
A Java Runtime Environment

for Cloud Computing

José Manuel de Campos Lages Garcia Simão

59714/D

Fevereiro de 2012

ii

Contents

1 Introduction 1

1.1 Published work . 4

1.2 Outline . 4

2 The Adaptability Loop of Virtual Machines 5

2.1 Introduction . 5

2.2 Virtual Machines Fundamentals . 7

2.2.1 Computation as a resource . 8

2.2.2 Memory as a resource . 10

2.3 Adaptation techniques and taxonomy . 12

2.3.1 System Virtual Machine . 13

2.3.2 High-Level Language Virtual Machine 15

2.3.3 The RCI Framework for classification of VM’s adaptation techniques 18

2.4 Systems and their classification . 22

2.4.1 System Virtual Machine . 22

2.4.2 High Level Language Virtual Machines 27

2.4.3 Quantitative comparison of different adaptability techniques 32

2.5 Conclusions . 33

3 Architecture of the QoE-JVM 37

3.1 Overall system view . 37

3.2 Resource Awareness and Control . 40

3.3 Checkpointing and migration of the execution state 41

3.4 Cluster-wide execution space . 41

4 Resource Management Mechanisms for Managed Runtimes 43

4.1 Resource accounting and adaptability . 43

4.2 Concurrent checkpoint and migration . 46

iii

4.3 Cluster-wide thread scheduling . 48

4.4 Evaluation . 49

5 Driving Adaptability with Quality of Execution 51

5.1 QoE-JVM Economics . 51

5.1.1 Progress monitoring . 55

5.1.2 Resource types and usage . 56

6 Conclusions 59

iv

Abstract

place holder text from papers

Applications running on cluster-enabled infrastructures (e.g. Cloud computing) are

supported by different levels of virtualization. In these environments, applications run on

high language virtual machines (e.g. JVM, CLR), which make use of (guest) operating

system services. At this stack level, common hardware is shared through system virtual

machine (e.g. Xen, VMWare Server).

The effective allocation of resources to fit the application’s needs (e.g. execution time,

monetary cost) and owner’s privileges is a challenging task. System virtual machines

provide some tools and programmatic interfaces to determine the management policy

of the fine-grained resources they control (e.g. memory reservation, CPU proportional

share). Nevertheless, we are still far from being able to influence an application behavior,

effectively (wide range and impact), efficiently (low overhead) and flexibly (with no or

little intrusive coding).

Cloud infrastructures execute workloads from different tenants supported by a non

trivial virtualization stack, which includes high language virtual machines, operating sys-

tem services and system-level virtual machines. As more and more applications target

high level virtual machines (such as Java VM), these comprise a relevant abstraction layer

not properly explored to enhance resource usage, control, and effectiveness. We propose an

economics-inspired model to balance relative resource savings (e.g., to prioritize tenants)

and perceived performance degradation, resulting in a yield of applying a given manage-

ment strategy. The model can be used to drive a resource scheduling algorithm aiming to

determine where the reduction will be more economically effective, i.e., will contribute in

lesser extent to performance degradation. We discuss how critical resources (heap size and

CPU) can be allocated and transferred among high level virtual machines. Experimental

evaluation shows that the application of our model, when choosing to take the appropriate

resource allocation, results in a significant yield to the cloud provider while, in most cases,

execution degradation is small.

ii

Chapter 1

Introduction

In today’s scenarios of large scale computing and service providing, the deployment of dis-

tributed infrastructures, namely computer clusters, is a very active research area. In recent

years, the use of Grids, Utility and Cloud Computing, shows that these are approaches

with growing interest and applicability, as well as scientific and commercial impact.

Managed languages (e.g., Java, C#) are becoming increasingly relevant in the devel-

opment of large scale solutions, leveraging the benefits of a virtual execution environment

(VEE) to provide secure, manageable and componentized solutions. Relevant examples

include work done in various areas such as web application hosting, data processing, enter-

prise services, supply-chain platforms, implementation of functionality in service-oriented

architectures, and even in e-Science fields (e.g., with more and more usage of Java in the

context of physics simulation, economics/statistics, network simulation, chemistry, com-

putational biology and bio-informatics [Holland et al., 2008, Gront and Kolinski, 2008,

López-Arévalo et al., 2007], there being already many available Java-based APIs such as

Neobio).1

To extend the benefits of a local VEE, while allowing scale-out regarding performance

and memory requirements, many solutions have been proposed to federate Java virtual

machines [Zhang et al., 2008, Aridor et al., 1999, Zhu et al., 2002], aiming to provide a

single system image where the managed application can benefit from the global resources

1http://www.bioinformatics.org/neobio/

1

of the cluster. If this image has elasticity in the sense that resources are made available

proportionally to the effective need, and if these resources are accounted/charged as they

are used, we can provide an object oriented virtual machine (OO-VM) across the cluster,

as an utility. If these changes are made dynamically (instead of explicitly by their users)

we will have an adaptive and resource-aware virtual machine, that can be offered as a

value-added Platform-as-a-Service (PaaS).

A VEE cluster-enabled environment can execute applications with very different re-

source requirements. This leads to the use of selected algorithms for runtime and system

services, aiming to maximize the performance of the applications running on the cluster.

However, for other applications, for example the ones owned by restricted users, it can

be necessary to impose limits on their resource consumption. These two non functional

requirements can only be fulfilled if the cluster can monitor and control the resources it

uses both at the VEE and distributed level, and whether the several local VEE, each

running on its node, are able to cooperate to manage resources overall.

Existing approaches to cluster-enabled runtimes adaptability and internal mechanisms

such as checkpointing and resource-awareness, are still not adequate for this intended

scenario as they have not been combined into a single infrastructure for unmodified appli-

cations.

Traditional mechanisms of checkpoint and migration are supported at process level or

at system virtual machine. These approaches are insufficient because they either require

to store/transfer information that is not on the application itself (e.g. information on the

operating system on which it runs), or limit the portability of it. Therefore, as the majority

of the object-oriented programming languages execute their applications on object-oriented

virtual machines (OO VM, also known as HLL VM2, e.g. Java VM, .NET CLR), this thesis

proposes proposes an approach to the checkpoint and migration mechanisms at this level.

Existing public runtimes (Java, CLR) are not resource-aware. They are mostly

bounded by the underlying operative system. On the other hand, in the research com-

munity, the proposed runtimes are focused on accounting resource usage to avoid ap-

plication’s bad behavior, and do not support the desired reconfigurability of their in-

ner mechanisms [Geoffray et al., 2009, Binder et al., 2009]. There is no notion of re-

2High-Level Language Virtual Machine.

2

source effectiveness in the sense that when there are scarce resources, there is no at-

tempt to determine where to take such resources from applications (i.e. either isola-

tion domains or the whole VM) where they hurt performance the least. Others have

recently shown the importance of adaptability at the level of HLL-VMs, either based

on the application performance [Michael Hines et al., 2011] or by changes in their envi-

ronment [Duran-Limon et al., 2011]. Nevertheless, they are either dependent on a global

optimization phase, limited to a given resource, or make the application dependent on a

new programming interface.

Therefore, such a cluster-enabled managed environment can adapt itself to the exe-

cution of applications, from multiple tenants, with different (and sometimes dynamically

changing) requirements in regard to their quality-of-execution (QoE). QoE aims at cap-

turing the adequacy and efficiency of the resources provided to an application according to

its needs. It can be inferred coarsely from application execution time for medium running

applications, or request execution times for more service driven ones such as those web-

based, or from critical situations such as thrashing or starvation. Also, it can be derived

with more fine-grain from incremental indicators of application progress, such as execu-

tion phase detection [Nagpurkar et al., 2006], memory pages updates, amount of input

processed, disk and network output generated. In our ongoing work, we are still focusing

only on application execution times.

QoE can be used to drive a VM economics model, where the goal is to incrementally

obtain gains in QoE for VMs running applications requiring more resources or for more

privileged tenants. This, while balancing the relative resource savings drawn from other

tentants’ VMs with perceived performance degradation. To achieve this goal, certain

applications will be positively discriminated, reconfiguring the mechanisms and algorithms

that support their execution environment (or even engaging available alternatives to these

mechanisms/algorithms). For other applications, resources must be restricted, imposing

limits to their consumption, regardless some performance penalties (that should also be

mitigated). In any case, these changes should be transparent to the developer and specially

to the application’s user.

3

1.1 Published work

The work described in this document was partially published in the following articles:

1. [Simão et al., 2011] describes the architecure and implementation details of the clus-

ter enabling mechanisms and how they are activated by declarative policy loaded by

the JVM.

2. [Simão et al., 2012] presents the extensions made to a JVM to support concurrent

checkpoint and migration of the virtual machine and application’s state. The paper

also presents policies that can be used to govern checkpoint and/or migration.

3. [Simão and Veiga, 2012b] and the poster [Simão and Veiga, 2012a] describe ongoing

work regarding a simple economic model and the adaptation mechanisms presented

in Chapter 4.

After enrollment in the PhD program I have also published the work presented in my

master dissertation.

1. [Simão et al., 2010]

1.2 Outline

4

Chapter 2

The Adaptability Loop of Virtual

Machines

2.1 Introduction

Virtual machines (VM) are being used today both at the system and programming lan-

guage level. At the system level they virtualize the hardware, giving the ability to guest

multiple instances of an operating system on multi-core architectures, sharing computa-

tional resources in a secure way. At the high level programming languages, and similarly

to the system level virtual machines, these VMs abstract from the underlying hardware

resources, introducing a layer that can be used for fine grained resource control. Further-

more, they promote portability through dynamic translation of an intermediate represen-

tation to a specific instruction set. High level language virtual machines (HLL-VM) are

also an important building block in the organization of modern applications because of

techniques like runtime component loading or automatic memory management.

System level VMs, or hypervisors, are strongly motivated by the sharing of low-level

resources. In result of this, many research and industry work can be found about how

resources are to be delivered to each guest operating system. The partition is done with

different reasonings, ranging from a simple round robin algorithm, to autonomic behav-

ior where the hypervisor automatically distributes the available resources to the guests

5

that, given the current workload, can make the best out of them. Among all resources,

CPU [Zhang et al., 2005, Cherkasova et al., 2007, Shao et al., 2009, VMware,] and mem-

ory [Govil et al., 1999, Waldspurger, 2002, Hines et al., 2011] are the two for which a

larger body of work can be found. Nevertheless, other resources such as storage and

network are also target of adaptation.

High level language VMs have also been designed as a way to isolate and abstract from

the underlying environment. Despite this middleware position, HLL-VMs have only one

guest at each time - the application. As a consequence, in most cases, some resources

are monitored not to be partitioned but for the runtime to adapt its algorithms to the

available environment. For example, a memory outage could force some of the already

compiled methods to be unloaded, freeing memory to maintain more data resident. There

are some works about controlling system resources usage in HLL-VMs, most of them tar-

geting the Java runtime (e.g. [Czajkowski and von Eicken, 1998, Czajkowski et al., 2005,

Binder et al., 2009, Hulaas and Binder, 2008]). They use different approaches: making

modifications to a standard VM, or even proposing a new implementation from scratch,

to modifications in the byte codes and hybrid solutions. In each work different compro-

mises are made, putting more emphasis either on the portability of the solution or on the

portability of the guests (i.e. applications).

Virtual machines are not only a isomorphism between the guest system and a

host [Smith and Nair, 2005], but a powerful software layer that can adapt its behavior,

or be instructed to adapt, in order to transparently improve their guests’s performance,

minimizing the virtualization cost. In order to do so, VMs, or systems augmenting their

services, can be framed into the well known adaptive loop [Salehie and Tahvildari, 2009]:

i) monitoring or sensing, ii) control and decision, and iii) enforcement or actuation. Mon-

itoring determines which components of the VM are observed. Control and decision take

these observations and use them in some simple or complex strategy to decide what has to

be changed. Enforcement deals with applying the decision to a given component/mecha-

nism of the VM.

In both types of VMs, adaptation is accomplished at different levels. As a consequence,

monitoring, control and enforcement are applied in a way that have different impacts. For

example, for the allocation of processing resources, the adaptation can be limited to the

tuning of a parameter in the scheduling algorithm, the replacement of the algorithm, or

6

Hardware (CPUs, memory, I/O

devices)

Operative System

Native

Application1

Native

Applicationn

...

(a)

HW

OS1

App App

OSn

App

...

App

Virtual Machine Monitor

(b)

HW

C1
... Cn

...

OS

HLL VM

Native

Application

(c)

Figure 2.1: Virtualization layers

the migration of the guest VM to another node.

In this work we present a framework to classify resource monitoring and adaptation

techniques in virtual machines, both at system and language level. Section 2.2 presents

the architecture of these VMs, depicting the building blocks that are used in research

regarding resource usage and adaption. In Section 2.3 the classification framework is

presented. For each of the resources considered, and for each of the three steps of the

adaptation loop, we propose the use of a quantitative classification regarding the impact

of the mechanisms used by each system. Furthermore, systems are globally classified

regarding the dependency on low level monitoring, the complexity of control techniques

and the latency of the enforcement mechanisms. We use this framework to classify state of

the art systems in Section 2.4. Section 2.5 closes the document presenting some conclusions

based on the previous discussion.

