
Noname manuscript No.
(will be inserted by the editor)

Large-scale volunteer computing over the Internet

Fernando Costa · João Nuno Silva · Lúıs Veiga · Paulo Ferreira

Received: date / Accepted: date

Abstract Cycle sharing over the Internet has increased
in popularity during the last decade, with increasingly
powerful machines being made available to existing proj-
ects. In this paper we present GiGi-MR, a framework that
allows non-expert users to run CPU-intensive jobs on top
of volunteer resources over the Internet.

GiGi-MR has several distinctive features: it allows
non-expert users to easily partition their jobs in several
paralel tasks; such Bag-of-Tasks (BoT) are executed in
parallel as a set of MapReduce applications; the volunteer
resources that are used are those providing the best match
for the tasks being executed (using Attenuated Bloom Fil-
ters); it provides a portable checkpointing fault-tolerance
mechanism based on virtualization; it does not rely ex-
clusively on a central server (or servers) at all times (thus
minimizing the bottleneck effect); it deals with malicious
participants (possibly byzantine) using an efficient partial
replication mechanism to validate the results obtained;
and it is compatible with BOINC (one of the most pop-
ular open-source software platform for computing using
volunteered resources).

We describe GiGi-MR’s architecture and evaluate its
performance by executing several MapReduce applica-
tions on a wide area testbed. Furthermore, we use micro-
benchmarks to assess each one of GiGi-MR’s components
independently. The system’s overhead is minimal. When
compared to an unmodified volunteer computing system,
GiGi-MR obtains a performance increase of over 60% in

This work was partially supported by national funds
through FCT – Fundação para a Ciência e Tecnologia,
under projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-
EIA/108963/2008, PTDC/EIA-EIA/113993/2009 and PEst-
OE/EEI/LA0021/2011.

Distributed Systems Group, INESC-ID
Technical University of Lisbon
R. Alves Redol, 9
1000-029 Lisboa, Portugal

application turnaround time, while reducing the band-
width used by an order of magnitude.

Keywords Volunteer Computing · Distributed Sys-
tems · MapReduce · adaptive middleware

1 Introduction

The use of volunteer PCs across the Internet to execute
distributed applications has been increasing in popularity
since its inception in the early 1990s, with the creation of
projects such as Distributed.net,1 Seti@home [3] or Fold-
ing@home [19]. These Volunteer Computing (VC) sys-
tems harness computing resources from machines running
commodity hardware and software, and perform highly
parallel computations, also called Bag-of-Tasks (BoT),
that do not require any interaction between network par-
ticipants.

Existing VC systems support over 60 scientific proj-
ects,2 and have over a million participants, rivaling super-
computers in computing power. The most popular mid-
dleware, BOINC [2], is currently being used by over 40
projects, from scientific fields ranging from climate pre-
diction to protein folding.

Projects must have a large visibility in order to at-
tract enough cycle donors and be composed of hundreds of
individual tasks or workunits. Furthermore, project cre-
ators must have a large knowledge on C++ or Fortran
programming. To achieve fault tolerance during task ex-
ecution, developers must modify their application code
and insert explicit checkpoints. Users not satisfying these
requirements cannot take advantage of available remote
cycles. Even if the user has enough programming knowl-
edge to create a project, if the project is short lengthened

1 Distributed.net website. http://www.distributed.net
2 List of active VC projects.

http://www.distributedcomputing.info/projects



2 Fernando Costa et al.

or not capable of attracting enough donors, the gains will
be low. This kind of operation greatly limits the scope
of users capable of creating projects to be remotely exe-
cuted.

1.1 Goal

Our goal is to create a framework (called GiGi-MR) that
allows non-expert users to create jobs and submit the cor-
responding Bag-of-Tasks to a VC system, supporting the
MapReduce paradigm and making an efficient usage of
the resources available, while being fault-tolerant and re-
silient to byzantine clients and compatible with BOINC.

There are several challenges and requirements to con-
sider, in order to achieve our goal. First and foremost,
GiGi-MR must be able to take advantage of the huge
amount of VC resources that we previously mentioned.
We must consider both the hardware capabilities of in-
dividual machines and the network bandwidth that is at
our disposal, at the last mile of the Internet. The platform
needs to be portable, in order to handle the heterogene-
ity of machines, and adaptable to environmental changes
(i.e. resource availability). To that end, it must able to
organize clients into a virtual network, and have them
exchange information that is then used by the server.

Our system must also be compatible with existing VC
solutions (e.g. BOINC [2]). Developing a whole new plat-
form from scratch would be of no practical use. There-
fore, we must take into account existing systems and use
their existing infrastructure to come up with a final pro-
totype that can actually be used, in a real-world scenario.
In fact, our solution would undoubtedly bring significant
disadvantages if it required that only our system’s clients
were attached to a project.3 To avoid this situation we
must guarantee compatibility with existing projects. Any
client must be able to run any project application. On the
other hand, our solution must support existing applica-
tions, and successfully schedule tasks on existing clients.

To include non expert users as job creators, two key
requirements are to be met: i) the users should be al-
lowed to use the applications or programming languages
they are literate on, and ii) there should be enough cycle
donors to speed even small jobs. The system must also
be able to take sequential applications representative of
BoT problems (with iterations that process different data
sets) as input, and modify them into parallel tasks with-
out user intervention. Some applications, due to being
more complex and not easily transformed into a set of
map and reduce tasks, do require some manual interven-
tion. This is provided by means of a simple interface that

3 A VC Project runs on top of existing middleware (e.g.
BOINC) by developing an application and defining all param-
eters concerning its execution. Project developers only have to
make sure their tasks are properly configured and provide a
publicly accessible machine to act as the VC server.

non-experts users can use (e.g. to define which executable
should run with which set of data).

The execution of our system on unreliable, non-dedicated
resources requires fault tolerance mechanisms. This means
it must account for unreachable clients, which have dis-
connected from the server, or are simply offline. Our so-
lution must be able to withstand transient server failures.
This is particularly important in our case because we will
be dealing with long running applications, with a poten-
tially high level of server interactions. We need to prevent
the execution on the clients to come to a halt, as they wait
for the server to come back up. Finally, we must also con-
sider byzantine behaviour. Clients may maliciously return
incorrect results, or inadvertently produce an incorrect
output by encountering errors during the computation
or data transfers. Therefore, we must provide result val-
idation that accounts for this environment and provides
reliability.

1.2 Shortcomings of Current Solutions

Existing solutions do not fulfill our goal while ensuring
the requirements mentioned above. We highlight some of
those shortcomings in this section (more details in Sec-
tion 4).

Although creation, distribution and execution of tasks
over the Internet is handled by existing middleware, there
is still a steep entry barrier for anyone trying to start a
VC project. This makes cycle sharing over the Internet a
one-way deal. Computer owners only have one role in the
process: to donate their computers idle time.

The development of Bag-of-Tasks applications for ex-
ecution on multiprocessors or clusters requires the use of
APIs not designed for this kind of problem. For instance,
MPI [29] allows the parallel execution of tasks, but was
developed for much more complex parallel applications,
with high data communication between tasks. The use of
such APIs requires the programmers to learn them, and
add complexity to the final parallel solution. Existing VC
systems typically do not provide any tool to convert sim-
pler, sequential applications to parallel BoT.

A considerable limitation of existing VC systems is
their focus on Bag-of-Tasks (BoT) applications, with lit-
tle communication and without dependencies between the
tasks. As parallel and distributed computing becomes the
answer for increased scalability for varied computational
problems, several paradigms and solutions have been cre-
ated during the last decade. In particular, MapReduce
[11] has taken its place as one of the most widely used
paradigms in cloud computing environments, such as Ama-
zon’s EC2.4 Its wide use, simplicity, and scalability make
it a prime candidate for execution on VC systems. None

4 Amazon EC2. http://aws.amazon.com/ec2



Large-scale volunteer computing over the Internet 3

of the current VC platforms support MapReduce, a pro-
gramming model that adapts well to a data-intensive class
of applications. Supporting MapReduce requires funda-
mental changes on existing algorithms, and the introduc-
tion of on-the-fly task creation. This is currently not avail-
able on any present system.

In order to deal with BoT applications, scheduling and
resource discovery algorithms are designed with the least
complexity possible. Despite reducing the probability of
introducing errors in computation or validation, this ap-
proach underestimates the benefits of taking advantage of
user resources. Current systems are limited to specifying
the minimum hardware requirements for each computa-
tion, and typically do not consider adaptive algorithms
to deal with ever-changing machine availability and re-
sources.

A server in existing VC systems is only capable of us-
ing host information periodically reported by each client
when requesting work. After assigning a work unit, the
scheduler can make an educated guess on when the client
will finish execution and request further work, based on
past behaviour and task deadlines. However, there is no
further update of this schedule until there is another re-
quest. This greatly reduces the system’s capacity to pre-
dict future work requests and schedule tasks accordingly.

