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Abstract. Facial Recognition systems have received significant attention from the research
community as well as from the market; its applications are now vast, such as video games,
social networking and security. Significant advances have been made in the facial recognition
field; however facial recognition is still a demanding task in the context of videos that, if
executed in a single machine, has severe limitations to its potentialities. In this article we
propose the development of facial recognition software to be executed in a grid environment,
we made a comprehensive related work analyses in order to develop the architecture of such
system, integrating it with existing grid middleware to create a distributed, scalable, efficient
and mostly free system
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1 Introduction

Distributed computing is a successful way of proving high computational power to appli-
cations; one of the more common types of distributed computing is grid computing, where
essentially the computational power of a number of machines is combined to execute a
given application.

High resource demanding applications can benefit from being executed in a grid envi-
ronment. Traditionally, these applications would have to be executed in super computers
or large scale dedicated computer infrastructures which would provide the resources the
applications need. However, super computers or dedicated computer infrastructures are
not at the financial reach of all organizations; Grid Computing on the other hand, is able
to harness the computational power of commodity hardware, and due to the available
grid software it makes a relatively affordable way of obtaining high computing capacity;
moreover as grid infrastructures are not dedicated to a given application so organizations
can share resources, All of these facts, justify the success grid computing has had and is
having in the scientific community.

Facial Recognition, especially in videos, is an example of a high demanding application
that can benefit from grid computing. While, in the literature, we can find a large amount
of research done in grid computing, to this date we are not aware of any developed or
planned facial recognition system that leverages grid computing, despite being relatively
evident that such a system can be created. Grid Computing works well with a particular
type of parallel computation, the multi-data-single-instruction; which is precisely what a
facial recognition system is, multiple images to be process always by the same code.

The rest of the document is organized as follows: we first state the goal we want to achieve
with this work in the Objectives section (Section 2), next we present a study of the relevant
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literature concerning the Grid Scheduling, Resource Discovery and Facial Recognition in
the Related Work section (Section 3), followed by the presentation of our solution design
an assessment criteria in sections Architecture and Evaluation (Sections 4 and 5); at the
end, we finalize the article in the Conclusions section (Section 6).

2 Objectives

Our goal in this work is to develop the architecture of a facial recognition system for
a grid computing environment, running in one or more clusters, leveraging existent grid
middleware, to produce a distributed, scalable, efficient and mostly free infra-structure for
facial recognition. For the Face recognition process we intend use existing stand-alone face
recognition software, adapting it if necessary.

The developed architecture will specify the distributed architecture (schema or machines
and grid components in clusters), a file storage schema, a grid scheduling and resource
discovery architecture, as well as a novel scheduling approach design specifically for this
purpose. In order to do so, we will study the necessary literature, namely grid scheduling,
resource discovery and face recognition.

3 Related Work

3.1 Grid Scheduing

Grid computing [1] is a relatively successful type of multiprocessing infrastructure that
has the objective of providing dependable, consistent and pervasive access to high-end
computer resources [2], it does this by combining the computational power of a high
number of computers, usually for scientific computing and e-science tasks.

Any distributed system has to be controlled, and grids are no exception, these are con-
trolled by a scheduler, which acts as a resource broker. Schedulers function is simple,
they interact directly with the grid user that submits task to be executed, select the
resources appropriate to the task execution using a predefined algorithm parameterized
by information from the Grid information Service, another grid component responsible
for the task of acquiring information about the grid resources.

In section 3.1.1 a description of some of the particular scheduling problems in grid is
given, followed by characterization of scheduling algorithms in sections 3.1.2 and 3.1.3.
In section 3.1.4 a description of scheduler architecture is presented, followed by a list of
some relevant examples of schedulers in the literature in section 3.1.5. Lastly an analysis
of the whole section is done together with selection of the appropriate schedulers for this
work in section 3.1.6.

3.1.1 Scheduling Problems in Grids

Other branches of parallel computing like symmetric multi-processor machines or massively
parallel processor computers operate under the assumption that schedulers have a single
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image of the whole system and controls all resources, the resource pool is mostly invariable
and the effect of adding new tasks can be contained through some policy [1].

In Grids however, the individual machines may have different characteristics, different
access delays (connection may be done throw non-uniform links) and may be located
in different domains. That means that it is very difficult for the scheduler to have a
complete image of the grid, since grids in different domains may have local schedulers,
which also mean that direct control over all resources is not possible.

Resources in grids are volatile, frequently, nodes become unavailable and other became
available, also the load of each node is cant be determined, for instance a job scheduled
to a certain grid may be interrupted by an internal grid job or by another external job
that the local scheduler rated with a higher priority. So the performance of a grid is highly
variable when compared with a multi-processor machine for example.

3.1.2 Scheduling Algorithms

Grid algorithms can be classified as Static or Dynamic, related with the time at which
the scheduling decisions are made [2], the following sections present a description of both
types of schedulers.

Static Scheduling:

Scheduling decisions are made once, each task is assigned to a resource before the
application is scheduled and that decision is never changed during its execution, infor-
mation about all resources in the grid, as well as all tasks generated by applications, need
to be known at the scheduling time. This type of scheduling have the advantages of work-
ing with a global system view (information on all tasks and all resources are known at
scheduling time), the tasks cost estimation is simplified and it has higher through-
put in general (less computation, less network delay). However it has no fault tolerance
(if a node fails, application fail) and the response time may vary drastically if the
selected resource is heavily loaded. These disadvantages may be solved using rescheduling
mechanisms, which reduce the performance advantage of these schedulers when compared
with dynamic ones. Pegasus [3] is an example of a static scheduler.

Dynamic Scheduling:

Scheduling decisions are made on the fly as application are executed, meaning the
attribution of tasks to resources is done as the tasks are presented to be scheduled. It is
especially useful when applications have non-deterministic execution flows, which is
when the number and nature of tasks cannot be determined prior to application execution.
These types of schedulers have the advantage not needing to be aware of application
execution flow, providing better load balancing, being fault tolerant (task can be
rescheduled) and produce consistent response times (If the selected resource is heavily
loaded, task can be returned to the scheduler). However they have generally a lower
throughput (more computation, more network delay) and the Scheduling tents to deliver
not the best execution times for each individual task, it tends instead to maximize
resource utilization. Condor [4] and Legion [5] are examples of dynamic schedulers
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3.1.3 Scheduling Process

The scheduling algorithm itself is composed by resource selection and task selection; the
following sections present a description of the most common algorithms for both compo-
nents [6].