2.2 Virtual Machines Fundamentals

Virtual machines have their roots in the 60’s with the IBM 360 and 370

[Amdahl et al., 1964]. These systems provided a time-sharing environment where users

had a complete abstraction of the underlying hardware resources. IBM goal was to provide

better isolation among different users, providing virtual machines to each one. The archi-

tecture of the IBM System/370 was divided in three layers: the hardware, the control pro-

gram (CP) and the conversational monitor system (CMS). The CP controlled the resource

provision and the CMS delivered the services to the end user underpinned on this resources.

7

Today, the same architecture can be found in modern System VMs [Barham et al., 2003].

Figure 2.1 depicts these three layers, where CP’s role is given to the virtual machine moni-

tor (VMM). VMM purpose is to control the access of the guest operating systems running

in each virtual machine to the physical resources, virtualizing processors, memory and

I/O.

High Level Language VMs, highly influenced by the Smalltalk virtual ma-

chine [Deutsch and Schiffman, 1984], also provide a machine abstraction to their guest,

which is an end-user application. This abstraction promotes portability in the sense that

the source code is compiled not to a specific hardware but to a virtual ISA whose run-

ning machine can be implemented in different ways by different operating systems and

hardware. The just in time (JIT) compiler is responsible for this translation and is

in itself a source of adaption. Regarding its self-adaptive behavior, the JIT compiler

adaptations are not driven by resource allocation but by the dynamics in the flow of

execution (e.g. hot methods are compiled using more sophisticated optimizations). On

the other hand, memory management has an high impact both at memory and CPU

as computational resources. Research work has shown that the performance enabled

by different garbage collectors algorithms is dependent on the behavior of the applica-

tion as well as on the available resources (i.e. heap size). These observations moti-

vated the development of heuristics to adapt the available heap size or the GC algo-

rithm [Mao et al., 2009, Hertz et al., 2009, Soman et al., 2004].

The next three sections will briefly describe how fundamental resources, CPU, memory

and I/O are virtualized by the two types of VMs. The systems presented in Section 2.4

are based on the building blocks presented here, extending them towards self-adaptation

based on resource usage.

2.2.1 Computation as a resource

In a VM, virtualization of computation concerns two distinct aspects: i) the translation of

instructions if the guest and host use a different ISA ii) the scheduling of virtual CPUs to

a physical CPU (or CPU core on Symmetric Multiprocessors - SMP). These two aspects

have different degrees of importance in System and HLL VMs.

8

Instruction emulation (i.e. the translating from a set of instructions to another one) is

common to both types of VMs. In System VMs, emulation is necessary to adapt different

ISAs or in response to the execution of a privileged instruction (or a resource or behavior-

sensitive instruction, even if not privileged) in the guest OS. Adaptation in binary, and

byte code translation, is achieved by changing the translation technique (i.e. interpretation

or compilation) and by replacing code previously translated with a more optimized one.

These adaptations are driven by profiling information gather during program execution.

Typically HLL VMs rely on the underlying OS to schedule their threads of execution.

In spite of this portability aspect, the specification of HLL VMs is supported by a memory

model [Manson et al., 2005] making it possible to rationalize about the program behavior.

Regarding System VMs, because they operate directly above the hardware, the VMMmust

decide the mapping between the real CPUs and each running VM [Barham et al., 2003,

Cherkasova et al., 2007]. The next section will discuss different types of algorithms to

schedule VMs in physical CPUs.

System VMs scheduling

CPU scheduling is a well known issue in operating systems [Tanenbaum, 2007]. In single

or multi-core systems, one of the operating system’s task is to schedule runnable threads

to a physical CPU. On a VMM running above the hardware, each guest VM is assigned

one or more virtual CPUs (VCPU), whose total number can be bigger than the available

physical CPUs. Similarly to a thread, the VCPU can be running, ready or waiting. When

ready, the VCPU needs to be scheduled to a physical CPU. This results in a system with

two layers of scheduling: inside the VMM and inside each guest OS.

A VMM scheduler has aditional requisites when compared to the OS scheduler,

namely the capacity to enforce a resource usage specified at the user’s level. To

achieve this, the CPU scheduler must take into account the share (or weight) given to

each VM and make scheduling decisions proportional to this share [Stoica et al., 1996,

Cherkasova et al., 2007]. This family of schedulers are named Proportional Share. Op-

erating systems have traditionally used a related type of share scheduling, named Fair

Share. However, in these schedulers, shares are not directly seen by the end user

making it hard to define a high level resource management policy [Waldspurger, 1995].

9

In [Cherkasova et al., 2007], schedulers are further classified as i) work conservative or

non work conservative and ii) preemptive or non preemptive. Work conservative sched-

ulers take the share as a minimum allocation of CPU to the VM. If there are available

CPUs, VCPUs will be assigned to them, regardless the VM’s share. In non work con-

servative, even if there are available CPUs, VCPUs will not be assigned above a given

previously defined value. A preemptive scheduler can interrupt running VCPUs if a ready

to run VCPU has a higher priority. Section 2.4 presents systems that dynamically change

the scheduler parameters to give guest VMs the capacity that best fits their needs. If the

scheduler cannot correctly enforce these decisions, this will lead to frequent changes of the

scheduler parameters.

2.2.2 Memory as a resource

Memory is virtualized in both system and language VMs with a similar goal: give the

illusion to their guests of virtually unbounded address space. Because memory is effectively

limited, it will eventually end and the guest (operating systems or application) will have

to deal with memory shortage.

In System VMs, an extra level of indirection is added to the already virtualized en-

vironment of the guest operating systems. Operating systems give to their guests (i.e.

processes) a dedicated address space, eventually bigger than the real available hardware.

As pointed out in [Smith and Nair, 2005], the VMM extra level of indirection generalizes

the virtual memory mechanisms of operating systems.

In a language VM, memory is requested on demand by the guest application, without

the need to be explicit freed by it. When a given threshold is reached, a garbage collection

process is started to detect unreachable objects and reclaim their memory. There is no

“one size fits all” garbage collector algorithm. We will next present more details about

classical issues about memory management in systems and language VMs.

10

Memory management in System VMs

The VMM can be managing multiple VMs, each with his guest OS. Therefore, the mapping

between physical and real addresses must be extended because what is seen by an OS as a

real address (i.e. machine address), can now change each time the VM hosting the OS is

scheduled to run. The VMM introduces an extra level of indirection to the virtual → real

mapping of each OS, keeping a real → physical to each of the running VMs. On the

other hand, user level applications use a virtual address to accomplish their operations.

To avoid a two folded conversion, the VMM keeps shadow pages for each process running

on each VM, mapping virtual → physical addresses. Access to the page table pointer is

virtualized by the VMM, trapping read or write attempts and returning the corresponding

table pointer of the running VM. The translation look aside buffer (TLB) continues to

play his accelerating role because it will still cache the virtual → physical addresses.

When the VMM needs to free memory it has to decide which page(s) from which

VM(s) to reclaim. This decision might have a poor performance impact. If the wrong

choice is made, the guest OS will soon need to access the reclaimed page, resulting in

wasted time. Another issue related to memory management in the VMM is the sharing of

machine pages between different VMs. If these pages have code or read-only data they can

be shared avoiding redundant copies. Section 2.4 present the way some relevant systems

are built so that their choices are based on monitored parameters from the VM’s memory

utilization.

Automatic memory management in Language VMs

The goal of memory’s virtualization in high language VMs is to free the application from

explicit dealing with memory deallocation, giving the perception of an unlimited address

space. This avoids keeping track of clients of data structures (i.e. objects), promoting

easier extensibility of functionalities because the bookkeeping code that must be written

in non virtualized environment is no longer needed [Wilson, 1992, Smith and Nair, 2005].

Different strategies have been researched and used during the last decades. Simple

mark and sweep, compacting or copying collectors, all identify live objects starting from a

root set (i.e. the initial set of references from which live objects can be found). All these

11

approaches strive a balance between the time the program needs to stop and the frequency

the collecting process needs to execute. This is mostly influenced by the heap dimension

and, in practice, some kind of nursery space is used to avoid searching all the heap. New

objects are created in a small space (e.g. 512 KBytes). When this space fills, live objects

are promoted to a bigger space, leaving the nursery empty and ready for new allocations.

These collectors are called generational collectors. The nursery space can be generalized

and the heap organized in more than two generations. Recently, and as parallel hardware

becomes ubiquitous, the stop the world approach seems obsolete. Concurrent collectors

have been designed and are used in multiprocessors platforms [Click et al., 2005].

Investigators have been analyzing the impact of different data inputs on the per-

formance of garbage collectors [Mao et al., 2009]. Based on these observations, several

adaptation strategies have been proposed [Arnold et al., 2005], ranging from parameters

adjustments (e.g. the nursery size [Guan et al., 2009]) to changing the algorithm itself in

runtime [Soman and Krintz, 2007]. Section 2.4 discusses these different approaches.

2.3 Adaptation techniques and taxonomy

In a software system, adaptation is regulated by monitoring, analyzing, deciding and act-

ing [Salehie and Tahvildari, 2009]. Monitoring is feed by sensors and actions are accom-

plished by effectors, forming a process known as the adaptation loop. Virtual machines,

regardless of their type, are no exception. Adaptability mechanisms are not only confined

to VM’s internal structures but also to systems that externally reconfigure VM’s param-

eters or algorithms. An example of the former is the adaptive JIT compilation process

of language VMs [Arnold et al., 2005]. An example of the latter is the work of Shao et

al. [Shao et al., 2009] to regulate VCPU to CPU mapping based on the CPU usage of

specific applications.

There is a broad range of strategies regarding the analysis and decision pro-

cesses. Many solutions that augment System VMs use control theory and Additive-

Increase/Multiplicative-Decrease (AIMD) rules to regulate one or more VM’s parame-

ters. Typically, when the analysis and decision is done in the critical execution path (e.g.

scheduling, JIT, GC), the choice must be done as fast as possible, and so, a simpler logic

12

is used.

Next we will present and discuss the state of the art regarding the three major adaption

processes: monitoring, analyzing/deciding and acting.

2.3.1 System Virtual Machine

The VMM has built in parameters to regulate how resources are shared by their different

guests. These parameters regulate the allocation of resources to each VM and can be

adapted at runtime to improve the behavior of the applications given a specific workload.

The adaptation process can be internal, driven by profiling made exclusively inside of the

VMM, or external, which depends on application’s events such as the number of pending

requests. In this section, the two major VMM subsystems, CPU scheduling and Memory

Manager, will be framed into the adaptation processes.

CPU Management

CPU management relates to activities that can be done exclusively inside the hypervi-

sor or both inside and outside. An example of an exclusively inside activity is the CPU

scheduling algorithm. To enforce the weight assigned to each VM, the hypervisor has

to monitor the time of CPU assigned to each VCPUs of a VM, decide which VCPU(s)

will run next, and assign it to a CPU [Barham et al., 2003, Cherkasova et al., 2007]. An

example of an inside and outside management strategy is the one employed by systems

that monitor events outside the hypervisor (e.g. operating systems load queue, appli-

cation level events) [Zhang et al., 2005, Shao et al., 2009], use their own control strat-

egy, such as linear optimization, control theory [Padala et al., 2009] or statistical meth-

ods [Gong et al., 2010]. Nevertheless, such systems act on mechanisms inside the hyper-

visor (e.g. weight assigned to VMs, number of VCPUs).

13

Memory Management

The memory manager virtualizes hardware pages and determines how they are mapped

to each VM. To establish which and how many pages each VM is using, the VMM can

monitor page’s utilization using either whole page or sub-page scope. The monitoring

activities aims to reveal how pages are being used by each VM and so information col-

lected relates to i) page utilization [Waldspurger, 2002, Weiming and Zhenlin, 2009] and

ii) page contents equality or similarity [Waldspurger, 2002, Barham et al., 2003]. Appli-

cation performance (either by modification of the application or external monitoring) is

also considered [Hines et al., 2011].

Because operating systems do not support dynamic changes to physical memory, the

maximum amount of memory that can be allocated is statically assigned to each VM.

Nevertheless, when total allocated memory exceeds the one that is physically available,

the VMM must decide which clients must relinquish their allocated memory pages in favor

of the current request. Decisions regarding memory pages allocation to each VM are made

using i) shares [Waldspurger, 2002], ii) history pattern [Weiming and Zhenlin, 2009] or iii)

linear programming [Hines et al., 2011].

After deciding that a new configuration must be applied to a set of VMs, the VMM

can enforce i) page sharing [Waldspurger, 2002] or ii) page transfer between VMs. Page

sharing relies on the mechanisms that exist at the VMM layer to map real → physical page

numbers, as described in Section 2.2.2. On the other hand, the page transfer mechanism

relies on the operating systems running at each VM, so that each operating system can

use its own paging policy. This is accomplished using a balloon driver installed in each

VM [Barham et al., 2003, Waldspurger, 2002].

