
An Adaptive Java Runtime Environment for

Cloud Computing

José Manuel de Campos Lages Garcia Simão
(Mestre)

Proposta de dissertação a apresentar à

Comissão de Acompanhamento de Tese

Programa Doutoral em

Engenharia Informática e de Computadores

Júri

Presidente: Doutor David Martins de Matos

Orientador: Doutor Lúıs Manuel Antunes Veiga

Vogal: Doutor Paulo Jorge Pimenta Marques

Agosto de 2013

Abstract. This work investigates how an adaptable managed execution environment can be

deployed in cloud environments to effectively explore the large amount of resources available

in these infrastructures. Cloud infrastructures execute workloads from different tenants sup-

ported by a non-trivial virtualization stack, including high level language virtual machines

(HLL-VMs), operating system (OS) services and system-level virtual machines (Sys-VMs).

Currently, for a generic workload to be deployed in cloud-like infrastructures, it must have

to deal with the intricateness of manually managing resources, available over different Sys-

VMs. In this scenario, the allocation of physical resources to both Sys-VMs and HLL-VMs

(e.g. overall memory, heap size, CPU cores) and the distribution of execution flows is done in

an equal, mostly non-transparent fashion, missing the opportunity to manage the available

resources in a more efficient and application-centric way.

This document starts by surveying the state of the art of adaptable resource management

in virtual machines, framing them into a novel and thorough classification. It then presents and

discusses the architecture of the ongoing work on a comprehensive adaptable Java runtime,

with its enforcement mechanisms, and an Economics-inspired model to govern resource alloca-

tion. Relevant implementation details of the resource management mechanisms on which this

model can act are presented, with an increasing level of abstraction: (i) low-level resource man-

agement, (ii) state checkpoint for migration and (iii) distribution of execution flows. These

enforcement mechanisms were implemented and evaluated, measuring their benefits to the

workload execution (i.e. effectiveness in the distribution of resources, total execution time)

but also the overhead they add to the baseline execution. Results show the benefits of the

proposed approach globally overcome the cost they introduce.

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Resource allocation and effective progress . 2

1.3 Current shortcomings . 3

1.4 Contributions . 4

1.5 Published work . 6

1.6 Outline . 8

2 The Adaptability Loop of Virtual Machines . 9

2.1 Introduction . 9

2.2 Virtual Machines Fundamentals . 10

2.2.1 Computation as a resource . 11

2.2.2 Memory as a resource . 13

2.3 Adaptation techniques . 14

2.3.1 System Virtual Machine . 15

2.3.2 High-Level Language Virtual Machine . 17

2.4 The RCI Framework for classification of VM’s adaptation techniques 20

2.5 Systems and their classification . 24

2.5.1 System Virtual Machine . 24

2.5.2 High Level Language Virtual Machines . 26

2.5.3 Quantitative comparison of different adaptability techniques 30

2.6 Summary . 32

3 Architecture and design of an adaptable and distributed managed

execution environment . 33

3.1 Architecture of the QoE-JVM. 33

3.1.1 A cluster-wide execution environment . 33

3.1.2 Resource Awareness and Control . 36

ii Contents

3.1.3 Checkpointing and migration of the execution state 37

3.1.4 Cluster-wide thread placement . 38

3.1.5 Adaptability and the Policy Engine . 38

3.2 Driving Adaptability with Quality-of-Execution . 40

3.2.1 QoE-JVM Economics . 40

3.2.2 Progress monitoring . 43

3.2.3 Resource types and usage . 44

3.3 Resource Management Mechanisms . 46

3.3.1 Resource accounting and adaptability . 46

3.3.2 Concurrent checkpoint . 50

3.3.3 Cluster-wide thread placement . 52

4 Evaluation . 55

4.1 QoE applied to memory and CPU management . 55

4.1.1 Heap Size . 55

4.1.2 CPU . 58

4.2 Resource consumption constraints . 59

4.3 Concurrent checkpoint . 61

4.4 Cluster-wide thread placement . 62

5 Conclusions and Future Work . 65

5.1 Future Work . 66

References . 69

List of Figures

1.1 Layered view of the researched topics . 4

2.1 Virtualization layers . 11

2.2 Techniques used by System VMs to monitor, control and enforce 16

2.3 Techniques used by HLL-VMs to monitor, control and enforce 19

2.4 Relation of responsiveness, comprehensiveness and intricateness for the

different techniques used in System VMs . 23

2.5 Relation of responsiveness, comprehensiveness and intricateness for the

different techniques used in HLL VMs. 23

2.6 Relationship of responsiveness, comprehensiveness and intricateness for the

different adaptability techniques used in System VMs. 30

2.7 Relationship of responsiveness, comprehensiveness and intricateness for the

different adaptability techniques used in HLL VMs. 31

2.8 Relationship of emphasis on responsiveness, comprehensiveness and

intricateness, regarding the adaptation steps monitoring, decision and action

in System VMs. 31

2.9 Relationship of emphasis on responsiveness, comprehensiveness and

intricateness, regarding the adaptation steps monitoring, decision and action

in HLL VMs. 32

3.1 Overall architecture . 34

3.2 A cluster-wide execution environment . 35

3.3 Declarative policy . 39

3.4 Interactions with the Resource Awareness and Management Module 47

3.5 A sample notification handling to change thread allocation to the cluster 48

3.6 Regulate consumption based on past wndSize observations 49

3.7 Timelines of serial and concurrent checkpoint . 51

iv List of Figures

4.1 Default (M0) and alternative matrices to control the heap growth. 56

4.2 Results of using each of the matrices (M0..3), including savings and degradation

when compared to a fixed heap size. 57

4.3 Effects of restraining CPU and corresponding relative slowdown 58

4.4 Policy evaluation cost . 59

4.5 Macro evaluation of an instance of QoE-JVM . 60

4.6 Checkpointing experiences . 61

4.7 Fibonacci - Execution times . 62

1

Introduction

1.1 Motivation

In today’s scenarios of large scale computing and service providing, the deployment of software

workloads in distributed infrastructures, namely computer clusters, is a very active research

area. In recent years, the use of Grids, Utility and Cloud Computing, shows that these are

approaches with growing interest and applicability, as well as scientific and commercial im-

pact [66, 59, 11, 48, 62].

