
On demand Resource Allocation Middleware for
Massively Multiplayer Online Games

André Pessoa Negrão, Miguel Adaixo, Luís Veiga and Paulo Ferreira
Distributed Systems Group, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

{andre.pessoa,miguel.adaixo,pjpf,luis.veiga}@tecnico.ulisboa.pt

Abstract—Traditionally, commercial MMOGs are deployed on
large privately owned server clusters with hundreds of computing
devices linked through high bandwidth connections. In this
scenario, the dynamic and unpredictable workload variability of
MMOGs frequently leads to resources being under/over used with
negative impact on playability and/or cost-effectiveness. In our re-
search work, we see cloud computing as a fundamental approach
to mitigate the problem of inefficient resource provisioning, due to
its inherent elasticity properties. Thus, we propose a cloud-aware
middleware for MMOGs, in which virtual machines obtained
from cloud providers are added and removed from the system
according to load changes observed at runtime. In this paper, we
report on our first steps towards such an infrastructure.

I. INTRODUCTION

Supporting large scale and highly interactive applications
such as Massively Multiplayer Online Games (MMOGs) re-
quires an infrastructure capable of processing and disseminat-
ing a large amount of data with high performance and constant
availability. To meet these requirements, commercial MMOG
companies deploy large and expensive private server clusters
provisioned with high bandwidth connections and powerful
machines; for example, World of Warcraft3 uses more than
10000 servers [1], while EverQuest4 employs more than 1500
servers over 13 data centers [2]. Within these infrastructures,
servers are statically assigned to manage a portion of the
game’s virtual world. To cope with workload variability, the
allocation of resources to each partition is based on worst case
scenario predictions on the number of players that are expected
to be located in that partition. This strategy results in an over–
provisioned environment in which a large number of resources
are idle for most of the time. In fact, a study shows that in
Second Life about 30% of the servers are empty all the time,
while only 1% of the servers are continuously accessed [3].

Despite its adoption among commercial games, over-
provisioning is a very inefficient strategy that results in unnec-
essary expenses. Nevertheless, the larger game companies are
willing to pay this price, since over-provisioning i) is easy to
implement and manage and ii) ensures that the game delivers
the interactivity levels demanded by the players. However,
over-provisioning is a conservative fix that is not economically
sustainable in the long term. In addition, it is not an option
for small companies, which are prevented from trying to make
their way into the MMOG environment.

*This work was partially supported by national funds through FCT – Fun-
dação para a Ciência e Tecnologia, under projects PEst-OE/EEI/LA0021/2013
and PTDC/EIA-EIA/113993/2009.

We claim that the inherent elasticity properties of the cloud
computing paradigm [4] make it an ideal tool to provide cost–
efficient resource provisioning for MMOGs. Thus, in this pa-
per we present CloudDReAM (Dynamic Resource Allocation
Middleware), our first iteration towards a cloud-based dy-
namic resource provisioning middleware for MMOGs. Cloud-
DReAM automatically allocates resources from a cloud com-
puting provider whenever the current resources prove insuffi-
cient to handle the load imposed on the system. In addition,
it disposes of previously acquired resources when they are
no longer necessary. This way, CloudDReAM allows game
companies to deploy their own private server clusters without
over–provisioning them, and resort to the services of a cloud
provider when their own resources are not sufficient to handle
the load. As a result, resources are used more efficiently and
the costs of supporting the game are reduced, benefiting every
stakeholder involved.

This paper is structured as follows. Sect. II discusses related
work. Sects. III and IV describe the architecture and imple-
mentation of CloudDReAM. Sect. V presents the experimental
results obtained so far. Finally, Sect. VI concludes the paper.

II. RELATED WORK

Several authors have already identified the advantages of
using the cloud to improve the cost–effectiveness of MMOGs.
Nae et al. proposed a solution that uses neural networks to
predict the load that will affect the game in the near future
[5]. Based on this prediction and the current load, the system
executes a load balancing algorithm that decides which actions
to take (e.g., add/remove a server) [6]. When adding a new
server, however, the system executes a global load balancing
algorithm that includes every active server in the process, a
solution that is not scalable. In our work, we aim at a more
localized and lightweight solution.

Glinka et al. [7] proposed a cloud infrastructure based
on the Real-Time Framework [8]. In their solution, load
balancing only considers replication-based policies (e.g., add
more replicas or migrate users between replicas). Replication,
however, has limited scalability, as it requires each server to
have global knowledge of the system. As the system grows,
the overhead of processing every object becomes a bottleneck
and the performance of the system decays.