Resource Selection:

When selecting resources for a given task, schedulers have two lists, one with machines
capable of executing the task to be scheduled and another, a subset of the first one with
the machines that have enough free resources to execute the task immediately, the work
in [6] four selection strategies are presented.

– Biggest First: Selects the machine with the most free resources, essentially tries
to attribute the task to the machine that will be able to execute it with the higher
performance, a disadvantage of this is that very demanding tasks may be delayed due
to powerful machines being inundated with small tasks.

– Random: Selects a machine from one of the list at random, which on average provides
a fair and balanced way to distribute resources to tasks.

– Best Fit: Selects the machine from one of the list that if assigned with the task will
leave the least amount of free resources, essentially this strategy will try to fully utilize
machines, attributing small tasks to machines with few free resources. When compared
with Biggest First, that will assign tasks to the machine with more free resources, this
strategy is less likely to impose delays on demanding tasks.

– Equal Util: Selects the machine with the lowest resource utilization, with the objective
of promoting load balancing on all machines.

It is important to note that the list of techniques above are general purpose strategies that
work in scenarios where the only aspect taken into account is whether or not a machine
has the necessary resources to execute a task, other strategies may involve other factors,
such as the cost of executing tasks in a given machine, schedulers like Nimrod/G [7] select
machines to assign tasks depending on the cost of using them.

Task Selection:

When selecting tasks to be scheduled the most common strategies are based on list-
scheduling, the work in [8] describes four of these strategies.

– First-Come-First-Served: Tasks are ordered by arrival time, a greedy list schedul-
ing is used, meaning that the older task is scheduled when enough resources become
available, the rest of tasks are not scheduled as long as the older tasks are not. This
strategy has the advantage of producing a fair scheduling, not leaving behind or privi-
leging any task, but has the disadvantage of causing a large percentage of machines to
be idling for a long time if, for instance, the older task is high resource demanding and
the rest of the tasks are not; they could be assigned to machines capable of running
them but not the older one.

– Random: Tasks to be scheduled are selected at random, has the same issues as First-
Come-First-Served, as high resource demanding tasks can cause large periods of idle
time in machines, also it may cause starvation, selecting tasks randomly under heavy
load there is no guarantee that each task will ever be selected.
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– Backfilling: Similar to First-Come-First-Served with the difference that when a high
resource demanding job is not scheduled, the scheduler tries to prevent idle time on
machines by scheduling other jobs for which there are machines with enough resources.
To prevent starvation of high demanding tasks, the scheduler requires the specification
of a time estimate for the execution of each task, it will only assign a task to resources
that will finish before that resource could be used to execute the high demanding task.
For instance, if the older task is waiting for resources, a machine with enough resources
is running another task that will finish in five minutes, the scheduler will not assign a
low resource demanding task to that machine if its predicted to last for six minutes,
otherwise it could cause starvation to high demanding tasks [9].

– SMART: Also requires execution times, but does not respect task submission order,
it groups tasks according to their execution time, each group ceiling it defined by a
geometry sequence based on a parameter, which can be used to tune load balance, all
tasks in a group are assign to shelves, essentially tasks are grouped so that all can
run in parallel, after this, the shelves are ordered using Smiths rule [10] (sum of all
execution times in a shelf divided by the higher execution time of any task and the
shelves with the highest values are scheduled first.

3.1.4 Scheduler Architecture

Schedulers can control grids and be positioned in relation to the resources in three ways,
Centralized, Hierarchical and Decentralized [11], the following sections present descriptions
of these scheduler Architectures.

Centralized:

In this Architecture, only one scheduler exists, it is responsible for assigning all tasks
to all resources. Tasks submitted that cannot be scheduled immediately stay in a queue in
the scheduler until enough resources are free. All information required by the scheduling
algorithm must be kept by the scheduler (it is not required that the scheduler stores the
information but at scheduling time the information has to be transmitted if stored else-
where). This type of schedulers does not scale well as they can become a bottleneck, also
it has no fault tolerance, if scheduler or its connection to the network fail system avail-
ability is compromised. But they are theoretically able to produce better schedulings
since the have all information and control all resources. Condor [20] is a classical example
of such schedulers.

Hierarchical:

More than one scheduler is present in a hierarchical architecture, tasks are submitted to
a central scheduler, but that scheduler does not assign task to resources directly; instead,
it submits tasks to schedulers down the hierarchy, until the task reaches a local
scheduler that will actually schedule the task to a machine. In these schedulers,
detailed information is kept by the lower hierarchy schedulers and the above ones have a
summary of the resources available. This organization mitigates the issue of scalability
since each scheduler has to make decisions about a smaller set of resources. textbfFault
tolerance is partially provided, as long as the central scheduler does not fail, operability
of the system is assured and the central one can have backup replicas. Legion [5] in an
example of a hierarchical scheduler.
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Decentralized:

In a decentralized architecture, no central scheduler is present, instead a number of
schedulers assign task to resources relatively independently. This architecture does not
have the bottleneck cause by a central scheduler, therefore is scalable, fault tolerant since
only the failure of all schedulers will imply a system failure. The disadvantage of this type
of schedulers is that each scheduler is not able to produce an optimal assignment
of task to resources, since all information is not delivered to all of them; coordina-
tion in resource discovery and allocation between them may improve the optimality of
the scheduling but it will impose overhead and reduce the performance. MetaComputing
Online [12] is an example of this type of scheduler.

3.1.5 Relevant Examples of Schedulers in the Literature

In this Section, examples of grid resource management system (RMS) are presented to-
gether with a description of the respective schedulers and their classification according to
the definitions made previously.

Globus:

Globus [13] is a grid resources toolkit, it does not have a particular interesting scheduler,
in fact it is design to have external schedulers, for instance Nimrod and Condor; there
are versions of both of these schedulers integrated with Globus, Nimrod/G and Condor-
G respectively. It is however an interesting system when it comes to support distributed
execution across multiple domains. Globus has a number of components that can be used
to build a grid network, for instance security, resource location, resource reservation, data
transfer and remote execution calls.

Condor:

Condor [4] is a RMS originally designed to leverage computational power of idle work-
stations and make it available to those who have higher computation needs than a single
workstation can provide, but it can be used in a conventional grid, the only difference is
the idle monitor is not present.

