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Abstract Today there are many location technologies pro-1

viding people or object location. However, location privacy2

must be ensured before providing widely disseminated loca-3

tion services. Privacy rules may depend not only on the4

identity of the requester, but also on past events such as5

the places visited by the person being located, or previ-6

ous location queries. Therefore, location systems must sup-7

port the specification and enforcement of security policies8

(including history-based) allowing users to specify when,9

how and whom may know their location. We propose a mid-10

dleware platform named Jano [Jano (or JANVS in latin) is11

the god of doors and gates in the roman mythology. He is12

usually depicted with two or four faces turning in opposite13

directions.] supporting both pull and push location requests14

while enforcing configurable security policies. Policies are15

specified using the Security Policy Language, SPL, facili-16

tating the use of well-known security models. In particular,17

Jano supports history-based policies applied to person’s18

or object’s location. Jano implementation integrates sev-19

eral location technologies (e.g. GPS, RFID, etc.) and deals20

with the related heterogeneity aspects. It provides a web-21

based interface that facilitates policy specification, and its22
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evaluation shows good performance, embodying a number 23

of optimizations regarding bandwidth, process and storage 24

savings. 25
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policies · Security · Middleware 27

1 Introduction 28

Being able to locate someone or something has been a need 29

over the times. Today, as in the past, the reasons why location 30

is needed are multiple. We may wish to know where we are 31

for self orientation. We may want to know where other per- 32

sons or objects are located so that we can meet or find them, 33

respectively. Finally, and more recently, our location could 34

also be used by third-party applications to send us contex- 35

tual information (e.g., receiving advertisements related to the 36

shop we are arriving at [31], or to obtain detailed information 37

about the work of art we stand by at a museum). 38

Even though the above-mentioned location-based appli- 39

cations are varied and very useful, privacy arises as a main 40

concern. As a matter of fact, privacy is a necessary condition 41

for freedom, in the sense that where we are and who we are 42

with, is related to what we are doing. The possibility of being 43

located by others raises the question: “Who, and under what 44

condition, may someone be allowed to locate me or know 45

I am nearby?”. This can be as simple as restricting a time 46

interval; for example: “Bob can only locate Alice between 10 47

a.m. and 4 p.m.”. Sometimes, the decision is not only based 48

on the present situation but also on past events. For exam- 49

ple, Alice may accept to disclose her location at isolated 50

instants but not being tracked, i.e., reveal several locations in 51

sequence. In addition to the previous situation (e.g., knowing 52

the location of Alice) there are cases in which it is important 53
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that a user, e.g., Bob, is notified of some location-related event54

such as “Alice has arrived at the campus”. Finally, when a55

person wants to disclose her location, e.g. Alice, she may do56

so with different precisions, depending on the requester or57

the situation Alice is involved. For example, in an emergency58

scenario, it is of utmost importance that Alice is located with59

maximum precision; in contrast, Alice may only allow her60

students to know her location with minimum precision (e.g.,61

inside the campus or not).62

To address all these scenarios, the location system must63

be capable of responding to location requests but, at the same64

time, evaluate each request and decide whether it is autho-65

rized or not, based on some previously specified policy. Thus,66

the goal of this work is as follows: for location-based services,67

to support the specification and enforcement of complex68

security policies, including those based on history events,69

without compromising usability and performance. Such poli-70

cies are to be defined and enforced on a location service that71

supports both synchronous, i.e., pull, and asynchronous, i.e.,72

push, requests.73

It is worth noting that the goal stated above is to be attained74

while providing a widely applicable solution, i.e., that can75

be used in a generic location infrastructure. Thus, the pol-76

icy monitor that enforces the above-mentioned policies can-77

not be made as a group of static or built-in rules. As noted78

in [7], organizations use different approaches and philoso-79

phies to structure and configure their units and collaborators80

(e.g., hierarchical, flat, etc.). Policies are to be defined inde-81

pendently of the location system and taking into account the82

existing organizational model of the site where location poli-83

cies are to be enforced.84

Given the dynamics of the location information, past85

events are particularly important to consider. When a user86

makes a query for someone’s location, or when he arrives at,87

or leaves from any location, these events must be recorded88

by the system with the goal of applying policies to them;89

for example, “the administrator can know my location if90

I am in a dangerous place for more than one hour”. The91

way these events are represented and stored is crucial during92

the evaluation of policies (history-based in this case) mainly93

for performance and scalability reasons.94

Other location services that enforce some notion of pri-95

vacy [22,23] do not present an integrated solution to deal96

with history-based policies. In some of them, responses to97

push requests are also not handled as a first class issue, mak-98

ing it hard to use location events produced by the location99

service in the notification decision process.100

This paper presents Jano, a generic multi-technology101

Location Service, supporting the specification and capa-102

ble of enforcing flexible declarative privacy policies on103

the location of persons or objects. Location information is104

gathered from an unlimited variety of sources. Two types105

of queries are available: pull and push. While the former106

answers with the last known location, the latter corresponds 107

to an asynchronous notification request (e.g., “Notify me by 108

e-mail when Alice arrives to room 19 after she has left the 109

cafeteria”). Thus, Jano supports two types of policies: 110

Access Control policies enforce the requirements of users 111

and owners of places regarding the disclosure of location 112

information. Such policies can be associated to users, 113

objects or places. 114

Notification policies are used to decide about the need for 115

a notification. They are associated to a user when a push 116

request is made. 117

The movement of persons and objects makes Jano gen- 118

erate location events which are evaluated by the above- 119

mentioned policies to determine if a notification is needed 120

and allowed. 121

To define both types of policies (access and notification) 122

Jano uses an extended version of the Security Policy Lan- 123

guage (SPL) [25]. SPL is a policy language particularly suit- 124

able for location services, because it allows the definition 125

of models comprised by elements specifically adapted to 126

location semantics; namely, SPL allows for the definition 127

of history-based policies which are an important element for 128

the definition of location policies. SPL is also system agnos- 129

tic which means that the representation of objects and events 130

can be adapted to the specification of the location system. 131

Regarding the precision of location information disclosure 132

(which depends on the requester or on the current situation, as 133

previously mentioned) in SPL, as in most authorization lan- 134

guages, one can only get this feature doing several queries 135

with decreasing precisions until one is accepted. Therefore, 136

we have extended SPL with an awareness operator. With 137

this operator, the policy designer (and he alone) can define a 138

logical expression or rule whose result may be used to deter- 139

mine the cause of a denied location request. When applied to 140

the precision of location, as in the previous examples, Jano 141

will only need to make one policy evaluation to determine if 142

maximum precision is allowed and, if not, with which preci- 143

sion can the request be satisfied, improving efficiency while 144

ensuring that there is no information leakage. 145

In summary, the contributions of this work are as follows: 146

(i) The specification and enforcement of privacy-related 147

security policies using a multi-model language (i.e., not 148

tied to any specific authorization model such as RBAC, 149

MAC, etc.) [25]. These policies can be made dependent 150

on history events without compromising usability and 151

performance. 152

(ii) The implementation of an extensible and interoperable 153

tracking and notification mechanism, with the possibil- 154

ity to define complex notification conditions. 155
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(iii) An extension to SPL logic and semantics, and core156

