
                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 46

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 47

ABSTRACT:

Cloud storage services have become commercially pop-
ular due to their overwhelming advantages. To provide 
ubiquitous always-on access, a cloud service provider 
(CSP) maintains multiple replicas for each piece of data 
on geographically distributed servers. A key problem of 
using the replication technique in clouds is that it is very 
expensive to achieve strong consistency on a worldwide 
scale. In this paper, we first present a novel consistency 
as a service (CaaS) model, which consists of a large data 
cloud and multiple small audit clouds. In the CaaS model, 
a data cloud is maintained by a CSP, and a group of users 
that constitute an audit cloud can verify whether the data 
cloud provides the promised level of consistency or not. 
We propose a two-level auditing architecture, which only 
requires a loosely synchronized clock in the audit cloud. 
Then, we design algorithms to quantify the severity of vi-
olations with two metrics: the commonality of violations, 
and the staleness of the value of a read. Finally, we de-
vise a heuristic auditing strategy (HAS) to reveal as many 
violations as possible. Extensive experiments were per-
formed using a combination of simulations and realcloud 
deployments to validate HAS.

EXISTING SYSTEM:

By using the cloud storage services, the customers can  »
access data stored in a cloud anytime and anywhere using 
any device, without caring about a large amount of capi-
tal investment when deploying the underlying hardware 
infrastructures.

The cloud service provider (CSP) stores data replicas  »
on multiple geographically distributed servers. 

Where a user can read stale data for a period of time.  »

The domain name system (DNS) is one of the most popu-
lar applications that implement eventual consistency. Up-
dates to a name will not be visible immediately, but all 
clients are ensured to see them eventually.

DISADVANTAGES OF EXISTING SYS-
TEM:

The replication technique in clouds is that it is very  »
expensive to achieve strong consistency.

Hard to verify replica in the data cloud is the latest one  »
or not.

PROPOSED SYSTEM:

In this paper, we presented a consistency as a service  »
(CaaS) model and a two-level auditing structure to help 
users verify whether the cloud service provider (CSP) is 
providing the promised consistency, and to quantify the 
severity of the violations, if any. 

With the CaaS model, the users can assess the quality  »
of cloud services and choose a right CSP among various 
candidates, e.g, the least expensive one that still provides 
adequate consistency for the users’ applications.

ADVANTAGES OF PROPOSED SYSTEM:

Do not require a global clock among all users for total  »
ordering of operations.

The users can assess the quality of cloud services. »
choose a right CSP »
Among various candidates, e.g, the least expensive one  »

that still provides adequate consistency for the users’ ap-
plications.

Consistency as a Service: Auditing Cloud Consistency

Challa Haritha 
Dept of Computer Science Engineering,

SKR College of Engineering and Technology, 
Nh-5, Kondurusatram, Manubolu, Spsr Nellore,Ap.

Nagala Venkatadri 
Associate Professor,
Dept of CSE & It,

SKR College of Engineering and Technology, 
Nh-5, Kondurusatram, Manubolu, Spsr Nellore,Ap.



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 48

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 49

SYSTEM ARCHITECTURE:

MODULES :

1.System Module
2.User operation table
3.Local Consistency Auditing
4.Global Consistency Auditing

MODULES DESCRIPTION:
1.System Module:

•In the first module, we develop the System Module with 
User Module, Admin Module, and Auditor Module. 
•In user module, user should register their details and get 
the secret key for login and user can upload the file re-
garding the auditing. In user module, the user uploaded 
files can be stored in cloud database. Auditor can view the 
file from the database it can be much secured.
•In admin module admin can view all the user details; 
user uploads details, and TPA activities regarding the au-
diting strategy.
•In auditor module, auditor can do the auditing based on 
the heuristic auditing strategy. It relates with document 
verification. Auditor can check the auditing file he can re-
ject or accept the file he can revise the report and check 
whether it’s good or bad. And auditor can give revision 
report like accept or waiting. If status in accept means 
user can view the file else status is waiting means user 
cant view the file.

2.User Operation Table:
Each user maintains a UOT for recording local operations. 
Each record in the UOT is described by three elements: 
operation, logical vector, and physical vector. While issu-
ing an operation, a user will record this operation, as well 
as his current logical vector and physical vector, in his 
UOT. Each user will maintain a logical vector and a phys-
ical vector to track the logical and physical time when an 
operation happens, resepectively.

3.Local Consistency Auditing:

Local consistency auditing is an online algorithm. In this 
module, each user will record all of his operations in his 
UOT. While issuing a read operation, the user will per-
form local consistency auditing independently.