Most VC systems have a centralized architecture, with
all communication going through a single server (or clus-
ter). There are few exceptions and they were created with
a smaller scope or environment in mind [8]. In BOINC [2],
XtremWeb [5] and Folding@home[19], the server or coor-
dinator must fulfill the role of job scheduler, by handling
all the task distribution aspects and result validation.
This approach inevitably creates a bottleneck, as projects
expand and storage and network requirements become
more demanding. Existing projects such as Climatepre-
diction.net and MilkyWay@home have encountered scal-
ability problems when dealing with large files or having
the same data shared by many clients [9]. Although some
potential solutions have been proposed [10, 13], they have
not been deployed in the most widely used systems.

Fault tolerance is mostly confined to the client-side
in current VC systems. Although some projects do have
a set of mirrors that act as data repositories, all client
requests and task scheduling goes through the central
server. Therefore, any server fault that prevents it from
communicating with clients has a very high probability
of disrupting clients and stopping further task execution.

Finally, there is a considerable limitation with respect
to result validation mechanisms. Most existing systems
are content with providing integral replication of data,
without considering communication overhead or poten-
tially more attractive alternatives. There is also little or
no use of redundant task execution (we call this sampling
technique - more details in Section 2.3) which can consti-

tute definite proof in cases of malicious behaviour (user
returning an incorrect result).

In summary, existing VC solutions allow the execu-
tion of BoT in a master/worker model, with simple repli-
cation and fault tolerance mechanisms. They guarantee
valid results but do not take advantage of the ample client
resources, and create a high entry barrier for anyone wish-
ing to take advantage of their platform.

1.3 Our Solution: GiGi-MR

In this paper we present GiGi-MR, a framework that
allows ordinary users to execute MapReduce tasks over
the large scale Internet, on top of volunteer resources.
MapReduce is a fitting choice for running data-intensive
applications on top of volunteer resources, since it is a
popular paradigm, representative of different tasks.

MapReduce leverages the concept of Map and Reduce
commonly used in functional languages: a map task runs
through each element of a list and produces a new list;
reduce applies a new function to a list, reducing it to a
single final value or output. In MapReduce, the user spec-
ifies a map function that processes tuples of key/values
given as input, and generates a new intermediate list of
key/value pairs. This map output is then used as input
by a reduce function, also predefined by the user, that
merges all intermediate values that belong to the same
key. Therefore, all reduce inputs are outputs from the
previous map task. Throughout the rest of the paper, we
will be referring to them as map outputs.

Our system is compatible with existing solutions (in
particular BOINC), and provides users with the ability to
submit jobs through a web interface. GiGi-MR supports
client to client transfers, thus minimizing the volume of
data sent through the server. This also allows GiGi-MR
to tolerate transient server failures, as the clients depend
merely on other peers for data. It is also capable of toler-
ating VC clients’ failure by using replication (i.e. running
the same task on several VC machines). By increasing the
replication factor, the probability of a failure of all clients
running a certain task is lowered.

Byzantine client behaviour is controlled through the
use of task validation in the server. Different data parti-
tioning flavours among the tasks are supported, and the
use of sampling on the server further increases security.
By replicating each task, it is possible to compare the
outcome and accept only the results in which a quorum
has been reached.

Our framework follows a layered approach, ranging
from top-level user interaction tools to lower-level mod-
ifications that arrange clients into a connected topology.
We decentralize some of the mechanisms of existing sys-
tems that place an excessive burden on the central server,
by taking advantage of user resources. Additionally, we



4 Fernando Costa et al.

introduce new algorithms for scheduling and validation
that increase our system’s adaptability and usefulness.

Task scheduling is improved through the use of infor-
mation provided by running clients, which are organized
in an overlay network [27]. Several criteria, like bandwidth
or resource availability are subject to analysis for the
choice of neighbours. Bloom filters [4] are used to identify
different types of resources, from applications to libraries
or services. The system’s resource discovery mechanism
is coupled with a resource evaluation algorithm that uses
fuzzy logic and combined utility functions to prioritize
hosts [28].

This paper is organized as follows: GiGi-MR is pre-
sented in more detail in Section 2; Section 3 describes
some implementation details, and presents micro-benchmarks
and experimental results, conducted with several MapRe-
duce applications, on a large scale testbed [7]; related
work is discussed in Section 4; and Section 5 concludes.

2 GiGi-MR Architecture

GiGi-MR’s high-level architecture is presented in Fig.
1. A server is responsible for scheduling and validating
tasks, while taking advantage of information provided by
host clients. Clients are organized into a network over-
lay, which allows them to exchange information indepen-
dently from the server.

GiGi-MR is compatible with BOINC (Berkeley Open
Infrastructure for Network Computing), the most success-
ful and popular volunteer computing middleware to date.
Consequently, our client can participate in GiGi-MR as
well as in BOINC projects, and borrows many primitives
and algorithms available to BOINC clients.

The GiGi-MR client software in shown in Fig. 1. The
top layer, User Interface, is responsible for user interface
on the client. Users can use it to transform sequential ap-
plications into parallel tasks, thus making them runnable
on GiGi-MR. In addition, this layer also lets ordinary
users submit their jobs from their machine, by register-
ing the application’s executable file. On the server, the
Web Interface provides a web page for users to submit
jobs, and define their parameters and input files (which
are then uploaded to the Data Server). The RPC Inter-
face is responsible for interacting with the client when
registering new applications.

The MapReduce VC layer enables the execution of
MapReduce tasks on the system. The server stores in-
formation on each job’s parameters (e.g. number of map
and reduce tasks) in a configuration file, which is accessed
when creating tasks. Map tasks are distributed to clients,
and once all mappers have returned their result, the re-
duce tasks are created and scheduled for execution on
reducers. As previously mentioned, the transfer of map

Fig. 1 GiGi-MR Model.

outputs to reducers is done through inter-client transfers,
without server interference.

The following layer, Checkpoint and Replication, pro-
vides a checkpointing mechanism, through the use of Vir-
tual Machines (VMs), and provides several options for
partitioning and replicating input data. Using VMs re-
moves the need for changes to the application source code
in order to achieve task fault tolerance.

Resource Discovery is used for enhancing the server’s
scheduling performance. Clients exchange messages with-
in their overlay network, concerning their current avail-
ability and volunteered resources. This information is then
sent to the Resource Updates module whenever there is
an interaction with the server (e.g. work request).

The bottom layer, Overlay Management, is respon-
sible for routing and addressing in the overlay network.
When changes in volunteered resources occur, they are
announced to the nodes of the local node neighbour set
throughout update messages. The neighbour set is estab-
lished and managed at this level. Moreover, this layer
maintains all the information about the availability of re-
sources that each node of its neighbour set has. This layer
separates the system from the overlay network used, thus
providing the freedom of choosing the most appropriate
solution (e.g. CAN [25], Chord [30], Pastry [27], etc).

Each layer is described in more depth in the following
sub-sections.



Large-scale volunteer computing over the Internet 5

2.1 User Interface

The top layer provides 2 features: i) transformation of
sequential applications into parallel tasks, and ii) their
submission to GiGi-MR by ordinary users.

In order to perform a transformation, the user must
define which methods and classes should be parallelized.
This information is saved in a configuration file, which
is read by the GiGi-MR client. Afterwards, it loads the
application, and transforms it in run-time so that the
specified methods are executed concurrently. The trans-
formation itself is performed without user intervention.
The resulting tasks are submitted to the system and ex-
ecuted remotely. This layer is responsible for spawning
the necessary threads, and synchronizing the invocation
of the methods.

The proposed solution is implemented in Python and
uses metaclasses, allowing the modification of the code
to be done in run-time, without any need to transform
and recompile the source code. The developed metaclass
intercepts all class creations and modifies the implemen-
tation of those that are to be parallel, without any user
intervention: the user must only state what classes have
methods that can be executed concurrently with the rest
of the code.

The distribution of work among several computers
or processors by existing systems can be done using li-
braries such as MapReduce, but requires the programmer
to know their API. Our system removes this burden from
the application developer through run-time code adapta-
tion, and allows the submission of sequential applications.
It is worth noting that users may skip the transformation
step, as our system supports the deployment of parallel
tasks and MapReduce applications.

In order to submit tasks, and make them available
for execution, a developer would typically have to run
scripts and console commands from the server. However,
an ordinary user can take advantage of the User Interface
layer, which provides a client GUI and a web interface on
the server to facilitate the submission process.

GiGi-MR supports efficient execution of user submit-
ted jobs, while allowing any user to have two complemen-
tary roles: owner of the jobs that are executed on remote
computers and owner of the computers where jobs will be
executed. In order to accomplish this, we modified both
the client and server software, and developed a custom
application. The data processing code used by these jobs
comprises commodity applications that are installed in
the remote computers, only after their owners allow their
use.

The job submission process is shown in Fig. 2. To
submit and create new jobs, users must: i) select the
commodity application that should be used to process
the data and register it through the Application Regis-
trar GUI; ii) provide the input files (data or code) to the

Fig. 2 User job submission to GiGi-MR.

Fig. 3 User job submission interface.

Data Server, and iii) use the server’s Web Interface to de-
fine the number of tasks to create, the name of the output
files and the arguments that should be used to invoke the
commodity application. For a MapReduce job, the user
must provide both the map and reduce application to be
used.

The web interface is shown in Fig. 3. In this page the
user uploads the input files and selects the application
that should be used to process them. In the example, the
user wants to process a file (anim.pov) with the POVray
ray tracer and generate a movie with 200 frames. In or-
der to submit a MapReduce job, the user must provide
additional information such as the number of map and
reduce tasks.

