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Abstract. In today’s scenarios of large scale computing and service pro-
viding, the deployment of distributed infrastructures, namely computer
clusters, is a very active research area. In recent years, the use of Grids,
Utility and Cloud Computing, shows that these are approaches with
growing interest and applicability, as well as scientific and also commer-
cial impact.
This work presents the design and implementation issues of a cooperative
VM for a distributed execution environment that is resource-aware and
policy-driven. Nodes cooperate to achieve efficient management of the
available local and global resources. We propose A2-VM , a cooperative
cluster-enabled virtual execution environment for Java, to be deployed
on Grid sites and Cloud data-centers that usually comprise a number of
federated clusters. This cooperative VM has the ability to monitor base
mechanisms (e.g. thread scheduling, garbage collection, memory or net-
work consumptions) to assess application’s performance and reconfigure
these mechanisms in run-time according to previously defined resource
allocation policies.
We have designed this new cluster runtime by extending the Jikes Re-
search Virtual Machine to incorporate resource awareness (namely re-
source consumption and restrictions), and extending the TerraCotta DSO
with a distributed thread scheduling mechanism driven by policies that
take into account resource utilization. In this paper we also discuss the
cost of activating such mechanisms, focusing on the overhead of measur-
ing/metering resource usage and performing policy evaluation.

1 Introduction

In today’s scenarios of large scale computing and service providing, the deploy-
ment of distributed infrastructures, namely computer clusters, is a very active
research area. In recent years, the use of Grids, Utility and Cloud Computing,
shows that these are approaches with growing interest and applicability, as well
as scientific and commercial impact.

Managed languages (e.g., Java, C#) are becoming increasingly relevant in
the development of large scale solutions, leveraging the benefits of a virtual
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execution environment (VEE) to provide secure, manageable and componentized
solutions. Relevant examples include work done in various areas such as web
application hosting, data processing, enterprise services, supply-chain platforms,
implementation of functionality in service-oriented architectures, and even in e-
Science fields (e.g., with more and more usage of Java in the context of physics
simulation, economics/statistics, network simulation, chemistry, computational
biology and bio-informatics [16, 15, 18], there being already many available Java-
based APIs such as Neobio).3

To extend the benefits of a local VEE, while allowing scale-out regarding
performance and memory requirements, many solutions have been proposed to
federate Java virtual machines [24, 2, 25], aiming to provide a single system image
where the managed application can benefit from the global resources of the
cluster.

A VEE cluster-enabled environment can execute applications with very dif-
ferent resource requirements. This leads to the use of selected algorithms for
runtime and system services, aiming to maximize the performance of the appli-
cations running on the cluster. However, for other applications, for example the
ones owned by restricted users, it can be necessary to impose limits on their re-
source consumption. These two non functional requirements can only be fulfilled
if the cluster can monitor and control the resources it uses both at the VEE and
distributed level, and whether the several local VEE, each running on its node,
are able to cooperate to manage resources overall.

Existing approaches to resource-awareness in VMs, cluster-enabled runtimes,
and adaptability are still not adequate for this intended scenario (more details
in Section 5) as they have not been combined into a single infrastructure for
unmodified applications. Existing resource-aware VMs do not target popular
platforms, and cluster-enabled runtimes have support neither for global thread
scheduling nor for checkpointing/restore mechanisms. Furthermore, lower-level
mechanisms and VM parameters cannot be governed by declarative policies.

In this paper, we report on the design and implementation of A2-VM (Au-
tonomous and Adaptive Virtual Machine), a distributed execution environment
where nodes cooperate to make an efficient management of the available lo-
cal and global resources. We propose a cluster-enabled VEE with the ability to
monitor base mechanisms (e.g. thread scheduling, garbage collection, memory or
network consumptions) at different nodes in order to assess an application’s per-
formance and resource usage, and reconfigure these mechanisms in run-time, in
one or more nodes, according to previously defined resource allocation policies
(or quality-of-execution specifications) . These policies regulate how resources
should be used by the application in the cluster, leading to the adaptation of
components at different levels of the cluster in order to enforce it.

We propose a layered approach to resource monitoring, management and
restriction enforcement. While restrictions to resources are effectively enforced
at the level of each of the individual cooperating VMs, overall performance

3 http://www.bioinformatics.org/neobio/
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Fig. 1: Architecture of the A2-VM

assessment and policy-driven resource management are carried out by node and
cluster-wise manager components.

The rest of this paper is organized as follows. Section 2 describes the overall
architecture of our proposal for a resource-aware and policy-driven cooperative
VM, introducing the main components of A2-VM , and details on the specific
internal mechanisms and functionality offered. Section 3 describes the main as-
pects of the current development and implementation of A2-VM . In Section 4,
we assess and evaluate A2-VM , regarding: i) the impact of resource aware-
ness and policy support (measuring overhead of resource monitoring and policy
engine performance), and ii) the cluster-wide cooperative thread scheduling of-
fered (overheads and performance improvements). In Section 5, we discuss our
research in light of other systems described in the literature, framing them with
our contribution. Section 6 closes the paper with conclusions and future work.