implementation, to improve the performance of location157

precision queries through the use of a new awareness158

operator.159

The rest of the paper is organized as follows. Section 2160

describes the overall architecture of Jano, focusing on the161

main components and their interactions. With increasing162

detail, Sect. 3 presents the solution to ensure policy enforce-163

ment, including the logics of history-based policies and the164

modifications in SPL to support the new awareness operator.165

Some of the implemented policies are described in Sect. 4166

along with details about the implementation of Jano’s core.167

Section 5 discusses the most relevant performance aspects of168

Jano and presents a use case illustrating its functionality. In169

Sect. 6, we discuss some related work. Section 7 concludes170

the article.171

2 Jano architecture172

Figure 1 presents the high-level overall architecture of Jano.173

Location applications request the user location and set notifi-174

cation conditions. The Location Server collects information175

from different sources (Location Generators); it works as176

a Policy Enforcement Point (PEP) delegating to the Policy177

Decision Point (PDP) (i.e., Rule Handler) the decision about178

returning location requests and location events. The figure179

also illustrates the workflow among all components.180

Consider the following scenario. A Location Application,181

e.g. a directory service, is used by Alice to ask where Bob,182

her project mate, is located in campus (step 1). Jano evaluates183

Bob’s policy (steps 2 and 3) and, if the request is accepted,184

Bob’s location is disclosed with a certain precision level (step185

4). Later, Alice uses the campus notification service (another186

example of a Location Application need) requesting to be187

notified by Short Messaging Service (SMS) when the book188

she ordered arrived at the reception desk after going through189

the library for registration. These two kinds of interactions190

with the Location Server are named pull and push requests,191

respectively.192

The latter kind of interaction (i.e., push requests) is pos-193

sible because the Location Server produces two location194

Fig. 1 Jano architecture overview

events: i) A arrived at place P , and ii) A left place P , A 195

being a person or an object. 196

Location events are based on the information collected 197

from Location Generators. These components represent the 198

source of location information and have the responsibility of 199

translating it to a common hierarchical representation with 200

the following format: 201

< domain > / < sub-domain1 > / . . . / < sub-domainN > . 202

Although not fundamental for this work, such an hierar- 203

chical representation has some advantages when compared 204

to other approaches (which could also be used in Jano). As 205

a matter of fact, due to this hierarchical common format, 206

policies can be specified independently of the detail of the 207

low level positioning technologies employed, and are able to 208

encompass many locations with just a few rules. 209

Jano provides an efficient and adaptable Rule Handler, 210

named SPL Policy Enforcer, that enforces both Access Con- 211

trol Policies and Notification Policies. These policies are 212

associated to persons, objects and places. They regulate if a 213

pull or push response, can be given, controlling the disclosure 214

of location information. The Policy Enforcer applies access 215

control policies after a common policy is enforced. This com- 216

mon policy gives the opportunity for the site administrator 217

to enforce a set of common global rules; for example, “mail 218

objects can only be localized by their receivers and if the 219

object has already left the distribution department”. 220

Notification Policies are used by the Notification Distrib- 221

utor to evaluate the need and the authorization for a push 222

response, i.e., a notification. This evaluation happens, at 223

most, once for each time the Location Manager generates 224

a location event. In the previously presented scenario, in 225

which Alice is interested on a book she ordered, each time 226

the book enters or leaves a place, the notification policies of 227

Alice are evaluated to determine if a notification must be sent 228

(or not). 229

It is worth noting that SPL is a language originally con- 230

ceived for the specification of access control policies. Thus, 231

in Jano, we extended SPL to support policies in a notifica- 232

tion context. Following on the example previously described, 233

Alice would choose an SPL policy representing the desired 234

notification situation and specifies which book she was inter- 235

ested in. This results in the instantiation of the policy, which 236

will then be associated to her notification policies. This 237

resulted in a novel approach that, while taking advantage of 238

SPL features, allows Jano to have the following novel prop- 239

erties: (i) it is easy to use past location events when determin- 240

ing the notification conditions (based on history-based policy 241

support from SPL), and (ii) it is a general approach because 242

the actual parameters that will be considered for notification 243

purposes, regarding any given person and/or object, are not 244

built-in or hard-coded in Jano. 245
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In both cases (i.e., access control and notification policies),246

the actions of the Policy Enforcer are governed by policies247

specified and enforced using SPL, with extensions described248

in the next section. These policies depend on current and past249

interactions with Jano, e.g. location requests and location250

events. Users of Jano need not learn SPL, because Jano pro-251

vides a library with a pre-defined set of location access con-252

trol and notification policies, and policy templates or idioms.253

Users, then, only have to parameterize them according to their254

needs using a web-based interface (described in Sect. 4.5).255

The next section gives a description of SPL, focusing on256

the language elements relevant to Jano, and those newly intro-257

duced (e.g., regarding policy awareness). Section 4 presents258

examples of history-based access control policies and noti-259

fication policies, showing the generality and expressiveness260

of Jano’s location policies.261

3 Location privacy262

An important characteristic of Jano is its adaptability, mostly263

due to the Location Server. This means that the characteriza-264

tion of persons, objects and places can reflect the information265

available at the site where Jano is to be deployed, e.g., per-266

son’s department, person’s current activity, person’s current267

security level.268

Jano imposes minimum restrictions regarding the struc-269

ture of policies governing the disclosure of location informa-270

tion. To accomplish this, as already mentioned, we extended271

SPL. The main goal of SPL is to support an environment272

where authorization policies can be expressed using a com-273

bination of known policy models (i.e., MAC, DAC, RBAC,274

history-based, etc.) among others [26]. The next sections275

show how the policies, relevant to the context of the Jano276

Location Service, can be built with SPL.277

3.1 SPL policies structure278

SPL [25] comprises four basic blocks: entities, sets, rules and279

policies.280

Entities are typed objects, described in the language as281

a group of properties. Figure 2 shows the definition of the282

types for the current implementation of Jano. Each object283

has its own policies regarding location disclosure (i.e., access284

control) and notifications. These policies are referred by285

properties designated accessControlPolicies and286

notificationPolicies, respectively. Moreover,287

if Jano is to be used in an environment where users are also288

characterized by a clearance level, a new property is to be289

added to the object type. Next, we describe how these poli-290

cies are defined.291

During the evaluation of a policy, when a reference is made292

to a property of an entity (e.g., where of type object), this will293

Fig. 2 Definition of entity types.object represents locatable entities
(i.e., persons or objects). Each object belongs to a group and can define
both access control and notificatio. policies

Fig. 3 Definition of the type event

result in consulting the Jano platform for the requested infor- 294

mation. How this is done is not under direct control of SPL. 295

Jano implements an adapter framework to provide SPL the 296

necessary information for the properties of the external types, 297

retrieving them by interfacing with different technologies. 298

Rules are logical expressions that can take one of three 299

values: allow, deny or notapply. Client systems com- 300

municate with SPL using events. The goal of each rule is to 301

decide on the acceptability of a SPL event. Thus, as stated 302

above, a rule may allow (allow) or deny (deny) an event; 303

in addition, an event may be completely irrelevant for that 304

event i.e., not applicable (notapply). 305

In Jano these events correspond to pull requests, origi- 306

nated from the users, and to location events, originated from 307

the Location Server. SPL events are defined as described in 308

Fig. 3, which presents the SPL event used in the interaction 309

between Jano and SPL. 310

The event representing the current interaction is known 311

as the current event, and a rule can access it as ce. The 312

action field of the event element (Fig. 3) identifies the 313

type of interaction. The author field is the person making 314

the location request or the originator of the location event. 315

Field target is the person or object to whom the location 316

request refers to. Field targetPlace refers to the place 317

inquired in a pull request or the place in a location event. 318

Rules can be simple or composite. A simple rule has two 319

distinct logical binary expressions, separated by the symbol 320

“::”—the domain expression and the decide expression. The 321

domain expression determines the applicability of the rule. 322

The decide expression decides on the acceptability of the 323
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Fig. 4 Example of a simple (SpecialRoom) and a composed
(CRule) rule

event. A composed rule is a composition of other rules using324

tri-value logic operators, which are extensions of their first325

order binary counterparts (conjunction, disjunction, negation326

and logical quantifiers) with a global neutral element, the327

notapply value, i.e., the conjunction or disjunction of any328

rule with notapply is equal to the value of the rule, mean-329

ing that if the domain expression of one of the composed330

rules evaluates to false, the value of its decide-expression331

is irrelevant for the the result of the composition, whatever332

the composition type (conjunction, disjunction, or quantifi-333

cation).334

Figure 4 shows a composed rule (CRule) as it depends335

on two other simple rules named SpecialRoom and336

TheOwner (composed with the operator OR). As already337

stated, rules are designed to decide on a given location request338

which is represented by the construction ce.339

Rule SpecialRoom evaluates to allow when, for the340

domain expression stated, the corresponding decide expres-341

sion is true. Regarding the rule TheOwner, we can see342

that, as long as the decide domain is verified (initiator of the343

request, the author, is the same as the person being located,344

the target) the decide expression always evaluates to true345

meaning that the rule result is allow.346

Thus, the composed rule CRule means that a location347

request is allowed if either:348

1. a person is querying his own location; this is enforced349

by the TheOwner rule stating that ce.targetmust be350

equal to ce.author thus requiring the initiator of the351

request (the author) to be the same as the person being352

located (the target); or353

2. the current location request, in the simple rule354

SpecialRoom, is a pull request (i.e., ce.action =355

Get_Location), the requester (i.e., ce.author) has the356

unique identifier of alice@inesc.pt and the last357

known location of the owner of the policy (i.e., ce.target)358

is inesc/office600.359

Policies are groups of rules and sets, forming a logical unit.360

Each policy has one query rule, which is distinguishable by361

the question mark that precedes its definition. This rule is the362

entrypoint of the policy. Figure 5 shows a policy that allows363

the location disclosure of the target if it is in one of the rooms364

contained in the set allowedRooms.365

Fig. 5 Example of a policy. The question mark identifies the first rule
to be evaluated. The rule TheOwner is the same as presented in Fig. 4