Summary of adaptation loop techniques

Figure 2.2 presents the techniques used in the adaptation loop. They are grouped into the

two major adaptation targets, CPU and memory, and then into the three major phases of

the adaptability loop.

14

Figure 2.2: Techniques used by System VMs to monitor, control and enforce

2.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC and Resource

manager, will be framed into the adaptation processes. Language VMs monitor events

inside their runtime services or in the underlying platform. As always there is a trade

off between deciding fast but poorly or deciding well (or even optimally) but spending

too much resources in the process of doing so. Most systems base their decision on an

heuristic, that is, some kind of adjustment that, although it cannot be formally reasoned

about, it gives good results when properly used. Nevertheless, some have a mathematical

model guiding their behavior. Next we will analyze the most common strategies.

Just in time compilation

The JIT is mostly self contained in the sense that the monitoring process (also know

as profiling in this context) collects data only inside the VM. Modern JIT compilers are

consumers of a significant amount of data collected during the compilation and execution

15

of code.1 Hot methods information is acquired using i) sampling [Alpern et al., 2005] or

ii) instrumentation. In the first case, the execution stacks are periodically observed to

determine hot methods. In the second case, method’s code is instrumented so that its

execution will fill the appropriate runtime profiling structures. Sampling is known to be

more efficient [Arnold et al., 2005] despite its partial view of events.

To determine which methods should be compiled or further optimized there are two dis-

tinct group of techniques: i) counter-based ii) model-based. Counter-based systems look

at different counters (e.g. method entry, loop execution) to determine if a method should

be further optimized. The threshold values are typically found by experimenting with

different programs [Arnold et al., 2004, Arnold et al., 2005]. In a model driven system,

optimization decisions are made based on a mathematical model which can be reasoned

about. Examples include a cost-benefit model where the recompilation cost is weighted

against further execution with the current optimization level [Alpern et al., 2005].

Adaptability techniques in the JIT compiler are used to produce native optimized code

while minimizing impact in application’s execution time. Because native takes more mem-

ory than intermediate representations, some early VMs discarded native code compilations

when memory became scarce. With the growth of hardware capacity this technique is less

used. So, the actions that can close the adaptability loop are: i) partial or total method

recompilation, ii) inlining or iii) deoptimization.

Garbage collection

Tradicional GC algorithms are not adaptive in the sense that the strategy to al-

locate new objects, the kind of spaces used to do so and the way garbage is de-

tected does not change during program’s execution. Nevertheless, most research and

comercial runtimes incorporate some form of adaptation strategy regarding memory

management [Arnold et al., 2005]. To accomplish these adaptations, monitoring is

done by observing: i) memory structures dimensions (e.g. total heap size, nursery

size) [Singer et al., 2010, Singer et al., 2011], ii) the program behavior (e.g. alloca-

1The adaptive optimization system (AOS) in Jikes RVM [Alpern et al., 2005] produces a log with

approximately 700Kbytes of information regarding call graphs, edge counters and compilation advices

when running and JIT compiling one of DaCapo’s benchmark [Blackburn et al., 2006] - bloat

16

tion rate, stack height, key objects) [Soman and Krintz, 2007] and, iii) relevant events

in the operating systems (e.g. page faults, allocation stalls) [Grzegorczyk et al., 2007,

Hertz et al., 2011].

Decision regarding the adaptation of heap related structures are taken either i) offline

or ii) inline with execution. Offline analysis takes in consideration the result of executing

different programs so see which parameter or algorithm have the best performance for a

given application. Inline decisions must be taken either based on a mathematic model or

on some kind of heuristic. Some authors have elaborated mathematical models of object’s

lifetime. These models are mostly used to give a rationale of the GC behavior, rather than

being used in a decision process [Baker, 1994]. So, most systems have a decision process

based on some kind of heuristics. The decision process include i) machine learning ii)

control theory and iii) microeconomic theories such as the elasticity of demand curves.

Similarly to the JIT compiler, adaptability regarding memory management aims to

improve overall system performance. Classic GC algorithms provide base memory virtual-

ization. Recent work have been focused on optimizing memory usage and execution time,

taking in consideration not only the program dynamics and but also its execution envi-

ronment. Some work also adapts GC to avoid memory exhaustion in environments where

memory is constrained. To accomplish this, actions regarding GC adaptability are related

to changing: i) heap size [Singer et al., 2010], ii) GC parameters [Singer et al., 2011] iii)

GC algorithm [Soman and Krintz, 2007].

Resource management

Monitoring resources, that is, collecting usage or consumption information about different

kinds of resources at runtime (e.g. state of threads, loaded classes) can be done through:

i) a service exposed by the runtime [Back and Hsieh, 2005, Czajkowski et al., 2005] or

ii) byte code instrumentation [Hulaas and Binder, 2008]. In the former, it’s possible to

collect more information, both from a quantitative and qualitative perspective. A well

know example is the Java Virtual Machine Tool Interface [Oracle,], which is mainly used

by development environments to display debug information. Because language VMs do

not necessarily expose this kind of service, instrumentation allows some accounting in a

portable way. Accounted resources usually include CPU usage, allocated memory and

17

system objects like threads or files.

This subsystem has to decide if a given action (e.g. consumption) over a resource can

be done or not. This is accomplished with a policy, which can be classified as: i) internal

or ii) external. In a internal policy, the reasoning is hard coded in the runtime, eventually

only giving the chance to vary a parameter (e.g. number of allowed opened files). An

external policy is defined outside the scope of the runtime, and so, it can change for each

execution or even during execution.

This subsystem is particularly important in VMs that support several independent

processes running in a single instance of runtime. Research and commercial systems ap-

ply resource management actions to: i) limit resource usage and ii) resource reservation.

Limiting resource usage aims to avoid denial of service or to ensure that the (eventually

payed) resource quota is not overused. The last scenario is less explored in the litera-

ture. Resource reservation ensures that, when multiple processes are running in the same

runtime, it’s possible to ensure a minimum amount of resources to a given process.

Summary of adaptation loop techniques

Figure 2.3 presents the techniques used in the adaptation loop of systems using high level

virtual machines.

2.3.3 The RCI Framework for classification of VM’s adaptation tech-

niques

To understand and compare different adaptation processes we now introduce a framework

for classification of VM’s adaptation techniques. It addresses the three classical adaptation

steps. Each of this steps makes use of the different techniques described earlier and

depicted in Figure 2.2 and Figure 2.3.

The analysis and classification of the techniques for each of these steps revolves around

three fundamental criteria: Responsiveness, Comprehensiveness and Intricateness. We call

it RCI framework. Responsiveness represents how fast the system is able to adapt, thus

18

Figure 2.3: Techniques used by HLL VMs to monitor, control and enforce

it gets smaller as the following metrics increase: i) overhead of monitoring, ii) duration of

the decision process, iii) the latency of applying adaptation actions. Comprehensiveness

takes into account the breadth and scope of the adaptation process. It gets greater as

the following metrics increase. In particular, it regards: i) the quantity or quality of

the monitored sensors, ii) the easiness to relate the decision process with the underlying

system, and iii) the quantity or quality of the effectors that the system can engage. Finally,

Intricateness addresses the depth of the adaption process. In particular, it regards low-

level implications, interference and complexity of: i) the monitoring sensors, ii) decision

strategy, and iii) the enforcing sensors.

These aspects were chosen, not only because they encompass many of the relevant

goals and challenges in VM adaptability research, but mainly because they also embody

a fundamental underlying tension: that a given adaptation technique aiming at achieving

improvements on two of these aspects, can only do so at the cost of the remaining one. We

came across this observation during the process of analyzing and classifying the techniques

19

and systems studied.

Initially, we realized that no technique was able to combine full comprehensiveness and

full intricateness, and still be able to perform without significant overhead and latency

(possibly even requiring off-line processing). Later, we confirmed that full responsiveness

always implies some level of restriction either to comprehensiveness or to intricateness.

This RCI conjecture is yet another manifestation in systems research where the constant

improvement on a given set of properties, or the behavior of a given set of mechanisms,

can only come at an asymptotically increasing cost. This always forces designers to choose

one of them to degrade in order to ensure the other two.

A paramount example is the CAP conjecture (or CAP theorem) [Brewer, 2010], por-

traying the tension in large-scale distributed systems among (C)onsistency, (A)vailability,

and tolerance to (P)artitions. Another example one is the tension, in the domain of

peer-to-peer systems, among high availability, scalability, and support for dynamic popu-

lations [Blake and Rodrigues, 2003].

Additionally, we also note that the tension inherent in the RCI conjecture is also

present, at a higher-level of abstraction, among monitoring, decision, and action. The

more the emphasis (regarded as an aggregate value of all RCI aspects) is given to two of

the steps in the control loop, the less emphasis is possible to the remaining one, without

breaking the viability and feasibility of the approach. We call this derived conjecture

that applies to whole systems (and not to individual adaptation techniques) the MDA

conjecture, for Monitoring, Decision and Action.

In order to quantitatively compare different systems (e.g. more responsive or more

comprehensive), each of the previously discussed metrics must be assigned with a quanti-

tative value, which depend on the analyzed adaptation technique. Table ?? presents the

nature of these metrics.

Responsiveness Comprehensiveness Intricateness

Monitor ISL Q SL

Decision PT Q IC

Action ISL Q Sl

Table 2.1: Quantitative units of the classification metrics

20

Table ?? shows the meaning of each metric for each of the quantitative values that the

framework allows techniques to be classified (i.e. 1, 2 or 3). Quantitative (Q) intervals

and Processing Times (PT) used in the framework are presented. Also, two notes are

worth noting. First, System level (SL) represents the natural organization of a computer

system, assigning 1 to hardware, 2 to OS and hypervisor and 3 to applications. Inverse

system level (ISL) uses this scale in reverse order so that the term Responsiveness can be

understood as described previously. Second, for the decision step of the control we adapt

the criteria of Maggio et al. [Maggio et al., 2012].

Level 1 2 3

Q [1..2] [3..4] [4..N]

SL hardware hypervisor/OS application

ISL application hypervisor/OS hardware

PT miliseconds seconds minuts

IC simple medium complex

Table 2.2: Add caption

To better understand how the framework is used, hypothetical techniques (Ta..Tf)

are presented in Table 2.3. After having a classification of each technique the framework

builds the RCI of a system by aggregating each criteria’ value. For a given system, Sα,

the three criteria of the framework, responsiveness, comprehensiveness and intricateness,

are represented by R(Sα), C(Sα), I(Sα), respectively. The corresponding criteria of each

technique (t) used by Sα is summed (e.g. R(Sα) =
∑

t responsiveness(t)).

Phase Tecnhique Responsiveness Comprehensiveness Intricateness

Monitor
Ta 1 2 3

Tb 2 3 1

Decision
Tc 3 2 3

Td 1 1 2

Action
Te 2 3 1

Tf 1 2 1

Table 2.3: Hypothetical techniques and their quantification

Using the mock techniques presented in Table 2.3, Table 2.4 presents, in the bottom

row, the resulting RCI of Sα. Furthermore, the table also presents, in the most right

21

column, the MCA characteristic of Sα.

System Phase Responsiveness Comprehensiveness Intricateness MDA

Sα

Monitor Ta(1) Ta(2) Ta(3) 6

Decision Tc(3) Tc(2) Tc(3) 8

Action Tf(1) Tf(2) Tf(1) 4

RCI 5 6 7

Table 2.4: RCI and MDA of hypothetical system Sα

Figures 2.4 and 2.5 use a triangular chart to represent the techniques previously ad-

dressed in this section, regarding both system and high level virtual machines (see Fig-

ure 2.2 and 2.3). In each figure, techniques are further categorized into the three phases

of the adaptation loop - monitoring, decision, and action.

In the next section, we analyze relevant works regarding monitoring and adaptabil-

ity in virtual machines, both at system as well as managed languages level. The RCI

framework is used to compare different systems and better understand how virtual ma-

chine researchers have explored the tension between responsiveness, comprehensiveness

and intricateness.

2.4 Systems and their classification

Virtual Machines in Consolidated Environments

2.4.1 System Virtual Machine

Xen In Xen [Barham et al., 2003] each VM is called a domain. A special domain0 (called

driver domain) handles I/O requests of all other domains (called guest domain) and runs

the administration tools. Because Xen’s core solution is developed by the open source

community, several works have studied Xen’s scheduling strategies, for example in face of

intensive I/O. Others propose adaptation strategies to be applied by the VMM regarding

CPU to VCPU mapping or dynamically changing the scheduling algorithms parameters.

22

R

CI

page utilization

page contents

application's performance

Virtual time clock

CPU consumed by each

VCPU

Cache space

memory bandwidth

(a)

R

CI

share based

linear optimization

feedback control

statical analyisis

(b)

R

CI

page sharing

page/memory transfer

assign/remove CPU

number of VCPUs assigned

to CPU

change shares or caps

number of

processes/threads

Cache space

memory bandwidth

(c)

Figure 2.4: Relation of responsiveness, comprehensiveness and intricateness for the differ-

ent techniques used in System VMs

23

R

CI

Memory structures

dimensions

Events of the operative

system

Program behavior

(a)

R

CI

Generic condition

Machine learning

Control theory

Elasticity (micro!economy)

(b)

R

CI

Change heap parameter

Change GC algorithm

paramater

Change GC algorithm

Limit usage

Reservation

(c)

Figure 2.5: Relation of responsiveness, comprehensiveness and intricateness for the differ-

ent techniques used in HLL VMs

24

Xen includes three scheduling algorithms: Borrow Virtual Time (BVT), Simple Ear-

liest Deadline First (SEDF) and Credit [xen, 2012, Cherkasova et al., 2007]. The former

two are deprecated and will probably be removed. Credit is a proportional fair scheduler.