2 Architecture

The overall architecture of A2-VM (Autonomous and Adaptive Virtual Ma-
chine) is presented in Figure 1. We consider a cluster as a typical aggregation
of a number of nodes which are usually machines with one or more multi-core
CPUs, with several GB of RAM, interconnected by a regular LAN network link
(100 Mbit, 1 Gbit transfer rate). We assume there may be several applications,
possibly from different users, running on the cluster at a given time, i.e., the
cluster is not necessarily dedicated to a single application. The cluster has one
top-level coordinator, the QoE Manager that monitors the Quality-of-Execution
of applications.4

4 We opt for this notion instead of hard service-level agreements usually employed in
commercial application hosting scenarios, because we intend to target serval types
of applications in shared infrastructures, without necessarily strict contractual re-
quirements.



Each node is capable of executing several instances of a Java VM, with each
VM holding part of the data and executing part of the threads of an applica-
tion. As these VMs may compete for the resources of the underlying cluster
node, there must be a node manager in each node, in charge of VM deployment,
lifecycle management, resource monitoring and resource management/restric-
tion. Finally, in order for the node and cluster manager to be able to obtain
monitoring data and get their policies and decisions carried out, the Java VMs
must be resource-aware, essentially, report on resource usage and enforce limits
on resource consumption. Cooperation among VMs is carried out via the QoE
Manager, that receives information regarding resource consumption in each VM,
by each application, and instructs VMs to allow or restrict further resource us-
age.

In summary, the responsibilities of each of these entities are the following:

– Cluster QoE Manager
• collect global data of cluster applications (i.e. partitioned across VMs

and nodes)
• deploy/regulate nodes based on user’s QoE

– Node QoE Manager
• report information about node load
• deploy new policies on VMs
• create or destroy new instances
• collect VM’s resource usage data

– (resource-aware) VM
• enforce resource usage limits
• give internal information about resource usage

A2-VM is thus comprised of several components, or building blocks. Each one
gives a contribution to support applications with a global distributed image of a
virtual machine runtime, where resource consumption and allocation is driven by
a high-level policies, system-wide, application or user related. From a bottom-up
point of view, the first building block above the operating system in each node is
a process-level managed language virtual machine, enhanced with mechanisms
and services that are not available in regular VMs. These include the accounting
of resource consumption.

The second building block aggregates individual VMs, as the ones mentioned
above, to form within the cluster a distributed shared object space assigned to a
specific application. It gives running applications support for single system image
semantics, across the cluster, with regard to the object address space. Techniques
like bytecode enhancement/instrumentation or rewriting must be used, so that
unmodified applications can operate in a partitioned global address space, where
some objects exist only as local copies and others are shared in a global heap.

The third building block turns A2-VM into a cluster-aware cooperative vir-
tual machine. This abstraction layer is responsible for the global thread schedul-
ing in the cluster, starting new work items in local or remote nodes, depending
on a cluster wide policy and the assessment of available resources. This layer is



the A2-VM boundary that the cluster-enabled applications interface with (note
that for the applications, the cluster looks like a single, yet much larger, virtual
machine). Similarly to the previous block, application classes are further instru-
mented/enhanced (although the two sets of instrumentation can be applied in
a single phase), in order to guarantee correct behavior in the cluster. Finally, it
exposes the underlying mechanisms to the adaptability policy engine, and ac-
cepts external commands that will regulate how the VM’s internal mechanisms
should behave.

The resource-aware VM, the distributed shared object layer, and the cluster
level scheduler are all sources of relevant monitoring information to the policy
engine of A2-VM . This data can be used as input to declarative policies in
order to determine a certain rule outcome, i.e. what action to perform when a
resource is exhausted or has reached its limit, regarding a user or application. The
other purpose of collecting this data is to infer a profile for a given application.
Such profiles will result in the automatic use of policies for a certain group
of applications, aiming to improve their performance. The effects, positive or
negative, of applying such policies are then used to confirm, or reject, the level
of correlation between the profile and the applications.

Currently, thread scheduling tries first to collocate threads of the sample
application to the same VM, until the specified CPU load, wait time, and mem-
ory usage thresholds are reached. After that, subsequent threads are allocated
elsewhere within the same node or across the cluster, balancing the load. Ap-
plication performance is monitored by a combination of black-box and grey-box
approaches. Black-box consists in the monitoring of the parameters mentioned
above that allows us to determine, roughly, whether an application is experienc-
ing poor performance due to resource shortage or contention. Grey-box approach
consists in monitoring advancement of file cursors (for sequential reading and
writing), and data transferred in order to estimate current progress against pre-
vious executions of the same application.