Different users can use this policy as a template but 366

with different room names (i.e., a different set of rooms in 367

allowedRooms), which allows flexibility and promotes 368

extensibility. This is a difference between Jano and other 369

policy enforcement systems, making it possible to define a 370

set of meta-policies that can be particular to a domain, and 371

letting users/administrators to instantiate them with the spe- 372

cific values they want. 373

SPL policies are not written by persons using the Location 374

Service, but by the organization’s policy designer. The policy 375

designer responsibility is to create a set of policies adapted 376

to the domain where Jano is to be used (e.g., office building, 377

university campus, hospital, military installation). 378

3.2 History-based policies 379

As already mentioned, being able to locate someone or some- 380

thing has been a need over the times. In addition, there are 381

cases in which it is relevant to track a person’s location; for 382

example, when security is a concern, it may be important to 383

know if a person has been in rooms R1, R2 and R3 (pos- 384

sibly, for how long in each one). Obviously, such tracking 385

raises important privacy issues; while such disclosure may 386

be acceptable in an industrial environment during working 387

hours, such tracking is not acceptable at week-ends or during 388

other private activities (e.g., during leisure time). 389

Thus, the disclosure of location information can be depen- 390

dent on previous location events or accepted pull requests. A 391

usual scenario is to limit the number of location requests or, 392

alternatively, the request frequency or the cardinality of the 393

set of unique results provided, made by the same person, to a 394

given target. This avoids tracking (as the scenario described 395

previously) among other types of inference attacks. 396

Policy TrackingLimit, presented in Fig. 6, shows 397

a rule (?TrackingLimit) where the location request 398

is allowed (or not) based on past events. More precisely, 399

the request is allowed only if in the past there were no 400

more than maxEvents push requests for the same tar- 401

get made by the same author (pe.author=ce.author 402

& pe.target=ce.target), on the same day. For exam- 403

ple, if this policy is associated to Alice (ce.author) and 404

instantiated with a value equal to three for maxEvents, 405

Alice is allowed at most three such requests in sequence. 406
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Fig. 6 Examples of history-based policies

Another example of history-based policies is policy407

OnlyOutsideMailRoom, also presented in Fig. 6. It408

takes into account the location event leave (pe.action =409

“Leave”). If this policy is applied to a mail object (the410

target), this means that such object can only be located411

after leaving the mail distribution room (pe.targetPlace412

=“MailRoom”). In addition to the examples previously413

described, Sect. 4.1 shows examples of history-based notifi-414

cation policies where location events (i.e., arrive and leave)415

are considered to decide whether a notification is needed.416

A critical aspect of the above-mentioned policies (and417

history-based ones in general) is the size of the log where418

past events are kept. To enforce this type of policies, a virtual419

event log is used. This special log is referred as the PastEvents420

set; it does not match a concrete implementation of an event421

log, although the semantics is that of a global log [25]. The422

log is associated to each user’s policy. It is the responsibility423

of the Policy Enforcer to fill this log, adding successful pull424

requests and location events.425

In particular, in the policy TrackingLimit previously426

described (see Fig. 6) the PastEvents set is searched to deter-427

mine whether, on the same day (pe.date=ce.date),428

a given requester (ce.author) has already made429

maxEvents successful location requests. Only events430

regarding location requests are relevant. If a user enters or431

leaves a place, that event will not be recorded by this policy432

log. Furthermore, each event from the same author, regard-433

ing the same place and for a given day will not be duplicated,434

reducing the log size. This log mechanism is fundamental as435

it promotes logs with reduced size thus fostering scalability436

(more details presented in Sect. 4.2).437

3.3 Policy awareness438

As already mentioned, sometimes, a person may be interested439

on being located with different precision levels depending on440

who is willing to know his location and also depending on441

the purpose. For example, Alice may allow his friend Bob to 442

know her location within a 1 km radius but, for emergency 443

purposes, Alice may allow an ambulance to know her location 444

precisely, i.e., with much greater precision (i.e., 1 m). Jano 445

takes all these scenarios into account while ensuring that 446

there is no uncontrolled information leakage. 447

Thus, often, it is necessary to localize someone with the 448

best precision allowed by the corresponding policy. How- 449

ever, with most authorization languages and also with (the 450

original) SPL, the way to attain this is very inefficient: several 451

requests must be issued, with decreasing precision, until one 452

is accepted (as is the case with the above scenario where Bob 453

wants to know Alice’s location). This inefficiency happens 454

because authorization engines must prevent any information 455

leakage. 456

However, in some situations, providing the user (e.g., Bob) 457

with the reason why his request was rejected (e.g., for Alice 458

location) contributes to the policy awareness and turns the 459

process of locating someone with the best precision possi- 460

ble much more efficient. Such increased efficiency results 461

from the fact that the access control engine replies with an 462

allow or with a deny, together with the best precision that 463

makes the policy return allow. In fact, there is no need 464

to ask the engine again with a different precision because 465

the system already knows the answer. Therefore, with such 466

an awareness mechanism the authorization engine is called 467

just once, with clear efficiency gains. Once again, taking into 468

account the above-presented scenario, Bob would issue a sin- 469

gle request for Alice’s location indicating a precision value 470

that is acceptable by the corresponding policy. 471

In fact, this mechanism can be useful in a more general 472

context to provide policy awareness to users, letting them 473

know why their requests are being denied, without having to 474

contact the help desk for that purpose [28]. 475

In order to enhance SPL with the above-described aware- 476

ness mechanism, we have extended it with the intro- 477

duction of a new polymorphic operator: the awareness 478

operator “$”. This operator applies to logical expressions 479

(e.g., $(ce.precision < “Medium”)) and rules (e.g., 480

$domain-exp::decide-exp). It states that if an event 481

is denied because of some condition inside the awareness 482

scope, that information is transmitted back to the access 483

requester, as additional awareness information. It’s worth 484

noting that, only the annotated expressions are transmitted 485

to the requester; therefore, policy leakage is kept to a mini- 486

mum and, more important, always strictly controlled by the 487

policy designer. 488

The awareness information is provided to the requester 489

as a symbolic binary logical expression indicating the condi- 490

tions on the event request that are needed to change the policy 491

result from deny to allow (or to keep the allow, if that is 492

the result of the applied policy). If the applied policy returns 493

notapply, the awareness information is not specified. 494
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The symbolic binary expression is kept on a tree structure495

where each leaf is a binary logical constraint (e.g., ev.a >496

b), and each node is a binary logical operation. The tree is497

reduced whenever one of the branches of a node is a constant498

value, but it is not further simplified; therefore, we may end up499

with an awareness expression stating that ce.precision500

> “Low”& ce.precision > “Medium”, which could501

be simplified further to ce.precision > “Medium”.502

However, currently, the present solution was deemed ade-503

quate. If one of the branches is constant, it is either the504

neutral element or the absorbing element of the binary oper-505

ation, which means they can either be collapsed into the non-506

constant branch (neutral element) or to the constant branch507

(absorbing element).508

The awareness information is provided to the requester in509

a tuple together with the policy result 〈result, awareness〉510

in which: result is the usual allow,deny or notapply511

values that result from the application of the SPL ternary512

logic to all the rules that comprise the policy; awareness is513

the binary tree with the awareness information.514

The awareness information is provided by the new exten-515

sions to the SPL logics; the ternary logic used to compose516

rules and the binary logic used in the decide expression of517

each rule. The elements of both logics are now tuples with518

the original elements and an awareness tag 〈element, tag〉.519

For the SPL ternary logic, the first element of the tuple520

is either allow,deny or notapply; and for the binary521

logic it is true or false. The tag corresponds to the522

awareness information and it is, in both logics (binary and523

ternary), a binary symbolic expression stored in a tree struc-524

ture.525

The following definitions provide the framework used to526

build the awareness information provided to the requester.527

Definition 1 The tag of a non-annotated binary logical528

expression (ble) is defined as tag = ble, where ble is a529

value equal to true or false resulting from the evaluation530

of ble with the current event.531

Definition 2 The tag of an annotated binary logical expres-532

sion ($ble), i.e., an expression that was preceded by the533

awareness operator “$”, is defined as:534

tag =
⎧
⎨

⎩

ble i f ble. ∧ OnEvent (ble)
!ble i f !ble ∧ OnEvent (ble)
ble i f !OnEvent (ble)