This means that the interval of time allocated for each VCPU is proportional to its weight,

excluding small allocation errors. Additionally to weight, each domain has a cap value

representing the percentage of extra CPU it can consume if his quantum has elapsed and

there are idle CPUs. At each clock tick the running VPCUs are charged and eventually

some will loose all their credit and tagged as over while the others are tagged under. VC-

PUs tagged as under have priority in scheduling decisions. Picking the next VCPU to run

on a given CPU, Credit looks, in this order, a under VCPU from the local running queue,

a over VCPU from the local running queue or a under VCPU from the running queue of

a remote CPU, in a work-stealing inspired fashion.

Friendly Virtual Machines (FVM) The Friendly Virtual Machines

(FVM) [Zhang et al., 2005] aims to enable efficient and fair usage of the underly-

ing resources. Efficient in the sense that underlying system resources are nor overused or

underused. Fairness in the sense that each VM gets a proportional share of the bottleneck

resource. Each VM is responsible for adjusting its demand of the underlying resources,

resulting in a distributed adaptation system.

The adaptation strategy is done using feedback control rules such as Additive-

Increase/Multiplicative-Decrease (AIMD), driven by a single control signal - the Virtual

Clock Time (VCT) to detect overload situation. VCT is the real time taken by the VMM

to increment the virtual clock of a given VM. An increase in VCT means that the host

VMM is taking longer to respond to the VM which indicates a contention on a bottle-

necked resource. Depending on the nature of the resource the VCT will evolve differently

as more VMs are added to the system. For example, with more VMs sharing the same

memory, more page faults will occur, and even a small increase in the number of page

faults will result in a significant increase in VCT.

A VM runs inside a hosted virtual machine, the User Mode Linux, an so, two types of

mechanisms are used to adapt VM’s demand to the available underlying resources. FVM

imposes upper bounds on i) the Multi Programming Level (MPL) and on ii) the rate of

execution. MPL controls the number of processes and threads that are effectively running

25

at each VM. When only a single thread of execution exists, FVM will adapt the rate of

execution forcing the VM to periodically sleep.

HPC computing Shao et al. [Shao et al., 2009] adapts the VCPU mapping of

Xen [Barham et al., 2003] based on runtime information collected by a monitor that must

be running inside each guest’s operating system. They adjust the numbers of VCPUs to

meet the real needs of each guest. Decisions are made based on two metrics: the average

VCPU utilization rate and the parallel level. The parallel level mainly depends on the

length of each VCPU’s run queue. The adaptation process uses an addictive increase and

subtractive decrease (AISD) strategy. Shao et al. focus their work on native applications

representative of high performance computing applications.

Ginko Ginko [Hines et al., 2011] is an application-driven memory overcommitment

framework which allows cloud providers to run more System VMs with the same memory.

For each VM, Ginkgo uses a profiling phase where it collects samples of the application

performance, memory usage, and submitted load. Then, in production phase, instead

of assigning the same amount of memory for each VM, Ginko takes the previously built

model and, using a linear program, determines the VM ideal amount of memory to avoid

violations of service level agreements. This means that the linear program will determine

the memory allocation that, for the current load, maximizes the application performance

(e.g. response time, throughput).

Auto Control Padala et al. [Padala et al., 2009] proposes a system which uses a control

theory model to regulate resource allocation, based on multiple inputs and driving multiple

outputs. Inputs are applications running in a VMM and can spawn several nodes of the

data center (i.e. web and db tier can be located in different nodes). Outputs are the

resource allocation of CPU and disk I/O caps. For each application, there is an application

controller which collects the application performance metrics (e.g. application throughput

or average response time) and, based on the application’s performance target, determines

the new requested allocation. Because computational systems are non linear, the model

is adjusted automatically, aiming to adapt to different operating points and workloads.

Based on each application controller output, a per node controller will determine the

actual resource allocation. It does so by solving the optimization problem of minimizing

26

the penalty function for not meeting the performance targets of the applications. To

evaluate their system, applications were instrumented to collect performance statistics.

Xen monitoring tool (i.e. xm) was used to collect CPU usage and iostat was used to

collect CPU and disk usage statistics. Enforcement is made by changing Xen’s credit

scheduler parameters and a proportional-share I/O scheduler [Gulati et al., 2007].

PRESS PRESS [Gong et al., 2010] is an online resource demand prediction system,

which aims to handle both cyclic and non-cyclic workloads. It tries to allocate just enough

resources to avoid service level violations while minimizing resource waste. PRESS tracks

resource usage and predicts how resource demands will evolve in the near future. To detect

repeating patterns it employs signal processing techniques (i.e. Fast Fourier Transform

and the Pearson correlation), looking for a signature in the resource usage history. If a

signature is not found PRESS uses a discrete-time Markov chain. This technique allows

PRESS to calculate how the system should change the resource allocation policy, by tran-

siting to the highest probability state, given the current state. In [Gong et al., 2010] the

authors focus on CPU usage. So, The prediction scheme is used to set the CPU cap of

the target VM. The evaluation was made based on a synthetic workload applied to the

RUBiS benchmark, built from observations of two real world workloads.

VM3 The work in VM3 [Iyer et al., 2009] aims at measuring, modelling and managing

shared resources in virtual machines. It operates in the context of virtual machine con-

solidation in cloud scenarios proposing a benchmark (vConsolidate). It places emphasis

on balancing quickness of adaptation and the intricateness and low-level of the resources

monitored, while sacrificing comprehensiveness by being restricted to deciding migration

of virtual machines among cluster nodes.

Summary

2.4.2 High Level Language Virtual Machines

Adaptation in high language virtual machines is made changing their building blocks

parameters (e.g. GC heap size) or the actual algorithm used to perform operations. The

27

cycle of adaptation begins with acquiring the usage of the relevant resources. Acquiring

has always a cost that should be minimized using either low level operations or resource

counters already available in the system to accomplish other tasks. After collecting this

information, the VM can either restraint usage or make adaptations to the building blocks.

This section will present and discuss different strategies related to monitoring resources,

controlling usage and adaptations policies in HLL VMs.

Two approaches have been used to collect resource usage information, one that relies

on the VM privileged connection to the operating system and runtime libraries contri-

bution and another one which is independent of the VM platform and uses byte code

instrumentation or transformation.

Account for CPU usage is done inside the bytecode interpreter and is specified by

the number of instructions allowed to execute in a certain time interval. Before each

bytecode is executed, Aroma checks if the number of bytecodes per interval, previously

calculated, have already been executed. If so, the interpreter goes into a passive wait until

the remaining time of the interval elapses.

KaffeOS Built on top of Kaffe virtual machine [kaf, 2012], Kaf-

feOS [Back and Hsieh, 2005] provides the ability to run Java applications isolated

from each other and also to limit their resource consumption. KaffeOS, adds a process

model to Java that allows a JVM to run multiple untrusted programs safely. The runtime

system is able to account for and control all of the CPU and memory resources consumed

on behalf of any process. Consumption of individual processes can be separately ac-

counted for because the allocation and garbage collection activities of different processes

are separated. To account memory, KaffeOS uses a hierarchical structure where each

process is assigned a hard and soft limit. Hard limits relate to reserved memory. Soft

limits acts as guard limit not assuring that the process can effectively use that memory.

Children tasks can have, globally, a soft limit bigger than their parent but only some of

them will be able to reach that limit.

JRES The work of Czajkowski et al. [Czajkowski and von Eicken, 1998] uses native

code, library rewriting and byte code transformations to account and control resource

usage. JRES was the first work to specify an interface to account for heap memory, CPU

28

time, and network consumed by individual threads or groups of threads. The proposed

interface allows for the registration of callbacks, used when resource consumption exceeds

and when new threads are created. The only resources supported are the CPU usage

(in miliseconds), the total amount of used memory (in bytes) and the number of bytes

sent and received through a network interface. CPU time is accounted by instrumenting

the run method of each new thread, placing the native thread identification in a global

registry. Then, at regular intervals, the registry is traversed and native calls are used to

ask the operating systems for the time spent in each thread. Byte code rewriting is also

used to know how much memory is used by objects allocated by each thread.

Multitask Virtual Machine (MVM) The MVM [Czajkowski et al., 2005] extends

the Sun Hotspot JVM to support isolates and resource management. Isolates are similar

to processes in KaffeOS. The distinguishing difference of MVM is his generic Resource

Management (RM) API, which uses three abstractions: resource attributes, resource do-

main and dispenser. Each resource is characterized by a set of attributes (e.g. memory

granularity of consumption, reservable, disposable). In [Czajkowski et al., 2005] the MVM

is able to manage the number of open sockets, the amount of data sent over the network,

the CPU usage and heap memory size. When the code running on an isolate wants to

consume a resource it will use a library (e.g. send data to the network) or runtime service

(e.g. memory allocation). In these places, the resource domain to which the isolate is

bounded will be retrieved. Then, a call to the dispenser of the resource is made, which

will interrogate all registered user-defined policies to know if the operation can continue. A

dispenser controls the quantity of a resource available to resource domains. CPU account-

ing is done in a similar way to JRES [Czajkowski and von Eicken, 1998] using native calls

to the operating systems. On the other hand, memory accounting was done modifying the

memory management system.

J-RAF2 Hulaas et al. [Hulaas and Binder, 2008] uses an instrumentation only solution

to account for resources. Hulaas et al. discuss the limitations and overheads of their

previous work (J-SEAL2), regarding CPU accounting, and presents some techniques to

optimize this process. Analysis of their first proposed transformation algorithm shows that

most of the overhead is associated to finding the proper instruction counter and to the

frequents updates of this counter in each method. To minimize these overheads, J-RAF2

uses the following strategies. First, it changes every method’s signature to receive the CPU

29

accounting object, which is created and first used when the thread starts. Second, they

design and implemented a new path prediction scheme to reduce the number of updates.

The algorithm works by trying to predict, during the bytecode transformation phase, the

outcome at runtime of the conditional branches. For example, instead of accounting all

blocks inside a loop, they predict what will the runtime path be and add this path cost only

once per loop. If the execution flow takes a different path (resulting in a miss prediction)

account will be compensated by decreasing the non executed part of the composed block

and the cost of the new path.

Lightweight VMs Duran et al. [Duran-Limon et al., 2011] take a middleware-oriented

approach by using a thin high-level language virtual machine to virtualize CPU and

network bandwidth. Their goal is to provide an environment for resource management,

that is, resource allocation or adaptation. Applications targeting this lightweight VM use

a special purpose programming interface to specify reservations and adaptation strategies.

When compared to more heavyweight approaches like System VMs, this lightweight

framework can adapt more efficiently for I/O intensive applications. The approach taken

in Duran’s work bounds the application to a given resource adaptation interface.

Garbage collection is known to have different performance impacts in differ-

ent application [Soman and Krintz, 2007, Mao et al., 2009]. The remainder of this

section analyzes recent works belonging to one of the following categories: i) ad-

just heap related parameters (e.g. nursery size, total heap size) [Hertz et al., 2009,

Grzegorczyk et al., 2007, Singer et al., 2010]; ii) algorithms that take execution environ-

ment events into account [Hertz et al., 2005]; iii) VMs that switch the GC algorithm at

runtime [Soman and Krintz, 2007]. Common to all these solutions is the goal to decrease

application’s total execution time or, in some scenarios, to continue operation despite

memory exhaustion.

GC and the allocation stalls Grzegorczyk et al. [Grzegorczyk et al., 2007] takes into

account allocation stalls. In Linux, a process will be stalled during the request of a new

page if the system has very few free memory pages. If this happens, a resident page must

be evicted to disk. This operation is done synchronously during page allocation. They

have implemented an algorithm that grows the heap linearly when there are no allocation

30

stalls. Otherwise, the heap shrinks and the growth factor for successive heap growth

decisions is reduced, in an attempt to converge to a heap size that balances the tradeoff

between paging and GC cost.

GC in shared environment Hertz et al. [Hertz et al., 2011] observe that the same

application operating with different heap sizes can perform differently if the heap size is

under or over dimensioned, resulting in many collections or many page faults, respectively.

Based on this observation they have devised the time-memory curve, that is, the shortest

running time of a program independently of his heap size for a given amount of physical

memory. Their approach allows that the heaps of multiple applications remain small

enough to avoid the negative impacts of paging, while still taking advantage of any memory

that is available within the system. They have modified the slow path of the GC (i.e. code

path that can result in tracing alive objects) to also take in account two conditions: if

the resident set has decreased or if the number of page faults have increased. If any of

this conditions is true a GC will be triggered. They call this situation a resource-driven

garbage collection.