On top of this distributed runtime are the applications, consuming resources
on each node and using the services provided by the resource-aware VM that is
executing on each one. A2-VM targets mainly applications with a long execution
time and that may spawn several threads to parallelize their work, as usual in
e-Science fields such as those mentioned before.

The following sections will describe the depicted architecture, explaining the
specific contributions of each component.

2.1 Resource Awareness and Control

The Resource Aware virtual machine is the underlying component of the pro-
posed infrastructure. It has two main characteristics: i) resource usage moni-
toring, and ii) resource usage restriction or limitation. Furthermore, there are
checkpointing, restore and migration mechanisms, used for more coarse-grained
load-balancing across the cluster, that are out of the scope of this paper [14].

Current virtual machines (VM) for managed languages can report about sev-
eral aspects of their internal components, like used memory, number of threads,



classes loaded [20, 19]. However they do not enforce limits on the resources con-
sumed by their single node applications. In a cluster of collaborating virtual
machines, because there is a limited amount of resources to be shared among
several instances, some resources must be constrained in favor of an application
or group of applications.

Extending a managed language VM to be aware of the existing resources must
be done without compromising the usability (mainly portability) of application
code. The VM must continue to run existent applications as they are. This
component is an extended Java virtual machine with the capacity to extract high
and low level VM parameters, e.g., heap memory, network and system threads
usage. Along with the capacity to obtain these parameters, they can also be
constrained to reflect a cluster policy. The monitoring system is extensible in
the number and type of resources to consider.

2.2 Cluster-Wide Cooperative VM

To enable effective distribution of load among different nodes of the cluster, our
system relies on a cluster level load balancer capable of spawning new threads
(or work tasks) on any cluster node based on a cluster wide policy. When an
application asks for a new thread to be created (e.g., by invoking the start

method on a Thread object), the request can be either denied or granted based on
the resource allocation decided for the cluster. If it is granted, the load balancer
will create the new thread in the most appropriate node to fulfill the cluster
policy. For example, if the application has a high priority order compared to
other applications of the cluster, then the thread could be created in a lesser
loaded node (preferably, one with a VM already assigned to the application’s
DSO; if needed and allowed, a new VM on any lesser loaded node) . The decision
on what node new threads are created is left to the policy engine to decide with
current information. Nevertheless, the resource-aware VM has an important role
in this process by making it possible to impose a hard limit on resources, e.g.,
the number of running threads of the application at a specific node, or globally.

A2-VM aims to accommodate applications developed by users with different
levels of expertise regarding the development of multi-threaded applications and
cluster architectures, giving a performance versus transparency trade-off. To this
end, the thread scheduler has two operation modes: i) Identity and ii) Full SSI.
Identity mode should be used if we have the byte-code of a multi-threaded Java
application that is explicitly synchronized (e.g., using Java monitors), or there
is access to the source code and synchronization code can be added with ease.
Full SSI mode should be used if we have the byte-code of a multi-threaded Java
application that is not explicitly synchronized (mainly applications comprised
of cooperating threads that make use of volatile object fields that the Java VM
specification assures to be updated in a single memory write operation, while
Terracotta does not honour this) and there is no access to the source code. For
instance, in DaCapo 2009 benchmarks, 6 out of 14 applications do indeed use
such volatile fields, and rely on the VM to uphold this semantics, hence the



<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<RAMConfiguration>

<ResourceAttr ibutes name=”NumberOfThreads” i n i t a l L im i t=”15” />
<ResourceAttr ibutes name=”CpuUsage” i n i t a l L im i t=”75%” />
. . .
<Rule t a r g e t=”NumberOfThreads”>

< !−− Determines how accumulation i s done −−>
<OnConsume> <Counter/> </OnConsume>
< !−− Determines what happens i f l imit i s reached −−>
<OnLimit> <ResourceException /> </OnLimit>
< !−− Determines what happens i f consumption i s successful −−>
<OnAfterComsumption>

<UseCluster th r e sho ld=”AllCpus”/>
</OnAfterComsumption>

</Rule>
<Rule t a r g e t=”CpuUsage”>

<OnConsume> <HistoryAverage window=”5”/> </OnConsume>
<OnLimit> <Suspend mi l i s e conds=”500”/> </OnLimit>

</Rule>
. . .

</RAMConfiguration>

Fig. 2: Declarative policy

relevance of the Full SSI mode to ensure compatibility, transparency and correct
functionality when deploying such applications with A2-VM on a cluster.