After creating and storing the information for each
job, the server waits for client work requests to distribute
tasks. Once it receives a work request from a client with
the required commodity application, it replies with task
information (input files and arguments). Once all required
files have been downloaded from the server, the client
invokes the correct commodity application to process the
input files. After each job completion, the client submits
the output to the server, as a normal application.



6 Fernando Costa et al.

Fig. 4 GiGi-MR MapReduce Job Execution.

In general, the applications that our systems handles
best are those which can be easily decomposed in a set of
map and reduce tasks; thus, as an example, Monte-Carlo
based applications are good candidates.

2.2 MapReduce VC

This layer is responsible for handling all aspects of exe-
cution and management of MapReduce jobs on the sys-
tem. As previously mentioned, a user must define the pa-
rameters of the MapReduce job through the User Inter-
face layer. This information is stored in the GiGi-MR
server. Once all the MapReduce job characteristics have
been defined, the server creates the map tasks, and stores
this information in the GiGi-MR server’s database − the
GiGi-MR database is responsible for holding all persis-
tent information on tasks, clients, and applications being
executed.

The overall GiGi-MR execution model for a MapRe-
duce job is presented in Fig. 4. We consider two types of
clients in GiGi-MR: mappers, which are responsible for
bag-of-tasks in the map stage; and reducers, which per-
form the aggregation of all map output in the reduce step.
A group of mappers first requests work from the server
(1). The server follows a scheduling procedure which takes
into account host resources and availability (see Section
2.4 for further details) when selecting which available
task is assigned. Whenever it receives a work request, it
matches each task’s predefined hardware or software re-
quirements to the client’s machine characteristics. If the
client is the most suitable for the task, the server assigns
it the task and saves this information in its database. Af-
ter selecting an appropriate map task for the requesting
mapper, the server sends back information on the task
that the mapper must execute. This information includes
the location of input and executable files, the deadline for
task completion and the previously mentioned task re-
quirements. The machines holding input and executable
files are called data servers. Although some VC projects
do use a set of mirrors to act as data servers, most store
the data in the central server, as represented in Fig. 4.

The mapper must then download the required data
from the data server (2) before starting the computation
(3). After the task execution is completed, the mapper
creates an MD5 hash for each of the map output files.
Therefore, at the end of the computation, each mapper
is left with both the map output files and the same num-
ber of corresponding hashes. These hash sums are sent
back to the server in place of the output files (4) (so it
is compatible with current VC solutions, e.g. BOINC).
It’s worthy to note that this greatly reduces the upload
volume from mappers to the server.

The hashes are compared at the server in order to
validate each corresponding task (5). If the result is valid,
the mapper’s address is stored in GiGi-MR’s database
(6). Each time a map result is validated, the GiGi-MR
server checks if all map tasks have been executed and
validated. Once this condition is met, the server creates
the predefined number of reduce tasks. Upon receiving a
work request from a reducer (7), the server follows task
scheduling procedure mentioned earlier in this section and
looks through the database to find a task that can be
assigned. Once it has ascertained that the reducer meets
all the hardware and availability requirements, the server
replies with a reduce task that fits the request.

MapReduce jobs require communication between map
and reduce stages since map outputs are used as input for
reduce tasks. In the reduce step, each task performs join
operations on the map outputs. Therefore, each reduce
task must obtain all the map outputs that correspond to
the key range it is responsible for. In order to achieve good
performance in MapReduce jobs, we leverage clients’ re-
sources by moving as much of the communication as pos-
sible to the client-side. This helps reduce the load on the
central server, and creates a more suitable decentralized
model for data-intensive scenarios, typical of MapReduce.

Note that, as previously stated, in current VC systems
all data would have to be uploaded and downloaded from
the server. However, the GiGi-MR server stores the ad-
dress of all mappers that returned valid map results. This
information is included in the work request reply, and al-
lows reducers to download the map output directly from
the mappers, without having to go through the server
(8). Once the input files have been downloaded, the re-
duce task is executed (9) and the final result is returned
to the server (10) for validation.

2.3 Checkpoint and Replication

This layer is responsible for: i) checkpointing tasks in or-
der to account for task failure and allow restarts in remote
nodes, without any source code modification, through the
use of VMs; ii) providing different options for partitioning
input data, chosen by the user; iii) local sampling at the
server (more details afterwards in this section), for vali-



Large-scale volunteer computing over the Internet 7

dation purposes. In Fig. 1, the Replication and Sampling
modules represent this layer in the server.

An application can be checkpointed if we run it on top
of a virtual machine (VM) with checkpoint/restart capa-
bilities (e.g., qemu5), as the applications state is saved
within the virtual machine’s state. This also provides
some extra security to the clients, since they will be exe-
cuting untrusted code with a high level of confinement.

Furthermore, using virtual machines allows us to re-
duce the impact of byzantine behaviour, caused by the
different software and hardware configurations found at
each machine. By running tasks on top of VMs, the same
software drivers and programs are used during execution.
This guarantees that each task produces the same re-
sult regardless of the underlying system. VMs also help
developers by removing the need from building multiple
application versions for different architectures.

Currently, there are many VMs available that can be
used in desktop computers. The overhead of such a VM,
when compared to a case in which there is no such soft-
ware layer, is negligible as is mostly proved by the large
amount of installations used both in academic and non-
academic settings.

The major drawback of this approach is the size of
the checkpoint data, incurring considerable transmission
overhead. To attenuate this: 1) we assume that one base-
generic running checkpoint image is accessible to all the
clients; 2) the applications start their execution on top of
this image once it is locally resumed; and 3) at checkpoint
time we only transmit the differences between the current
image and the base-image.

GiGi-MR provides redundant computing in which each
computation is performed on multiple clients, through the
replication of input files. When a sufficient number of suc-
cessful results have been returned, the GiGi-MR server
compares them and sees if there is a consensus. In that
case, the corresponding outputs are considered valid.

Each replication method provided by GiGi-MR is based
on a different data partitioning technique, which consists
of dividing a task into multiple subtasks that execute
separately. This is achieved by splitting the initial input
file into several smaller chunks, and requires the applica-
tion to be completely parallel. For an application to be
amenable to distributed computation, it must be possi-
ble to have its work partitioned in multiple tasks that run
separately.

Through the use of data partitioning and task repli-
cation, GiGi-MR is able to detect collusion and validate
results by comparing the outputs of redundant computa-
tions. However, the techniques used to identify incorrect
results incur considerable overhead. None of the exist-
ing result verification techniques is able to ensure with
100% certainty that a result is correct, though in some

5 Qemu is a generic and open source machine emulator and
virtualizer. http://wiki.qemu.org/

Fig. 5 The same work divided differently, creating an over-
lapped partitioning.

cases they can identify an incorrect one. The degree of
certainty that a result is correct usually grows along with
the overhead the technique incurs. Therefore, a compro-
mise between the overhead and the reliability of the re-
sults can be found, and must be dynamically adaptable
to the variable conditions/resources of the system.

This layer proposes a number of data partitioning ap-
proaches and a complementary sampling technique, which
give the user ample choice on how to reach the desired
compromise. The supported partitioning techniques are
presented in the following sections.

2.3.1 Overlapped Partitioning

Using overlapped partitioning, the tasks are never exactly
equal, even though each individual piece of data is still
replicated with the predetermined factor. Colluders must
always execute part of the task, even when they are try-
ing to return forged results. Figure 5 depicts the same
work (input file) divided in two different overlapped par-
titionings, with two different sets of partitions. The file is
divided into 6 chunks, but following different division off-
sets (where to split the initial file). There are 11 different
comparison points (common chunks between 2 partitions)
between each set of partitions, instead of the typical 6 of
an integral replication (assuming a division of the file in 6
different partitions). These overlapped partitions can use
a random offset and require strong communication among
the colluders to identify the common part of the job. Al-
though it is more probable for colluders to have common
parts of the tasks, these common parts are smaller.

2.3.2 Relaxed Partitioning

Overlapped partitioning can be implemented in a relaxed
flavour, where only some parts of the job are executed
redundantly. This lowers the overhead, but also lowers the
reliability of the results. However, it can be useful if the
system has low computational power available. Malicious
participants are able to detect the common part of the
job, however they can never be sure that the non-common
part is not being executed redundantly. Figure 6 depicts a
relaxed overlapped partitioning. We can see that in each
partitioning scheme, the file is divided in 3 partitions.
However, those partitions do not encompass the whole
file (i.e. there are parts of the file that are not replicated).
Therefore, the comparison points in which we can validate
the output are much smaller than the whole file.



8 Fernando Costa et al.

Fig. 6 Overlapped tasks for relaxed replication.

Fig. 7 Meshed partitioning using replication factor 2.