GC in a MapReduce environment Singer et al. [Singer et al., 2011] proposes to

automatically the GC configuration in order to improve the performance of a MapReduce’s

Java implementation for multi-core hardware. For each relevant benchmark, machine

learning techniques are used to find the best execution time for each combination of input

size, heap size and number of threads in relation to a given GC algorithm (i.e. serial,

parallel or concurrent). Their goal is to make a good deciding about a GC policy when

a new MapReduce application arrives. The decision is made locally to an instance of the

JVM.

GC economics In [Singer et al., 2010], Singer et al. discuss the economics of GC,

relating heap size and number of collections with the price and demand law of micro-

economics - with bigger heaps there will be less collections. This relation extends to the

notion of elasticity to measure the sensitivity of the heap size to the size of the number of

GCs. They devise an heuristic based on elasticity to find a tradeoff between heap size and

execution time. The user of the VM provides a target elasticity. During execution, the

VM will take into account this target to grow, shrink or keep the heap size. Doing so, the

31

user can supply a value that will determine the growth ratio of the heap, independently

of the application specific behavior.

Application-specific Garbage Collectors [Singer et al., 2007]

GC switch Soman et al. [Soman and Krintz, 2007] add to the memory management

system the capacity of changing the GC algorithm during program execution. The system

considers program annotations (if available), application behavior, and resource avail-

ability to decide when to switch dynamically, and to which GC it should switch. The

modified runtime incorporates all the available GCs into a single VM image. At load time

all possible virtual memory resources are reserved. The layout of each space (i.e. nursery,

Mark-Sweep, High Semispace, Low Semispace) is designed to avoid a full garbage collec-

tion for as many different switches as possible. For example, a switch from Semi-Space

to Generational Semi-Space determines that the allocation site will be done at a nursery

space, but the two half-spaces are shared. Switching can be triggered by points statically

determined by previous profiling the application execution or by dynamically evaluating

the GC load versus the application threads. If the load is high they switch from a Semi-

Space (which performs better when memory is available) to a Generational Mark-Sweep

collector (which performs better when memory is constrained).

Summary

2.4.3 Quantitative comparison of different adaptability techniques

In Figures 2.6 and 2.7, we analyze the responsiveness, comprehensiveness and intricate-

ness aspects for the different adaption techniques used in the two types of VMs. The

global observation is that different systems have a different RCI coverage, which is the

result of using diverse adaptations techniques. Regarding the tension described by the

RCI conjecture, we note that, in system VMs, intricateness seems to dominate but re-

sponsiveness is also strong, while in HLL VMs, responsiveness and comprehensive seem to

dominate over intricateness. Also in system VM deployments, they exhibit larger respon-

siveness and intricateness but less comprehensive. In HLL VMs intricateness is larger in

32

R

C

FVM

Ginko

AutoControl

Press

HPC

VM3

Figure 2.6: Relationship of responsiveness, comprehensiveness and intricateness for the

different adaption techniques used in System VMs.

deployments focused on GC. All this shows that the three properties cannot be covered

in the same degree.

In Figures 2.8 and 2.9, we analyze the adaptation loop for the two types of VMs.

The three phases, monitoring, decision and action, are quantitatively compared using the

responsiveness, comprehensiveness and intricateness of the techniques used in each step.

When analyzing the overall results we can see that HLL-VMs use more uniform monitoring

techniques, decision techniques in Sys-VMs are more alike and effectors used in the action

phase are more uniform in Sys-VMs.

2.5 Conclusions

Currently, data centers in the context of cloud infrastructures make extensive use of virtu-

alization to achieve workload isolation and efficient resource management. This is carried

out primarily by means of virtualization technology, either at the system or high language

level. While isolation is a static mechanism, that relies on hardware or operating system

support to be enforced, resource management is dynamic and VMs must self-adapt or be

instructed to adapt in order to fit their guest’s needs.

33

C

KaffeOS

JRES

MVM

JRAF2

GC alloc!stalls

GC!in!shared!environment

GC!with!mapreduce

GC!economics

GC!switch

Figure 2.7: Relationship of responsiveness, comprehensiveness and intricateness for the

different adaption techniques used in HLL VMs.

M

D

FVM

AutoControl

Ginko

Press

HPC

VM3

Figure 2.8: Relationship of emphasis on responsiveness, comprehensiveness and intricate-

ness, regarding the adaptation steps monitoring, decision and action in System VMs.

34

D

KaffeOS

JRES

MVM

JRAF2

GC alloc!stalls

GC!in!shared!environment

GC!with!mapreduce

GC!economics

GC!switch

Figure 2.9: Relationship of emphasis on responsiveness, comprehensiveness and intricate-

ness, regarding the adaptation steps monitoring, decision and action in HLL VMs.

Virtualization mechanisms to enforce resource management are present both at hyper-

visors (e.g. Xen, ESX) and high level virtual machines (e.g. CLR, Java). Although the

services offered by each of these two software layers are used or extended in several works in

the literature, the community lacks an organized and integrated perspective of the mecha-

nisms and strategies used at each virtualization layer regarding resource management and

focusing on adaptation.

In this work we reviewed the main approaches for adaptation and monitoring in vir-

tual machines, their tradeoffs, and their main mechanisms for resource management. We

framed them into the control loop (monitoring, decision and actuation). Furthermore, we

proposed a novel taxonomy and classification framework that, when applied to a group

of systems, can help visually in determining their similarities and differences. Framed by

this, we presented a comprehensive survey and analysis of relevant techniques and systems

in the context of virtual machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis of existing

relevant work in monitoring and adaptability of virtual machines. We presented the RCI

conjecture on monitoring and adaptability in systems, identifying the fundamental tension

among Responsiveness, Comprehensiveness, and Intricateness, and how a given adaptation

technique aiming at achieving improvements on two of these aspects, can only do so

at the cost of the remaining one. Then we presented a derived conjecture, the MDA

conjecture identifying a related tension, in the context of whole systems, among emphasis

35

on monitoring, decision and action.

36

Chapter 3

Architecture of the QoE-JVM

We consider a cluster as a typical aggregation of a number of nodes which are usually

machines with one or more multi-core CPUs, with several GB of RAM, interconnected

by a regular LAN network link (100 Mbit, 1 Gbit transfer rate). We assume there may

be several applications, possibly from different users, running on the cluster at a given

time, i.e., the cluster is not necessarily dedicated to a single application. The cluster has

one top-level coordinator, the QoE Manager that monitors the Quality-of-Execution of

applications.1

3.1 Overall system view

The overall architecture of QoE-JVM (An adaptive and Resource-Aware Java Virtual

Machine) is presented in Figure ??. Each node is capable of executing several instances

of a Java VM, with each VM holding part of the data and executing part of the threads

of an application. As these VMs may compete for the resources of the underlying cluster

node, there must be a node manager in each node, in charge of VM deployment, lifecycle

management, resource monitoring and resource management/restriction. Finally, in order

1We opt for this notion instead of hard service-level agreements usually employed in commercial appli-

cation hosting scenarios, because we intend to target several types of applications in shared infrastructures,

without necessarily strict contractual requirements.

37

����
�������

�����

����
�������

�����

���	
�������

�����

���
��
�������

�
����
�������

������������
�����������
���
����������
����������

�
��

����
�������

�����

����
�������

�����

�
��

���

������ !����"#�����$ %���������"�#��!�����&�"$"'�(
������	

�"$"�(
�������

���

�������

)
*���!�����
�������

�"$�(
����!�����+�����+���

���
��
�������

�
����
�������

Figure 3.1: Overall architecture

for the node and cluster manager to be able to obtain monitoring data and get their poli-

cies and decisions carried out, the Java VMs must be resource-aware, essentially, report

on resource usage and enforce limits on resource consumption. Cooperation among VMs

is carried out via the QoE Manager, that receives information regarding resource con-

sumption in each VM, by each application, and instructs VMs to allow or restrict further

resource usage.

** TODO: Integrar com a figura e a lista seguinte ** Each instance of an HLL-VM is

enhanced with services that are not available in regular VMs. These services include: i)

the accounting of resource consumption, ii) dynamic reconfiguration of internal parameters

and/or mechanisms, and iii) mechanisms for checkpointing, restore and migration of the

whole application. These services should and must be made available at a lower-level,

inside an extended HLL-VM, for reasons of control, interception and efficiency. They are

transparent to the application, and so, the extended HLL-VM continue to run existent

applications as they are.

In summary, the responsibilities of each of these entities are the following:

• Cluster QoE Manager

– collect global data of cluster applications (i.e. partitioned across VMs and

nodes)

– deploy/regulate nodes based on user’s QoE

• Node QoE Manager

38

– report information about node load

– deploy new policies on VMs

– create or destroy new instances

– collect VM’s resource usage data

• (resource-aware) VM

– enforce resource usage limits

– give internal information about resource usage

– concurrent checkpoint and migration of execution state

QoE-JVM is thus comprised of several components, or building blocks. Each one

gives a contribution to support applications with a global distributed image of a virtual

machine runtime, where resource consumption and allocation is driven by a high-level

policies, system-wide, application or user related. From a bottom-up point of view, the

first building block above the operating system in each node is a process-level managed

language virtual machine, enhanced with mechanisms and services that are not available

in regular VMs. These include the accounting of resource consumption.

The second building block aggregates individual VMs, as the ones mentioned above, to

form within the cluster a distributed shared object space assigned to a specific application.

It gives running applications support for single system image semantics, across the cluster,

with regard to the object address space. Techniques like bytecode enhancement/instru-

mentation or rewriting must be used, so that unmodified applications can operate in a

partitioned global address space, where some objects exist only as local copies and others

are shared in a global heap.

The third building block turns QoE-JVM into a cluster-aware cooperative virtual

machine. This abstraction layer is responsible for the global thread scheduling in the

cluster, starting new work items in local or remote nodes, depending on a cluster wide

policy and the assessment of available resources. Mechanisms for checkpointing, restore

and migration can also be activated in order to migrate whole instances of VMs to a

different node. This layer is the QoE-JVM boundary that the cluster-enabled applications

interface with (note that for the applications, the cluster looks like a single, yet much

larger, virtual machine). Similarly to the previous block, application classes are further

39

instrumented/enhanced (although the two sets of instrumentation can be applied in a

single phase), in order to guarantee correct behavior in the cluster. Finally, it exposes the

underlying mechanisms to the adaptability policy engine, and accepts external commands

that will regulate how the VM’s internal mechanisms should behave.

The resource-aware VM, the distributed shared object layer, and the cluster level

scheduler are all sources of relevant monitoring information to the policy engine of QoE-

JVM . This data can be used as input to declarative policies in order to determine a

certain rule outcome, i.e. what action to perform when a resource is exhausted or has

reached its limit, regarding a user or application. The other purpose of collecting this

data is to infer a profile for a given application. Such profiles will result in the automatic

use of policies for a certain group of applications, aiming to improve their performance.

The effects, positive or negative, of applying such policies are then used to confirm, or

reject, the level of correlation between the profile and the applications.

On top of this distributed runtime are the applications, consuming resources on each

node and using the services provided by the resource-aware VM that is executing on each

one. QoE-JVM targets mainly applications with a long execution time and that may

spawn several threads to parallelize their work, as usual in e-Science fields such as those

mentioned before.

3.2 Resource Awareness and Control

The Resource Aware virtual machine is the underlying component of the proposed infras-

tructure. It has two main characteristics: i) resource usage monitoring, and ii) resource

usage restriction or limitation. Current virtual machines (VM) for managed languages

can report about several aspects of their internal components, like used memory, number

of threads, classes loaded [Oracle, , Microsoft,]. However they do not enforce limits on

the resources consumed by their single node applications. In a cluster of collaborating

virtual machines, because there is a limited amount of resources to be shared among sev-

eral instances, some resources must be constrained in favor of an application or group of

applications.

40

Extending a managed language VM to be aware of the existing resources must be

done without compromising the usability (mainly portability) of application code. The

VM must continue to run existent applications as they are. This component is an extended

Java virtual machine with the capacity to extract high and low level VM parameters, e.g.,

heap memory, network and system threads usage. Along with the capacity to obtain these

parameters, they can also be constrained to reflect a cluster policy. The monitoring system

is extensible in the number and type of resources to consider.

The counterpart of resource containment is when an application needs more resources

but the node where it is running is exhausted, or out of resources. If the application

is allowed some elasticity in the resources used, they should be made available in spite

of the limitations on the current executing node. In that case, it may be necessary for

that application, or others less demanding, to migrate to another node. This migra-

tion should be done without the need for an application restart. To this end, the re-

source aware VM includes a mechanism for checkpointing and migration, which enables

the whole application to migrate to another node, where another resource-aware VM is

running with the necessary amount of resources. The migration is performed without

restarting the application, avoiding losing all the work previously done. This is par-

ticularly useful for applications with long execution times, as in various fields related

with e-Science (mostly in the context of Grid and Cloud computing) where managed

languages are becoming dominant, including chemistry, computational biology and bio-

informatics [Gront and Kolinski, 2008, López-Arévalo et al., 2007], with many available

Java-based APIs (e.g., Neobio).