2.3 Adaptability and the Policy Engine

The policy engine is responsible for loading and enforcing the policies provided
by administrators and possibly users regarding resource management. It achieves
this by, globally, sending the necessary commands to the resource-aware VMs
in order for them to modify some runtime parameters, or the type of algorithm
used to accomplish a cluster related task, as well as instructing them to spawn
threads or activate checkpointing/restore and migration mechanisms. A special
focus of this component of A2-VM is also on the improvement of applications’
performance, and what can be adapted in the underlying resource-aware VMs
in order to achieve it.

It operates autonomously or in reaction to a given resource outage in the
VMs. Autonomous behavior is governed by maintaining knowledge about the
applications’ previous execution, and adjusting the VMs and cluster parameters
to achieve better performance for that specific application. Reactive operation is
driven by declarative policies that determine the response to a resource outage.
This response may result in a local adaptation (e.g. restrain the resources of
another VM in the same node, or change the GC algorithm to consume less
memory but eventually taking more time to execute) or have cluster wide impact
(e.g. migrate the entire application to a VM in another node).

Figure 2 presents a declarative policy to be used by VM instances repre-
sented in Figure 1 (i.e. VM1..5). It defines limits for CPU usage, and the number
of threads and sockets the application is allowed to use. CPU usage and threads



RA-JVM

Resource-aware JVM

Resource Awareness 
and Managment

(RAM)

# Threads Data Sent/Rcv

# Connections

Reconfigurable components
(e.g. Distributed scheduling, Migration, 

GC plans, JIT optimization level)

Internal &  E
xternal

R
esource  Sensors

# Files

CPU Usage Used Memory

RA-JVMResource
aware
JVM

Node
Manager

Node

Cluster-enabled application

Environment  (OS, Network, CPU, ...)

Notify
Add resource 
usage rule

Resource attribute
Adapt

Consume

Fig. 3: Resource-aware JVM

are monitored and managed by specific rules but using a similar, reusable ap-
proach: i) CPU usage is monitored with a sliding window in order to filter ir-
relevant peaks, while ii) the number of active threads is also monitored with a
sliding window in order to trigger rescheduling only when the limit is consistently
exceeded.

3 Implementation

Some of the building blocks of A2-VM ’s architecture are partially available
in the research community but do not operate in an ensemble. Nevertheless,
although some essential functionalities needed in our architecture are missing,
the available components constitute a good starting point we can leverage and
extend with our own work.

Our first implementation effort is centered on developing a managed language
virtual machine with the capacity to monitor and restraint the use of resources
based on a dynamic policy, defined declaratively outside the VM. Some work
has been done in the past aiming to introduce resource-awareness in such high
level virtual machines (details in Section 5). Nevertheless, to the best of our
knowledge, none of them is publicly available or usable with popular software,
operating systems and hardware architectures. Based on this observation, we
have chosen to extend the Jikes RVM [1] to be resource-aware. Thus, in the next
subsection we will describe different aspects of our current work on Jikes RVM.
Later on, we describe the main implementation aspects of our system regarding
the spawning and scheduling of threads in other nodes.

3.1 Extending Jikes RVM with resource-awareness

Figure 3 depicts further details on the architecture of the resource-aware VM
we developed for A2-VM . The resource-ware VM has a specific module for



each type of manageable resource (e.g., files, threads, CPU usage, connections,
bandwidth, and memory). Each of the module exports to the RAM (Resource
Awareness Management) module an attribute that abstracts the specifics of the
resource. This way, when the RAM decides to limit, reduce or block the usage
of a resource by the application, it can instruct the respective attribute without
worrying about the details of applying limitation to that specific resource (e.g.,
disallowing file open, or take a thread out of scheduling). The RAM consumes
profile information from the main VM and A2-VM mechanisms (GC and JIT
level, and distributed scheduling and migration, respectively). These mechanisms
can be adapted and reconfigured by command of the RAM.

Being RAM the engine that enables awareness and adaptation, all its deci-
sions are carried out according to the evaluation of rules in the policies loaded
by the node manager. The node manager is also notified by the RAM, in each
VM, about the application’s performance and outcome of RAM’s decisions.

The management of a given resource implies the capacity to monitor its cur-
rent state and to be able to directly or indirectly control its use and usage. The
resources that can be monitored in a virtual machine can be either specific of
the runtime (e.g. number of threads, number of objects, amount of memory) or
be strongly dependent in the operating system (e.g. CPU usage). To unify the
management of such disparate types of resources, we carried out the implemen-
tation of JSR 284 - The Resource Management API [13] in the context of Jikes
RVM, previously not implemented in the context of any widely usable virtual
machine.