2.3.3 Meshed Partitioning

Some applications can have their work divided in more
than one dimension. Figure 7 depicts the partitioning of
the work for a ray-tracer. The initial input file is split
horizontally to create the first 4 partitions, and then ver-
tically to create the remaining 4. When validating the
results, there are 16 (4 x 4) comparison points between
partitions. Like the overlapped partitioning, this influ-
ences the way colluders are able to introduce bad results:
more points where they can collude, with a smaller size
too. This partitioning provides a number of points of com-
parison, which are used to establish the “reputation” of
a result. Each task’s output is compared to 4 other tasks’
outputs, according to the existing comparison points, and
is evaluated according to the number of consensual re-
sults. For example, in Figure 7 the 1st partition of “Par-
titioning 1” will have comparison points 1, 2, 3 and 4
(each one for a different partition of “Partitioning 2”).

The algorithm for calculating the ”reputation” of a
result must take into account the outcome of comparison
points (i.e., equal or different output). Since the majority
of the participants is expected to be honest, finding the
same result (equal) adds positive reputation while a dif-
ferent outcome adds negative reputation. For the accep-
tance of each point, equal outputs from both tasks are
accepted on the fly, while disparate outputs are disam-
biguated according to the combined reputation of the two
tasks that produced it. For example, if task 1 produces 4
correct outcomes, while task 2 produces 2 incorrect and 2
correct, then task 1 would have a better reputation (con-
sidering other tasks also produced correct results). Thus,
in the discrepant comparison point between task 1 and
2, task 1’s output would be accepted. If the reputation
of both tasks is the same, the common portion of both
results must be re-executed to achieve a voting quorum.

2.3.4 Samplification

Sampling consists on the local (in the server, in our case)
execution of a fragment, as small as possible, of each task
to be compared with the returned result. In essence, sam-
pling points act as hidden embedded quizzes. Replication
bases all its result verification decisions in results/info
provided by third parties, i.e., the participant workers. In
an unreliable environment this may not be enough. There-
fore, local sampling by the server can have an important
place in the verification of results.

Sampling ensures that the malicious participants ex-
ecute part of the task for this to have any chance of be-
ing accepted. Although random sampling can only ensure
that a result is correct with a given probability (based
on the size of the work, the number of samples and the
percentage of the work that is corrupted), it can iden-
tify wrong results with certainty and deliver very useful
information to a reputation mechanism.

We define Samplification as the combination of repli-
cation and random sampling, used sequentially to achieve
higher reliability of the results: the winning result of the
voting quorums is considered correct if it matches a ran-
dom sample that was executed by the server. This tech-
nique is applicable to MapReduce jobs by having the
server run a small part of a map input and then check
against the returned outputs. For example, if running a
word count application, the server would count the words
present in a small part of an input file, and check if they
were present in at least the same number inside the re-
turned output files. Samplification allows the system to
take advantage of the best of both mechanisms, while
adding only marginal overhead (defined by the applica-
tion owner).

Finally, samplification is also used to make sure that
the parallelization of sequential tasks (provided in the
User Interface layer, Section 2.1) does not alter the ex-
pected result. To that end, the GiGi-MR periodically ex-
ecutes the original application in the background, offline,
sequentially and compares its results with the distributed
version.

2.4 Resource Discovery

This layer is responsible for implementing the Resource
Discovery mechanisms on the GiGi-MR clients (that ex-
ecute either map or reduce tasks). It is extremely impor-
tant for the scheduling algorithm used by the server since
the information obtained by the clients, through the ex-
change of resource and availability data, is sent back to
the server, to the Resource Updates module. This module
updates the server database with hosts’ updated data,
and is accessed by the Scheduler whenever replying to
a client work request. This way, the server is more fre-



Large-scale volunteer computing over the Internet 9

quently updated with current knowledge on hosts, and is
able to perform more reliable scheduling decisions.

Our Resource Discovery layer is also capable of search-
ing not only for physical resources (e.g. CPU, Memory,
etc.), but also services (e.g. facial recognition, high-reso-
lution rendering, etc.) and applications (e.g. ffmpeg video
encoder, programming language compilers, etc.)

In the GiGi-MR client, each type of resource is as-
signed a value from 0 to 1, where 0 means that the re-
source is unavailable and 1 that the resource is pow-
erful and has good availability. The global (among all
types of resources) availability value of a remote node
may be obtained through a simple additive model [15]. In
this way, we define the relative importance of each type
of resource by defining weights (using methods like the
swing weights). With them, it is then possible to make
a weighted sum and obtain the global availability value,
which would be the node rate.

As already mentioned in Section 2.2, GiGi-MR sup-
ports inter-client transfers, which reduce the burden on
the server, and improve performance on more data-inten-
sive scenarios, such as MapReduce jobs. Therefore, de-
termining the available bandwidth between nodes can be
of the utmost importance (e.g. when scheduling reduce
tasks). However, measuring bandwidth of a single node
in these environments can yield disparaging results. Our
approach is to check the time for a message to travel from
one node to another and back again (i.e. the round-trip
time, RTT). To avoid flooding the network, we only have
each client contact a small subset of remote nodes, called
its neighbour set. Within a short period of time, the min-
imum RTT value obtained is kept and the bandwidth
is calculated. The results obtained from this process are
then passed on the server.

Without proper neighbour selection, this information
would not be very helpful. Slower nodes could be coupled
with far away nodes, or machines with faster connections
that would not be taken advantage of. Therefore, this
layer provides GiGi-MR clients with a neighbour selec-
tion mechanism that maximizes the system performance
metrics.

Our algorithm considers two parameters as signifi-
cant: proximity and resource availability. Proximity is
measured through RTT, and includes bandwidth. Each
peer contacts other nodes upon bootstrap and, periodi-
cally, once it has entered the network, records the RTT.
The available bandwidth is inferred from these contacts,
as well as from any inter-client transfers that occur when
executing a MapReduce job. The resource availability pa-
rameter is defined through the previously mentioned node
rate (additive model of a remote node’s resources), and
is included in these contact messages. The selection of
neighbours is then based on a weighted measure of both
proximity and node rate. The weight of each parameter

is defined by the application developer (defaults to 0.5
each).

Once reported to the server, the neighbour set infor-
mation is extremely useful for the server when scheduling
tasks. As an example, when submitting a reduce task,
the server is able to check if any of the neighbours of the
node requesting work is executing a map task. If this is
true, and the available bandwidth between both is large
enough, the server can make this node a reducer. If, on
the other hand, the requesting node has very low band-
width to all its neighbours, the server is able to deduce
that this node has low upload bandwidth. It is marked as
unfit for a data-intensive reduce task, and a more com-
pute intensive application is selected instead.

2.4.1 Using Bloom Filters

Attenuated Bloom Filters (ABF) were proposed in [26] to
optimize location performance. It uses an array of Bloom
Filters with depth d, where each row i, for 1 ≤ i ≤ d,
corresponds to the information stored at nodes i hops
away. As the depth increases, more information will be
stored in that Bloom Filter row, making the respective
filter more attenuated and resulting in a higher proba-
bility of false positives. Therefore, information closest to
the node is more accurate, and becomes less so as the
distance between nodes increases. By using it in our sys-
tem, each node in the network keeps a cached version of
the ABF of its neighbours. This information is then com-
bined into one single ABF by calculating the union of each
Bloom Filter at the same depth from all neighbours. For
instance, say node A receives the following ABF from its
neighbours with depth d = 2: (00011, 10000) and (11001,
00001). To combine the information, the OR operation
is performed for each depth. So, for d = 1, the resulting
information is 11011, and for d = 2 it is 10001.

These aggregated Attenuated Bloom Filters are sent
to the server, once in every n work requests (if there have
been no changes since the last requests, they are not in-
cluded), and saved by the Resource Updates module. This
module orders them according to the node’s expected
availability (how soon it is expected to be available for
execution), and the Filters’ depth (lower to higher). Sav-
ing all the received ABF would be impossible, and cre-
ate incredible overhead. Therefore, the server uses times-
tamps to mark the validity of each one. Whenever an
ABF has been in the system for more than the time-out
interval specified, it is discarded. This keeps the number
of ABF to a reasonable number, while still being useful
for scheduling.

Whenever the server receives a work request, it checks
the available tasks and, if there are any good matches
with the requesting host, they are sent in reply. However,
in the case of a mismatch, the Scheduler contacts Re-
source Updates and checks if there is any node which is



10 Fernando Costa et al.

a better match, and that is expected to become available
within a short time frame. This search is conducted by
starting with an ABF with a depth of 1 (neighbours to
the node that submitted them). If there is a hit, the server
looks in the Database (DB) for other tasks more suitable
for this host. However, if the query does not return any
matches, the tasks whose minimum requirements are ful-
filled by the requesting client are submitted. This way, the
typical scheduling algorithm serves as a fail-safe method,
ensuring that tasks are executed even if there are no op-
timal hosts to run them.

Information about resources, applications, and ser-
vices offered by each node are represented inside a Bloom
Filter. However, because a Bloom Filter is only capable
of performing membership tests given a key, we need to
store information about those resources in the actual key.
For example, say a node has a CPU of 3GHz, we cannot
simply store the name “CPU” in the Bloom Filter, as
the only information we can extract from that is that a
node has a CPU. We need to add information about the
actual resource (e.g. its value: 3000MHz) to the key that
is inserted in the Bloom Filter for it to be useful. Bloom
Filter keys store resource information by following a nam-
ing convention, and are used to differentiate between re-
sources and their values. Our naming convention uses a
3-level namespace, each separated using the colon (’:”) as
a delimiter, with the following rules: Level 1 - Name of
the Resource, Service, or Application (e.g. CPU, ffmpeg,
etc); Level 2 - Type of the Resource, Service, or Appli-
cation (e.g. MHz, version, etc.); Level 3 - Actual value of
the Resource, Service, or Application. For instance, if we
wanted to store the fact that a node has a CPU of 3 GHz,
the key we would insert into the Bloom Filter would be:
“CPU:GHz:3”. The namespace definition in stored in a
configuration file in the server, which is provided to the
clients.

