weight vector for every face image of a person, and a mapping of faces
to frames.

e EigenfacesData: eigenface related data, containing the results from the train-
ing process.

e Jobs: information about running and past jobs, containing also the people found
by the slaves.

e User: information about users that use the face identification service in the
website.

Training. In the original eigenfaces algorithm, the training of the system is per-
formed offline in a limited training set, prior to the execution on test data. However,
our system is supposed to deal with an increasing amount of people, whose different
types of faces will possibly not be adequately covered by the training data, and so it
should be able to perform online re-training when “needed”. In order to tackle the
problem of the very large number of faces (e.g. at 30fps, a 1 minute video with one
person will result in ~1800 faces), we intend to subsample the face database and
use this smaller subset that include some new faces to train the system, hopefully
increasing the accuracy. As of now, this subsampling is performed semi-randomly
(at fixed steps according to the database size), but a better strategy may be applied
in future work.



FacelD-Cloud

—————— ul
f Management Workers 1 HBace ~ — — [T~ ———— bl
| | I HBase | | HDFS |
I | Faceip-mstave | | | | | |
| | | ZooKeeper Master | NameNode |
- l Quorum Server |L®_1r> |
5 I | Facein-msiave I I Region S+ Region S+ I |
- egion Server | [ Region Server
| | CoataNode)
el! I LI [ = O 1 B4
Y I l Region S I O o ]
acelD-Mslave | | | | Region Server 3
g|! [ - | I|&
ocfl ... | . e
s B S =
L = Regions |
(100-200m8B) - - - =
FacelD DBStub |
FacelD-Monitor V“‘;‘Z;‘;{‘ks
i
Front-end o
f— — [— —_— —— —_——
N~ 5—= o
FacelD-Slave |
gﬁ)‘.ﬁql FacelD-Master : FacelD-Slave ||
c Web Server g |
o FacelD-Slave o
2 | |
= e | e T o
o l g g g 3
© Web Server | JobY | o
[
c I | | =1
= ce FacelD-Master FacelD-Slave | Q
| =3
g Web Server I ———————————— o
[m—————————————— =]
= Jobz
| |
| FacelD-MaSterl | FacelD-Slave || FacelD-Slave |
e i
L

Client External Video
Browser Repository

Fig. 2: System Architecture. Interactions: 1. Client submits new video or query and
receives results; 2. Web server submits new job and gets an assigned master from
monitor; 3. Monitor can allocate and deallocate components through the Cloud
Front-end; 4. Master can ask for more slaves from the monitor; 5. Web server submits
detailed job information to the master and receives the computation results; 6.
Master can fetch videos from external sites; 7. Accesses to the database are mediated
by stubs; 8. Video chunks are stored and read in HDFS by masters and slaves,
respectively; 9. Stubs perform reads and writes in HBase; 10. HBase depends on
HDFS to physically store regions

It is hard to assert when a re-train of the system is required, but we intend to
use some simple heuristics: average identification confidence level; precision of the
system based on user-feedback; number of new faces added to the database; time
since last training. Also, training is to be performed without fully stopping the sys-
tem, trying to keep accepting new jobs with minimal disturbance. To achieve this,
the system monitor allocates m-slaves that will perform the training and store the
results on a new row in the database. When the training is complete, all new jobs
will be directed to use the new eigenfaces database, while all the already executing
jobs will finish their work with the old information, leading to a smooth transition
between database versions with an epoque-based approach.

4 Implementation Details

We now give some detailed information on the technologies used to develop the sys-
tem, starting with a diagram of the software-stack on each component on Fig. 3.



FacelD-DBStub FacelD-Monitor FacelD-Master FacelD-Slave I FacelD Web Interface
[ hease N Ereriuiet | Eitetwid | Bt | [ Apache Tomcat
SRl A= paviviviutet | ivivtvonte | abrivtrtaled BN | iy
[ e I+ opentebuia | opentebuia | opentebuia | | [ G
B ) R
[ opennebuia

Fig. 3: Component Software Stack Layered View

Every component uses a similar stack of software modules, simplyfing the develop-
ment effort:

e Deployment Environment. All components are deployed on VMs running a
minimal installation of Ubuntu Server 10.04 LTS (Lucid Lynx). The cloud in-
frastructure is managed by OpenNebula!'!, an open-source solution that enables
an Infrastructure-as-a-Service model (IaaS) on top of a private datacenter, and
supports a subset of Amazon’s EC2 query API. The virtualization infrastructure
used together with OpenNebula is KVM. All components were developed in Java
for simplicity, as both HDFS and HBase are written in Java and provide APIs
in this language. We think Java has sufficient performance to be used in the face
recognition module as well, but a C/C++ version can be easily ”plugged” if it
proves to be a better solution in the long term.

e Resource Management. All resources are allocated and deallocated through
the monitor component, which interacts with the cloud front-end for this pur-
pose. Hooks were made and abstraction layers were developed in order for a low
decoupling between our system and the chosen cloud provider, so that different
providers can be easily added (namely through generic interfaces and factory
patterns). Specifically about OpenNebula, we use its XML-RPC API, which has
a Java wrapper available as well, although it is a little verbose.

¢ Component Communication. There are three types of component-component
interaction: REST-based (JSON), SOAP and direct socket connections. All ac-
cesses to the database are performed through stubs, which possess a REST
enabled web server accepting JSON requests. It is a lightweight protocol and
allows for the sending of multiple requests on the same message, including small
data transfers. To allow other applications to access the database, a client pack-
age is also provided. SOAP is used by the front-end web server component to
communicate with the system monitor, providing stateful operations and asyn-
chronous processing. Finally, the 3 core components (monitor, master and slave)
communicate through direct socket connections.