The relevant elements to resource management as prescribed by JSR 284
are: resources, consumers and resource management policies. Resources are rep-
resented by their attributes. For example resources can be classified as Bounded
or Unbounded. Unbounded resources are those that have no intrinsic limit (or
if it exists, it is large enough to be essentially ignored) on the consumption of
the resource (e.g. number of threads). The limits on the consumption of un-
bounded resources are only those imposed by application-level resource usage
policies. Resources can also be Bounded if it is possible to reserve a priori a
given number of units of a resource to an application. A Consumer represents
an executing entity which can be a thread or the whole VM. Each consumer is
bound to a resource through a Resource Domain. Resource domains impose a
common resource management policy to all consumers registered. This policy
is programmable through callback functions to the executing application. Al-
though consumers can be bound to different Resource Domains, they cannot be
associated to the same resource through different Domains. When a resource is
about to be consumed, the resource-aware VM, implementing JSR 284, delegates
this decision, via a callback, that can be handled by RAM, and either allowed,
delayed or denied (with an exception thrown).

Figure 4 shows a notification, ThreadsCreationNode, which can be used to
configure an A2-VM instance. This callback would be called on each local thread
allocation (in Jikes RVM, Java threads are backed by a native class, RVMThread
that is shown, and that interacts with the host OS threads). It determines that



public c lass ThreadsCreationNode implements No t i f i c a t i o n {
long t h r e sho l d ;
public ThreadsCreationNode ( long th r e sho ld ) { t h r e sho l d = thre sho ld ; }
public void postConsume (

ResourceDomain domain ,
long previousUsage , long currentUsage ) {
i f ( currentUsage >= thr e sho l d )

Scheduler . g e t In s tance ( ) . changeAl locat ionToCluster ( ) ;
} }

Fig. 4: A sample notification handling to change thread allocation to the cluster

if the number of threads created in the local node reaches a certain threshold
new threads will be created elsewhere in the cluster. The exact node where they
will be placed is left to be determined by the distributed scheduler own policy.

public c lass HistoryAverage implements Constra int {
. . .
long [ ] samplesHi s tory ;
public HistoryAverage ( int wndSize , long maxConsumption ) { . . . }
public long preConsume (ResourceDomain domain ,

long currentUsage , long proposedUsage ) {
long average = 0 ;
i f ( nSamples == samplesHi s tory . l ength ) {

average = currentSum / nSamples ;
currentSum −= samplesHi s tory [ i dx ] ;

}
else { nSamples += 1 ; }
currentSum += proposedUsage ;
samplesHi s tory [ i dx ] = proposedUsage ;
i dx = ( idx + 1) % samplesHi s tory . l ength ;

return average > maxConsumption ? 0 : proposedUsage ;
} }

Fig. 5: Regulate consumption based on past wndSize observations

Figure 5 shows a constraint, HistoryAverage, which can be used to regulate
a CPU usage policy. Consider a scenario where the running application cannot
use the CPU above a threshold for a given time window, because the remaining
CPU available is reserved for another application (e.g., as part of the quality-of-
execution awarded to it). In this case, when the CPU usage monitor evaluates
this rule, it would suspend all threads (i.e. return 0 for the allowed usage) if the
intended usage is above the average of the last wndSize observations. A practical
case would be to suspend the application if the CPU usage is above 75% for more
than 5 observations.

3.2 Cluster-Wide Cooperative Thread scheduling

In A2-VM , to achieve distributed thread scheduling, we need to be able to spawn
threads in a node different from where the thread’s start method is invoked.



Our mechanism to distribute threads among the cluster is built by leveraging
and extending the Terracotta [7] Distributed Shared Objects. This middleware
uses the client/server terminology and calls the application JVMs that are clus-
tered together Terracotta clients or Terracotta cluster nodes. These clients run
the same application code in each JVM and are clustered together by injecting
cluster-aware bytecode into the application Java code at runtime, as the classes
are loaded by each JVM. This bytecode injection mechanism is what makes
Terracotta transparent to the application. Part of the cluster-aware bytecode
injected causes each JVM to connect to the Terracotta server instances. In a
cluster, a Terracotta server instance handles the storage and retrieval of object
data in the shared clustered virtual heap. The server instance can also store this
heap data on disk, making it persistent just as if it were part of a database.
Multiple terracotta server instances can exist as a cohesive array.

In a single JVM, objects in the heap are addressed through references. In the
Terracotta clustered virtual heap objects are addressed in a similar way, through
references to clustered objects which we refer to as distributed shared objects or
managed objects in the Terracotta cluster. To the application, these objects are
just like regular objects on the heap of the local JVMs, the Terracotta clients.
However Terracotta knows that clustered objects need to be handled differently
than regular objects. When changes are made to a clustered object, Terracotta
keeps track of those changes and sends them to all Terracotta server instances.
Server instances, in turn, make sure those changes are visible to all the other
JVMs in the cluster as necessary. This way, clustered objects are always up-to-
date whenever they are accessed, just as they are in a single JVM. Consistency
is assured by using the synchronization present in the Java application (with
monitors), which turns into Terracotta transaction boundaries. Piggybacked on
these operations, Terracotta injects code to update and fetch data from remote
nodes at the beginning and end of these transactions.