Condors scheduler is classified in the literature as centralized, but in reality it works
more like a decentralized or hierarchic one, there is a central coordinator and
a local scheduler on each machine, local schedulers are the ones that do the actual
scheduling, to avoid a large overhead of messages, local schedulers only communicate re-
source availability and need to the central coordinator that make the decisions to attribute
resources available in a given machine to a another machine that requires them.

Condor ensures proper distribution of resources to all users giving higher priority to ma-
chines that require resources less often, this is done be associating a scheduling index to
each machine, every time a machine is granted the resources from another, its index is
incremented, every time a machine requests are not granted resources, the index is de-
creased. In each scheduling iteration, the coordinator attributes the available resources to
the machines with the lowest index.
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Condor-G:

Condor-G [14] is a RMS designed to allow users to leverage computational resources
in heterogeneous domains as if they all belong to the same domain; it is basically
constituted by the original Condor scheduler and the grid resource toolkit Globus
[13]. Its objective is achieved via the separation of concerns between remote execution and
computation resources management; remote execution is handled by the Globus toolkit
and computation management is handled by Condor Scheduler. In detail, Condor-G uses
GASS [15] (Global Access to Secure Storage) to implement the task I/O and GRAM [16]
(Grid Resource Allocation Management) to submit and monitor task in remote machine,
both GASS and GRAM are components of Globus.

Condor-G works similarly to condor as far as scheduler architecture is concerned, so it is
officially a centralized scheduler but where the actual scheduling is done by distributed
schedulers. To each user that submits tasks to be executed in the grid, a grid manager will
be created, these can be seen as the local schedulers present in the original Condor and
these are the ones that will actually schedule task to be executed in the machines controlled
by the Globus tool-kit and also similarly to the original Condor a central coordinator (here
called resource broker) assigns resources to each grid manager.

Pegasus:

Pegasus [3] is a RMS designed to execute application over various heterogeneous computer
grid sites. It takes abstract workflows describing application and finds the appropriate data
and grid resources to execute them.

Workflows are direct acyclic graphs whose elements are activities and the connectors are
dependencies between activities; applications are described by workflows, where activities
represent individual application components (software components or logical execution
steps) and the dependencies represent control and data flow between those components.
These workflows are described in an abstract form making no reference to the grid resources
that will be used to execute them.

Pegasus has a centralized architecture, users define abstract workflows prior to exe-
cution and the system builds concrete workflows containing the association between the
activities and grid resources, the latter workflows will ultimately be executed; it is therefore
a static scheduler, since the scheduling decision are made for the whole application and
prior to application deployment. Pegasus uses three criteria for scheduling: file placement,
code placement and computational resources, it uses tree different Information System to
acquire this information.

Pegasus does not control the actual execution of a workflow, instead it uses DAGMan
[17] which is part of the Condor project, DAGMan parameterizes the Condor scheduler to
execute the workflow.

Pegasus is also available with a dynamic scheduler, it works in a similar way, but instead
of generating a complete workflow all at once, the workflow is partitioned and scheduled
dynamically.
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Legion:

Legion [5] is an object based RMS whose scheduler has a hierarchical architecture; every
component is an object, these objects are organized in a hierarchy and are created and
managed by the corresponding class and metaclass.

The organization of the scheduler is hierarchical since the scheduling decision is not made
by a single scheduler or by a variable number of seemly independent ones, the scheduling
is done at various levels throughout the hierarchy, and the various essential components
are presented next:

– Host and Vault: Lower rank objects in the hierarchy, Host interact directly with
machines, collect the machines’ status information and are ultimately responsible for
deciding the attribution of a task to machines. Vaults represent tasks, they contain all
the information about a task, and they are used for task migration or recovery.

– Tasks: Representation of task a client requested to be executed in the grid.

– Scheduler: Responsible for creating the mapping between task objects and host ob-
jects, effectively assigning tasks to resources, it creates not one but a number of possible
mappings.

– Enactor: Negotiator that tries to execute one of the Scheduler’s mapings, it does this
by requesting reservations to Host that as stated before have the ultimate responsibility
of scheduling tasks, a given schedules is only executed if its entire mapping of task to
Host is possible to execute.

MetaComputing Online:

MetaComputing Online [12] is a RMS designed to provide access to grid resources in
heterogeneous sites, it differentiates itself form other RMSs, by allowing resources not
only to be seen as hardware able to execute tasks, but also as services that perform tasks.

The scheduler has a decentralized architecture, a collection of machines is abstracted
by a Central Node, normally only one per institution. These modules encompass all the
information about the resources they abstract, and act as gate keepers in order to allow or
deny access to the actual resources. Information must be exchanged among these modules.
For this purpose, the system uses a transactional based protocol over shared memory,
shared objects and backups are kept in every Central Node.

Being a fully decentralized scheduler, it is fault tolerant, the failure of one module does not
affect the access to any others, this also means it is a very flexible system, since modules
can leave and join at any time.

Summary Table:

Scheduler Scheduling Algorithm Scheduler Architecture

Condor Dynamic Hybrid Centralized / Decentralized

Condor-G Dynamic Hybrid Centralized / Decentralized

Pegasus Static / Dynamic Centralized

Legion Dynamic Hierarchical

MetaComputingOnline Dynamic Decentralized

Table 1: Summary of Schedulers Characterization
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3.1.6 Analysis

There is no perfect scheduler for all types of applications; all the alternatives presented
in the previous sections have advantages and disadvantages, it is therefore important to
understand the problem this work will try to solve in order to make the correct selection
of the scheduler.

From the nature of the application, to performing facial recognition in videos arriving at
any given time, and answering queries to retrieve information about the faces identified on
the videos submitted earlier, it is clear that static scheduling would not be appropriate,
since no prediction about the amount of tasks can be made, not even about the nature of
those tasks, for instance it is not possible to know the length of the videos that will be
submitted, therefore dynamic scheduling will be adopted since static scheduling is not
adequate to unpredictable scenarios.

The the selection of the scheduler architecture is not straightforward. A centralized sched-
uler would be able to provide optimized schedules, but would easily become the bottle-
neck of the whole system and provide poor fault tolerance; a hierarchical scheduler would
mitigate these problems but would not eliminated them; finally a distributed scheduler
would provide good fault tolerance and scalability but would more difficultly produce op-
timal schedules, and would require sophisticated coordination between schedulers which
increases complexity and decreases performance.