Some resources are mostly static and do not change
often, like the Operating System, or CPU and Disk speed.
However, there are other resources whose values can change
quite often, such as amount of RAM occupied, or the
amount of CPU in use. For those cases, if we used a clas-
sic Bloom Filter then it would need to be rebuilt period-
ically since it does not support the removal of elements.
Moreover, this rebuilding procedure would require resend-
ing information about resources that are not expected to
change, thus wasting bandwidth. Therefore, instead of us-
ing a classic Attenuated Bloom Filter to store the infor-
mation about the dynamic resources, a separate Counting
Attenuated Bloom Filter [12] is used.

2.5 Overlay Management

As we mentioned previously, this layer acts as an inter-
face between the system and an underlying network that

connects GiGi-MR clients. This requires the use of a ro-
bust P2P overlay. In our example, we use Pastry [27],
a generic, scalable and efficient Distributed Hash Table
(DHT), but any other could be used. Node identifiers are
randomly generated and assigned to a precise location
on the circular addressing space of Pastry. By doing so,
the machines holding adjacent nodes could be completely
geographically dispersed.

As a bootstrap mechanism, the GiGi-MR server pro-
vides to new clients a list of entrypoints (boot nodes IP
address and port), corresponding to some hosts with high
uptime (possibly servers). Each node inside the overlay
receives information on the resources of a small number
of remote peers, part of their neighbour set. The neigh-
bour set is extremely important for our system since, as
we mentioned before, it identifies which remote nodes’ in-
formation is sent back to the server on each work request.
Nodes advertise themselves by sending update messages
to their neighbours whenever there is a significant change
in resource availability. These messages are also sent peri-
odically to keep them updated. Therefore, any changes in
resource availability are announced to the node’s neigh-
bours.

These messages contain the sender nodes related infor-
mation: its identifier, its supported application identifiers,
the time required for this information to expire, and its
resource availability (e.g. CPU, bandwidth). Upon receiv-
ing this information, a neighbour node calculates, with its
own judgement, the global rate of the announcer node.
This judgement, as described before, consists of associat-
ing weights with the measured availability of every sin-
gle resource. The proximity level between the announcer
node and its neighbour is also taken into account.

In summary, this layer handles all communication be-
tween GiGi-MR clients and the overlay network. All mes-
sages received from the upper layers are sent to the net-
work. The overlay contacts this layer whenever there is a
message meant for the node related to resource updates.
Finally, all changes to the node’s neighbour set (e.g. re-
mote node leaving) are reported. The Resource Discovery
layer deals with those changes appropriately.

3 Implementation and Evaluation

This section reveals some of the implementation details,
presents the results of our experiments and describes the
applications we use.

3.1 Implementation

GiGi-MR is designed on top of a BOINC client version
6.11.1 and server version 6.11.0.



Large-scale volunteer computing over the Internet 11

For the network management, the Overlay Manage-
ment layer uses the FreePastry6 tool which is a Java im-
plementation of the Pastry overlay.

In order to measure resources so that they could be
compared against each other in a simple additive model
(used in the Resource Discovery layer, described in Sec-
tion 2.4), we have to convert direct indicators of avail-
ability into a common scale, rated from 0 to 1. Therefore,
we rely on the following expression to do that conver-
sion: fr(x) = min(1, x/MAXr). MAXr is the value that
we consider as very good for the resource r, and x is
the direct measured value. For example, if we consider
MAXCPU = 500 and x = 250, we obtain f(250) = 0.5.

In addition, FreePastry provides a proximity metric
(based on the RTT value) that is also converted to the
common scale and used in the additive model. Therefore,
the global availability value (i.e. the global node rate)
is calculated through the following expression: NR(a) =∑

kr(a) · vr(a); kr(a) is the weight of the resource r in
the node a, and vr(a) the value of the resource r in the
node a (i.e. fr(x)). Furthermore, the user is free to define
the weights and the very good reference value associated
to each resource.

In order to differentiate map tasks from “normal” ones
(i.e. non-MapReduce tasks), the MapReduce VC layer
modifies their templates by adding “<mapreduce>” tags
with additional information such as job id and stage. The
GiGi-MR server uses an additional general configuration
file (in XML) to coordinate between stages and handle
task creation. GiGi-MR clients use TCP for inter-client
transfers (between mappers and reducers), due to its re-
liability and simplicity. A mapper opens a TCP socket
to listen for incoming connections whenever it has fin-
ished a map task and its output is available. Incoming re-
quests from reducers are accepted only for specified map
files, and the socket is closed when there are no more files
available for upload.

In the User Interface layer, the interaction between
the Application Registrar and the GiGi-MR server is made
by XML-RPC calls. Job information organization within
the GiGi-MR server implies one modification: all user
submitted jobs are processed within the same GiGi-MR
project but may belong to different user projects. In order
to accommodate this new information, a new table (User
Project) had to be added to the server database. Fur-
thermore, a Commodity Application table was added to
accommodate the names and versions of the commodity
applications available on remote hosts.

3.2 Evaluation

We evaluate GiGi-MR by running several tests over the
Internet, in a scenario that resembles a typical VC en-

6 FreePastry. http://freepastry.rice.edu

Table 1 Evaluation of application transformation.

Outside GiGi-MR Inside GiGi-MR

original modified 1 CPU 2 CPU 3 CPU

time(s) 60.01 61.93 64.08 32.59 16.97

vironment. We run experiments with 3 different MapRe-
duce applications (word count, inverted index, and N-
Gram) to gauge our system’s performance under different
conditions. In addition, in order to evaluate each compo-
nent independently we run micro-benchmarks, tailored to
measure the impact and overhead of the different layers
in our system. This section presents the results of our
experiments.

3.3 User Interface

In this section, we present the experiments for the two
features supported by the User Interface layer: transfor-
mation of sequential applications into parallel BoTs (Sec-
tion 3.3.1); and submission of jobs by non-expert users
(Section 3.3.2).

3.3.1 Application Transformation

Our evaluation is twofold: i) functional, developing sam-
ple applications and executing on different environments,
and ii) quantitative, where we show the overhead incurred
by using our solution.

We parallelize a Monte-Carlo [23] computation to in-
tegrate one function. Instead of treating each random
value in a sequential way, each task is responsible for ob-
taining part of the solution. In order to use this feature,
the definition of a class is necessary, while a more simple
solution would only require a loop with the computation
code inside. The overhead incurred by using GiGi-MR is
minimal and easily outdone by the parallelization gains.
Table 1 shows the overhead when running it on a single
machine.

This evaluation was performed on a Intel(R) Core 2
Quad CPU with 4 cores running at 2.40GHz. The tested
application integrates one complex function using the Monte-
Carlo method while generating 50 million random points.
As seen in Table 1, there is an increase of execution time
when running the modified version and using GiGi-MR.
One of the reasons for the execution time increase is from
the rewriting of the application: the inclusion of objects,
and the increase of cycle interaction and method calls.
More overhead is added by our system. In the version
with 1 CPU, different threads for each object were cre-
ated but serialized with the help of a lock, guaranteeing
that they all executed on the same processor. It is ob-
servable an increase of about 2 seconds on the execution
time leading to an overhead of about 1/8 of a second for
each parallel object. If tasks are longer, these overheads



12 Fernando Costa et al.

Fig. 8 Animation movie rendering times

will have a lower impact. Furthermore, with concurrent
working processors all overhead is subdued by the gains
of concurrent processing.

3.3.2 Job Submission by Ordinary Users

In order to evaluate the usability and performance gains,
we deployed a GiGi-MR server and allowed some clients
to use it. The experiments were done on our local net-
work, to pinpoint the overhead brought on by our system
more precisely. The experiment consists on using a ray
tracer to generate an animation with 100 frames. On a
Pentium 4 running at 3.2GHz with Linux, each frame
took between 3 and 100 seconds, giving a total rendering
time of about 127 minutes. The times for the execution of
these jobs on several computers, shown in Figure 8, are
measured with identical computers connected by a 100
Mbit/s local network. We present the time to execute
the jobs sequentially on one computer (both locally and
by means of the GiGi-MR infrastructure) and on several
computers.

As expected, the speedups are in line with the number
of cycle donor hosts. The overhead incurred by using our
job distribution platform is minimal, only 2 minutes. This
is caused by the job submission and client startup. With
the participation of another host, even during a small
period, this overhead is not noticeable. On an wide area
network, or with larger input files, this overhead is larger
but is easily surpassed with the contribution of another
user.

3.4 MapReduce VC

We evaluate the performance of GiGi-MR in terms of ap-
plication turnaround and network use by running several
tests over the Internet, in a scenario that resembles a typ-
ical VC environment. We compare our results with an ex-
isting VC system (BOINC), referred to as VCS through-
out this section. BOINC clients have the limitations men-
tioned previously (in Sections 1 and 2), and do not sup-
port inter-client transfers.