4.Global Consistency Auditing:

Global consistency auditing is an offline algorithm. Peri-
odically, an auditor will be elected from the audit cloud 
to perform global consistency auditing. In this case, all 
other users will send their UOTs to the auditor for obtain-
ing a global trace of operations. After executing global 
auditing, the auditor will send auditing results as well as 
its vectors to all other users. Given the auditor’s vectors, 
each user will know other users’ latest clocks up to global 
auditing.

The logical vector is updated via the vector clocks al-
gorithm [8]. The physical vector is updated in the same 
way as the logical vector, except that the user’s physical 
clock keeps increasing as time passes, no matter whether 
an event (read/write/send message/receive message) hap-
pens or not. The update process is as follows: All clocks 
are initialized with zero (for two vectors); The user in-
creases his own physical clock in the physical vector 
continuously, and increases his own logical clock in the 
logical vector by one only when an event happens; Two 
vectors will be sent along with the message being sent.



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 48

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 49

When a user receives a message, he updates each element 
in his vector with the maximum of the value in his own 
vector and the value in the received vector (for two vec-
tors). To illustrate, let us suppose that there are three users 
in the audit cloud, Alice, Bob, and Clark, where IDAlice 
< IDBob < IDClark. Each user may update the vectors as 
shown in Fig. 3. 

If the first event for Alice is W(K, a), the first record in Al-
ice’s UOT is [W(K, a),< 1, 0, 0 >,< 1, 0, 0 >]. This means 
that Alice writes value a to data identified by key K when 
both her physical and logical clocks are 1. Furthermore, 
when this event happens, she has no information about 
other users’ clocks, which are thus set with the initial val-
ue 0. Note that, since there is no global time in the audit 
cloud, the number of clock ticks in each user’s physical 
clock may be different, e.g., in Fig. 3, when Alice’s physi-
cal clock passed seven clock ticks, Bob’s physical clock 
passed only four ticks.

C. Overview of Two-Level Auditing StructureVogels [12] 
investigated several consistency models provided by com-
mercial cloud systems. Following their work, we provide 
a two-level auditing structure for the CaaS model. At the 
first level, each user independently performs local audit-
ing with his own UOT. The following consistencies (also 
referred to as local consistencies) should be verified at 
this level:Monotonic-read consistency. If a process reads 
the value of data K, any successive reads on data K by 
that process will
.
Algorithm 1 Local consistency auditing
Initial UOT with 
while issue an operation op do
if op = W(a) then
record W(a) in UOT
if op = r(a) then
W(b)  UOT is the last write
if W(a) → W(b) then
Read-your-write consistency is violated
R(c)  UOT is the last read
if W(a) → W(c) then
Monotonic-read consistency is violated
record r(a) in UOT
always return that same value or a more recent value.
Read-your-write consistency. The effect of a write by a 
process on data K will always be seen by a successive 
read on data K by the same process.

Intuitively, monotonic-read consistency requires that a 
user must read either a newer value or the same value, and 
readyour- write consistency requires that a user always 
reads his latest updates. To illustrate, let us consider the 
example in Fig.4. Suppose that Alice often commutes be-
tween New York and Chicago to work, and the CSP main-
tains two replicas on cloud servers in New York and Chi-
cago, respectively, to provide high availability. In Fig. 4, 
after reading Bob’s new report and revising this report in 
New York, Alice moves to Chicago.Monotonic-read con-
sistency requires that, in Chicago, Alice must read Bob’s 
new version, i.e., the last update she ever saw in New 
York must have been propagated to the server in Chicago. 
Read-your-write consistency requires that, in Chicago, 
Alice must read her revision for the new report, i.e., her 
own last update issued in New York must have been prop-
agated to the server in Chicago. The above models can be 
combined. The users can choose a subset of consistency 
models for their applications. At the second level, an au-
ditor can perform global auditing after obtaining a global 
trace of all users’ operations. At this level, the following 
consistency (also referred to as global consistency in this 
paper) should be verified:

VERIFICATION OF CONSISTENCY PROP-
ERTIES:

In this section, we first provide the algorithms for the two 
level auditing structure for the CaaS model, and then ana-
lyze their effectiveness. Finally, we illustrate how to per-
form a garbage collection on UOTs to save space. Since 
the accesses of data with different keys are independent 
of each other, a user can group operations by key and then 
verify whether each group satisfies the promised level of 
consistency. In the remainder of this paper, we abbrevi-
ate read operations with R(a) and write operations with 
W(a).



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 50

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 51

A. Local Consistency Auditing:

Local consistency auditing is an online algorithm (Alg. 
1). In Alg. 1, each user will record all of his operations in 
his UOT. While issuing a read operation, the user will per-
form local consistency auditing independently.Let R(a) 
denote a user’s current read whose dictating write is W(a), 
W(b) denote the last write in the UOT, and R(c) denote 
the last read in the UOT whose dictating write is W(c).
Read-your-write consistency is violated if W(a) happens 
before W(b), and monotonic-read consistency is violated 
if W(a) happens before W(c). Note that, from the value of 
a read, we can know the logical vector and physical vector 
of its dictating write. Therefore, we can order the dictat-
ing writes by their logical vectors.