3.3 Checkpointing and migration of the execution state

3.4 Cluster-wide execution space

Our mechanism to distribute threads among the cluster is built by leveraging and extend-

ing the Terracotta [Bonr and Kuleshov, 2007] Distributed Shared Objects. This middle-

ware uses the client/server terminology and calls the application JVMs that are clustered

together Terracotta clients or Terracotta cluster nodes. These clients are clustered to-

gether by injecting cluster-aware bytecode into the application Java code at runtime, as

41

the classes are loaded by each JVM. Part of the cluster-aware bytecode injected causes

each JVM to connect to the Terracotta server instances, which handles the storage and

retrieval of object data in the shared clustered virtual heap. To the application, the ob-

jects living in the distributed shared space are just like regular objects on the heap of the

local JVMs.

However Terracotta handles clustered objects differently from regular objects. When

changes are made to a clustered object, Terracotta keeps track of those changes and sends

them to all Terracotta server instances. Server instances, in turn, make sure those changes

are visible to all the other JVMs in the cluster as necessary. Consistency is assured by

using the synchronization present in the Java application (with monitors), which turns into

Terracotta transaction boundaries. Piggybacked on these operations, Terracotta injects

code to update and fetch data from remote nodes at the beginning and end of these

transactions.

Therefore we need to perform additional byte-code enhancement on application classes

as a previous step to the byte-code enhancing performed by the Terracotta cluster mid-

dleware before applications are run.

42

Chapter 4

Resource Management

Mechanisms for Managed

Runtimes

4.1 Resource accounting and adaptability

The Resource Aware virtual machine is the underlying component of the proposed infras-

tructure. It has two main characteristics: i) resource usage monitoring, and ii) resource

usage restriction or limitation. Checkpointing, restore and migration mechanisms, are

used for more coarse-grained load-balancing across the cluster.

Current high level virtual machines (HLL-VM) can report about several aspects of

their internal components, like used memory, number of threads, classes loaded [Oracle, ,

Microsoft,]. However they do not enforce limits on the resources consumed by their

single node applications. In a cluster of collaborating virtual machines, because there is

a limited amount of resources to be shared among several instances, some resources must

be constrained in favor of an application or group of applications.

Extending a managed language VM to be aware of the existing resources must be

done without compromising the usability (mainly portability) of application code. The

43

������

���������	
	����
�

���	
���
���������

���
���������

�����

�
������� ����
��������

�
�	������	��

���	� ��
��!"�
�	�#	�����
��$�$
������!
���
�����
"���%
�������	�%

&�
#"���%
�'�
	#����(���	�
"���"�

'�
��

��
�

"
)

*

+
��

��
�

"
�

�
�
	

��

�

�

�
�

�
	

��

�
,�"��

�-.
.���� .���
���	�/

������
���	
���

�����
���

0	��

�������

0	��

�"
��������!"��
�##"�����	�

*����	�����

�1�%
0���	�2%
�-.%
$$$�

������

�������������
��	�������

���������	��������

��	��

�������

Figure 4.1: Overall architecture

VM must continue to run existent applications as they are. This component is an extended

Java virtual machine with the capacity to extract high and low level VM parameters, e.g.,

heap memory, network and system threads usage. Along with the capacity to obtain these

parameters, they can also be constrained to reflect a cluster policy. The monitoring system

is extensible in the number and type of resources to consider.

The management of a given resource implies the capacity to monitor its current state

and to be directly or indirectly in control of its use and usage. The resources that can

be monitored in a virtual machine can be either specific of the runtime (e.g. number of

threads, number of objects) or be strongly dependent on the underlying architecture and

operating system (e.g. CPU usage).

To unify the management of such disparate types of resources, we have started the

implementation of JSR 284 - The Resource Management API [et al., 2009] in the context

of Jikes.

The JSR 284 elements are resources, consumers and resource management policies.

Resources are represented by their attributes (ResourceAttributes interface). For ex-

ample, resources can be classified as Bounded or Unbounded. Unbounded resources have

no intrinsic limit on the consumption of the resource (e.g. number of threads). The limits

on the consumption of unbounded resources are only those imposed by application-level

resource usage policies. Resources can also be Bounded if it is possible to reserve a priori a

given number of units of a resource to an application. A Consumer represents an execut-

44

ing entity which can be a thread or the whole VM. Each consumer is bound to a resource

through a Resource Domain. Resource domains impose a common resource management

policy to all consumers registered. This policy is programmable through callback func-

tions to the executing application. Although consumers can be bound to different Resource

Domains, they cannot be associated to the same resource through different Domains.

Changes to the VM and Classpath

Our first experiences were done in order to have control on the spawning of new threads, a

common source of CPU contention and performance degradation when multiple applica-

tions are running. We made modifications to the Jikes runtime classes and extended the

GNU classpath. The Jikes boot sequence was augmented with the setup of a resource do-

main to manage the creation of application level threads. VM threads (e.g. GC, finalizer)

are not accounted. The Jikes component responsible for the creation and representation

of system level threads was extended to use the callbacks of the previous mentioned re-

source domain, such that the number of new threads is determined by a policy defined

declaratively outside the runtime.

All native system information, including CPU usage, is currently obtained using the

kernel /proc filesystem. Calls are made using the mechanism already presented in Sec-

tion 4.2.

Finally, a new package of classes was integrated in the GNU classpath in order for

applications to be able to specify their policies. This classes interact with the resource-

aware underlying VM so that the application can add their own resource consumption

policies, if needed. Nevertheless, policies can be installed with total transparency to the

application. With this infrastructure, all consumable resources monitored, or directly

controlled by the VM and class library, can be constrained by high-level policies defined

externally to the VM runtime.

45

4.2 Concurrent checkpoint and migration

Our checkpoint mechanism can also run concurrently with the main program, preventing

full pause of the application during checkpointing, thus further reducing the overhead ex-

perienced by applications. There are two main implementation issues regarding concurrent

(or incremental) checkpointing: i) ensuring checkpoint consistency, since the application

continues executing while the checkpoint is created, and ii) avoiding excessive resource

consumption (CPU, memory), due to the extra load of executing the application and the

checkpointing mechanism simultaneously, that could lead to thrashing and preclude the

very performance gains sought by executing the checkpointing concurrently.

The first issue is related with isolation and atomicity. The checkpoint, while being car-

ried out concurrently, must still be atomic regarding the running application. This means

it must reflect a snapshot of the execution state that would also be obtained with the

application paused or suspended (while the application is not modifying its state). Other-

wise, there could co-exist in the snapshot objects checkpointed at different times, making

the whole object graph inconsistent and violating application invariants. In essence, the

challenge in this operation is that the application’s working set (and VM’s internal struc-

tures) will change, while the checkpointing is being carried out. If the changes were to be

reflected into the data being saved, the checkpoint would be useless for being inconsistent.

The second issue stems from the fact that if we want to simultaneously freeze a clone

of the application state in time (to be able to save it in the checkpoint concurrently),

while the application keeps executing and accessing the original object graph, it would

potentially almost double the memory occupied by the virtual machine. Furthermore,

performing the serialization of the clone object graph, will cause contention for the CPU,

with the application code that is simultaneously being executed (although the OS is able

to interleave their execution with some degree of efficiency).

Fortunately, two aspects of current architectures help when dealing with these issues:

i) lazy memory duplication, as embodied in copy-on-write mechanisms provided by the

memory management modules in modern operating systems, and ii) the increasing preva-

lence of multicore hardware, available in most computers today. These two aspects are

leveraged to ensure concurrent checkpointing offers smaller overhead to applications run-

ning.

46

��������	

��
���	
�

��
���	
�

��
���	
�

�
�����������

�
�	
�������

������
���
	
����������
������
���
	
����������

��������	

�
�����������

�
�	
�������

�
�����
	
�����������
�����
	
����������

�
�
���

�
�����

�
�����

Figure 4.2: Each concurrent checkpoint runs in a child VM. tcalculation is the free run

time, without any checkpoint. ttotal is the total execution time, considering either serial

or concurrent checkpoint.

In fact, the original and clone version of the object graph need not exist physically in

their entirety. To efficiently support this, we use the copy-on-write mechanism that allows

two processes to share the whole of the address space, with pages modified by one of them

copied on demand. Currently, our implementation in Linux relies on Linux’s system call,

fork(), which has the desired semantics [Tanenbaum, 2007]. In Windows, the same prim-

itive and semantics is available through the POSIX subsystem, thus ensuring portability

across the two operating systems. Therefore, the memory overhead will be bounded to

the memory pages containing objects that are modified during the checkpointing. Due

to the locality in memory accesses during application execution (locality-of-reference and

working set principles), this amount is limited.

Figure 4.2 illustrates how the concurrent checkpoint progresses, along with the applica-

tion, in comparison with the serial (non-concurrent) approach. With serial checkpointing,

the total execution time of an application is, expectably, the sum of the time perform-

ing its calculations or processing (hereafter calculation time), with the time to perform a

checkpoint (once in the figure) multiplied by the number of checkpoints taken. Therefore,

checkpointing is always in the critical path regarding the total execution time, preclud-

ing so frequent checkpointing (for instance, very large working sets, and not very long

executions, probably only once at mid execution time).

47

With concurrent checkpointing, most of the checkpointing time is removed from the

critical path regarding total execution time (only the time to setup the child-VM remains).

This makes it feasible to perform checkpoints more frequently, without significantly penal-

izing application execution times, thus reducing even more the amount of lost computation

(lost work) whenever a failure takes place.

4.3 Cluster-wide thread scheduling

Our mechanism to distribute threads among the cluster is built by leveraging and extend-

ing the Terracotta [Bonr and Kuleshov, 2007] Distributed Shared Objects. This middle-

ware uses the client/server terminology and calls the application JVMs that are clustered

together Terracotta clients or Terracotta cluster nodes. These clients run the same appli-

cation code in each JVM and are clustered together by injecting cluster-aware bytecode

into the application Java code at runtime, as the classes are loaded by each JVM. This

bytecode injection mechanism is what makes Terracotta transparent to the application.

Part of the cluster-aware bytecode injected causes each JVM to connect to the Terracotta

server instances. In a cluster, a Terracotta server instance handles the storage and re-

trieval of object data in the shared clustered virtual heap. The server instance can also

store this heap data on disk, making it persistent just as if it were part of a database.

Multiple terracotta server instances can exist as a cohesive array.

In a single JVM, objects in the heap are addressed through references. In the Terra-

cotta clustered virtual heap objects are addressed in a similar way, through references to

clustered objects which we refer to as distributed shared objects or managed objects in the

Terracotta cluster. To the application, these objects are just like regular objects on the

heap of the local JVMs, the Terracotta clients. However Terracotta knows that clustered

objects need to be handled differently than regular objects. When changes are made to a

clustered object, Terracotta keeps track of those changes and sends them to all Terracotta

server instances. Server instances, in turn, make sure those changes are visible to all the

other JVMs in the cluster as necessary. This way, clustered objects are always up-to-date

whenever they are accessed, just as they are in a single JVM. Consistency is assured by

using the synchronization present in the Java application (with monitors), which turns

into Terracotta transaction boundaries. Piggybacked on these operations, Terracotta in-

48

jects code to update and fetch data from remote nodes at the beginning and end of these

transactions.

Therefore we need to perform additional byte-code enhancement on application

classes as a previous step to the byte-code enhancing performed by the Terracotta

cluster middleware before applications are run. To do this we used the ASM frame-

work [Bruneton et al., 2002]. Creation of threads in remote nodes is a result of invoking

JSR 284 in order to attempt to consume a thread resource at that node. The most in-

tricate aspects deal with the issue of enforcing thread transparency (regarding its actual

running node) and identity across the cluster, as we explain next.

The instrumentation replaces Java type opcodes that have the Java Thread type as

argument with equal opcodes with our custom type ClusterThread. It also replaces the

getfield and getstatic opcodes type with ClusterThread instead of Thread. As the

ClusterThread class extends the original Java Thread class, type compatibility is guaran-

teed. For the method calls, some of the methods belonging to the Thread class are final,

and therefore cannot be overridden. To circumvent this, we aliased the final methods

and replaced Thread method calls with the aliased method. For example, if we have an

invokevirtual opcode that invokes the final “join” method of the Thread class, we invoke

the “clusterJoin” method instead.

4.4 Evaluation

49

50

Chapter 5

Driving Adaptability with Quality

of Execution

5.1 QoE-JVM Economics

Our goal with QoE-JVM is to maximize the applications’ quality of execution (QoE). We

initially regard QoE as a best effort notion of effectiveness of the resources allocated to the

application, based on the computational work actually carried out by the application (i.e.,

by employing those allocated resources). To that end the Cobb-Douglas [?] production

function from Economics to motivate and to help characterize the QoE, as decribed next.

We are partially inspired by the Cobb-Douglas [?] production function (henceforth

referred as equation) from Economics to motivate and to help characterize the QoE. The

Cobb-Douglas equation, presented in Equation 5.1, is used in Economics to represent the

production of a certain good.

P = A ·Kα · Lβ (5.1)

In this equation, P is the total production, or the revenue of all the goods produced

in a given period, L represents the labor applied in the production and K is the capital

51

invested.