Therefore we need to perform additional byte-code enhancement on appli-
cation classes as a previous step to the byte-code enhancing performed by the
Terracotta cluster middleware before applications are run. To do this we used
the ASM framework [8]. Creation of threads in remote nodes is a result of in-
voking JSR 284 in order to attempt to consume a thread resource at that node.
The most intricate aspects deal with the issue of enforcing thread transparency
(regarding its actual running node) and identity across the cluster, as we explain
next.

The instrumentation replaces Java type opcodes that have the Java Thread
type as argument with equal opcodes with our custom type ClusterThread. It
also replaces the getfield and getstatic opcodes type with ClusterThread
instead of Thread. As the ClusterThread class extends the original Java Thread
class, type compatibility is guaranteed. For the method calls, some of the meth-
ods belonging to the Thread class are final, and therefore cannot be overridden.
To circumvent this, we aliased the final methods and replaced Thread method
calls with the aliased method. For example, if we have an invokevirtual op-



code that invokes the final “join” method of the Thread class, we invoke the
“clusterJoin” method instead.

In Identity mode, the instrumentation process adds the Terracotta Autolock-
Write annotation, in order to take advantage of the local synchronization (Java
monitors) to add a Terracotta transaction in every method. In Full SSI mode, we
apply ’getters and setters’ instrumentation, in order to add synchronization at its
lowest level, on field access and array writes. We transform individual get and set
operations into invocations to synchronized methods, automatically generated,
that perform the equivalent (now synchronized) get and set operation. Therefore,
for adding getters, we implemented an ASM class adapter transformation that
adds a getter for each non-static field. Each getter has the Java synchronized

method modifier and is annotated with the Terracotta AutolockRead annotation
to allow for concurrent reads of the field, but still in the context of a Terracotta
transaction. For generating setters, we implemented a similar class adapter, with
the corresponding AutolockWrite annotation. We also developed equivalent in-
strumentations for static fields.

To use the getters and setters generated, we developed a method adapter that
replaces direct field accesses with method calls. As such, the method adapter
replaces the getfield and putfield instructions with invokevirtual instruc-
tions that will invoke the generated corresponding getters and setters. Equiva-
lent getstatic and putstatic instructions will be replaced by invokestatic

instructions that will invoke the corresponding static getters and setters. In array
access, writes using array store instructions also need synchronization at some
point, if the array is in shared object space. Considering this scenario, we devel-
oped a new class with static methods that consumes exactly the same arguments
and performs the array store inside a synchronized block. Our method adapter
will then replace the array store instruction by an invocation of the method
corresponding to the data type.

4 Evaluation

In this section we are going to describe the methodology used for evaluating the
A2-VM prototype, and its results. We used up to three machines in a cluster,
with Intel(R) Core(TM)2 Quad processors (with four cores each) and 8GB of
RAM. Each machine was running Linux Ubuntu 9.04, with Java version 1.6.0 16
and Jikes RVM base code version 3.1.1, Terracotta Open Source edition, version
3.3.0, and multi-threaded Java applications that have the potential to scale well
with multiple processors, taking advantage of the extra resources available in
terms of computational power and memory.

4.1 Policy Evaluation and Resource Monitoring

The first part of our performance evaluation regards the resource-aware VM
and its impact on rules’ evaluation during regular VM operations.Therefore we
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Fig. 6: Policy evaluation cost

conducted a series of tests, measuring different aspects of a running applica-
tion, starting from: i) the overhead introduced in the consumption of a spe-
cific resource, to ii) the overhead of our JSR 284 implementation, and to iii)
policy evaluation in a complete benchmark scenario. All these evaluations are
made locally in a single modified Jikes RVM (version 3.1.1), compiled with the
production profile5.

In Figure 6.a we can observe the evolution of the overhead introduced to
thread creation, by measuring average thread creation and start time, as the
policy engine has increasingly larger numbers of rules to evaluate, up to 250
(simulating a highly complex policy). The graph shows that this overhead, while
increasing, does not hinder scalability as it is very small, ranging around 500
microseconds.

In Figure 6.b we evaluate whether resource monitoring and policy evaluation
(with 200 constraints) introduce any kind of performance degradation as more
and more threads are created, resources consumed. Figure 6.b clearly shows
(omitting Garbage Collection spikes) that thread creation time does not degrade
during application execution, being around 1 millisecond; although subject to
some variation, it presents no lasting degradation.

The previous results were obtained monitoring only a single resource, i.e.
number of application threads. For other counted resources, e.g. number of bytes
sent and received, similar results are expected. Although the allocation of new
objects can also be seen as a counted resource, e.g. number of bytes allocated
in heap, it is more efficient to evaluate it differently. The cost of checking for
constraints regarding object allocation was thus transferred to the garbage col-
lection process, leaving the very frequent allocation operation free of additional
verifications.