Also important is the location of the resources concerning the owner and the access policy
to the resources, for simplicity we will assume that machines that can be used to execute
tasks can only exist inside clusters. In this scenario we propose the use of the Condor-G
scheduler, it is adequate for the purposes of this work because of its scheduling of task to
external grid sites, using modules form Globus toolkit to support that execution. However
Condor-G wont be applied without modifications, distinction between the main cluster
and the remaining will be made, so that the initial task, video reception, partitioning and
control of distribution will always be done in the main cluster, for all other cases the main
cluster will be treated in the same manner as all the others, effectively a hierarchical
scheduler will be implemented, each cluster will have a local scheduler (most common
scenario) which will ultimately schedule tasks for the machine it controls, in addition a
top level scheduler (Condor-G) that will submit task to the local schedulers will be present
in the main cluster. Both schedulers will need to work accordingly to data location, when
scheduling a task that will use a file already used before and cached in a given machine,
the top level scheduler will give preference to machines in a cluster where the file is located
(even if the task is allocated to a machine that doesnt have it cached, file transfers within
the cluster are normally much faster that between clusters), and the local scheduler will
also take into consideration the file location when assign a machine to execute the task.

3.2 Resource Discovery

Resource discovery is a vital component for distributed systems, in a grid a scheduler would
not be able to work if not informed about the resources availability and their detailed
characteristics, static information (e.g. CPU architecture and OS version) and dynamic
information (e.g. CPU load, free memory). Resource discovery systems will enable one of
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the core objectives of a grid, create associations between tasks that need resources to be
executed, and machines which have those resources and are able to execute tasks.

In section 3.2.1, resource discovery systems (RDS) are characterized; next, in section
3.2.2, a list of some relevant examples of resource discovery systems in the literature is
presented, lastly an analysis of the whole section is done together with selection of the
appropriate resource discovery technology for this work in section 3.2.3.

3.2.1 Resource Discovery Process

Resource discovery can be seen as two processes, resource discovery and resource dis-
semination, which are, an application trying to find resources and a resource advertising
its availability respectively. The work in [11] provides an appropriate classification of both
processes:

Resource discovery:

Can be done using queries or agents; the major difference between these two is where
resource discovery process takes place. While in resource discovery based in queries, a given
scheduler that needs to obtain information, will ask an external directory system which
contains all the resource information; in agent based resource discovery machines exchange
information by sending active code fragments across the network which are interpreted
on every reached machine, agent approach is used in systems where all nodes have global
information and/or a directory service is not present. Query based resource discovery
systems can be further classified as centralized, hierarchical and decentralized according
to how the information database is accessed, the advantages and disadvantages of these
different classifications are similar to the ones presented in the description of schedulers
architecture. MDS [18] is an example resource discovery system based in queries and Bond
[19] is an example of a RMS whose resource discovery system is based in agents.

Resource Dissemination:

Can be classified in two categories, batch/periodic and on demand according to when
the resources disclose information about their status. In a periodic approach, informa-
tion is sent in predefined time intervals, that way the resource information is maintained
softly consistent (changes in availability of resources are not immediately propagated to
the resources discovery system), but the system used with a relatively low amount of
communication. In an on demand approach, updates are done immediately after resource
status changes; the information is always consistent but it has a relatively high overhead
in communication. MDS is an example of a RDS m with periodic resource dissemination
and R-GMA [20] is an example of a RDS with on-demand resource dissemination.

3.2.2 Relevant Examples of Resource Discovery Systems in the Literature

In this section, examples of resource discovery systems are presented and classified accord-
ing to the definition made above.

Bond:

Bond [19] is an agent based RMS. Its resource discovery system, also based in agents,
works without the need for a directory service. Agents have a global view of the resources
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available, which is kept updated by periodically (periodic resource dissemination)
sending active code fragments across the network; for this purpose Bond agents use the
knowledge querying and manipulation language (KQML) [21]. Bond standard is to
work in a flat organization, no hierarchical levels or multiple grid sites are supported.

R-GMA:

R-GMA [20] is an implementation of the Grid Monitoring Architecture proposed in [22],
supported by a relational data base. This system defines three types of entities in a grid,
producers (sensors that collect information about resources), consumers (user of the
information collected by the producers, e.g. resource brokers) and a directory service
(allows consumers to be aware of producers existence and the information they collect).

The system has a centralized architecture, with the directory service as the central
node; producers register their identity and information on the relational database of the
directory service and consumers query this database. At this point, it is important to refer
that R-GMA manages different types of information in different ways. Static information
or information that does not change frequently is stored in the centralized directory service
and is used in consumers lookups, and dynamic information is obtained by the consumers
directly from the producers, after their identification is provided by the directory service.
This separation is not rigid as it could impair the capability of resource discovery, dynamic
information vital to producer identification can be stored in the central data base.

MDS:

MDS described in [18] and [23], is a grid resource discovery and monitoring system
based in queries, it is part of the Globus toolkit. Grid components and their detailed
information is represented by objects composed of type-value pairs, these objects are
organized and stored in a hierarchical structure called Directory Information Tree, this
structure translates the relations between the various components, for instance a machine
that has a network card that connects the machine to a local network is represented by
three objects and the respective associations.

The system structure has a hierarchical architecture, composed of two types of mod-
ules, producers and republishers. Producers can be seen as the lowest hierarchical
workers, they collect information directly from the computational resources via scripts
or modules using well defined APIs, these modules compose the Grid Resource Infor-
mation System (GRIS). Republishers are the higher hierarchical workers, they collect
information from producers or from republishers lower in the hierarchy, these modules
compose the Grid Index Information Service (GIIS), and their function is to prepro-
cess resource information in a useful and customizable manner; for instance one republisher
can index resources by their operative system or by their available memory while other
can index the resources following a completely different schema. This means that spe-
cialized republishers can be used in resource brokering, easing the scheduling task, also
republishers may hide details to the next one in the hierarchy making this a very versatile
system.

Communication between modules is done using two protocols, Grid Information Pro-
tocol (GRIP) used by republishers to address queries to producers or other republishers
and Grid Registration Protocol (GRRP) used by producer and republisher to register
thenselves in republishers.
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The system is based on periodic resource dissemination, this types of systems are
characterized by an implicit delay between resource status change and the grid user be-
coming aware of that change, this delay is particularly significant when the system is
composed by many levels of republishers; to diminish this limitation, users are not limited
to top level republishes, information can be obtained from any module on the hierarchy,
even directly from producers.