535

where OnEvent (ble) is a predicate that evaluates to true536

if the expression depends on the current event.537

Note that ble and !ble represent symbolic logical expres-538

sions, i.e., non-evaluated, whilst ble represents an actual539

binary value.540

Definition 3 The tag of a rule (rule = {domain-exp :: decide- 541

exp}) is defined as: 542

tag =
{⊥ i f rule = notapply

tag(decide-exp) otherwise
543

where ⊥ represents the empty symbolic expression, rule 544

the evaluation of the rule with the current event and 545

tag(decide-exp) the tag of the binary logical expression com- 546

prising the decide expression of the rule. 547

Extending the SPL ternary and binary logics to handle 548

awareness tags implies defining two new sets of operators 549

over two new tuples, respectively the 〈ble, tag〉 (or 〈b, t〉) 550

for the extended binary logic, and the 〈rule, tag〉 (or 〈r, t〉), 551

for the extended SPL ternary logic. 552

Definition 4 The extended binary logical operators are 553

defined as: 554

〈b1, t1〉�〈b2, t2〉 = 〈b1�b2, t1 © t2〉 555

©! 〈b, t〉 = 〈 !b, !t〉 556

where � is a placeholder for the binary conjunction (&), dis- 557

junction (|) and exclusive disjunction , and © is a place- 558

holder for ©& , ©| and , which are symbolic operators that 559

are equal to their binary counterparts, with the exception that 560

they take ⊥ as their universal neutral element. Similarly, ©! is 561

equal to the logical negation but also takes ⊥ as their neutral 562

element. 563

Definition 5 The extended ternary logical operators are 564

defined as: 565

〈r1, t1〉and〈r2, t2〉.〈r1 and r2, t1 ©& t2〉 566

〈r1, t1〉or〈r2, t2〉.〈r1 or r2, t1 ©| t2〉 567

not〈r, t〉 = 〈©! r, ©! t〉 568

where and , or and not are the SPL ternary conjunction, 569

disjunction and negation, respectively. 570

With the above definitions, it is not difficult to show that 571

the new awareness operator “$” enjoys the distributed, com- 572

mutative and associative properties over both the binary and 573

ternary SPL logics. This means that annotating the complete 574

policy with the awareness operator is equal to annotating 575

each specific logical constraint. Note however that, both for 576

policy privacy and efficiency reasons, the annotation of a full 577

policy should be avoided. 578

We now show how to apply these rules to the policy in 579

Fig. 9. The precise description of the policy is postponed to 580

the next section. The tag-tree evaluation takes place from the 581

last level to the first one. Therefore, the first step is to evaluate 582

the elementary binary logical expressions, of the decide- 583

expression (lines 21–24) using Definition 2. Assuming that 584

585

123

Journal: 13174 MS: 0065 TYPESET DISK LE CP Disp.:2012/10/6 Pages: 20 Layout: Large



R
ev

is
ed

 P
ro

of

J Internet Serv Appl

all non-annotated binary expression evaluates to true for the586

current event their tags are all evaluated to tag=true. On the587

other hand assuming that the annotated expression requires588

high accuracy while every day.accuracy=“Medium”,589

then its tag is tag = ce.accuracy != “Medium”.590

The next steps are the application of Definition 4 to calculate591

the tag of the conjunction of the elementary binary expres-592

sions that comprise the decide-expression of the rule. Then,593

Definition 3 is used to calculate the tag of the rule (lines 20–594

24) out of the tag of the decide-expression, which are both595

trivially equal to tag = ce.accuracy != “Medium”.596

Finally, the tag of the policy is calculated applying Defini-597

tion 5 to every rule disjunction resulting from the expansion598

of the EXIST quantifiers (lines 12–25). Assuming that the599

quantifiers groups have 2 and 5 elements, that is, two groups600

of friends and a condition for each working day, the tag of601

the policy is the disjunction of 10 equal tags, resulting in602

the deny reason of ce.accuracy != “Medium”, i.e.,603

the expression is denied because the accuracy required is not604

equal to the “Medium”.605

4 Implementation606

Figure 7 provides a global view of Jano implementation.607

In the center, we can see the main modules (from left to608

right):609

– The Location reporting API receives location infor-610

mation from the location generators (e.g., applications611

reporting GPS readings, RFID positioning systems)612

reporting the current position of each target.613

– The Location Manager keeps the last location of each tar-614

get, as received from the Location reporting API. Based615

on this information, it generates location events which616

are then stored in a first-in-first-out queue. Each event617

contains information about the target (e.g., Alice), the618

type of the event (arrive or leave) and the place to which619

the events refer (e.g., P1).620

– The Notification Distributor receives events from the 621

Location Manager and interacts with the Policy Enforcer 622

(see next item) to know if there are users to be notified of 623

a given event. As a consequence, the Policy Enforcer will 624

evaluate each notification policy. If, for a certain notifi- 625

cation request, a notification is needed, the Notification 626

Distributor is responsible for doing so, using the previ- 627

ously configured communication channels for the user 628

being notified. 629

– The Policy Enforcer evaluates access control and noti- 630

fication policies. Access control policies are evaluated 631

for each pull request made through the Queries API (see 632

next item) while notification policies are evaluated when 633

a new location event is generated. 634

– The Queries API (for query and administration purposes) 635

is used by other services or applications to get instant 636

locations and configure the access control and notifica- 637

tion policies. 638

On the left-hand side of Fig. 7, we can see a set of mobile 639

devices (possibly attached to objects and/or persons) using 640

different location technologies such as WiFi, GPS, etc. The 641

right-hand side of Fig. 7 illustrates a Jano’s user who issues 642

location or notification requests through any computing 643

device. 644

Thus, in summary, the Jano programming interface (i.e., 645

API) supports two main services: 646

– the Queries API allows for location applications (web and 647

rich clients) to: i) ask for a person or object location (pull 648

requests), ii) manage access control location policies, and 649

iii) manage notification policies; 650

– the Location reporting API is used by location generators. 651

Each consumer of location information and each location 652

generator can be implemented in any language or platform. 653

To facilitate this goal, Jano API is implemented as a Web 654

Service, using the framework JAX-WS 2.0. A GPS and RFID 655

Fig. 7 Jano implementation
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Fig. 8 Common policy of Jano. All policies of target are evaluated to
decide if location can be disclosed

generator have been developed, both using the .NET platform656

and the C# language.657

For demonstration purposes, we now describe how Jano658

can be used to implement a useful location control policy659

to ensure the intended privacy in location services. We have660

designed a model where there is a common policy, presented661

in Fig. 8. This policy includes two rules:662

– TheOwner: this rule is the same described in Sect. 3.1663

which, as already mentioned, states that every target can664

know his location;665

– accessControl: this rule enforces all the exist-666

ing specific access control policies for the target667

being located (i.e., ce.target.accessControl668

Policies) to be verified and enforced.669

It is important that, policies for targets and places can be670

specified independently, which can result in conflicting rules.671

For example, Alice is not allowed to locate Bob, but Alice672

can kown who is at P . In this scenario, if Bob is located at673

P , and Alice makes a request to see who is at this location,674

Jano would not include Bob in the response. Jano will only675

disclose a certain location when the combination of target’s676

and place’s policies allows it.677

The implementation of Jano supports several access con-678

trol policies. In this article, we focus on one policy that could679

be applied to a variety of environments (e.g., university cam-680

pus, enterprise building). The policy is presented in Fig. 9:681

when associated to a target (to be located), it defines the users682

who are allowed to know the target’s location, with what pre-683

cision and when.684

The entry point of this policy is the rule GroupsInt-685

erval that, as stated previsouly, defines the circum-686

stances under which a target’s location can be disclosed.687

The target being located is the entity to whom the pol-688

icy GroupsInterval is associated. The users request-689

ing the target location are members of the group named690

allowedGroup. The allowedGroupInfo type con-691

tains the name of an allowedGroup along with the preci-692

sion that the target location should be returned, and in what693

period of the week. Each allowedGroup is stored in the694

Fig. 9 Example of personal access control policy

policy instance, more precisely in the groupsInfo prop- 695

erty. 696

This GroupsInterval policy is evaluated in two sce- 697

narios: i) following a pull for some target to be located, ii) 698

when a location event is produced by Jano’s core and a noti- 699

fication policy determines the potential location disclosure 700

of some target. 701

As presented in Sect. 3.3, we have extended SPL with 702

the awareness operator which allows the policy designer to 703

identify, if relevant, the reason why the location cannot be 704

disclosed (e.g., too much precision). In the policy presented 705

in Fig. 9, when the author of a location request is denied 706

access to a person’s location, he will be informed about the 707

precision that is demanded for the location to be disclosed. 708

Consider a scenario where there are three levels of precision: 709

“low”, “medium”, “high”. If the requester wants “high” pre- 710

cision but the policy only allows “low”, Jano returns the loca- 711

tion with the allowed precision. Note that the original request 712

will be denied but only because of incompatible precision. 713

Therefore, the system can automatically return the location 714

in accordance to the target policy. 715

Each policy goes through the SPL compiler, which pro- 716

duces an enforceable policy in the form of a Java class. Ins- 717

tances of these classes, with proper initialization, are attached 718

to each target, as access control or notification policies, i.e., to 719

the accessControlPolicies or thenotification 720

Policies properties in Fig. 2, respectively. 721

The set of policies associated to each target forms a graph 722

of objects which is updated each time a new policy is added 723

or removed. In Sect. 4.5, we address Jano’s web interface to 724

support the configuration of policies. 725
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Fig. 10 Notification policies. SNotify is a simple parametrized pol-
icy. VisitAfter takes into account past location events to determine
if a notification must be sent