Marzolla et al. proposed another cloud based solution in
which servers are either gateways, application servers or
databases [9]. They then use a Queueing Network model to



Internet
Public Cloud

Private Cloud

API

Load
Balancing
Manager

Consistency 
Manager

Server
Network
Manager

Replication
Manager

Session
Manager

API

CloudDReAM CloudDReAM

Server ApplicationClient Application

Session
Manager

Object
Pool

Figure 1. High level architecture of CloudDReAM.

choose from different resource distribution alternatives, with
the goal of minimizing the number of resources assigned to
each tier. Their work assumes that every server in the same
tier has the same load. As a result, their only load balancing
option is to add a new server when the system (as a whole)
is overloaded. This approach is also not cost–effective, since
it does not attempt to redistribute load among the existing
servers before adding a new one.

Najaran et al. [10] propose renting servers from the cloud
and organize them in a P2P network. However, the authors
do not discuss how the system performs load balancing. In
addition, the system employs multicast–based update dissem-
ination, assigning one multicast address to each object, which
is not scalable.

III. CLOUDDREAM

The CloudDReAM middleware (Fig. 1) follows a
Client/Server architecture in which servers, consisting of
Virtual Machines (VMs), are acquired from a public cloud
provider (e.g., Amazon EC21). VMs can also be acquired from
a private cloud managed by the developers of the MMOG,
if available. We distinguish both as public and private VMs,
respectively. We assume no particular type of initial setup,
both regarding the number and type (public or private) of VMs
present. At runtime, however, we prioritize acquiring private
VMs whenever possible.

At the client side, the middleware abstracts the application
from such aspects as data replication and communication with
the server. It receives the events generated by the local user
and updates the application with information received from
the servers. It also maintains a replica pool consisting of the
objects that are of interest to the player, managed according
to Interest Management techniques [11]. For this purpose, we
use the Vector-field Consistency model [12].

At the server side, CloudDReAM is responsible for abstract-
ing the server application from the underlying organization of
the system. In addition, each CloudDReAM server manages
the consistency state of a subset of clients and manages load
balancing. The server comprises three core components: 1) the
Server Network Manager, which deals with server–to–server
communication; 2) the Consistency Manager, responsible for
consistency and interest management; and 3) the Load Bal-
ancing Manager, which takes care of load balancing aspects.

1http://aws.amazon.com/ec2

Our approach to workload distribution is to partition the vir-
tual world into dynamically sized rectangular partitions. Each
partition is assigned to a server which becomes responsible
for the game objects (including players’ avatars) located in
it. Despite this partitioning, players can freely interact with
each other and avatars can move around the virtual world,
transparently switching between partitions.

Each server possesses only a partial view of the network,
i.e, it knows only a subset of the total number of servers of
the network. The partial view of a server always contains the
servers responsible for adjacent partitions (neighbor servers).
In addition, it may also contain a number of other servers,
added to the partial view for load balancing and consistency
management.

One of the servers of the system takes on the special
role of cloud manager, becoming responsible for coordinating
load balancing. Servers contact the cloud manager when they
identify a relevant load event. The cloud manager analyzes
the load status of the server and decides on the best option to
solve the load event.

Each CloudDReAM server continuously monitors its load
status in order to identify relevant load situations. The load
status of a server is composed of one or more load metrics
defined by the developers of the game; these metrics can be,
for example, the CPU or bandwidth usage. For each load
metric defined, corresponding underloaded and overloaded
threshold values are established; when a threshold value is
reached, load balancing is issued. When a server identifies a
threshold violation, it asks the cloud manager to initiate the
load balancing process. Depending on the load event detected
(under or overload), the server executes one of two algorithms,
as we explain next.

1) Server Overloaded: When a VM is overloaded, it needs
to share its workload with another VM. Since renting a VM
from a public cloud encompasses additional costs, Cloud-
DReAM prioritizes sharing load with private resources (which
have a fixed maintenance cost, as they have already been paid
for). When that is not possible, it proceeds by obtaining a
public VM. The algorithm runs as follows.

a) Share load with new private VM: The cloud manager
first verifies if it is possible to launch a new private VM. The
role of the new VM depends on the type of VM in which the
overloaded server is being executed (overloaded VM):

• If the overloaded VM is public, the cloud manager



verifies if it can substitute it with the private VM. This
verification aims at ensuring that after the substitution the
private VM does not become overloaded. If that is the
case, the cloud manager proceeds with the substitution,
terminating the previously overloaded public VM.

• If it is not safe to substitute the public overloaded VM or
the overloaded VM is private, the cloud manager splits
the overloaded VM’s partition in two, assigning one of
its halves to the newly created private VM and the other
to the previously overloaded VM.
b) Share load with active VM: If no private VM is

available, the cloud manager analyzes the load status of the
neighbors of the overloaded VM. If any of these is capable
of receiving the extra workload associated with managing one
half of the overloaded server’s partition, the cloud manager
assigns that half to it. The advantage of sharing load with
neighbors is that it limits the number of servers that need to
communicate during the standard operation of the system. In
addition, it minimizes the migration overhead, since neighbors
already share some information about each others’ state.

c) Share load with new public VM: If the previous
options are not possible, the cloud manager tries to acquire
a public VM as follows.