ClassAd:

ClassAd [24], is a resource discovery system based on matchmaking, it is part of the
Condor system; it is used to make brokering decisions. One of the most distinctive features
of ClassAd is that both provider and requesters of resources have a standard and straight
forward way of expressing restrictions to the match between requesters and providers,
unlike most systems where providers only advertise their characteristics and requesters
ask the resource discovery system to find an appropriate provider.

The system has a centralized architecture, providers send classAds messages to a
matchmaker describing their characteristics and restrictions; requesters also send clas-
sAds messages to the matchmaker describing a task waiting to be scheduled for execution,
both have similar structure and are composed by a variable number of attribute names
and their respective expressions, the matchmaker may not have any standard rules for
the matching algorithm. Instead, the matching rules are defined in two special attributes
contained in the classAds, the Constraint attribute and the Rank attribute, the first trans-
lates the compatibility between requesters and providers, and the second one is used to
choose a matched pair when more than one match occurs, these attributes are in fact func-
tions, that can be defined using the other attributes (e.g. other.ram>512 translates the
condition that a task requires a machine with at least 512 MB of ram) but it can contain
arbitrary functions that may be used to add expressiveness to the matching process (e.g.
select resources based on file placement[25]).

ClassAd does not define a resource dissemination policy, it can work with both periodic
and on-demand approaches, however when used in Condor a periodic resource dis-
semination is used. The system itself works periodically, classAds are received, stored
and periodically the matchmaking algorithm will run, produce the matches and inform
both the requester and provider, the actions resulting from that information are not of
the concern of the resource discovery system.

D-dimensional DHT:

The work in [26] presents a decentralized resource discovery system, the system is
based on distributed hash tables; it was developed to address the limitation of centralized
and hierarchical systems, limited scalability, reduced fault-tolerance and poor network load
distribution, it is especially useful for interconnection of large numbers of grid sites where
systems with non-decentralized architectures would not be able to operate.

In computational environments composed by a large number of clusters, normally each
cluster has a gate-keeper or controlling node, each one of these nodes collects information
about the resources within its grid site and performs resource discovery in the other grid
sites. That means that these nodes need to process two types of queries among each other,
Request Lookup Query (RLQ) and Request Update Query (RUQ), not having a
centralized service means that such queries must be processed in a decentralized manner,
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information must be shared between all controlling nodes which traditionally would mean
a high volume of update messages so that all could process the lookup queries correctly.
Instead, a distributed hash table is used to maintain the resource information and to
support the answering of queries, DHT naturally provide associations between keys and
values, in this application keys are specific attributes (e.g. amount of ram) and the values
are the machines that have those attributes.

Although DHTs address the limitations of centralized hierarchical systems, such as poor
scalability, they are limited to single pair associations, for instance a DHT would
only hold information about the amount of ram on each machine and it would only be
possible to retrieve the information about which machines have a given amount of ram;
that way, in a normal query where constraints may be imposed on various attributes, the
system would have to retrieve information from various DHT, reducing the performance
drastically. The solution for this problem is the use of d-dimensional indexing, where
the index used in the DHT is a concatenation of all indexes. Another limitation remains
however, queries are normally done specifying intervals such as machines with a given
resource equal or superior to a certain amount, this would require that all nodes containing
information about machines with resources within that interval to be inquired, which
would also decrease performance. To minimize this limitation the indexing of the DHT is
actually done by range of index values, so that fewer machines have to be contacted when
the system processes a range query.

Summary Table:

RDS Resource Discovery Resource Dissemination

Bond Agents Periodic

R-GMA Centralized Queries Hybrid Periodic / On Demand

MDS Hierarchical Queries Periodic

ClassAd Centralized Queries Any (in Condor is Periodic)

D-Dimensional DHT Decentralized Queries Any

Table 2: Summary of RDS Characterization

3.2.3 Analysis

In the Grid Scheduling section the use of an hierarchical scheduler was proposed, composed
by a central scheduler (Condor-G) and local schedulers (for simplicity we will assume the
local schedulers are Condor). Resource information will need to flow from the resources
themselves to a local grid level and them to the centralized scheduler level, given this
scenario, MDS will be adopted since it is a hierarchical information system, which
will naturally allow for different views of the information to the local schedulers and to the
central scheduler. MDS also allows the representation of arbitrary entities and associations
between them; therefore it will be used to represent files cached in machines.

Both Condor and Condor-G are considered centralized schedulers but in fact are com-
posed by multiple schedulers, one for each machine in the case of Condor and one for each
user in the case of Condor-G. What is truly centralized is the resource brokering and
schedulers coordination, in both systems this is done by the ClassAd Matchmak-
ing. Therefore ClassAd will be adopted, it will be present on each level of the hierarchy.
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Resource information will be obtained from MDS GIIS at that level by translating the in-
dexed information to ClassAd resources queries. The ClassAd attributes Constraints and
Rank will allow the scheduling policy to be described.

3.3 Face Recognition

Face Recognition Technology has the objective of identify faces in a given image or verify if
a certain face is present. It has received significant attention from the research community,
significant advances have been achieved already and it has a large number of applications
such as entertainment (video games and virtual reality), security (parental control and
building access) and law enforcement and surveillance (suspect identification) [27].

Face Recognition Is divided into 3 main steps [27]:

1. Face Detection

2. Feature Extraction and Normalization.

3. Identification or Verification.

Note that step 3 is commonly know as Face Recognition, however in the interest of clarity
we will refer to it as Identification or Verification.

Steps one and two may be done simultaneously, both detection and identification tech-
niques can be divided into two categories, featured based and image based, the following
sections 3.3.1 and 3.3.2 explain these in detail, specific techniques and algorithms for video
based face recognition are described in section 3.3.3. Lastly, an analysis of the whole sec-
tion is done together with selection of the appropriate techniques for this work in section
3.3.4.

3.3.1 Face Detection / Feature Extraction

It is the first step in the Face Recognition Processes, it takes the raw input image and
outputs a smaller image containing a face present in the inputted image, concurrently,
feature extraction and image normalization (size-wise is the more common normalization)
can occur since the localization process either relies on feature detection, or in the case of
some image-based techniques, feature extraction is not done. This is a vital step for the
performance and feasibility of the following steps as the recognition algorithms will not
performed well if faces are not accurately detected [27]. Face localization techniques are
divided into two great areas [28]:

Feature Based:

This makes use of explicit face knowledge, such as skin color and face geometry, these are
lower level methods. These may be composed by three increasingly sophisticated methods
that complement each other.