5 it includes a two-generation garbage collector [6] and the optimized and adaptive
compilation system.
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Fig. 7: Macro evaluation of an instance of A2-VM

Figure 7.a presents the duration of each GC cycle during the execution of Da-
Capo’s benchmark [5] 6. lusearch, with and without evaluating constraints on
heap consumption (i.e. RAM enabled and disabled). The lusearch benchmark
was configured with a small data set, one thread for each available processor
(i.e. four threads) and the convergence option active, resulting in some extra
warm up runs before the final evaluation. Because of the generational garbage
collection algorithm used in our modified Jikes RVM, we can observe many small
collection cycles, interleaved with some full heap transversal and defragmenta-
tion operations. The two runs share approximately the same average execution
time and a similar average deviation: 1.38 ± 0.31ms and 1.38 ± 0.27ms, where
the former value is when the RAM module is enabled and the last when RAM is
disabled. With these results we conclude that performance of object allocation
and garbage collection is not diminished with the extra work introduced.

To conclude the evaluation of the RAM module, we stressed an instance
of our resource-aware VM with four macro benchmarks, as presented in Fig-
ure 7.b. These four benchmarks are multi-threaded applications, which allows
us to do a macro evaluation of the proposed modifications. During the execution
of these benchmarks there were three resources being monitored (and eventually
constrained): the number of threads, the total allocated memory and the CPU
usage. The constraints used in evaluation did not restrain the usage of resources
so that the benchmarks could properly assess the impact of monitoring different
resources simultaneously in real applications (as opposed to the specific bench-
marks presented previously in Figures 6 and 6. The results show only a negligible
overhead: 3% in average.

6 The version 9.12 used in the evaluation of A2-VM ’s RAM module is available at
http://www.dacapobench.org/



4.2 Cooperative Scheduling

For micro-benchmarking purposes, we developed two sample applications (Fi-
bonacci, Matrix by vector multiplication). The Fibonacci application computes
Fibonacci numbers using Binet’s Fibonacci number formula. It takes the maxi-
mum number of Fibonacci to compute, along with the number of threads, and
splits the workload by having each thread compute a number of Fibonacci num-
bers corresponding to the maximum given divided by the number of threads. For
the execution time measurements, we configured our application to compute the
first 1200 numbers of the Fibonacci sequence, with a number of threads directly
proportional to the number of threads available. Also, we tested our application
using only the Terracotta middleware, to have a general idea of how the usage
of the original Terracotta platform impacts the performance (this is the price to
pay for the memory scalability and elasticity it provides). We considered two dif-
ferent scenarios for the tests: Terracotta Inst. only and Terraocotta Inst +
Sharing. The former tested the application with only the Terracotta bytecode
instrumentations activated, while the latter also shared the same data structures
shared in the Identity and Full SSI modes. Finally, we tested our application in
a standard local JVM, for comparison purposes with our distributed solution.
The results are presented in Figure 8 (note that results for 2 and 4 threads refer
to execution on a single quad-core node).

As we can observe in the graph, the overhead introduced is not much, as
we only share a relatively small array in each thread for storing the Fibonacci
numbers, along with some auxiliary variables. By adding our middleware, we
introduce an extra overhead which is not very significant, even when running it
in Full SSI mode and as such, it is possible to obtain smaller execution times by
adding more nodes to the Terracotta cluster.

We also developed a multi-threaded application that multiplies a matrix by
a vector, splitting the matrix rows across the threads. For the execution time
measurements, we tested our application by multiplying a matrix of 32768 rows
by 32768 columns and a vector of 32768 positions. As with previous applications,
we ran the matrix by vector multiplication with no more than one thread per
processor and measured the time taken by each mode with two, four, eight
and twelve processors. We also tested our application in a standard local JVM,
for comparison purposes with our distributed solution. The results for Identity
and Full SSI mode are presented in Figure 9. Recall that distributed scheduling
is only used for threads above 4; and that local execution without Terracotta
(although not scalable w.r.t. memory and CPU) naturally beats local execution
with Terracotta instrumentation in the limited scenario of a single-node.

As we can observe in the graph, the Terracotta bytecode instrumentations
adds a small overhead, even when we do not share any data in the DSO. By
adding the same data structures that are shared in both Identity and Full SSI
modes, the execution times of the application in Terracotta for two and four
threads are very similar to the ones presented by Identity mode, for the same
number of threads. Therefore, we can obtain better execution times by using
the extra processors. The Full SSI mode adds a very significant overhead (albeit
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only necessary for applications that are not explicitly synchronized, probably a
minority), having execution times much greater than any of its counterparts,
as every write in an array of results needs to be propagated to the Terracotta
Server.