It asserts the now common knowledge (not at the time it was initially proposed, ca.

1928) that value in a society (regarded simplistically as an economy) is created by the

combined employment of human work (labour) and capital (the ability to grant resources

for a given project instead of to a different one). The extra elements in the equation

(A, α, β) are mostly mathematical fine-tuning artifacts that allow tailoring the equation

to each set of real-life data (a frequent approach in social-economic science, where exact

data may be hard to attain and to assess). They take into account technological and

civilization multiplicative factors (embodied in A) and the relative weight (cost, value)

of capital (α) and labour (β) incorporated in the production output (e.g., more capital

intensive operations such as heavy industry, oil refining, or more labour intensive such as

teaching and health care).

Alternatively, labour can be regarded, not as a variable representing a measure of hu-

man work employed, but as a result, representing the efficiency of the capital invested,

given the production output achieved, i.e., labour as a multiplier of resources into pro-

duction output. This is usually expressed by representing Equation 5.1 in terms of L, as

in Equation 5.2. For simplicity, we have assumed all the three factors to be equal to one.

First, the technological and civilization context does not apply, and since the data center

economy is simpler, as there is a single kind of activity, computation, and not several,

the relative weight of labour and capital is not relevant. Furthermore, we will be more

interested in the variations (relative increments) of efficiency than on efficiency values

themselves, hence the simplification does not introduce error.

L =
P

K
(5.2)

Now, we need to map these variables to relevant factors in a cloud computing site

(a data center). Production output (P) maps easily to application progress (the amount

of computation that gets carried out), while capital (K), associated with money, maps

easily to resources committed to the application (e.g., CPU, memory, or their pricing)

that are usually charged to users deploying applications. Therefore, we can regard labour

(considered as the human factor, the efficiency of the capital invested in a project, given a

certain output achieved) as how effectively the resources were employed by an application

52

to attain a certain progress. While resources can be measured easily by CPU shares and

memory allocated, application progress is more difficult to characterize. We give details

in Section 4 but we are mostly interested in relative variations in application progress

(regardless of the way it is measured), as shown in Equation 5.3, and their complementary

variations in production cost per unit, PCU .

∆ L ≈ ∆ P

∆ K
, and thus ∆ PCU ≈ ∆ K

∆ P
(5.3)

We assume a scenario where, when applications are executed in a constrained (over-

committed) environment, the infrastructure may remove m units of a given resource, from

a set of resources R, and give it to another application that can benefit from this transfer.

This transfer may have a negative impact in the application who offers resources and it is

expected to have a positive impact in the receiving application. To assess the effectiveness

of the transfer, the infrastructure must be able to measure the impact on the giver and

receiver applications, namely somehow to approximate savings in PCU as described next.

Variations in the PCU can be regarded as an opportunity for yield regarding a given re-

source r, and a management strategy or allocation configuration sx, i.e., a return or reward

from applying a given strategy to some managed resource, as presented in Equation 5.4.

Y ieldr(ts, sa, sb) =
Savingsr(sa, sb)

Degradation(sa, sb)
(5.4)

Because QoE-JVM is continuously monitoring the application progress, it is possible

to incrementally measure the yield. Each partial Y ieldr, obtained in a given time span ts,

contributes to the total one obtained. This can be evaluated either over each time slice

or globally when applications, batches or workloads complete. For a given execution or

evaluation period, the total yield is the result of summing all significant partial yields, as

presented in Equation 5.5.

TotalY ieldr(sa, sb) =
n∑

ts=0

Y ieldr(ts, sa, sb) (5.5)

53

The definition of Savingsr represents the savings of a given resource r when two

allocation or management strategies are compared, sa and sb, as presented in Equation 5.6.

The functions Ur(sa) and Ur(sb) relates the usage of resource r, given two allocation

configurations, sa and sb. We allow only those reconfigurations which offer savings in

resource usage to be considered in order to calculate yields.

Savingsr(sa, sb) =
Ur(sa)− Ur(sb)

Ur(sa)
(5.6)

Regarding performance degradation, it represents the impact of the savings, given a

specific performance metric, as presented in Equation 5.7. Considering the time taken

to execute an application (or part of it), the performance degradation relates the execu-

tion time of the original configuration, P (sa), and the execution time after the resource

allocation strategy has been modified, P (sb).

Degradation(sa, sb) =
P (sb)− P (sa)

P (sa)
(5.7)

Each instance of the QoE-JVM continuously monitors the application progress, mea-

suring the yield of the applied strategies. As a consequence of this process, QoE, for a

given set of resources, can be enforced observing the yield of the applied strategy, and

then keeping or changing it as a result of having a good or a bad impact. To accomplish

the desired reconfiguration, the underlying resource-aware VM must be able to change

strategies during execution, guided by the global QoE manager. The next section will

present the architecture of QoE-JVM detailing how progress can be measured and which

resources are relevant.

To effectively apply the economic model presented in Section 5.1 it is necessary to

quantify the application progress metric, what resources are relevant and which extensions

points exist or need to be created inside the HLL-VM. The following section discuss these

topics in further detail.

54

5.1.1 Progress monitoring

Our economics-inspired metric needs to take as input the performance degradation of the

application. In practical terms, performance relates to the progress, slower or faster, the

application can make with the allocated resources.

To compare different metrics to measure progress, we classify applications as request

driven (or interactive) and continuous process (or batch). Request driven applications

process work in response to an outside event (e.g. HTTP request, new work item in

the processing queue). Continuous processing applications have a target goal that drives

their calculations (e.g. align DNA sequences). For most non-interactive applications,

measuring progress is directly related to the work done and the work that is still pending.

For example, some algorithms to analyze graphs of objects have a visited/processed objects

set, which will encompass all objects when the algorithm terminates. If the rate of objects

processed can be determined it will indicate how the application is making progress. Other

examples would be applications to perform video encoding, where the number of frames

processed is a measure of progress [?].

There is a balance and trade-off in measuring progress, using a metric that is close

to the application semantics, and the transparency of progress measuring. The number

of requests processed, for example, is metric closely related to the application semantic,

which gives an almost direct notion of progress. Nevertheless, it will not always be possible

to acquire that information. On the other hand, low level activity, such as I/O or memory

pages access, is always possible to acquire inside the VM or the OS. But relating this type

of metrics to the application effective progress is a challenging task. The following are

relevant examples of metrics that can be used to monitor the progress of an application,

presented in a decreasing order of application semantics, but with an increasing order

regarding transparency.

• Number of requests processed: This metric is typically associated with interac-

tive applications, like Bag-of-tasks environments or Web applications;

• Completion time: For short and medium time living applications, where it is

not possible to change the source code or no information is available to lead an

instrumentation process, this metric will be the more effective one. This metric only

55

requires the QoE-JVM to measure wall clock time when starting and ending the

application;

• Code: instrumented or annotated: If information is available about the applica-

tion high level structure, instrumentation can be used to dynamically insert probes

at load time, so that the QoE-JVM can measure progress using a metric that is

semantically more relevant to the application;

• Mutator execution time. When mutators (i.e. execution flows of applications)

have high execution percentages, in proportion to the time spent in garbage collector,

this indicate that the application is making more progress than others where garbage

collection is using a higher percentage of total execution.

• I/O: storage and network: For application dependent on I/O operations, changes

in the quantity of data saved or read from files or in the information sent and received

from the network, can contribute to determine if the application reached a bottleneck

or is making progress;

• Memory page activity: Allocation of new memory pages is a low level indicator

(collected from the OS or the VMM) that the application is making effective progress.

A similar indication will be given when the application is writing in new or previous

memory pages.

Although QoE-JVM can measure low level indicators as I/O storage and network

activity or memory page activity, Section ?? uses the metric completion time to measure

performance degradation, as defined in Section 5.1. This is so because the applications

used to demonstrate the benefits of our system are benchmarks that are representative

of different types of workloads and have a short execution time. However, the metric

mutator execution time also has an important role because the strategies to manage

the heap, described in Section ??, take into account the dual of this metric - the ratio of

time spent in garbage collection.

5.1.2 Resource types and usage

In the model presented at Section 5.1, Savingsr refers to any computational resource

(r) which applications consume to make progress. Resources can be classified as either

56

CPU Mem Net Disk Pools

Counted number

of cores

size - - size (min,

max)

Rate cap per-

centage

growth/

shrink

rate

I/O rate I/O rate -

Table 5.1: Implicit resources and their throttling properties

explicit or implicit, regarding the way they are consumed. Explicit resources are the ones

that applications request during execution, such as, number of allocated objects, number

of network connections, number of opened files. Implicit resources are consumed as the

result of executing the application, but are not explicitly requested through a given library

interface. Examples include, the heap size, the number of cores or the network transfer

rate.

Both types of resource are relevant to be monitored and regulated. Explicit and implicit

resources might be constrained as a protection mechanism against ill behaved or misus-

ing application [Geoffray et al., 2009]. For well behaved applications, restraining these

resources further below the application contractual levels will lead to an execution failure.

On the other hand, the regulation of implicit resources determines how the application will

progress. For example, allocating more memory will potentially have a positive impact,

while restraining memory will have a negative effect. Nevertheless, giving too much of

memory space is not a guarantee that the application will benefit from that allocation,

while restraining memory space will still allow the application to make some progress. In

this work we focus on controlling some types of implicit resources because of their poten-

tial to provide elasticity to resource management. QoE-JVM can control the admission

of these resources, that is, it can throttle resource usage. It gives more to the applications

that will progress faster if more resources are allocated. Because resources are finite, they

will be taken from (or not given to) other applications. Even so, the QoE-JVM will strive

to choose the applications where progress degradation is comparatively smaller.

Table 5.1 presents implicit resources and the throttling properties associated to each

one. These proprieties can be either counted values (e.g. x number of cores) or rates

(e.g. y KiBytes/seconds). To regulate CPU and memory both types of properties are

57

applicable. For example, CPU can be throttled either by controlling the number of cores

or the cap (i.e. the maximum percentage of CPU a VM is able to use, even if there is

available CPU time). Memory usage can be regulated either through a fixed limit or by

using a factor to shrink or grow this limit. Although the heap size cannot be smaller

than the working set, the size of the over committed memory influences the application

progress. A similar rationale can be made about resource pools, which are a common

strategy to manage resources in applications handling multiple requests, such as web and

database servers (e.g. thread pools, connection pools).

58

Chapter 6

Conclusions

59

60

References

[xen, 2012] (2012). http://wiki.xensource.com/xenwiki/creditscheduler, visited at 31-03-

2012.

[kaf, 2012] (2012). Kaffe virtual machine, http://www.kaffe.org/, visited 29-05-2012.

[Alpern et al., 2005] Alpern, B., Augart, S., Blackburn, S. M., Butrico, M., Cocchi, A.,

Cheng, P., Dolby, J., Fink, S., Grove, D., Hind, M., McKinley, K. S., Mergen, M., Moss,

J. E. B., Ngo, T., and Sarkar, V. (2005). The jikes research virtual machine project:

building an open-source research community. IBM Syst. J., 44:399–417.

[Amdahl et al., 1964] Amdahl, G. M., Blaauw, G. A., and Brooks, F. P. (1964). Archi-

tecture of the ibm system/360. IBM J. Res. Dev., 8:87–101.

[Aridor et al., 1999] Aridor, Y., Factor, M., and Teperman, A. (1999). cjvm: a single

system image of a jvm on a cluster. In In Proceedings of the International Conference

on Parallel Processing, pages 4–11.

[Arnold et al., 2004] Arnold, M., Fink, S., Grove, D., Hind, M., and Sweeney, P. F. (2004).

Architecture and Policy for Adaptive Optimization in Virtual Machines. Technical

Report 23429, IBM Research.

[Arnold et al., 2005] Arnold, M., Fink, S. J., Grove, D., Hind, M., and Sweeney, P. F.

(2005). A survey of adaptive optimization in virtual machines. In Proceedings of the

IEEE, 93(2), 2005. Special Issue on Program Generation, Optimization, ans Adapta-

tion.

[Back and Hsieh, 2005] Back, G. and Hsieh, W. C. (2005). The kaffeos java runtime

system. ACM Trans. Program. Lang. Syst., 27:583–630.

[Baker, 1994] Baker, H. G. (1994). Thermodynamics and garbage collection. SIGPLAN

Not., 29:58–63.

61

[Barham et al., 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art of virtualization.

SIGOPS Oper. Syst. Rev., 37:164–177.

[Binder et al., 2009] Binder, W., Hulaas, J., Moret, P., and Villazón, A. (2009). Platform-

independent profiling in a virtual execution environment. Softw. Pract. Exper., 39:47–79.

[Blackburn et al., 2006] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKin-

ley, K. S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel,

M., Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanović, D.,

VanDrunen, T., von Dincklage, D., and Wiedermann, B. (2006). The DaCapo bench-

marks: Java benchmarking development and analysis. In OOPSLA ’06: Proceedings of

the 21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,

Languages, and Applications, pages 169–190, New York, NY, USA. ACM Press.