The first one is a low level analysis, based on edges, gray levels, color and symmetry.
These were the first techniques used in face localization, essentially they try to find lines
and angles that may belong to a face or/and try to match clustered colored pixels with
skin color. The work in [29] is an example of such technique, in this case based only on
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edges and gray levels. From the previous description it is evident that low level analysis
is prone to a large number of incorrect face detection, objects in the background can have
similar color and lines characteristics to a face.

A second method is used to filter the results from the first one, here two techniques can
be applied. Feature searching which the work in [30] uses, tries to validate features
by their size and relative position, for instance a pair of dark areas (eyes) at a certain
distance may indicate the existence of a face, distance between the eyes and mouth may
also be used to validate a face detected. However this technique is too rigid and based
on heuristic information, therefore it may fail if presented with face pose variations and
complex backgrounds. Constellation analysis used in the word in [31] tries to do the
same as feature searching but resorting to a probabilistic model for the special arrangement
of facial features, this technique can tolerate missing features and relatively high face
rotations.

The most sophisticated of these algorithms that try to validate features is based on active
shapes that take the form of image features, snakes [32] is an example of these algorithms;
it uses an energy-minimizing function as guidance to adjust itself toward lines and edges
assuming their form.

Image Based:

Makes use of pattern recognition theory, and addresses face recognition as a regular pattern
recognition problem, the image is analyzed as a whole and the face knowledge is not explicit
but is contained in the training schemas for this kind of techniques. These Techniques
have a clear advantage over the featured based ones, they do not depend on explicit face
knowledge, eliminating the potential errors or incompletions of knowledge; moreover it has
better performance in multiple faces detection and clusters background situations. These
can be divided into three types.

One of them is linear subspace methods [33], which makes use of eigenvectors in
face representation. The work in [33] introduced a technique to detect faces using this
representation, from a training set, a profile eigenface is built; this result is caledl the
”face space”. Face classification is then achieved using the distance-from-face-space, an
error resulting from the calculation of the eigenvector that is used to determine a given
image faceness. Another method is neural networks, which is largely used in pattern
recognition problems) can also be used for face detection, the work in [34] is an example
of such system. Finally there are statistical approaches based in information theory like
Bayes decision rules [35].

3.3.2 Identification or verification

This is the second step in the Face Recognition Process, here face images outputted by
the first step are analyzed and identified, similarly to face detection the identification also
has feature and image based techniques, in addition it has Hybrid Methods.

Feature Based:

As previously stated, feature based algorithms make use of explicit face knowledge, most
commonly eyes, nose and mouth position and form, are used to perform the recognition
[27]. Examples of algorithms in this category are [36] and [37], in the last one features
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are represented as nodes in a graph and the face identity is represented by the Euclidian
distance between the nodes, the recognition is then performed by graph matching.

Image Based:

Similarly to face detection, Image based algorithms treat face identification as general face
recognition problems, process the image as a whole, not giving any particular relevance to
local features such as eyes and mouth, also they have a high resilience to partially occulted
faces and clouded background situations. The work in [38] and [33] are an example of such
systems, as described before an image is transformed in eigenvectors, values that represent
the identity of a face, face recognition is then done by compilation of the values of a face
to identify with the values of know faces.

Hybrid Methods:

Humans use both feature and all image based techniques when recognizing faces [27], so
a natural evolution of recognition systems would be to adopt both techniques, improving
therefore their performance, in the work discribed in [39] for instance, eigenvectors are used
for the global image as in a normal image based algorithm, but they are complemented
by eigenfeatures which are the application of eigenvectors to local features like eyes and
mouth. In addition, they also make use of various images for the same person, with different
angles and expressions, that allows for better recognition rates and improved resilience to
variations in different images of the same person.

3.3.3 Video Face Recognition

The previous section describes face recognition methods for still images, but video face
recognition has a few particularities worth mentioning.

Challenges of video face Recognition:

The face images extracted from a video sequence are often of much lower quality when
compared with the still images normally used for face recognition, video acquisition may
happen outdoors or even indoors with bad conditions for video capture; illumination,
visibility and the angles or poses of captured subjects may not be the ideal. Also, face
images are small, video face regions may be as small as 15 x 15 pixels in contrast with 128
x 128 pixels of a still image [27], the reduced dimensions will difficult the Face Detection
and therefore impair the Identification which depends on accurate face detection.

Face Detection in video sequences:

The same techniques used for still image face localization can be applied to video sequences;
each frame can be treated as a still image and the techniques may be applied directly,
however its possible to make use of motion to indicate the presence of faces. The work in
[40] makes use of frame differentiation to detect faces and other body parts, it does
this by calculating the differences between a number of frames and determining the areas
where accumulated differences reach a certain value (threshold). The work in [41] uses the
same technique to locate and extract face feature like mouth, nose and eyes.

Identification or Verification in video sequences:

Again, the same techniques used for still image face recognition can be applied to video
sequences, but the fact that many similar images of a face are present (large number of
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frames contain similar images of a subject’s face), allows for improvements over these
methods, the problem of partial face occlusion may be mitigated by synthesizing a
virtual frontal view from the large amount of different posed and angles present in the
video frames. Another technique that improves face recognition is representing an identity
not only by one image but by many, here voting based recognition is possible [27],
where essentially an image to be identified is not only compared with one already identified
image but with many images from the same person, each with a different pose, angle or
illumination, that way improving the accuracy of the Identification.

3.3.4 Analyses

On the previous sections, from all algorithms and techniques described, there is one that
is notoriously better for video based recognition, which is the image based techniques
eigenfaces.

The reason to choose image base techniques over feature based is its superior performance
in common conditions for video face recognition: low quality images, reduced size images
and crowded background in face detection as well as in Identification or Verification. Its
not the objective of this work to develop a novel face recognition algorithm, therefore more
complex techniques such as Hybrid Methods will not be used, although they have been
shown to be superior than simple eigenfaces, they will not be used in this work because of
their extra complexity.

A simple voting schema will be adopted in order to take advantage of the large number
of similar images video have available, again to simplify no complex voting schema will
be used, instead a simple election will be done. When comparing a new face against the
known identities the system will just verify is the majority of the images known for a
person match the new one improving this way the accuracy of the recognition and at the
same time not increasing the complexity to much.