5 Evaluation

In this section we present some test results about the performance of the system and
briefly describe and try to justify them. All tests were performed under the same
conditions (unless specified) on a cluster composed of 6 machines featuring an Intel
Core i7-2600K CPU at 3.40GHz, 12GB of RAM at 1333MHz, hard disk with 7200

' http://http://opennebula.org/



"Warm" Cloud scenario
"Cold" Cloud scenario

400.000
350.000

450,000
400.000
350.000 300.000
300.000 250,000
250.000 200.000
200.000 150.000
150.000
100.000
50.000
0.000

Time (s)

100.000
50.000
0.000

#of slaves
# of slaves

(a) ?Cold” Cloud (b) ”Warm” Cloud

Fig. 4: System perfomance under different cloud conditions

RPM and Ubuntu Server 12.04 LTS 64bit. Storage components were already avail-
able before every test started, with 3 VMs running HDFS, HBase and an instance of
the FaceID-Stub component each. Finally, the component FaceID-Monitor was also
already running before every test.

The tests focus only on the detection (i.e. not recognition) of every face on a 3m24s
video with 16.9MB, 450x360px resolution and 25fps, and the storage of the face
images found on the database. The time was measured from the moment the new
job is delivered to the monitor, to the moment the assigned master checks that all
slaves have finished their tasks.

”Cold” Cloud. In this scenario, the cloud platform was ”cold” (i.e. as in a ”cold”
cache scenario), meaning that no worker VMs (masters, slaves) were already running
and waiting for a job. This implicates the allocation of new resources by the monitor,
and thus the performance is affected when more VMs are used, as can be observed
in Fig.4a when we use more than 5 slaves. Nonetheless, when using 5 or less we still
achieve some speed-up (max around 2.6x).

"Warm” Cloud. Unlike the previous test, the cloud platform was ”warm”, so all
necessary resources were already allocated. As can be observed in Fig.4b, this yields
much better results, and the benefit of using extra slaves is maintained for a larger
number of nodes (between 8-16), yielding a speedup of 3.9x between 1 and 8 slaves.
The reason for the performance decay after 8 is probably due network overheads and
database accesses from all components.

5.1 Discussion

From the obtained results, we can observe that two conditions greatly affect the
performance of the system: the state of the cloud (i.e. ”cold” vs "warm”); and
overheads coming from utilizing more nodes. The way we found to deal with the
former is to keep the cloud resources from being rapidly de-allocated after they finish
a task. Upon finishing, they are transferred to a resource pool in the monitor, where
they will wait either for a new job or for de-allocation. We believe the "recycling” of
VMs will help the system achieve better results. However, it may be costly to have
several VMs on this pool (cloud businesses is usually pay-as-you-go), so they must
eventually be de-allocated when the overall system load is reduced. For the other
condition, we will use such results to determine the number of slaves to use on each
job (between 5 and 8), but we think there are no perfect solutions that can cope with



the diversity of video sizes, resolutions, formats, etc. For example, on larger videos
accesses to the database are probably rarer, as the slaves need more time to process
each frame, and that may lead to better results with a larger amount of workers. We
will approach this in future work.

6 Conclusions

Our main goal was to design a system that can horizontally scale performance- and
storage-wise in a graceful way with the addition of new nodes, making use of the elas-
tic nature of virtual cloud clusters to speedup the recognition process in large video
databases. To achieve this, we separated computation and storage into two differ-
ent parts, allowing computation nodes to be allocated and deallocated on-demand,
without interfering with a stable set of nodes dedicated to storage which can easily
be extended on a more static way. It is important to note that this is a data-oriented
system, since each job is represented by a video chunk, conditioning computational
tasks to the availability of data. The load-balancing and job execution is addressed
in two levels with the introduction of a system monitor and master components
which aim to drive an efficient use of the resources and maintain the responsiveness
of the system. To improve the overall face identification precision rate overtime, we
proposed an online training strategy that tries not to disrupt the system while re-
building the eigenfaces database.

Judging by the existing systems performing face recognition in the cloud, we think
that our solution approaches a problem that is not yet fully solved, the facial iden-
tification on videos. We think our solution is robust and should fit in real-world
scenarios on large video databases.

Acknowledgements: This work was partially supported by national funds through FCT Fundao para a
Cincia e a Tecnologia, under projects PTDC/EIA-EIA/102250/2008 and PEst-OE/EEI/LA0021/2011.

References

1. Nefian, A., Hayes III, M.: Hidden Markov models for face recognition. In:
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998
IEEE International Conference on. vol. 5, pp. 2721-2724. IEEE (1998),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=678085

2. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces
for face recognition. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition. vol. 02139, pp. 84-91. IEEE Comput. Soc. Press (1994),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=323814

3. Tsai, W.T., Sun, X., Balasooriya, J.: Service-Oriented Cloud Computing Architecture.
In: Seventh International Conference on Information Technology. pp. 684—689. IEEE
(2010), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5501650

4. Turk, M., Pentland, A.. Face recognition wusing eigenfaces. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. pp. 586-591. IEEE Comput. Sco. Press (1991),
http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=139758

5. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A Break in the Clouds:
Towards a Cloud Definition. ACM SIGCOMM Computer Communication Review 39(1),
50-55 (Dec 2008), http://dl.acm.org/citation.cfm?id=1496100

6. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications 1(1), 7-18 (Apr 2010),
http://www.springerlink.com/index/10.1007/s13174-010-0007-6