4.1 Notification policies726

Jano sends notifications based on the evaluation of notifi-727

cation policies associated to users. Using SPL, notification728

policies can be specified with different conditions, adapted729

to the site where the location service is used.730

Figure 10 presents a notification policy (SNotify), that731

can be used as a template for policies, parameterized by the732

name of an object (id), the name of a place (place) and733

the location event of interest (evType). This policy could734

be used by Alice to be notified by Jano when Bob arrives at735

inesc/floor6. If so, a policy with the given parameters736

would be instantiated as follows:737

new SimpleNotify(bob,738

new place("inesc/floor6"), "Arrive").739

When the Notification Distributor (see Fig. 7) receives740

a location event stating that Bob has arrived at741

inesc/floor6, it will contact the Policy Enforcer, with742

the objective of knowing who wants to be notified. For this,743

a new SPL event is built, where author is Bob, action744

is Arrive and targetPlace is inesc/floor6. Then,745

this event is used to evaluate each user pending notification746

policies. If the notification policy determines that a notifi-747

cation should be sent and the access control policy of the748

moving target allows it, a communication channel (e.g., web749

service, e-mail, etc.), previously configured by the user, will750

be used to send the notification.751

Jano can efficiently enforce notification policies with752

history-based rules. This is used, for example, when a user753

wants to be notified about an object trajectory inside his754

organization: a previously ordered book can arrive at the755

reception, but this event is only interesting if that same756

book has already passed through the library to be cataloged.757

Figure 10 shows a parameterized history-based policy, called758

VisitAfter, which can be instantiated to represent the759

previously described scenario, and associated to Alice: 760

new VisitAfter("book : Understanding 761

Privacy", 762

new place("ist/library"), 763

new place("inesc/reception")); 764

7654.2 Policy dynamism and log-size management 766

A monitor-like security service (as is the one implemented 767

by Jano) has to decide, for each request, whether it should 768

be allowed or denied. The decision must be taken at the time 769

of the request with the information available. Thus, in order 770

to implement history-based policies, any monitor-like secu- 771

rity service has to store information about past requests and 772

events. 773

Some security services store requests explicitly into a 774

request log [4,16] that can later be queried for specific 775

requests; others, store them implicitly in their own data struc- 776

tures. For example, Sandhu [27] proposes the use of dynamic 777

clearance levels, associated to each user, where the informa- 778

tion about the classification of the information read is stored, 779

and may be further used to decide if a user with a specific 780

clearance level is allowed to access information with the 781

specified classification. 782

The former solution is more flexible than the latter. How- 783

ever, if the request log becomes too big, the memory space 784

required to keep that log may become unlimited, and the 785

time required to execute each query could have a significant 786

impact on the overall performance of the system. Jajodia [16] 787

tries to solve this problem recording the requests that differ 788

in time only once. However, this does not solve the problem 789

because the number of requests to store is still huge and disal- 790

lows the definition of policies based on request cardinality to 791

be enforced (e.g., the user may only be localized by someone 792

else three times in a row). 793

SPL implements the log solution through a compila- 794

tion algorithm that optimizes the amount of information to 795

be saved and the way that information should be queried. 796

Although the algorithm does not obtain optimal results for 797

all history-based policies, the results obtained for most fre- 798

quent policies are equivalent to those obtained by label-based 799

implementations [27]. 800

The algorithm has three main aspects. First, the Policy 801

Enforcer (shown in Fig. 7) selectively logs just the requests 802

required by the concerned history-based policy; e.g., if a pol- 803

icy needs to know if a document was signed, there is no need 804

to record requests that are not “sign requests”. Second, the 805

Policy Enforcer selectively logs just the fields of the requests 806

required by the specified history policies, e.g. if a policy 807

decision is based on whether or not the author of the current 808

request has signed a document, it is not necessary to record 809

the “time” or the “task” fields of signature requests. Third, the 810
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Policy Enforcer uses the best possible structure to maintain811

the log and the best type of query to search it.812

Thus, the log is searched by entries with specific proper-813

ties. These properties might be expressed using equality con-814

straints, inequality constraints or membership constraints.815

Equality constraints can be searched in a hash table in O(1),816

which makes them ideal to be used as index keys. However, if817

there is not a single equality constraint to look for, it is better818

to use a balanced tree to hold the log and use a different type819

of query.820

Thus, with this solution, instead of building a single log821

for all history-based policies, the compiler in Jano builds a822

specific and fined tuned log for each history-based policy.823

This solution has several advantages. First, it reduces the824

number of requests required to be searched. Second, it allows825

for a better adaptation of the base structure to each query,826

because each log can be kept by a different structure. Third,827

it simplifies the insertion and the removal of policies.828

The problem with this solution is the potential for main-829

taining redundant information in several logs. However,830

given that the information kept by each log is the minimum831

information necessary for the corresponding policy, the level832

of redundancy expected is similar to the one of label-based833

implementations, where the labels used by different policies834

may also be redundant. Nevertheless, this negative aspect can835

be further limited through the sharing of logs with the same836

signature (same requests to log, same fields in those requests837

to log, same base structure) between policies.838

Given that, traditionally, each policy applies to a very lim-839

ited number of users and places (see for instance ACL-based840

policies), and that the domain of event properties is usually841

limited (e.g., the localization may be all rooms in campus),842

the size of each policy log is not usually large. However,843

there are some types of policies that must be avoided. For844

instance, a policy that requires the logging of the time at845

which each past event took place should be avoided in favor of846

some alternative one (e.g., logging the relative order between847

a sequence of events), because it could potentially be very848

inefficient. Still, from our experience with SPL, most of these849

situations may be avoided, and often automatically detected,850

by the SPL compiler. The next section describes in detail the851

process used in Jano to minimize the log size.852

Finally, the main drawback of the proposed solution is853

that history-based policies cannot decide on requests prior to854

their activation, i.e., the system only records requests for each855

history-based policy after the policy starts to exist. However,856

based on our and others’ experience, we believe this is not a857

serious drawback.858

4.2.1 Log size reduction algorithm859

The process used to reduce the log size is comprised860

by three main algorithms: the compilation algorithm861

Fig. 11 Simplified compilation algorithm for history based rule based
with a EXIST AT_MOST construction

Fig. 12 Compilation result for the TrackingLimit policy (shown in
Fig. 6)

(Fig. 11), and the register and decide algorithms (Fig. 13). 862

The compilation algorithm takes the history based rule 863

and builds three logical expressions (LE_apply(ce,pe), 864

LE_register(ce), LE_decide(ce,pe)) and two tuple extraction 865

functions (TP_find(ce) and TP_register(ce)). The result of 866

the compilation applied to the TrackingLimit policy (Fig. 6) 867

is shown in Fig. 12. 868

For clarity, the algorithms are presented in simplified 869

pseudo-code. The actual implementation takes a slightly dif- 870

ferent approach to take in consideration all the different cases. 871

For more details see [25,24]. 872

The algorithm starts by extracting all elementary expres- 873

sions out of the domain-expression in the policy (e.g., 874

ce.action, = "Get_Location" in the TrackingLimit policy) 875

which are composed using binary conjunctions and dis- 876

junctions. Then, it chooses those expressions which are 877

independent from the past events (Pe_ind), the ones that are 878

dependent of past events but independent from the current 879

event (Pe_dep), and the ones that depend on both the current 880

event and on the past events (Cpe_dep). From these last ones, 881

it builds the set of expressions that are connected through 882

equality constraints and are related to each other through 883

conjunctions (Find_e). Each of these sets of expressions is 884

then used to build the four logical expressions and two tuple 885

extractors (Fig. 12). 886

These five functions are then used in the Register 887

ExistAtMost and DecideExistAtMost functions 888

(Fig. 13). The first one is called for every event and decides 889
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Fig. 13 Register and decide functions for EXIST AT_MOST construc-
tion