4 Architecture

In this section, the architecture of the system we propose is detailed; first we specify
the application division in individual tasks for each use case, secondly we will detail the
distributed architecture and the middleware used to support the architecture as well, lastly
we describe the scheduling algorithm that will be used in the system.

4.1 Use Cases

The figures in Figure 1 mention a few element of the system that are now explained:
Video is a complete video file, Video Chunk is part of a video file,Video Frame is
a still image from a Video, Face is a still image containing an isolated face, Known
Faces is a repository of the mapping between Faces and persons’ names used in the
recognition process, Recog Face and Non-reco Face are respectively a Face identified
and not identified in the recognition process, Video-Person is a repository of the mapping
between videos and persons’ names, and Unknown Faces is a repository of Faces not
yet identified.
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(a) New Video Submission. (b) Unknown Faces Reiteration.

Fig. 1: Use Cases.

Figure 1a) describes the main use case; the reception of a new video file, the execution
of this use case is divided into six stages. Stage 1 is the file transfer between a client
application and the system, when completed the system has a complete video file to be
processed. Stage 2 is the segmentation of the video, since the application will be running
in a distributed system, the bulk of processing a video files has to be shared by a number
of machines; here two options could be considered, either machines would process entire
files or smaller portions, the first option would difficultly produce good load balance,
therefore the second will be adopted. Stage 3 is the frame extraction, necessary since
the face detection software works with frames. Stage 4 is the first stage where the actual
face recognition takes place, in this one, face images are extracted from the video frames.
Stage 5 is the second and final stage of face recognition; it produces a list of Recog Faces
and Non-reco Faces. Stage 4 and 5 execution follows to process described in section 3.3.4.
Stage 6 is the final stage in this process; the various repositories are updated in this stage.

Figure 1b) describes the reiteration of the Unknown Faces from previous iterations; these
Faces are kept in a repository. Stage 1 is the retrieval of these faces from the repository.
Stage 2 is the grouping of these faces, for the same reason video files are segmented, the
list of faces also have to be divided into groups. Stages 3 and 4 are the same as stages
4 and 5 in the reception of a new video file.

The system have two more use case, not represented by images due to having only one
stage, those are the system queries and the face identification. The first one is the answering
of a question such as, what persons are present in a given video, for that purpose the video-
person repository is used. The second one is the users providing the identification for a
given face, this updates the various repositories.
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All of these use cases functionalities rely on mappings between the various elements;
this mapping is performed in the following manner: elements must have a unique identifier,
while video files have a name given by the user, all other elements must have an auto-
generated name; for simplicity, video chunks, frames and faces have names composed by
the original video file name concatenated with a sequential number (e.g. the 2nd face,
in the 23th frame, in the 6th video chunk of a file named ”video.wmv”, will have the
name ”video.wmv-6-23-2”), this name will allow the correct mapping between an identified
face and the video where it appears. The Video-Person repository maps videos to
persons names, allowing the answering of queries; those are simple files containing a list
of mappings. The Know Faces repository contains a mapping of names to a number
of eigenvector, representation of faces, as specified in section 3.3.4, as for the Unknown
Faces repository it is simply an unorganized list of faces.

4.2 Distributed Architecture

Fig. 2: Distributed Architecture.

Figure 2, shows the distributed architecture of the system, the arrow of the resource
brokers mean: GRD - global resource decision, GRD - local resource decision and INF -
information flux between resource brokers. In the architecture, we distinguish two types of
cluster, the main site and the regular sites. The main site is where normally the whole
application execution takes place and where all persistent data is kept. The decision of
maintaining all data in the main site is justified by the reduction of software and control
demand on other clusters (clusters to which we may have limited access). Since all persis-
tent data is kept in the main site, it makes sense to execute the application always in the
main site; however computational power is not infinite, so to scale the system we consider
the hypothesis of sending tasks to other sites. The machines on the main site make part
of a Distributed File System, where the repositories, videos files and intermediate files
are stored. Each machine has a Local Scheduler and a Global Scheduler, the distinc-
tion between them is simple, the local scheduler makes decisions about in which machine
a task is to be executed and the global scheduler makes decisions about in which cluster a
task is to be executed. These two types of scheduler constitute a hierarchical scheduler
as described in section 3.1.6. To perform these decisions and maintain consistency both
types of schedulers rely on resource brokers, resource information systems that will make
the actual decision. The machines in the regular sites will only have a Local Scheduler
which work in the same manner as the Local Scheduler in the main site.
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4.3 Software Architecture

Files are kept in a distributed file system, as the system execution will require inten-
sive file access, traditional DFS that keep complete files in single machines could become
a bottleneck. To eliminate this difficulty HDFS [42] will be adopted, this DFS standard
behavior is to divide big files in smaller chuck and store those chunks in various machines,
the chunks themselves are replicated; these characteristics not only allow for good fault
tolerance but also for good load balance. In the particular case of this work the segmen-
tation of the video in chunks can be done accordingly to the HDFS file segmentation
(corrected for frame boundaries within video files), and the chunk placement information
can be used in resource brokering.In 3.3.4 we define the face recognition process, the
actual face detection and recognition will be supported by the OpenCV library [43]. The
performance of facial recognition software is not a concert of this work, the focus is on
the distributed architecture, any facial recognition software could be used, our choice is
justified by the large number of algorithms implemented in the OpenCV library.

Fig. 3: Scheduler Architecture.

Figure 5 details the scheduler architecture and its software components. Here we differenti-
ate two types of application, a Client Application and a Running Grid Application;
the first one is an application running outside the grid, for instance an application that
submits new video files to be processed and the second one is a system application run-
ning the face recognition process. Tasks from these applications are submitted to different
schedulers for optimization purposes, the Stage 1 of any task that may be submitted by a
Client Application will always be processed in the main site due to file placement restric-
tions, therefore the global scheduler is not useful for these tasks; on the other hand, tasks
from other stages are submitted to the Global Scheduler as they can be executed in any
site. As described in section 3.1.6 Condor-G will be used in the Global Schedulers and
Condor for the Local Schedulers; in Figure 5 the local scheduler is classified as a Gate
Keeper, these are normally the nodes responsible for controlling the access to a given site,
normally only one or a reduced number of these node exist, but due to the characteristics
of Condor (similar scheduler in all machines) all machines in a site can be used as a gate
keepers, this will also provide better load balance.
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Fig. 4: Resource Discovery Architecture.