5 Related Work

Monitoring low level aspects of a computer system regarding the execution of
a given application must be done with low impact in the overall application’s
performance. Sweeney et al. [23] aims to accomplish these goals using hardware
performance counters. They extended the Jikes RVM with a performance mon-
itor layer, interacting with a native C library. Although relevant, in fact, they
do not support any kind of restriction on resource consumption. Regarding im-
plementation, they rely on a previous version of Jikes RVM and its N-M thread
mapping (where there were N VM threads mapped by the runtime to M native
threads), while the current version already uses a 1-1 mapping to native threads.

For runtime mechanisms, Price et al. [21] describes a method for modifying
the garbage collector to measure the amount of live memory reachable from each
group of threads. Their implementation is also based on an older version of Jikes



RVM but the algorithms proposed could be applied to our system and further
extended (i.e. the work presented in [21] does not support tracing collectors).
They give some usage scenarios for the information accounted, but leave as an
open issue the building of a policy driven framework.

Some system exchange low level precision and additional overhead for the
sake of portability. Binder’s profiling framework [4] statically instruments the
core runtime libraries, and dynamically instruments the rest of the code. The
instrumented code periodically calls pure Java agents to process and collect
profiling information.

Some high level virtual machines have been augmented or designed from
scratch to integrate resource accounting [12, 22, 3, 11]. MVM [11] is based on
the Hotspot virtual machine. It supports isolated computations, akin to address
spaces, to be made in the same instance of the VM. This abstraction is called iso-
late. Another distinguishing characteristic is the capacity to impose constraints
regarding consumption of isolates. MVM resource management work is related
to the Java Specification Request 284 [13]. Our work builds on this JSR and uses
a widely accessible VM. MVM only runs on Solaris on top of SPARC’s hardware.
The work in [22] and [3] enables precise memory and CPU accounting. Never-
theless they do not provide an integrated interface to determine the resource
consumption policy, which may involve VM, system or class library resources.

Cluster-aware high language virtual machines have been a topic of inter-
est for some time. They generically address three main problems: the resource
monitoring problem, the migration of workload and a global address reference
space. The architecture presented in [10] federates the multi-task virtual ma-
chine [11], forming a cluster where there are local and global resources that can
be monitored and constrained. However, Czajkowski’s work lacks the capacity to
relocate workload across the cluster. Regarding policies, their’s are only defined
programmatically and cannot be changed without recompiling the programs/li-
braries responsible by clustering mechanisms (e.g. load balancer).

The Jessica VM thread migration schemes have recently been improved to
take into account the dependency between threads [17]. To preserve locality
of objects, a stack-based mechanism is proposed to profile the set of objects
which are tightly coupled with a migrant thread. The mechanisms and algorithms
presented in this work can be explored in our system to determine the node where
to spawn new threads. Moreover, by leveraging the support for a distributed
shared object space in A2-VM , thread migration needs not know in advance,
with so fine-grained detail, which objects are more tightly coupled with a thread,
as they can be fetched later on when accessed again.

In [24], Zhang et al. present VCluster, a thread migration middleware ad-
dressing both tightly coupled shared-memory multiprocessors and loosely cou-
pled distributed memory multiprocessors. Their work focus on thread inter-
communication and migration mechanisms. To use the VCluster middleware,
the programmer must explicitly define what is the high-level thread state, rel-
evant to be migrated to other node. In our work, the application source code
does not need to be modified.



Grid systems have also been designed to take into account each node’s own
resources and task requirements. The work in [9] employees a multi-layer (CPU,
node and site) set of reconfiguration strategies to dynamically adapt grid users’
jobs to changes in the available CPU resources at each node. This adaptation
is focused solely on scheduling the task to a different node, but once the task
is scheduled, no further adaptation is possible. The task, and all its comprised
threads, are run until completion on the same node. Our research also aims to
dynamically adapt the runtime parameters and/or algorithms activated at the
virtual machine in each node. Furthermore, resource monitoring is carried out
during task execution and its threads can be spawned on less loaded nodes in
the cluster.

6 Conclusion

In this document we described the architecture, implementation issues, and eval-
uation of A2-VM , a research effort to design a cooperative Java virtual ma-
chine, to be deployed on clusters, able to manage resources autonomously and
adaptively. It aims at offering the semantics of distributed execution environ-
ment transparently across clusters, each executing an instance of an extended
resource-aware VM for the managed language Java.

Semantically, this execution environment provides a partitioned global ad-
dress space where an application uses resources in several nodes, where objects
are shared, and threads are spawned and scheduled globally. Regarding its oper-
ation, A2-VM resorts to a policy-driven adaptability engine that drives resource
management, global scheduling of threads, and determines the activation of other
coarse-grained mechanisms (e.g., checkpointing and migration among VMs).

In summary, the goal of such an infrastructure is to provide more flexibility,
control, scalability and efficiency to applications running in clusters.
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