which events get to be logged to the specific LOG of890

the policy. If there is an identical tuple registered in the891

log, the counter with the number of occurrences of that892

event is incremented; otherwise, the event is logged. The893

DecideExistAtMost enforces the policy. It returns a894

simple tri-value rule, built upon the four logical expressions895

generated by the compiler. The resulting rule will be evalu-896

ated together with the other rules not dependent on history.897

4.3 Optimizing policy design, processing, networking898

In vast organizations or deployment scenarios, the number of899

entities (e.g., members of the organization, locations) tends to900

be very large, with the consequent increase in the number of901

policies required to enforce overall location-privacy settings.902

Thus, the task of policy definition may become too heavy for903

a handful of administrators. Also, the total number of events904

will also increase (entering, leaving locations). This imposes905

further load on policy processing and increases network traf-906

fic, even when events are irrelevant for the active policies. To907

address these issues, in Jano, we include the following addi-908

tional mechanisms: Policy Inheritance, Hierarchical Policy909

Applicability and Local Filtering.910

With Policy Inheritance, besides policies being parame-911

terized in Jano, a policy can also be defined as an extension912

and/or composition of other policies, to foster reuse of rules913

(that are more intricate to develop or code), with the possi-914

bility of overriding rules. The resulting policy is validated915

during compilation.916

Hierarchical Policy Applicability in Jano, further simpli-917

fies policy development, by allowing the rules of policies to918

refer to entities according to a hierarchical namespace. Thus,919

whenever a policy is applicable to, e.g., a specific building,920

department, role/category, it will automatically be applicable921

to all its subelements, e.g., rooms in the building, people of922

the department, sub-roles or categories. This can be regarded923

as a form of inheritance across the entity space (encompass-924

ing people, places, roles), instead of the rule space above.925

Events, e.g. regarding entering and leaving locations, 926

when appropriate, can be subject to Local Filtering, i.e., not 927

sent to the Location Manager (see Fig. 7) by the location 928

generators (e.g., RFID tag readers). This lowers the load of 929

policy processing, and saves bandwidth. This action can only 930

be taken when it is known that the person or location (or both) 931

are not relevant for the currently active policies. 932

The Location Manager also stores a policy digest 933

that states, in summarized form, the entities (and entity 934

namespaces) that are mentioned in all active policies (an 935

entity or set appears only once in the digest regardless of the 936

number of occurrences in policies); for that purpose, Jano 937

uses a bloom filter [6] storing hashes of strings (entity names 938

or namespaces). 939

Thus, on each event reaching the server (i.e., not filtered 940

by the mobile clients), the Location Manager checks a global 941

bloom filter for each entity mentioned in the event, to know 942

whether it is referred to in any policy (or any of its high-level 943

namespaces). This allows filtering out the events that are not 944

related to any policy. It also ensures that, while any filtering 945

done at mobile devices is useful (to save their bandwidth), it 946

does not render Jano dependent on the cooperation of mobile 947

devices, in order to reduce the load of event processing at the 948

server. Note that, the low rate of false positives does not 949

hinder correctness. 950

Events surviving the filtering are then checked for every 951

notification policy, but only its domain of applicability (that 952

will rule out most of them), and not the entire policy eval- 953

uation. This imposes less overhead than maintaining, for 954

each individual policy, an additional dedicated bloom filter 955

(implying the calculation of several hashing functions), as 956

applicability conditions are usually a simple test that accounts 957

for only a fraction of the overall policy evaluation process- 958

ing. Whenever the coverage of entities involved in policies is 959

enlarged (due to loading of a new policy), an updated digest 960

is sent to the Location Manager. 961

4.4 Interaction between Jano and SPL 962

SPL is composed by a language, a compiler and a library. The 963

compiler parses the policy definition files and generates Java 964

classes with the evaluation of the policy, including the data 965

structures used to keep track of location requests (i.e., history 966

log). Figure 14 shows the interaction between Jano and the 967

SPL-generated modules; the location access control or noti- 968

fication policies (on top) illustrate the Java code produced by 969

the SPL compiler. 970

Policies are instantiated by means of a pull or a push oper- 971

ation invoked on the Queries API (as shown in Fig. 7) result- 972

ing in the instantiation of either: i) a location policy as the 973

one presented in Fig. 9, or ii) a notification policy as the one 974

presented in Fig. 10. 975
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Fig. 14 Location requests and events are evaluated by policies. To this
end, the policy enforcer accesses the domain model through a the Jano
access framework

Policies are used to decide about a pull request or loca-976

tion event. During the evaluation of a pull request or location977

event, the Policy Enforcer needs to obtain information about978

the target of the event. Because SPL is designed to be agnos-979

tic with regards to the enforcement site’s information system,980

SPL policies rely on a bridge framework, called Jano access981

framework (top left-hand of Fig. 14) to access the relevant982

information. This framework interacts with the implementa-983

tion of the SPL external entities presented in Sect. 3.1 which,984

in our system, represents Jano’s locatable objects (i.e., per-985

sons, mobile objects and places).986

4.5 Web-based GUI987

In order to enhance the usability of Jano, a web-based GUI988

runs on top of the Jano API, using the ASP.NET platform.989

Using this GUI, a non-SPL expert user can make not only990

location requests but also select and provide the necessary991

parameters for his access control and notification policies.992

Figure 15 shows the GUI, during the configuration phase993

of the access control policy illustrated in Fig. 9 enriched994

with some history-events described afterwards. The user, in995

this case Alice (alice@inesc.pt), configures the above996

mentioned policy with just a few “clicks”.997

The top part of the GUI shown in Fig. 15 (named998

Alice’s Access Control Policy) allows Alice999

to indicate, for two groups of users (inesc/Mail1000

Deliveryandinesc/Visitors), the circumstances1001

under which they are allowed to know Alice’s location.1002

More precisely, Alice specifies the acceptability of a loca-1003

tion request or location event (regarding her location) as1004

follows:1005

Fig. 15 Web-based GUI to configure Jano’s policies

• a user who is member of the group inesc/ 1006

MailDelivery is allowed to know Alice’s location 1007

if, and only if, the current day is Monday or Thurs- 1008

day (on the time slots indicated) and he has not 1009

succeeded previously on locating Alice’s assistant 1010

(alice-assistant@inesc.pt); in addition, the 1011

precision allowed for Alice’s location is High. 1012

• a user who is member of the group inesc/Visitors 1013

is allowed to know Alice’s location if, and only if, the 1014

current day is Wednesday (on the time slots indicated) 1015

and the location requests so far performed have not 1016

exceeded three reports; in addition, the precision allowed 1017

for Alice’s location is Min. 1018

The bottom part of the GUI allows Alice to add or remove 1019

new user groups, date intervals, and parameterize the history- 1020

based rules, mentioned above. 1021

In conclusion, the GUI developed in Jano supports a large 1022

number of operations so that most policy specifications can 1023

be easily done without knowing SPL. 1024

5 Evaluation 1025

In this section, we present the evaluation of Jano. There are 1026

two types of evaluation: quantitative, by means of perfor- 1027

mance tests, and qualitative, by means of a use case with two 1028

applications. 1029

With respect to the quantitative results, we evaluated the 1030

most important performance aspects regarding the system 1031
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Fig. 16 Growing number of groups of requesting author