Figure 4 details the resource discovery architecture and its software components. As de-
scribed in section 3.2.3, the Global and Local Schedulers are coordinated by the ClassAd
Matchmacker, both types of schedulers will submit classAds describing tasks due to be
executed and receive match information from the Resource Broker. The actual resource
information will be obtained by MDS, specifically a number of MDS GRIS modules that
collect information directly from machines will be present in each site, in addition one MDS
GIIS module will also be present in each site, this module will compile and index resource
information that, after translated to classAds will feed the Local Resource Broker. The
hierarchical architecture of MDS is useful in the construction of the MDS GIIS Module
for the Global Resource Broker present only in the main site; this MDS GIIS compiles
and indexes summarized information provided by the MDS GIIS modules at Local Index
Service Level.

4.4 Scheduling

In this section we will describe the algorithm approach schedulers will use to choose in
which machine each task will be executed. In general the scheduler will try to assign tasks
to the machine in which the task will be executed in the least amount of time, in order
to do that, we need to define a cost function that schedulers will try to minimize for
each task. Before describing the approach it is important to decide what tasks are going
to the scheduled. The system queries and the face identification done by the users, due
to their time constraints and simplicity will not be scheduled; they can be submitted to
any machine in the main site and will be immediately processed. All other tasks need to
be scheduled, however stages 1 and 2 are done in the same machine, the one selected to
execute the task in stage 1, it is this machine that will run the Running Grid Application
that will control the execution of the rest of the process.

Cost Function:

The cost of executing a task for this particular system can be seen as the predicted
amount of time a task will take to be executed, also, we must take into account the
data transfer time. Therefore, the task execution time is the sum of the time to transfer
the input and output files plus the execution time. The calculation of this cost function is
a very demanding task, requiring high processing power if a site is constituted by a large
number of machines, and requires very volatile resource information, the available inbound
and outbound network speed as well as a prediction of the time a machine takes to process
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specific tasks, which would cause the resource information service to become the bottleneck
of the system, as keeping this information constantly up-to-date is a demanding task. Also,
It is not possible to make accurate prevision about the size of the output files (the results
of processing a number of frames to extract faces can be one or one thousand faces). In
addition ClassAd is not designed to make brokering decisions based on minimization of
cost function, instead its design to find matches of values between resources and tasks.

Resources Attributes:

To solve the difficulties of the cost function calculations, we will describe the resources
with groups of attributes, in this case {processor(CPU), ram memory (MEM), Hard Drive
Capacity (HDC), available network speed (NTS)}, which one of these attributes may have
one of these values Low, Med, High except for NTS which will have its actual value. In
ClassAd the brokering decisions are made in two step, in the first one restriction and
constraints are meet, task are matched with resources that can meet their requirement,
if more than one matching is possible a second step is executed, in this second step one
of the matched pair is chosen. In this work we will use the attributes CPU, MEM and
HDC for the first step, where effectively we find machines that have the computational
resources to execute the tasks; for the second step information about file placement and
available network speed will be used to select one of the matched pairs by means of a cost
function, machine with the needed files will have a cost of 0 while other will have a cost
equal to the time the files would take to be transferred, note here that the output files are
not accounted due to the impossibility of determining their size prior to execution.

The previous description was made for the Local Schedulers, the Global Schedulers, will
work in a similar way but with different resource information, global scheduler will have
information about how many machines are present in a cluster with one of the permutation
possible for the groups of attributes (e.g. two machine with High, High, High, one machine
with Low, High, High, etc), as for choosing between matched pairs, it is done in the same
way as for the Local Schedulers.

In both schedulers, when the cost function is not sufficient to make a decision, a biggest first
approach is used to select the resources, essentially the machine with the most resources
available is selected, this approach has the disadvantage of filling big machines with small
tasks, not allowing high resource demanding task to be executed, while smaller machines
may be idling, however this is only used as a backup if all other criteria fails to produce
just one matched pair, therefor it will not happen frequently enough to be a cause of
concern.

4.5 Modification to the Existing Software

All components will have to be configured and connected; we will now list the most rele-
vant modification we will do. APIs will be implemented in order to translate information
between independent systems. File placement from HDFS will have to be translated and
introduced in MDS, in which information collection is normally done by scripts or through
APIs. Also, another API will be developed to translate the information from MDS to the
format that ClassAd works with. As the Scheduling will be implemented via the Resource
Brokers, the scheduling approach described in Section 4.4 will have to the written in terms
of ClassAds objects components, namely Constraints and Rank. Also we must define the
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schema by which MDS will index the resource information and how it will summarize
information sent from the Local to the Global index service.

5 Evaluation

The system to be developed will be tested and compared with similar ones, in this section
we explain how we will test and evaluate the functionality correctness of the developed
system as well as how we are going to compare our solution with others.

Firstly, we must assess whether the system is working correctly, as we will not develop the
face recognition component, the test will be a simple verification of whether the accuracy
of the system has been maintained. Accuracy will be measured by the percentage of
correct and incorrect recognized faces, as well detected and undetected faces,
the results should be identical, if not, the distributed architecture is not working correctly
(system may be losing information).

Secondly and finally we must compare our solution with others, however, as it has be
referred before, no face recognition system running in a grid environment exists, therefore
the comparison will be done against other possible architectural solutions, that will also
be implemented, those will be at least a centralized scheduler and centralized resource
discovery system, note that an hierarchical architecture can easily be transformed into
centralized. The solution will also be compared with the software running in a single
machine. In order to perform these comparisons the following parameters will be measured:
total new video facial recognition time, face detection time, face recognition
time, time to answer a query, average CPU load on each node (balanced or
imbalanced load distribution), the last parameter will not be measured in the comparison
with a software running in a single machine.

6 Conclusions

We now wrap up this article with a brief summary of our work. Our objective in this work
is to develop a facial recognition system that runs on a grid environment, developed to be
scalable, efficient and mostly free.

After the related work research and analysis, we were able to choose the existing software
that would be better adapted to our purposes, eigenvectors face for detection and recog-
nition was chosen to perform the facial recognition related tasks, Condor and Condor-G
were chosen for schedulers and ClassAd and MDS were chosen for Resource Discovery
software.

Finally we described the systems distributed architecture and developed a novel scheduling
algorithm specifically designed for this application, and in such a way that can be described
by parameterizations of ClassAd queries.
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