• If the overloaded server runs on a public VM, the
cloud manager first analyzes if it possible to substitute
it with the newly acquired VM. If so, it proceeds with
the workload migration and can, then, dispose of the
overloaded VM; once more, the goal is to minimize the
costs of renting public resources. Otherwise, the partition
is split between the two VMs.

• If the overloaded VM is private, the cloud manager
proceeds in the opposite manner: it first tries to split the
partition between the private and the new VM; if that is
not possible, it migrates the state (replacing the private
VM with the public one).

2) Server underloaded: Having an underloaded server
means the game is incurring in unnecessary expenses. As such,
CloudDReAM tries to improve workload distribution by, if
possible, removing an underloaded VM from the system. The
algorithm executed in an underload situation runs as follows.

a) Public VM underloaded: When the underloaded VM
is public, CloudDReAM first verifies if the partitioned man-
aged by the overloaded server can be merged with any of the
neighbor partitions. If so, the two partitions are merged and
assigned to the neighbor server. Otherwise, CloudDReAM ver-
ifies if it is possible to migrate the workload of the VM to a
private VM (either an active or a new one). If none is available,
the VM is not removed.

Even when the system detects that a VM should be re-
moved, the removal process is not necessarily carried away
immediately. The reason for this is that, typically, VMs are
acquired for a pre-established amount of time and are paid
for in advance. As a result, removing the VM before the
expiration of the rental period has no advantage in terms
of cost reduction. In addition, maintaining the VM until the
expiration date allows the system to respond to future overload

situations in a more efficient and stable way.
b) Private VM underloaded: If the underloaded VM is

private, there is no advantage in removing it, since the costs
of executing it are fixed. As such, in order to make a more
efficient use of the available resources, we try to maximize
the use of the private, self–owned resources by searching for
a public VM to substitute.

IV. IMPLEMENTATION

We implemented a prototype of CloudDReAM in C# using
Microsoft’s .Net platform. The implementation of the middle-
ware follows the design described in Sect. III and depicted
in Fig. 1. CloudDReAM provides an API for applications to
interact with the middleware. The API provides functions for
the application, both at the client and the server side, to read
and update the objects in the pool, as well as adding and
removing objects, among others.

To get insight from the perspective of a developer using
CloudDReAM, we extended the multiplayer game Cube 2:
Sauerbraten1 over our middleware. Our choice for Sauerbraten
was due to the availability and good documentation of the
source code. Despite being a First Person Shooter, it allowed
us to experiment our middleware with a real game. Our
extension to Sauerbraten required us to modify only 5 source
files (plus a few header files for includes). In total, we wrote
less than 300 lines of code, most of which were located on
a few methods. In all, the footprint of CloudDReAM in the
implementation of the game is significantly small, specially
when compared to the game’s full implementation, which
comprises more than 240K lines of code.

V. EVALUATION

Being in the preliminary stages of evaluation, we conducted
a simple test case to analyze our middleware and identify
improvements for future work. The test case starts with two
servers to which 200 simulated players are connected. Then,
100 more players are added to the simulation every minute, up
to a total of 600 players. Players are evenly distributed across
the simulated virtual world and move according to the random
waypoint mobility model. We compare the results obtained
by CloudDReAM with two static infrastructure scenarios, one
with 2 fixed servers and the other with 8. Our simulations were
executed on a four node cluster of Intel Core2 Quad Q6600
2.40GHz machines with 8GB of RAM, connected through a
100Mbps LAN.

In our experiments we considered two main load metrics,
CPU usage and frame rate. The frame rate is a measure of the
throughput of the game that broadly corresponds to the number
of times (frames) per second that a server is able to provide
players with information about game events. We consider as
overload threshold for this metric 5 or less frames per second.
As for the CPU metric, we consider (based on measurements
we made) 60% CPU usage as our overload threshold.

Figure 2 shows the CPU usage results. Labels Avg_2s and
Avg_8s show the average CPU usage for the 2 and 8 servers

1http://sauerbraten.org/



0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Avg_2s
Avg_8s
CD_S1
CD_S2
CD_S2
CD_S4

Time(m)

C
P

U
 u

sa
ge

 (%
)

Figure 2. Server load

static scenarios, respectively. Labels CD_S1 to CD_S4 show
the CPU load of the CloudDReAM servers. Figure 3 shows the
average frame rates obtained by the static and CloudDReAM
scenarios. For both figures, when averages are shown it is
because the values of the different servers are identical.