The GiGi-MR server is able to support MapReduce
jobs even in an environment composed solely of unmod-
ified BOINC clients. This means that, even though the

server is not able to leverage clients’ resources (for schedul-
ing and inter-client transfers), it is still able to distribute
map and reduce tasks and obtain a valid final output.
However, all communication must go through the central
server, and as such there is no tolerance to server tran-
sient failures. To evaluate this hypothesis, in the VCS
scenario we deploy a GiGi-MR server and unmodified
BOINC clients (version 6.13.0).

We run experiments with 3 different applications (word
count, inverted index, and N-Gram), in order to gauge our
system’s performance under different conditions. Due to
space constraints, we only present the results from the
N-Gram application. Note, however, that the other two
applications show a similar performance.

We measure application turnaround, while differen-
tiating between map and reduce stages in order to pin-
point potential bottlenecks and areas that would ben-
efit most from improvement. Additionally, we monitor
network traffic on the server. This allows us to identify
the benefits of reducing the dependence on the central
server. We run our experiments on PlanetLab, a wide-
area testbed that supports the development of distributed
systems and networks services. In these experiments, we
use 50 nodes that work as the clients, and one node to
act as server.

The Resource Discovery (section 2.4) layer employs a
neighbour selection mechanism that couples nodes with
the best available bandwidth, promoting an homogenous
network bandwith; thus, the evaluation results were ob-
tained for a network download bandwith of approximately
700 KB/s. If other conditions (e.g. heavy churn or failure
rate) are met, the network bandwidth may change ac-
cordingly thus requiring specific techniques to avoid such
slow nodes (as shown in [17]).

3.4.1 Application Turnaround

We begin by measuring application turnaround. We mea-
sure the time it took each MapReduce job to finish, start-
ing from the initial download of map input files, and
ending with the upload of the last reduce output. We
separate the map and reduce steps in order to identify
their respective weight in regards to the overall appli-
cation turnaround time. The map stage is considered to
be finished once all its output has been validated in the
server.

The results obtained with N-Gram are shown in Fig.
9. The first conclusion is that GiGi-MR is able to fin-
ish the MapReduce job in half the time of VCS. We can
also observe that the reduce stage on GiGi-MR is only
slightly faster than VCS. This can be explained by the
fast network connection of the server. Despite its large
bandwidth, inter-client transfers still perform better than
the centralized system. On the other hand, the differences
in the map step are, as expected, much more significant.



Large-scale volunteer computing over the Internet 13

Fig. 9 Turnaround of N-Gram Appli-
cation by Stage.

Fig. 10 Upload traffic for VCS and GiGi-
MR server with N-Gram application.

Fig. 11 Download traffic for VCS and
GiGi-MR server with N-Gram application.

GiGi-MR is 4 times faster in executing the map stage,
which translates to just a quarter of time needed by VCS
to validate all its map tasks. This result shows that GiGi-
MR performs better with applications that create large
intermediate files.

3.4.2 Network Traffic

We measure upload and download traffic in the server,
for GiGi-MR and VCS while running the applications.
Monitoring the network traffic on the server provides a
more accurate measure of its overhead. It also allows us
to quantify the impact of our solution concerning the de-
centralization of the VC model. We present the amount
of data downloaded from the clients by the server, as well
as the amount uploaded by the server to the clients.

The upload traffic for a server running N-Gram is
shown in Fig. 10. Note that, as mentioned in the pre-
vious section, GiGi-MR has a much lower application
turnaround than VCS. This is why the GiGi-MR line
in Fig. 10 stops around second 3000 (the same happens
in Fig. 11), while VCS only finishes its execution much
later. It is clear that there is a significant difference in the
amount of data uploaded by GiGi-MR and VCS. This is
due to the large size of intermediate files, which causes
the VCS server to send almost 5 times more data to the
clients than the GiGi-MR server in the reduce step.

The server’s download traffic is exhibited in Fig. 11.
Here, we can see the benefits of using hashes for map
task validation (described in Section 2.2). Up until second
2000, the GiGi-MR server has received almost no data
from the clients. At around that time in the experiment,
reducers that finished their task began sending the out-
put back to the server. The GiGi-MR server downloads a
total of 820MB from the clients. On the other hand, the
VCS server is responsible for downloading all map out-
puts from mappers, which corresponds to the steep in-
crease up until second 4000. The VCS server is required
to download 6 times more data than GiGi-MR.

The inverted index and word count experiments yield
very similar results, so they are not shown here. In in-

Table 2 Checkpoint/Restart through a VM image: checkpoint
data size using VirtualBox and Ubuntu Desktop 9.10.

Data Size (KB)

Base
Image

Powered Off disk image 2.651.169

2.768.998
After Boot

disk image (differential) 33

volatile state 117.796

Current
Image A

Running
Application A

disk image (differential) 16.417
154.403

volatile state 137.986

Current
Image B

Running
Application B

disk image (differential) 23.585
209.597

volatile state 186.012

verted index, GiGi-MR is able to reduce the amount of
data sent from the server from 6,5GB to 2,3GB and cut
data received by the server by 96%. In the word count
application, the GiGi-MR server receives a mere 250MB,
a value 10 times smaller than VCS’s 3GB, and is required
to send 2,5GB, whereas the VCS server sends more than
double that amount to clients. Therefore, we can conclude
that GiGi-MR not only performs better than VCS when
running jobs with large intermediate files, but is also able
to alleviate the server’s network connection.

3.5 Checkpoint/Restart and Partitioning

In this section, we focus on the overhead of distribut-
ing tasks inside Virtual Machines, and the performance
of different data partitioning techniques provided by our
system when validating results.

3.5.1 Virtual Machine Checkpointing

The most relevant issue of the checkpoint/restart tech-
nique is the size of the checkpoint data. The potentially
prohibitive VM image size is mitigated by the use of
differential disk images (efficient representation of the
modifications made to the virtual disk supported by the
VM implementations with specific disk image format files,
such as QCOW27). Table 2 depicts the size of the check-
point data from the execution of a ray-tracer (POV-Ray)

7 The QCOW2 Image Format.
http://people.gnome.org/ markmc/qcow-image-format.html



14 Fernando Costa et al.

Fig. 12 Replication w/ Standard Partitioning Vs. Replication
w/ Overlapped Partitioning, using replication factor 3.

on two different inputs, attenuated with the use of differ-
ential disk images.

Checkpoint A reduces the size about 17 times (154.403
KB instead of 2.768.998KB), checkpoint B about 14 times
(209.597KB instead of 2.768.998KB), bringing transmis-
sion and/or storage costs to reasonable values. The dif-
ferential disk is an efficient representation of the different
amounts of modifications made to the virtual disk, which
explains the difference we observe.

3.5.2 Result Verification through Replication

When using replication to validate returned results, GiGi-
MR is able to take advantage of different data partition-
ing techniques (as described in Section 2.3). We present
results from experiments using Overlapped and Meshed
partitioning. Furthermore, our samplification technique
is also evaluated.

We analyse the performance of GiGi-MR’s result veri-
fication algorithm by identifying the percentage of wrong
results that are not detected. We use a simulator to test
result verification approaches with large populations. The
simulator is a Java application that simulates a scenario
where an n-dimensional job is broken into work-units that
are randomly assigned. Among the participants there is
a group of colluders that attempt to return the same bad
result (based on complete or imperfect knowledge, de-
pending on the partition overlapping), in order to fool
the replication based verification mechanisms. The sim-
ulator returns the percentage of wrong results that were
not detected by the server.

Figure 12 shows the results for overlapped partition-
ing. We can see that overlapped partitioning performs as
well as standard partitioning (i.e. exact replicas of the
whole file), in a scenario where the colluders are fully
able to identify the common part and collude it, while
still executing the rest of the task. This is possible in
theory, but harder to achieve in practice as this may re-
quire global knowledge and impose heavier coordination
and matching of information among the colluders. This is
the worst case scenario, therefore overlapped partitioning
may improve the reliability of the results, depending on
how smart the colluders are.

Fig. 13 Percentage of results using bi-dimensional meshed par-
titioning before rescheduling, in a scenario where colluders re-
turn results 100% forged.

Fig. 14 Samplication: percentage of wrong results not detected
in a scenario where colluders return results 50% corrupted.

Meshed Partitioning splits the task in more than one
dimension and provides many points of comparison, which
are then used to decide on the correctness of a result.
Figure 13 shows that the percentage of undetected wrong
results is very low, and almost null when dealing with
under 40% of colluders. However, a small number of re-
sults must be rescheduled in order to reach a verdict.
The work that has to be rescheduled is mostly composed
by the portions where wrong results overlap. Therefore,
those results cannot be accepted, and rescheduling is the
only solution. This technique proves to be very efficient
as we are only using twice the base amount of work.

Samplication is a technique that combines sampling
and replication without using voting quorums. Plus, this
technique works with even replication factors. It uses in-
formation from replication to decide where to choose sam-
ples, rather than selecting samples randomly. It selects
the samples within a replication mismatch area and dis-
cards the results that mismatch the chosen sample. If
there is no mismatch in replication it resorts to random
sampling. As seen in Figure 14, which shows scenarios
with different replication factors (R.F.), this technique is
quite effective, as it keeps the percentage of undetected
wrong results very low, even for environments with up to
60% of colluders.