B. Global Consistency Auditing:

Global consistency auditing is an offline algorithm (Alg. 
2). Periodically, an auditor will be elected from the au-
dit cloud to perform global consistency auditing. In this 
case, all other users will send their UOTs to the auditor 
for obtaining a global trace of operations. After executing 
global auditing, the auditor will send auditing results as 
well as its vectors to all other 4Let LV (ei)j denote user j’s 
logical clock in LV (ei). LV (e1) < LV (e2) if j[LV (e1)j ≤ 
LV (e2)j ] j[LV (e1)j < LV (e2)j ].
Algorithm 2 Global consistency auditing
Each operation in the global trace is denoted by a vertex
for any two operations op1 and op2 do
if op1 → op2 then
A time edge is added from op1 to op2
if op1 = W(a), op2 = R(a), and two operations come
from different users then
A data edge is added from op1 to op2
if op1 = W(a), op2 = W(b), two operations come from
different users, and W(a) is on the route from W(b) to
R(b) then
A causal edge is added from op1 to op2 Check whether 
the graph is a DAG by topological sorting
Fig. 5. Sample graph constructed with Alg. 2. users. Given 
the auditor’s vectors, each user will know other users’ lat-
est clocks up to global auditing. Inspired by the solution 
in [7], we verify consistency by constructing a directed 
graph based on the global trace. We claim that causal con-
sistency is preserved if and only if the constructed graph 
is a directed acyclic graph (DAG). In Alg.
2, each operation is denoted by a vertex. Then, three kinds 
of directed edges are added by the following rules:

1) Time edge. For operation op1 and op2, if op1 → op2,
then a directed edge is added from op1 to op2.
2) Data edge. For operations R(a) and W(a) that come 
from different users, a directed edge is added fromW(a) 
to R(a).
3) Causal edge. For operations W(a) and W(b) that come 
from different users, if W(a) is on the route from W(b) to 
R(b), then a directed edge is added from W(a) to W(b).
Take the sample UOTs in Table I as an example. The graph 
constructed with Alg. 2 is shown in Fig. 5. This graph is 
not a DAG. From Table I, we know that W(a) → W(d), 
as LV (W(a)) < LV(W(d)). Ideally, a user should first read 
the value of a and then d. However, user Clark first reads 
the value of d and then a, violating causal consistency. To 
determine whether a directed graph is a DAG or not, we 
can perform topological sorting [25] on the graph. Any 
DAG has at least one topological ordering, and the time 
complexityof topological sorting is O(V +E), where V 
is the number of vertexes and E is the number of edges 
in the graph. To reduce the running time of topological 
sorting, we can modify Alg.EVALUATION In this sec-
tion, we compare HAS with a random strategy, denoted as 
Random. To verify the  ffectiveness of HAS, we conduct 
experiments on both synthetic and real violation traces. 
Our experiments are conducted with MATLAB R2010a 
running on a local machine, with an Intel Core 2 Duo 
E8400 3.0 GHz CPU and 8 GB Linux RAM.



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 50

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 51

Synthetic Violation Traces:

We summarize the parameters used in the synthetic viola-
tion traces in Table II. In the random strategy, we random-
ly choose [1, l] auditing reads in each interval, where l is 
the length of an interval. To obtain the synthetic violation 
traces, physical time is divided into 2,000 time slices.

CONCLUSION:

In this paper, we presented a consistency as a service 
(CaaS) model and a two-level auditing structure to help 
users verify whether the cloud service provider (CSP) is 
providing the promised consistency, and to quantify the 
severity of the violations, if any. With the CaaS model, the 
users can assess the quality of cloud services and choose 
a right CSP various candidates, e.g, the least expensive 
one that still provides adequate consistency for the us-
ers’ applications. For our future work, we will conduct a 
thorough theoretical study of consistency models in cloud 
computing.

REFERENCES:

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, 
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, 
et al., “A view of cloud computing,” Commun. ACM, vol. 
53, no. 4, 2010.

[2] P. Mell and T. Grance, “The NIST definition of cloud 
computing (draft),” NIST Special Publication 800-145 
(Draft), 2011.

[3] E. Brewer, “Towards robust distributed systems,” in 
Proc. 2000 ACM PODC.

[4] ——, “Pushing the CAP: strategies for consistency 
and availability,” Computer, vol. 45, no. 2, 2012.



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 52

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 53

[5] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, 
“Causal memory: definitions, implementation, and pro-
gramming,” Distributed Computing, vol. 9, no. 1, 1995.