behavior, with an increasing number of: users issuing loca-1032

tion requests, history events and location events, and load1033

of concurrent requests. The results that were obtained can1034

be seen as a worst-case scenario, measuring the most per-1035

formance demanding modules and operations. While the1036

conditions tested are more demanding than typical usage1037

scenarios, Jano’s manages to operate within small response1038

times.1039

Regarding the use case and applications, these were cho-1040

sen as they provide two usage scenarios that illustrate real1041

user needs in terms of location privacy policies, and are1042

related to other scenarios described in the literature [29].1043

5.1 Performance evaluation1044

In this section, we report the performance of two crucial1045

interactions between users and Jano. First, we present the1046

results obtained in the evaluation of the Policy Enforcer,1047

while enforcing an access control policy, with and without1048

history-based rules. We use this type of policy because it must1049

always be evaluated, even before a push response. Second,1050

we present the performance of the system in a scenario in1051

which there are several location events generated per second1052

(similar to the use case presented in Sect. 5.2), in order to1053

test Jano under load conditions.1054

Overall, Jano performs adequately in every scenario1055

tested, including under load. In particular, Jano’s perfor-1056

mance under scenarios with increasing load (number of1057

policies, and of concurrent requests and events), is always1058

within the constraints required for interactivity and percep-1059

tual tasks [5,8] (namely, replies under 50 ms, the usually1060

referred latency for good interactivity, e.g. in multi-player1061

games or cooperative work).1062

Access control policies The policy considered for evaluation1063

of the Policy Enforcer is the one presented in Fig. 9; the1064

results are shown in Fig. 16. In the referred policy, the set of1065

groups allowed by the target (GroupsInfo) must be tra-1066

versed linearly. Recall from Fig. 9: for each member of the1067

set, there is the indication of in which intervals the target 1068

can be located. Each of these allowed groups are looked up 1069

in the groups to which the author of the request belongs to 1070

(designated hereafter AuthorGroups). The cost of this 1071

search is O(log(AuthorGroups)) (search on the ordered 1072

set). 1073

Experiments where done with different numbers of groups 1074

allowed and groups to which the author (the user making 1075

the location request) belongs to. In our test scenarios, we 1076

considered that AuthorGroups tend to be much bigger than 1077

Groups I n f o, as can be seen in the four series of Fig. 16. 1078

In the more demanding scenario, the series with 100 allowed 1079

groups (a number that would stress the capacity of the owner 1080

of the policy to manage it), and taking into account that the 1081

author of the request belongs to 3,000 groups, the considered 1082

policy takes nearly 2.5 ms to be evaluated. 1083

Figure 17 presents an analysis of the percentage slow- 1084

down, in performance, in the presence of load conditions. 1085

In each subfigure, we evaluate the percentage slowdown, 1086

regarding an increasing number of concurrent location 1087

requests (i.e., 10, 100, 1,000), for each of the sets of groups 1088

allowed by the target (i.e., 1, 25, 50 and 100), against the 1089

results previously presented in Fig. 16. Although response 1090

times increase when the load increases, which is expected, 1091

the results show that the slowdown does not grow linearly, as 1092

it remains below 100 % (and most often around 40–60 %), 1093

when the load of concurrent requests has been raised up to 1094

1,000-fold. Moreover, the obtained slowdowns result in aver- 1095

age response times always below 5 ms, which is still very 1096

low. 1097

A critical aspect in the evaluation of the Policy Enforcer 1098

is the measurement of the delay introduced by the evalua- 1099

tion of history-based policies. As explained in Sect. 4.2.1, 1100

the SPL compiler produces specific data structures to store 1101

the events needed in the evaluation of history-based poli- 1102

cies, such that it minimizes the time to evaluate history-based 1103

policies. 1104

Figure 18 shows the delay introduced by the evaluation 1105

of a policy based on the history rule presented in Fig. 6. 1106

Tests were made using the (optimized) log of SPL and a 1107

non-optimized log. With the SPL log, if a user makes 1000 1108

location requests to 20 different targets, only 20 events will 1109

be effectively stored, instead of the 1,000 of a non-optimized 1110

implementation. This optimization has a significant impact 1111

in the space needed to store the history log and, more impor- 1112

tantly, in the evaluation time of history policies, as can be seen 1113

when compared to the non optimized log, where all events are 1114

recorded regardless of their redundancy. Therefore, evaluat- 1115

ing history-based policies with this log takes much less time 1116

because there are orders of magnitude fewer entries in the 1117

log to be evaluated, when compared with the non-optimized 1118

log. Even so, the evaluation time will eventually grow but 1119

with a sub-linear progression and dependent only on how 1120
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(a) (b)

(c) (d)

Fig. 17 Percentage slowdown of average evaluation time for policyGroupsIntervalwith an increasing number of concurrent location requests

Fig. 18 Evaluation time for growing number of history events

new events are compressible or not, due to their previous1121

occurrence.1122

Multiple location events In Fig. 19, we show the results1123

obtained when evaluating the response time of Jano in a1124

scenario where multiple targets (persons or objects) are mov-1125

ing. As a consequence of these movements, several location1126

events will be generated (e.g., leaving or arriving at some1127

place). For this scenario, we consider a single user who has1128

between 20 and 50 notification policies (a rather high number1129

in reality, as other literature often considers only five [29]).1130

Such policies are instantiations of the SNotify policy, pre-1131

viously presented in Fig. 10.1132

The results presented in Fig. 19a show the evaluation time 1133

(in logarithmic scale) of the notification policies. We can 1134

see that as more notification policies need to be enforced, 1135

the average evaluation time does increase, although roughly 1136

in a linear fashion with the number of polices. We recall 1137

that 50 active policies is nonetheless a rather large number 1138

(compared to others found in literature [29]), representing up 1139

to 50,000 concurrent policy evaluations, and that even then, 1140

all times are below 50 ms. 1141

Jano’s scalability regarding evaluation of notification poli- 1142

cies is further illustrated in Fig. 19b, detailing the percentage 1143

slowdown of notification policy evaluation as the number of 1144

concurrent events increases tenfold, each time, from 10 up 1145

to 1,000, against serial execution. The slowdown observed is 1146

never smaller than 25 % but is always under 100 %, being 1147

most of the time between 40 and 80 %. This shows that when 1148

the load is increased by a factor of 1,000, policy evaluation 1149

times do not even double, which demonstrates the scalabil- 1150

ity of Jano notification policies evaluation under load. Once 1151

again, these slowdowns represent absolute times under 50 ms, 1152

within the latency constrains for interactivity and perceptual 1153

tasks [5,8]. 1154

More important, these results illustrate the performance 1155

of Jano when events have to be processed against at least one 1156

of the notification policies. This does not take into account 1157

123

Journal: 13174 MS: 0065 TYPESET DISK LE CP Disp.:2012/10/6 Pages: 20 Layout: Large



R
ev

is
ed

 P
ro

of

J Internet Serv Appl

(a) (b)

Fig. 19 a Average evaluation time of notification policies with an
increasing number of concurrent location events. b Percentage slow-
down of average evaluation time of notification policies with increas-

ing load (number of concurrent location events) and number of active
notification policies

the effect of the filtering mechanism, based on using bloom1158

filters (described in Sect. 4.3), that minimizes the number of1159

events to be considered. As already mentioned, this mech-1160

anism ensures that only those events needing to be further1161

processed (because they are relevant for active policies) do1162

have to be considered.1163

In a conservative scenario, we consider that this filtering1164

mechanism achieves an average of 40 % reduction in the1165

number of events to be processed. Thus, the results shown1166

in Fig. 19, when considering the filtering mechanism, are1167

in fact valid for scenarios up to 2,500 concurrent location1168

events (i.e., from these 2,500, only 60 % do correspond to1169

active policies and have to be effectively processed).1170

Globally, these results are very encouraging regarding the1171

scalability and performance of Jano’s policy evaluation and1172

enforcement core.1173

5.2 RFID use case1174

The qualitative evaluation of Jano was done by implementing1175

several location applications using different location tech-1176

nologies (e.g., wifi, GPS, RFID) demonstrating Jano’s capa-1177

bility to deal with location technology heterogeneity. One of1178

the most representative use cases is described in this section1179

along with two applications in which a wide set of access1180

control and notification policies were used.1181

We have implemented an RFID location based system in1182

the Jano architecture. In addition, we developed two proto-1183

type applications: i) campusLocation allows a student/pro-1184

fessor not only to find out his location, but also to obtain1185

information regarding how to reach a particular place and1186

where other colleagues are; ii) transportLocation allows1187

users, at each bus stop, to receive a wide range of information1188

regarding their own location as well as the buses that may1189

be used. Similar applications are also considered in [29] and1190

their relevance evaluated with user questionnaires.1191

Figure 20 provides a view of the several main aspects 1192

regarding the campusLocation application. At each rele- 1193

vant physical place in the campus, there is a fixed RFID tag 1194

(FT). Also, at some particular places (such as room entrances) 1195

there are fixed RFID readers (FR). Each user (students and 1196

professors) holds a mobile phone with RFID reading capa- 1197

bilities that also has an RFID tag. 1198

A user can explicitly read a FT and send via Wi-Fi the 1199

corresponding identification to the Jano server. Thus, Jano 1200

knows where a user is as long as he decides to read a FT 1201

and send its identification. In addition, the FRs previously 1202

mentioned are also capable to automatically read the RFID 1203

tags on the user’s mobile phone (when a mobile phone is 1204

close to the reader, obviously). These two mechanisms allow 1205

the Jano server to know the students’/professors’ location. 1206

Figure 21 illustrates the interface of the campusLocation 1207

application (e.g., finding a way to a particular place in the 1208

campus). 1209

Based on the users’ locations, it is possible to offer a set 1210

of location-based added-value services which do raise pri- 1211

vacy concerns (as stated in Sect. 1). For example, professor 1212

Alice may be notified when, his colleague, Bob enters in a 1213

particular room or arrives at the campus. On the other hand, 1214

Bob does not want students to know his location when he 1215

has no teaching duties. To ensure this, Bob simply config- 1216

ures the corresponding policy, regarding the disclosure of his 1217

location, using the Jano web-based GUI: allowing Alice to 1218

be notified in the circumstances indicated above, and allow- 1219

ing students to know where he is located only when he has 1220

teaching duties (e.g., from Monday to Thursday from 14 to 1221

19 hours). These policies are similar to those described in 1222

Sect. 4, and in line with those considered as complex in the 1223

literature [29]. 1224

In the particular case of IST (the engineering school 1225

of the Technical University of Lisbon), there are approx- 1226

imately 900 professors organized in 9 departments. 1227
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Fig. 20 Application campusLocation