Large-scale volunteer computing over the Internet 15

Fig. 15 Query satisfaction for static scenarios

3.6 Resource Discovery

In order to evaluate GiGi-MR’s discovery mechanism based
on Attenuated Bloom Filters, we compare it to a simpler
mechanism, Random Walk (RW) [24], which acted as our
baseline. We chose RW for being a simple, widely used
discovery algorithm. We want to assess GiGi-MR’s ef-
ficiency and effectiveness in finding available resources,
since this can have a direct effect in the server’s schedul-
ing performance. The tests were ran using the PeerSim8

simulator with its Event Driven capabilities, approximat-
ing the simulation more to real-life as opposed to a Cycle
Driven simulation. We use an open source Bloom Filter
implementation from the well known Hadoop project.9

The tests are executed with the Random Walk proto-
col (RW) and three variations of our algorithm for Scal-
able and Efficient Resource Discovery (SERD): SERD1,
SERD2, and SERD3 which correspond to the Attenuated
Bloom Filter depths of 1, 2, and 3, respectively. In our
experiments, we set the network size to 5000 or 10000
nodes, with either 3 or 6 neighbours per node. We define
three resource distribution categories: 50% (very abun-
dant resource), 25% (abundant resource), and 5% (scarce
resource). In addition, we consider the resources to be
of two types: static (e.g. Operating System, or CPU) or
dynamic (e.g. memory used). Every 5 simulation cycles,
10% of the nodes in the network sent resource queries that
could be satisfied by at least one node in the network, and
we measure the percentage of successful queries.

Regarding the static scenario (see Fig. 15) SERD1
and SERD2 consistently show a percentage rate above
90% except for the scarce scenarios with a maximum of
3 neighbours. This can be explained by the fact that
the depth of the Attenuated Bloom Filters did not al-
low the forwarding of queries with much hindsight, espe-
cially in a scenario where very few nodes actually contain
the resource and where each node only has a maximum

8 PeerSim. http://peersim.sourceforge.net/
9 Apache Hadoop. http://hadoop.apache.org/

Fig. 16 Query satisfaction for dynamic scenarios

of 3 neighbours, thus further limiting a node’s knowledge
about the network. SERD3 has a satisfaction rate of 100%
in almost all scenarios, and 99% in the rest. As the algo-
rithm had a greater depth, it was able to direct queries in
the right direction for them to be satisfied. The RW algo-
rithm’s lack of intelligence in the forwarding of queries is
a great contrast, with almost all satisfaction rates below
or around 80%.

Figure 16 shows the query satisfaction for the dynamic
resource scenarios, which are expected to not be as high
as the static scenarios due to the varying values of the
resources. Once again, SERD outperforms the RW pro-
tocol, which display a success rate of 80% and lower. In
almost all tests, the SERD protocols were above 80%, ex-
cept for the scarce scenario tests. In those, SERD1 strug-
gled the most because it has little information about the
neighbourhood. SERD2 and SERD3 only display a sat-
isfaction rate lower than 80% when the scarce scenario
was combined with a maximum of 3 neighbours, which
limited the available options when forwarding query mes-
sages. RW in those cases was hardly able to reach 20%
query satisfaction, making its lack of intelligence ever so
apparent.

Analysis: In this section we presented the evaluation of
GiGi-MR. We summarize briefly its key aspects. First,
we experienced performance improvements (in the execu-
tion and turnaround times) on a set of applications that
are representative of those currently used, both in aca-
demic and commercial environments, such as e-science
(ray tracing, imaging) and big data analytics (namely
MapReduce as used by Google and others in produc-
tion settings). Second, we obtained significant reductions
in network traffic directed to servers, during execution,
which improve server scalability and allow each server to
handle larger computations with more participant nodes,
i.e., scale to larger numbers of slaves to execute more
tasks concurrently. Third, we improve the reliability of
voluntary computing with a set of novel replication and
sampling techniques, that require colluders always to ex-



16 Fernando Costa et al.

ecute part of their tasks, and by imposing more coordi-
nation and overhead in order to successfully forge results,
all this combined with efficient and low overhead check-
pointing. Finally, we showed how our system can scale to
large populations of volunteers, while achieving efficient
resource discovery and high resource utilization, thus tak-
ing advantage of idle resources scattered on the Internet,
by means of the SERD resource discovery protocol.

4 Related Work

XtremWeb [5] and Leiden Classical10 are distributed com-
puting projects that allow registered users to submit their
jobs, as opposed to plain BOINC installations where only
the system administrator creates jobs. In Leiden Clas-
sical there is only one data processing application and
users only submit input files to be processed by that ap-
plication. XtremWeb is more versatile as it hosts several
installed applications. In XtremWeb, users provide the
input files and define the command line arguments used
to invoke the application. XtremWeb allows the use of
a broader set of applications, but still requires the sys-
tem administrator to install them. A user is not allowed
to install a new data processing application to solve his
problems.

Supercomputing and data centers typically employ
MPI task farmers when running BoT applications [16].
Task farming follows a master/worker in which the mas-
ter coordinates task creation and scheduling, distributes
tasks among workers, and receives the results. In [16],
MPI is extended in order to support dynamic process
management and task creation in client/server applica-
tions. Despite having several common goals to our solu-
tion such as adaptive execution, or maximizing resource
utilization, these systems operate in tightly coupled en-
vironments such as clusters. GiGi-MR’s deployment over
the Internet creates an entirely new set of requirements
and challenges, which prevents us from adapting existing
MPI Task Farming solutions.

Nimrod [1] is targeted at parameter sweep applica-
tions, and follows a model similar to task farming. In
Nimrod, the user defines the input files, the type of pa-
rameters and how they vary. Nimrod then generates all
parameter combinations and assigns each parameter com-
bination to a task. Even though Nimrod helps on the com-
bination of all parameters, the user must still have some
programming knowledge, because the processing applica-
tion must be coded and the data type of each parameter
must be defined.

Combining the concepts of Cloud and Volunteer Com-
puting has been proposed in [18], in which the authors

10 University of Leiden. Leiden classical.
http://boinc.gorlaeus.net/

studied the cost and benefits of using clouds as a substi-
tute for volunteers or servers.

In [22], the authors define a P2P model under the
MapReduce framework. Their system is tailored to a dy-
namic cloud environment, creating a cloud of clouds. It
has a similar organization to existing Grid infrastruc-
tures, but, much like OurGrid [8], is meant to create a
federation or cluster of data centers through a P2P over-
lay network.

MOON (MapReduce On opportunistic eNvironments)
[20] proposes an extension to Hadoop that implements
adaptive task scheduling in order to account for node
failure. However, MOON is tailored for a cluster environ-
ment, such as a research lab, in which nodes are trusted
or even dedicated.

MapReduce was also adapted to desktop grids in [31].
The system was designed on top of BitDew [13], a mid-
dleware the handles data management through the use
of various transfer protocols. The authors claim it is able
to run MapReduce jobs on XtremWeb [5], over the In-
ternet. However, their experiments were conducted in a
cluster interconnected by Gigabit Ethernet. This envi-
ronment more closely resembles the common scenario of
XtremWeb, which consists of a federation of research labs.

BOINC, on the other hand, has million of users, and
is actually tailored for a truly volunteer environment over
the Internet. By moving from benchmarks and proof-of-
concepts to actual applications in a realistic testbed, we
can state with more certainty what are the advantages
and shortcomings of this paradigm on a volunteer com-
puting environment.

Bloom Filters have been applied in a variety of sys-
tems [6], such as dictionaries, databases, and network ap-
plications. They are implemented as bit arrays, therefore
the union of two sets can be computed by performing the
OR operation between the two, while their approximate
intersections can be computed using the AND operation.
To test whether an element is in the set or not, it has to
be passed through all hash functions and if all the result-
ing positions in the array are set to one, then the element
hash a high probability of being in the set. If any posi-
tion has the value zero, then we know that it is definitely
not in the set. The small false positive rate arises from
the fact that when querying for an element that is not in
the set, some hash functions may result in positions that
were already used (have the value one) for a previously
inserted item. Therefore, the more elements are inserted
into the Bloom Filter, the higher the chance of a query
resulting in a false positive. Another shortcoming is the
inability to remove an element from the Bloom Filter, as
simply setting the positions given by the k hash functions
to zero have the side effect of removing other elements as
well.

Our solution is different to the existing systems be-
cause it combines all types of different resources into



Large-scale volunteer computing over the Internet 17

one discovery mechanism. It is especially different to the
works [14, 21] that also make use of Attenuated Bloom
Filters due to to the usage of one aggregated Attenuated
Bloom Filter (explained in Section 2.4.1), and the fact
that all the different types of basic resources, services,
and applications are encoded in the Bloom Filter.

5 Conclusion

We have presented GiGi-MR, a Volunteer Computing plat-
form that allows ordinary users to create and submit
jobs for execution on volunteer machines over the In-
ternet. Our system is able to execute MapReduce appli-
cations over the Internet and tolerate volunteer faults,
and transient server failures. Furthermore, it is compat-
ible with existing VC systems (in particular BOINC). It
significantly reduces the dependence on the central server,
which is typically overburdened in current VC platforms,
thus allowing it to obtain better performance.