The first thing that is clear from the figures is the in-
efficiency of static provisioning. Specifically, the 8 servers
scenario (labeled Avg_8s in the figures) is an example of
overprovisioning, in which the server load averages 20% of
CPU usage and never surpasses the 25% mark. On the other
hand, the 2 servers scenario exemplifies an underprovisioning
situation. In this case, the performance of the system starts
decaying 5 minutes into the simulation (the time when the
number of players amounts to 500), as shown by the drop
to 5 frames per second (fps). When the number of players
increases to 600, the frame rate drops to 1.5 fps, which would
result in a performance decay observable by the players.

CloudDReAM, on the other hand, is able to make a more
efficiently use of resources by adapting to load at runtime. This
adaptation is initiated at the 2 minute mark, the time when
the two active servers detect that their CPU load is above the
overload threshold. At this moment, the servers contact the
Cloud Manager, which identifies the necessity of launching
two new VMs, each to share the load with one of the active
VMs. Due to the delays associated with booting the VMs, the
new servers take between 2 and 3 minutes to become fully
operational. During this delay, the performance of the system
is affected, dropping to 5 fps at minute 3 and then to 1.5 fps
at minute 4. When the VMs finally become operational, the
performance is restored to the desired levels and the frame
rate increases back to 10 fps.

The main conclusion we extract from this evaluation is the
need to add a load prediction component to CloudDReAM.
With this component, CloudDReAM would be able to antic-
ipate impending overload situations and launch VMs sooner,
preventing the performance decays that currently occur while
VMs are starting up. In addition, this component should
be complemented with fallback mechanisms that are able
to minimize the performance loss when predictions fail. We
intend to address these issues in future work.

VI. CONCLUSIONS

In this paper we proposed CloudDReAM, our first step
towards a cost–effective resource provisioning middleware for

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Avg_2s
Avg_8s
Avg_CD

Time (m)

F
ra

m
es

 p
er

 s
e c

on
d

Figure 3. Frame rate

MMOGs. CloudDReAM monitors the load on the servers and
issues load balancing when the load measured reaches pre–
established thresholds. If necessary, CloudDReAM obtains
new resources from a cloud provider or disposes of previously
acquired VMs when it determines they are no longer needed.
Our solution allows game infrastructures to be deployed con-
servatively (w.r.t. resource quantity) and scale continuously
according to runtime load, allowing game managers to pay
for infrastructure according to demand. As such, the costs of
maintaining the game are reduced and the active resources are
used more efficiently, opens the gaming environment to new
companies that would, otherwise, be forced to incur in a high
and risky initial investment.

REFERENCES

[1] S. Gorlatch, F. Glinka, and A. Ploss, “Towards a scalable real-time
cyberinfrastructure for online computer games,” in ICPADS 2009, 2009,
pp. 722 –727.

[2] D. Kushner, “Engineering everquest,” IEEE Spectrum, vol. 42, no. 7,
pp. 34–39, Jul. 2005.

[3] M. Varvello, S. Ferrari, E. Biersack, and C. Diot, “Exploring second
life,” IEEE/ACM Trans. Netw., vol. 19, no. 1, pp. 80–91, Feb. 2011.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[5] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” IEEE Trans. on Par. and Dist.
Syst., vol. 22, no. 3, pp. 380 –395, March 2011.

[6] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load
balancing of massively multiplayer online games,” in Grid Computing
(GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp.
9–16.

[7] S. Gorlatch, D. Meilaender, A. Ploss, and F. Glinka, “Towards bringing
real-time online applications on clouds,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on, 2012, pp.
57–61.

[8] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch, “Rtf: a real-time
framework for developing scalable multiplayer online games,” in ACM
SIGGCOM NetGames ’07. ACM, 2007, pp. 81–86.

[9] M. Marzolla, S. Ferretti, and G. D’Angelo, “Dynamic resource pro-
visioning for cloud-based gaming infrastructures,” Comput. Entertain.,
vol. 10, no. 3, pp. 4:1–4:20, Dec. 2012.

[10] M. T. Najaran and C. Krasic, “Scaling online games with adaptive
interest management in the cloud,” in ACM SIGGCOMM NetGames
’10. IEEE Press, 2010, pp. 9:1–9:6.

[11] K. L. Morse, “Interest management in large-scale distributed simula-
tions,” University of California, Irvine, Department of Information and
Computer Science, Technical Report ICS-TR-96-27, Jul. 1996.

[12] L. Veiga, A. Negrão, N. Santos, and P. Ferreira, “Unifying divergence
bounding and locality awareness in replicated systems with vector-field
consistency,” J. Internet Services and Applications, vol. 1, no. 2, pp.
95–115, 2010.