[Blake and Rodrigues, 2003] Blake, C. and Rodrigues, R. (2003). High availability, scal-

able storage, dynamic peer networks: Pick two. In Jones, M. B., editor, HotOS, pages

1–6. USENIX.

[Bonr and Kuleshov, 2007] Bonr, J. and Kuleshov, E. (2007). Clustering the Java Virtual

Machine using Aspect-Oriented Programming. In AOSD ’07: Industry Track of the

6th international conference on Aspect-Oriented Software Development. Conference on

Aspect Oriented Software Development.

[Brewer, 2010] Brewer, E. A. (2010). A certain freedom: thoughts on the cap theorem. In

Richa, A. W. and Guerraoui, R., editors, PODC, page 335. ACM.

[Bruneton et al., 2002] Bruneton, E., Lenglet, R., and Coupaye, T. (2002). Asm: A code

manipulation tool to implement adaptable systems. In In Adaptable and extensible

component systems.

[Cherkasova et al., 2007] Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Comparison

of the three cpu schedulers in xen. SIGMETRICS Perform. Eval. Rev., 35:42–51.

[Click et al., 2005] Click, C., Tene, G., and Wolf, M. (2005). The pauseless gc algorithm.

In Proceedings of the 1st ACM/USENIX international conference on Virtual execution

environments, VEE ’05, pages 46–56, New York, NY, USA. ACM.

[Czajkowski et al., 2005] Czajkowski, G., Hahn, S., Skinner, G., Soper, P., and Bryce, C.

(2005). A resource management interface for the java platform. Softw. Pract. Exper.,

35:123–157.

62

[Czajkowski and von Eicken, 1998] Czajkowski, G. and von Eicken, T. (1998). Jres: a re-

source accounting interface for java. In Proceedings of the 13th ACM SIGPLAN confer-

ence on Object-oriented programming, systems, languages, and applications, OOPSLA

’98, pages 21–35, New York, NY, USA. ACM.

[Deutsch and Schiffman, 1984] Deutsch, L. P. and Schiffman, A. M. (1984). Efficient im-

plementation of the smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, POPL ’84, pages 297–

302, New York, NY, USA. ACM.

[Duran-Limon et al., 2011] Duran-Limon, H., Siller, M., Blair, G., Lopez, A., and

Lombera-Landa, J. (2011). Using lightweight virtual machines to achieve resource adap-

tation in middleware. IET Software, 5(2):229–237.

[et al., 2009] et al., G. C. (2009). Java specification request 284 - resource consumption

management api.

[Geoffray et al., 2009] Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frenot, S., and

Folliot, B. (2009). I-JVM: a Java Virtual Machine for component isolation in OSGi. In

IEEE/IFIP International Conference on Dependable Systems & Networks.

[Gong et al., 2010] Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive elastic

resource scaling for cloud systems. In Network and Service Management (CNSM), 2010

International Conference on, pages 9 –16.

[Govil et al., 1999] Govil, K., Teodosiu, D., Huang, Y., and Rosenblum, M. (1999). Cel-

lular disco: resource management using virtual clusters on shared-memory multiproces-

sors. SIGOPS Oper. Syst. Rev., 33:154–169.

[Gront and Kolinski, 2008] Gront, D. and Kolinski, A. (2008). Utility library for structural

bioinformatics. Bioinformatics, 24(4):584–585.

[Grzegorczyk et al., 2007] Grzegorczyk, C., Soman, S., Krintz, C., and Wolski, R. (2007).

Isla vista heap sizing: Using feedback to avoid paging. In Proceedings of the Inter-

national Symposium on Code Generation and Optimization, CGO ’07, pages 325–340,

Washington, DC, USA. IEEE Computer Society.

[Guan et al., 2009] Guan, X., Srisa-an, W., and Jia, C. (2009). Investigating the effects

of using different nursery sizing policies on performance. In Proceedings of the 2009

international symposium on Memory management, ISMM ’09, pages 59–68, New York,

NY, USA. ACM.

63

[Gulati et al., 2007] Gulati, A., Merchant, A., Uysal, M., and Varman, P. J. (2007). Effi-

cient and adaptive proportional share i/o scheduling. Technical report, HP Laboratories

Palo Alto.

[Hertz et al., 2009] Hertz, M., Bard, J., Kane, S., Keudel, E., Bai, T., Kelsey, K., and

Ding, C. (2009). Waste not,want not: resource-based garbage collection in a shared

environment. Technical Report TR-2006-908, University of Rochester.

[Hertz et al., 2005] Hertz, M., Feng, Y., and Berger, E. D. (2005). Garbage collection

without paging. SIGPLAN Not., 40:143–153.

[Hertz et al., 2011] Hertz, M., Kane, S., Keudel, E., Bai, T., Ding, C., Gu, X., and Bard,

J. E. (2011). Waste not, want not: resource-based garbage collection in a shared en-

vironment. In Proceedings of the international symposium on Memory management,

ISMM ’11, pages 65–76, New York, NY, USA. ACM.

[Hines et al., 2011] Hines, M., Gordon, A., Silva, M., Silva, D. D., Ryu, K. D., and Ben-

Yehuda, M. (2011). Applications know best: Performance-driven memory overcommit

with ginkgo. In CloudCom ’11: 3rd IEEE International Conference on Cloud Computing

Technology and Science.

[Holland et al., 2008] Holland, R. C. G., Down, T. A., Pocock, M. R., Prlic, A., Huen,

D., James, K., Foisy, S., Dräger, A., Yates, A., Heuer, M., and Schreiber, M. J. (2008).

Biojava: an open-source framework for bioinformatics. Bioinformatics, 24(18):2096–

2097.

[Hulaas and Binder, 2008] Hulaas, J. and Binder, W. (2008). Program transformations

for light-weight cpu accounting and control in the java virtual machine. Higher Order

Symbol. Comput., 21:119–146.

[Iyer et al., 2009] Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., and Newell,

D. (2009). Vm3: Measuring, modeling and managing vm shared resources. Computer

Networks, 53(17):2873–2887.

[López-Arévalo et al., 2007] López-Arévalo, I., Bañares-Alcántara, R., Aldea, A., and

Rodŕıguez-Mart́ınez, A. (2007). A hierarchical approach for the redesign of chemical

processes. Knowl. Inf. Syst., 12(2):169–201.

[Maggio et al., 2012] Maggio, M., Hoffmann, H., Papadopoulos, A. V., Panerati, J., San-

tambrogio, M. D., Agarwal, A., and Leva, A. (2012). Comparison of decision-making

64

strategies for self-optimization in autonomic computing systems. ACM Trans. Auton.

Adapt. Syst., 7(4):36:1–36:32.

[Manson et al., 2005] Manson, J., Pugh, W., and Adve, S. V. (2005). The java memory

model. SIGPLAN Not., 40:378–391.

[Mao et al., 2009] Mao, F., Zhang, E. Z., and Shen, X. (2009). Influence of program

inputs on the selection of garbage collectors. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09,

pages 91–100, New York, NY, USA. ACM.

[Michael Hines et al., 2011] Michael Hines, A. G., Silva, M., Silva, D. D., Ryu, K. D.,

and Ben-Yehuda, M. (2011). Applications know best: Performance-driven memory

overcommit with ginkgo. In CloudCom ’11: 3rd IEEE International Conference on

Cloud Computing Technology and Science.

[Microsoft,] Microsoft. Clr profiler for the .net framework 2.0.

[Nagpurkar et al., 2006] Nagpurkar, P., Krintz, C., Hind, M., Sweeney, P. F., and Rajan,

V. T. (2006). Online phase detection algorithms. In Proceedings of the International

Symposium on Code Generation and Optimization, CGO ’06, pages 111–123, Washing-

ton, DC, USA. IEEE Computer Society.

[Oracle,] Oracle. Java virtual machine tool interface (JVMTI),

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/.

[Padala et al., 2009] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang,

Z., Singhal, S., and Merchant, A. (2009). Automated control of multiple virtualized

resources. In Proceedings of the 4th ACM European conference on Computer systems,

EuroSys ’09, pages 13–26, New York, NY, USA. ACM.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-

ware: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–

14:42.

[Shao et al., 2009] Shao, Z., Jin, H., and Li, Y. (2009). Virtual machine resource manage-

ment for high performance computing applications. Parallel and Distributed Processing

with Applications, International Symposium on, 0:137–144.

[Simão et al., 2010] Simão, J., Ribeiro, C., Ferreira, P., and Veiga, L. (2010). Jano: spec-

ification and enforcement of location privacy in mobile and pervasive environments. In

65

Proceedings of the 2nd International Workshop on Middleware for Pervasive Mobile and

Embedded Computing, M-MPAC ’10, pages 2:1–2:8.

[Simão et al., 2011] Simão, J., de Lemos, J. N. P. A. S., and Veiga, L. (2011). A2-

VM: A Cooperative Java VM with Support for Resource-Awareness and Cluster-Wide

Thread Scheduling. In 19th International Conference on Cooperative Information Sys-

tems (CoopIS 2011). LNCS, Springer.

[Simão et al., 2012] Simão, J., Garrochinho, T., and Veiga, L. (2012). A Checkpointing-

enabled and Resource-Aware Java VM for Efficient and Robust e-Science Applications

in Grid Environments. Concurrency and Computation: Practice and Experience.

[Simão and Veiga, 2012a] Simão, J. and Veiga, L. (2012a). Towards an Adaptive and

Resource-Aware Java Runtime for Cloud Computing with Quality-of-Execution. AS-

PLOS/VEE 2012 Poster Session.

[Simão and Veiga, 2012b] Simão, J. and Veiga, L. (2012b). VM Economics for Java Cloud

Computing: An Adaptive and Resource-aware Java Runtime with Quality-of-Execution.

In 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

[Singer et al., 2007] Singer, J., Brown, G., Watson, I., and Cavazos, J. (2007). Intelligent

selection of application-specific garbage collectors. In Proceedings of the 6th interna-

tional symposium on Memory management, ISMM ’07, pages 91–102, New York, NY,

USA. ACM.

[Singer et al., 2010] Singer, J., Jones, R. E., Brown, G., and Luján, M. (2010). The

economics of garbage collection. SIGPLAN Not., 45:103–112.

[Singer et al., 2011] Singer, J., Kovoor, G., Brown, G., and Luján, M. (2011). Garbage

collection auto-tuning for java mapreduce on multi-cores. In Proceedings of the interna-

tional symposium on Memory management, ISMM ’11, pages 109–118, New York, NY,

USA. ACM.

[Smith and Nair, 2005] Smith, J. and Nair, R. (2005). Virtual Machines: Versatile Plat-

forms for Systems and Processes. Morgan Kaufmann.

[Soman and Krintz, 2007] Soman, S. and Krintz, C. (2007). Application-specific garbage

collection. J. Syst. Softw., 80:1037–1056.

[Soman et al., 2004] Soman, S., Krintz, C., and Bacon, D. F. (2004). Dynamic selec-

tion of application-specific garbage collectors. In Proceedings of the 4th international

66

symposium on Memory management, ISMM ’04, pages 49–60, New York, NY, USA.

ACM.

[Stoica et al., 1996] Stoica, I., Abdel-Wahab, H., and Jeffay, K. (1996). On the duality be-

tween resource reservation and proportional share resource allocation. Technical report,

Norfolk, VA, USA.

[Tanenbaum, 2007] Tanenbaum, A. S. (2007). Modern Operating Systems. Prentice Hall

Press, Upper Saddle River, NJ, USA, 3rd edition.

[VMware,] VMware. Vmware vspher 4: The cpu scheduler in vmware esx 4.

[Waldspurger, 1995] Waldspurger, C. A. (1995). Lottery and stride scheduling: flexible

proportional-share resource management. PhD thesis. AAI0576752.

[Waldspurger, 2002] Waldspurger, C. A. (2002). Memory resource management in vmware

esx server. SIGOPS Oper. Syst. Rev., 36:181–194.

[Weiming and Zhenlin, 2009] Weiming, Z. and Zhenlin, W. (2009). Dynamic memory

balancing for virtual machines. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, VEE ’09, pages 21–30.

[Wilson, 1992] Wilson, P. R. (1992). Uniprocessor garbage collection techniques. In Pro-

ceedings of the International Workshop on Memory Management, IWMM ’92, pages

1–42, London, UK. Springer-Verlag.

[Zhang et al., 2008] Zhang, H., Lee, J., and Guha, R. (2008). Vcluster: a thread-based

java middleware for smp and heterogeneous clusters with thread migration support.

Softw. Pract. Exper., 38:1049–1071.

[Zhang et al., 2005] Zhang, Y., Bestavros, A., Guirguis, M., Matta, I., and West, R.

(2005). Friendly virtual machines: leveraging a feedback-control model for applica-

tion adaptation. In Proceedings of the 1st ACM/USENIX international conference on

Virtual execution environments, VEE ’05, pages 2–12, New York, NY, USA. ACM.

[Zhu et al., 2002] Zhu, W., Wang, C.-L., and Lau, F. C. M. (2002). Jessica2: A distributed

java virtual machine with transparent thread migration support. Cluster Computing,

IEEE International Conference on, 0:381.

67