Fig. 21 Interface of campusLocation application

Therefore, the number of groups they belong to, for policy1228

specification purposes, is in most cases five (department, sci-1229

entific area, research institute and research group). In some1230

cases, a single user belongs to more groups depending on the1231

management duties. However, the number of groups found1232

in this case is much smaller than those that were used for the1233

performance tests previsouly described.1234

Regarding the transportLocation application, on each1235

bus stop there is both a fixed RFID tag (FT) and an RFID1236

fixed reader (FR). As in the campusLocation application,1237

each user holds a mobile phone with RFID reading capabil-1238

ities that also has an RFID tag. In addition, each bus has an1239

RFID tag (called bus tag) that is read by the FR at each bus1240

stop; this reader sends the identification of the bus tag to the1241

Jano server so that the location of all buses is known in real1242

time.1243

A typical usage scenario (“findWay”) is the following.1244

At the bus stop, using his mobile phone, the user reads the1245

fixed tag FT which uniquely identifies the location. Then, 1246

the user contacts the Jano server (using GPRS) sending it the 1247

fixed tag identification (thus, allowing the system to know 1248

where the user is) along with the desired final destination; 1249

the system then replies with the most appropriate bus the user 1250

should take. Regarding location information privacy in this 1251

application, Jano suports the following (among others): a bus 1252

driver may access all buses locations, contrary to bus clients. 1253

This requires the specification of distinct location policies, 1254

accordingly. Once again, such policies can be easily defined 1255

using the web-based GUI interface previously presented (see 1256

Sect. 4.5). 1257

In conclusion, these two applications require a careful set 1258

of location policies (both access control and notification) to 1259

ensure privacy. For this purpose, Jano provides the adequate 1260

features: only in some application specific circumstances are 1261

users (e.g., students, professors, bus drivers, etc.) allowed to 1262

know the targets location. 1263
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6 Related work1264

The interest in location privacy has been growing with more1265

services being able to take advantage of persons’ and objects’1266

locations. This is possible because of the universality of1267

location technologies and their integration with every day1268

devices. Hightower et al. [14] provide a systematic review of1269

location technologies. In their work, these technologies are1270

divided in proximity sensing, triangulation and scene analy-1271

sis. Examples of proximity sensing include the radio fre-1272

quency identification technology. Triangulation is the basis1273

of the Global Position System (GPS) and scene analysis has1274

been used to take advantage of Wi-Fi infrastructures [2,32].1275

In [20], Minch points out that location privacy can be1276

defined in terms of: Intrusiveness, Seclusion, Boundaries,1277

Control, and Limitation. In our work, users are willing to1278

share their location to third parties and so we focus on control1279

and limitation in the disclosure of location privacy. Different1280

approaches have been considered to promote privacy when1281

disclosing and sharing personal location and, mainly, three1282

lines of research can be identified: one that takes the person’s1283

location and blurs it [1], one that anonymizes users [3,21,12]1284

making them indistinguishable and finally, one that takes1285

into account security policies defined by the users of the1286

system [19,22,23].1287

Typically obfuscation deals with the problem of what loca-1288

tion accuracy should be reported to location consumers, not1289

dealing with conditions like history of events or the origin1290

of the location request. On the other hand, anonymization1291

is applied in scenarios were the real identity of the user is1292

not relevant, e.g. receiving an advertisement when arriving1293

to a defined shopping area. If the location consumer wants1294

to know the location of someone or something in particular,1295

it will not be possible with this technique.1296

Location privacy with the enforcement of security poli-1297

cies has been a topic of research for some time [19,13,18].1298

Security policies of persons, objects or places, can be made1299

dependent on several location privacy primitives (geograph-1300

ical area, time interval, historical access, etc.) [3,30]. Each1301

of these aspects can be combined to form a user, object or1302

place, security policy.1303

Leonhardt and Magee [19] present a system where the1304

access control is based on multi-target and multi-object1305

policies. To simplify the management, the system has three1306

levels of policy control: access, visibility and anonymity.1307

The Aura project [11] incorporates a location module which,1308

besides being able to handle multiple sources of positioning1309

information, is also structured to protect access to people’s1310

location [13]. Their option was to use the SPKI/SDSI1311

infrastructure, giving the possibility, among other things, to1312

delegate location access rights.1313

LocServ [22] represents each person’s policy by a group1314

of validators responsible for the evaluation of each location1315

request. The implementation of these validators can range 1316

from a software that interrogates the user for each request, to 1317

a generic decision function based on, for example, a security 1318

policy file. Context Fabric [15] is a middleware to organize 1319

and promote communication between different information 1320

spaces where users keep their information (e.g., location). 1321

Associated to the information in each of these spaces, is a 1322

description of privacy related actions that the middleware 1323

has to attend to, e.g. the requester of the information cannot 1324

be at a given building. 1325

More recently, Opyrchal [23] focuses on adding support to 1326

location privacy in a content-based publish subscribe middle- 1327

ware. Their system allows publishers (i.e., mobile users) 1328

to control dissemination of location information they own. 1329

Publishers can do so by specifying to which users, and in 1330

what conditions, the disclosure of information is possible, 1331

using the KeyNote Trust-Management System [10]. People 1332

Finder [17] takes a different direction, applying techniques 1333

of machine learning to automatically adjust each user’s pol- 1334

icy, based on their satisfaction with the location information 1335

disclosure. 1336

The work in [1] applies obfuscation techniques to loca- 1337

tion information based on user’s privacy preferences. In our 1338

work, we do not attempt to tamper with location data, instead 1339

we allow users and administrators to define/use policies that 1340

rule the disclosure of location information for queries and 1341

notifications. The work in [21] assumes the existence of 1342

untrusted servers from which users want to hide their exact 1343

location; this is achieved by anonymizer nodes that reduce 1344

location precision to cloak spatial areas. In Jano, location 1345

servers are trusted, nevertheless, the two works could be 1346

combined with enriched support for policies. Cooperative 1347

sensing is addressed in [9]: user nodes submit sensing tasks 1348

to accessible mobile devices of other users. To ensure pri- 1349

vacy, all communication is anonymized. In Jano, we do not 1350

attempt to recruit other users’ devices but deployment of 1351

sensing tasks could be defined, reused and enforced by taking 1352

advantage of Jano support for policy definition and enforce- 1353

ment. 1354

Common to all these works is the lack of support to make 1355

decisions based on past events. The authors in [23] recognize 1356

the need to support history-based policies, but their work is 1357

unable to do so. In [29], a study is presented indicating that 1358

users tend to develop more elaborated policies as they con- 1359

tinue to use a location service. In the same paper, a social 1360

location service is presented, as in our example, integrat- 1361

ing a rule editor. Nevertheless the authors do not show how 1362

history-based rules can be used and how the system could be 1363

adapted to other contexts besides the social network. Perfor- 1364

mance evaluation of the component used to evaluate policies 1365

is not mentioned, with exception of [23], where the authors 1366

conclude they need a more efficient policy evaluator. The 1367

adaptability of the policies to different organizations where 1368
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users, objects and places have different characterization is1369

also not the main issue.1370

7 Conclusion1371

In recent years, location information has been increasingly1372

used in context-aware applications with the goal of augment-1373

ing the mobile services offered to the end user. Some exam-1374

ples are: advertisements on mobile devices from the shop1375

being visited, and presentation of more information related1376

to the product being purchased, or the work of art we stand by.1377

For an effective deployment and acceptability of location1378

services, they must support the specification and enforce-1379

ment of security policies. Users want to specify under what1380

conditions their location can be disclosed. In some scenarios,1381

this can depend on past events such as, how many times a1382

location request was made, or what places have been visited.1383

Finally, the kind of properties that are relevant to characterize1384

each object or event is different for each location service.1385

In this document we have presented Jano, a Location Ser-1386

vice capable of enforcing privacy-related security policies.1387

Although the instant reporting of locations (pull requests) is1388

essential, in many situations, users want to be notified about1389

some kind of location related event, i.e., push requests. The1390

policies enforcing the access to location information, and the1391

conditions used in the specification of push requests are made1392

through an extension of SPL, a multi-model authorization1393

platform. Using SPL, policies can be implemented using a1394

variety of different security models, and their deployment can1395

be made dependent on the resources of the organization site.1396

That is, the location policies are tailored to the domain model1397

where the location service is to be deployed. Regarding eval-1398

uation, results have shown that performance is not compro-1399

mised. The usability of the system is enhanced by the simple1400

GUI developed for users to control their security policies.1401
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