[6] W. Lloyd, M. Freedman, M. Kaminsky, and D. An-
dersen, “Don’t settle for eventual: scalable causal consis-
tency for wide-area storage with COPS,” in Proc. 2011 
ACM SOSP.

[7] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, 
“What consistency does your key-value store actually 
provide,” in Proc. 2010 USENIX HotDep.

[8] C. Fidge, “Timestamps in message-passing systems 
that preserve the partial ordering,” in Proc. 1988 ACSC.

[9] W. Golab, X. Li, and M. Shah, “Analyzing consis-
tency properties for fun and profit,” in Proc. 2011 ACM 
PODC.

[10] A. Tanenbaum and M. Van Steen, Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, 
2002.

[11] W. Vogels, “Data access patterns in the Amazon.com 
technology platform,” in Proc. 2007 VLDB.

[12] ——, “Eventually consistent,” Commun. ACM, vol. 
52, no. 1, 2009.

[13] M. Brantner, D. Florescu, D. Graf, D. Kossmann, 
and T. Kraska, “Building a database on S3,” in Proc. 2008 
ACM SIGMOD.

[14] T. Kraska, M. Hentschel, G. Alonso, and D. Koss-
mann, “Consistency rationing in the cloud: pay only when 
it matters,” in Proc. 2009 VLDB.

[15] S. Esteves, J. Silva, and L. Veiga, “Quality-of-ser-
vice for consistency of data geo-replication in cloud com-
puting,” Euro-Par 2012 Parallel Processing, vol. 7484, 
2012.

[16] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, 
“Data consistency properties and the trade-offs in com-
mercial cloud storages: the consumers’ perspective,” in 
Proc. 2011 CIDR.

[17] D. Bermbach and S. Tai, “Eventual consistency: how 
soon is eventual?” in Proc. 2011 MW4SOC.

[18] M. Rahman, W. Golab, A. AuYoung, K. Keeton, and 
J. Wylie, “Toward a principled framework for benchmark-
ing consistency,” in Proc. 2012 Workshop on HotDep.

[19] D. Kossmann, T. Kraska, and S. Loesing, “An evalu-
ation of alternative architectures for transaction process-
ing in the cloud,” in Proc. 2010 ACM SIGMOD.

[20] L. Lamport, “On interprocess communication,” Dis-
tributed Computing, vol. 1, no. 2, 1986.

[21] A. Aiyer, L. Alvisi, and R. Bazzi, “On the availability 
of non strict quorum systems,” Distributed Computing, 
vol. 3724, 2005.

[22] J. Misra, “Axioms for memory access in asynchro-
nous hardware systems,” ACM Trans. Programming Lan-
guages and Systems, vol. 8, no. 1, 1986.

[23] P. Gibbons and E. Korach, “Testing shared memo-
ries,” SIAM J. Computing, vol. 26, no. 4, 1997.

[24] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-
lapati, A. Lakshman,A. Pilchin, S. Sivasubramanian, P. 
Vosshall, and W. Vogels, “Dynamo: Amazon’s highly 
available key-value store,” in Proc. 2007 ACM SOSP.

[25] T. Gormen, C. Leiserson, R. Rivest, and C. Stein, 
Introduction to Algorithms. MIT Press, 1990.

About Authors:

1.Challa Haritha: She Was Born In Utukuru [V], 
Sydapuram  [M], S.P.S.R.Nellore [Dt], Andhra Pradesh, 
India. She Received The B.Tech Degree In Computer Sci-
ence & Engineering From Jnt University, Anantapur In 
2012 And Pursuing M.Tech Degree In Computer Science 
& Engineering From Jnt University, Anantapur. She Com-
pleted Her B.Tech Degree In Jb Women`S Engineering 
College,  Renugunta Road, Tirupati [T], Chithoor [Dt], 
Andhra Pradesh And M.Tech Degree In Skr College Of 
Engineering & Technology, Konduru Satram [V], Man-
ubolu [M],  S.P.S.R.Nellore [Dt], Andhra Pradesh, India.



                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 52

                  Volume No: 1 (2015), Issue No: 4 (September)                                                                                          September 2015
                                                                                   www. IJRACSE.com                                                                                                                              Page 53

2.Mr. Nagala Venkatadri He Was Born In 
Andhrapradesh, India. He Received The B.Tech Degree 
From Jnt University, Anantapur And M.Tech Degree 
From Jnt University, Anantapur. He Has 10 Years Experi-
ence In The Field Of Associate Professor. He Had Work-
ing As Associate Professor In Dept. Of Computer Science 
& Engineering And Software Engineering In Skr College 
Of Engineering & Technology, Konduru Satram [V], 
Manubolu [M], S.P.S.R Nellore [Dt], Andhra Pradesh, In-
dia.  He Is Presently Pursuing His Doctorate In Dept. Of 
Computer Science & Engineering. 