GiGi-MR enhances task scheduling by using infor-
mation exchanged by clients within an overlay network.
Neighbour selection is based on resources and availabil-
ity information is provided through a novel resource dis-
covery mechanism. It is capable of locating physical re-
sources, services, and applications from many computers
connected to the same overlay. This is done in a novel
way by storing all resource, application, and service in-
formation in Attenuated Bloom Filters. GiGi-MR is able
to distribute tasks inside Virtual Machines, and supports
several partitioning mechanisms, thus increasing the sys-
tem’s adaptability and usefulness.

We evaluated GiGi-MR by measuring the application
turnaround and server network traffic while running three
different MapReduce applications. We also ran micro-
benchmarks to assess the impact of each of our system’s
components.

The experiments show that the overhead of the User
Interface layer is minimal, and that it is possible to take
advantage of parallel processing environments without
the use of complex APIs. We can also conclude that it al-
lows the definition and execution of a myriad of jobs that
can take advantage of remote idle cycles. We managed to
execute a batch of image rendering, necessary to create
an animation video, as well as process several MapRe-
duce jobs. In general, the applications that our systems
handles best are those which can be described as Bag-
of-Tasks problems, or easily decomposed in a set of map
and reduce tasks; thus, Monte-Carlo based applications
are good candidates.

GiGi-MR’s discovery mechanism performed well in
the various test scenarios that included static and dy-
namic resoures, and outperformed the RW protocol which
was our baseline. Our system proved to be effective in
locating various types of resources, and scalable as the

number of nodes in the network did not affect the mech-
anism’s resource query satisfaction.

Our result verification schemes vary in their complex-
ity and overhead. Replication with overlapped partition-
ings makes collusion harder to achieve, while ensuring
that the reliability of the results is the same as using stan-
dard partitionings. Replication with meshed partitionings
enables the use of even replication factors and improves
the reliability of the results using its stateless result repu-
tation algorithm. Samplication combines replication and
sampling in an elegant manner, ensuring it takes the best
advantage of redundant execution through the compari-
son with local samples rather than using voting quorums.

Our checkpoint/restart through a virtual machine over-
came its biggest obstacle, checkpoint data size, through
differential disk images and compression. We were able to
minimize the checkpoint size about 17 times, to a trans-
mittable amount of data.

Our solution was able to improve the performance of
all the MapReduce jobs we tested. The map stage was
up to 4 times faster than in an existing VC system. The
reduce step also showed an improvement, thus reducing
each MapReduce jobs execution time down to less than
half. Our experiments regarding the servers network traf-
fic also gave us some interesting results. We were able
to reduce server download traffic by an order of magni-
tude on the word count and inverted index applications.
Therefore, we were able to witness a decrease in uploaded
data to 20% of the existing VC system servers value.

Acknowledgements The authors would like to thank stu-
dents Filipe Paredes, João Paulino and Raoul Felix, for their
work and enthusiasm during the project.

References

1. Abramson D, Sosic R, Giddy J, Hall B (1995) Nimrod:
a tool for performing parametrised simulations using dis-
tributed workstations. In: Proceedings of the 4th IEEE In-
ternational Symposium on High Performance Distributed
Computing, IEEE Computer Society, Washington, DC,
USA, HPDC ’95, pp 112–121

2. Anderson DP (2004) Boinc: A system for public-resource
computing and storage. In: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
IEEE Computer Society, Washington, DC, USA, GRID ’04,
pp 4–10

3. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer
D (2002) Seti@home: an experiment in public-resource
computing. Commun ACM 45:56–61

4. Bloom BH (1970) Space/time trade-offs in hash coding with
allowable errors. Commun ACM 13(7):422–426

5. Cappello F, Djilali S, Fedak G, Herault T, Magniette F,
Néri V, Lodygensky O (2005) Computing on large-scale
distributed systems: Xtremweb architecture, programming
models, security, tests and convergence with grid. Future
Gener Comput Syst 21:417–437

6. Chazelle B, Kilian J, Rubinfeld R, Tal A (2004) The
bloomier filter: an efficient data structure for static support



18 Fernando Costa et al.

lookup tables. In: Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA,
SODA ’04, pp 30–39

7. Chun B, Culler D, Roscoe T, Bavier A, Peterson L, Wawr-
zoniak M, Bowman M (2003) Planetlab: an overlay testbed
for broad-coverage services. SIGCOMM Comput Commun
Rev 33:3–12

8. Cirne W, Brasileiro F, Andrade N, Costa L, Andrade A,
Novaes R, Mowbray M (2006) Labs of the world, unite!!!
Journal of Grid Computing 4:225–246

9. Costa F, Kelley I, Silva L, Fedak G (2008) Optimizing data
distribution in desktop grid platforms. Parallel Processing
Letters (PPL) 18(3):391–410

10. Costa F, Silva L, Fedak G, Kelley I (2008) Optimizing the
data distribution layer of boinc with bittorrent. Parallel and
Distributed Processing Symposium, International 0:1–8

11. Dean J, Ghemawat S (2008) Mapreduce: simplified data
processing on large clusters. Commun ACM 51:107–113

12. Fan L, Cao P, Almeida J, Broder AZ (2000) Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Trans Netw 8(3):281–293

13. Fedak G, He H, Cappello F (2008) Bitdew: a programmable
environment for large-scale data management and distri-
bution. In: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, IEEE Press, Piscataway, NJ, USA, SC
’08, pp 45:1–45:12

14. Goering P, Heijenk G (2006) Service discovery using bloom
filters. In: In: Proceedings Twelfth annual conference of the
Advanced School for Computing and Imaging, pp 14–16

15. Goodwin P, Wright G (2004) Decision Analysis for Man-
agement Judgment. John Wiley & Sons

16. Gropp W, Lusk E (1995) Dynamic process management
in an mpi setting. In: Parallel and Distributed Processing,
1995. Proceedings. Seventh IEEE Symposium on, pp 530–
533

17. Guo Z, Fox G, Zhou M (2012) Investigation of data locality
in mapreduce. In: Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012), IEEE Computer Society, Washington,
DC, USA, CCGRID ’12, pp 419–426

18. Kondo D, Javadi B, Malecot P, Cappello F, Anderson
DP (2009) Cost-benefit analysis of cloud computing ver-
sus desktop grids. In: Proceedings of the 2009 IEEE Inter-
national Symposium on Parallel&Distributed Processing,
IEEE Computer Society, Washington, DC, USA, IPDPS
’09, pp 1–12

19. Larson SM, Snow CD, Shirts M, P VS, Pande VS (2002)
Folding@home and genome@home: Using distributed com-
puting to tackle previously intractable problems in compu-
tational biology. Computational Genomics

20. Lin H, Ma X, Archuleta J, Feng Wc, Gardner M, Zhang
Z (2010) Moon: Mapreduce on opportunistic environments.
In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ACM, New
York, NY, USA, HPDC ’10, pp 95–106

21. Lv Q, Cao Q (2007) Service discovery using hybrid bloom
filters in ad-hoc networks. In: Wireless Communications,
Networking and Mobile Computing, 2007. WiCom 2007.
International Conference on, pp 1542 –1545

22. Marozzo F, Talia D, Trunfio P (2008) Adapting mapreduce
for dynamic environments using a peer-to-peer model. In:
Proc. of the First Workshop on Cloud Computing and its
Applications (CCA 2008), Chicago, USA

23. Metropolis N, Ulam S (1949) The monte carlo method.
Journal of the American Statistical Association (American
Statistical Association) 44(247):335–341

24. PEARSON K (1905) The problem of the random walk. Na-
ture 72

25. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S
(2001) A scalable content-addressable network. In: Pro-
ceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communi-
cations, ACM, New York, NY, USA, SIGCOMM ’01, pp
161–172

26. Rhea S, Kubiatowicz J (2002) Probabilistic location and
routing. In: INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol 3, pp 1248 – 1257 vol.3

27. Rowstron A, Druschel P (2001) Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. In: Guerraoui R (ed) Middleware 2001, Lec-
ture Notes in Computer Science, vol 2218, Springer Berlin
/ Heidelberg, pp 329–350

28. Silva J, Ferreira P, Veiga L (2010) Service and resource
discovery in cycle-sharing environments with a utility al-
gebra. In: Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pp 1 –11

29. Snir M, Otto SW, Walker DW, Dongarra J, Huss-Lederman
S (1995) MPI: The Complete Reference. MIT Press, Cam-
bridge, MA, USA

30. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan
H (2001) Chord: A scalable peer-to-peer lookup service for
internet applications. In: Proceedings of the 2001 confer-
ence on Applications, technologies, architectures, and pro-
tocols for computer communications, ACM, New York, NY,
USA, SIGCOMM ’01, pp 149–160

31. Tang B, Moca M, Chevalier S, He H, Fedak G (2010) To-
wards mapreduce for desktop grid computing. In: Proceed-
ings of the 2010 International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, IEEE Computer So-
ciety, Washington, DC, USA, 3PGCIC ’10, pp 193–200