Managed languages (e.g., Java, C#) are becoming increasingly relevant in the devel-

opment of large scale solutions, leveraging the benefits of a virtual execution environment

(VEE) to provide secure, manageable and component-oriented solutions. Relevant examples

include work done in various areas such as web application hosting, data processing, en-

terprise services, supply-chain platforms, implementation of functionality in service-oriented

architectures. The field of e-Science also shows an increasing interest in Java for physics sim-

ulation, economics/statistics, network simulation, chemistry, computational biology and bio-

informatics [46, 36, 52], showing that to some extend, high performance and high throughput

computing have also been ported to managed languages.

To extend the benefits of a local VEE, while allowing scale-out regarding performance and

memory requirements, several solutions have been proposed to federate Java virtual machines

[83, 5, 85], aiming to provide a single system image where the managed application can benefit

from the global resources of the cluster. If this system image has elasticity, in the sense that

resources are made available proportionally to the effective need, and if these resources are

accounted/charged as they are used, we can provide an high-level language virtual machine

(HLL-VM) across the cluster, as an utility. If these changes are made dynamically (instead of

explicitly by their users) we will have an adaptive and resource-aware virtual machine, that

can be offered as a value-added Platform-as-a-Service (PaaS).

Often, when the execution of one of these applications is terminated abruptly due to a

failure (regardless of it being caused by hardware of software fault, lack of available resources

etc.), all of its work already carried out is simply lost and, when the application is later re-

2 1 Introduction

executed with the same parameters and input (e.g., as in the case of a data-processing job),

it has to restart its work from scratch, wasting resources and time, while still being prone to

another failure, to delay its completion with no deadline guarantees. A possible solution to

solve these problems, is through mechanisms of checkpoint and migration of applications made

available through a resource-aware enabled HLL-VM. With these mechanisms, an application

becomes more robust, as most of the work or calculations already performed can be recovered

and execution resumed from an earlier point in time. It gains flexibility by being able to

move to other nodes, without intervention from the programmer, regulated by a global policy

enforced to each HLL-VM.

A HLL-VM cluster-enabled environment can execute applications with very different re-

source requirements. This leads to the use of selected algorithms for runtime and system

services, aiming to maximize the performance of the applications running on the cluster.

However, for other applications, for example the ones owned by restricted users, it can be

necessary to impose limits to their resource consumption. These two requirements can only

be fulfilled if the cluster can monitor and control the resources it uses both at the HLL-VM

and distributed level, and whether the several local HLL-VM, each running on its node, are

able to cooperate to manage resources overall.

1.2 Resource allocation and effective progress

In a shared computer cluster, applications running on a given node compete for the finite

resources of that machine (e.g. CPU, memory, I/O). Each application is running to produce a

set of results on behalf of a given user, but not all users have the some execution requirements

or the some priority to complete their work. The work of Silva et al. [65] classifies users in

four different types, in order to apply differentiating policies to the work of these users. In

academic institutions, for example, the same grid can be used to run e-science applications

by students in different academic levels. Using the same infrastructure will have fewer costs

and will be easier to maintain. Nevertheless, the managers of the infrastructure will want

to impose a high level policy and give distinguished execution quality to different types of

students. The mechanisms to obtain this can range from restraining resource consumption

(e.g. CPU usage, physical memory allocated), to the migration of the application to another

node.

System virtual machines provide tools and programmatic interfaces to determine the man-

agement policy of the fine-grained resources they control (e.g. memory reservation, CPU

proportional share). Nevertheless, we are still far from being able to influence an application

behavior, effectively (wide range and impact), efficiently (low overhead) and flexibly (with no

or little intrusive coding).

1.3 Current shortcomings 3

As more applications target managed runtimes, HLL-VMs is a relevant abstraction layer

that has not been properly explored to enhance resource usage, control, and effectiveness, with

increased rich semantics and flexibility. Therefore, managed runtimes, executing the workloads

of multiple tenants, must adapt themselves to the execution of applications, with different (and

sometimes dynamically changing) requirements in regard to their quality-of-execution (QoE).

QoE aims at capturing the adequacy and efficiency of the resources provided to an ap-

plication according to its needs. Several metrics can be used to infer how applications are

making progress given the resources they are using. It can be inferred coarsely from appli-

cation execution time for medium running applications, or request execution times for more

service driven ones such as those web-based, or from critical situations such as thrashing or

starvation. Also, it can be derived in a more fine-grained way from incremental indicators of

application progress, such as amount of input processed, disk and network output generated,

execution phase detection or memory pages updates. Still, initially, the application execution

times (or a way to estimate it [21]) is a relevant metric.

QoE can be used to drive a VM economics model, where the goal is to incrementally

obtain gains in QoE for VMs running applications requiring more resources or for more priv-

ileged tenants. This, while balancing the relative resource savings drawn from other tentants’

VMs with perceived performance degradation. To achieve this goal, certain applications will be

positively discriminated, reconfiguring the mechanisms and algorithms that support their exe-

cution environment (or even engaging available alternatives to these mechanisms/algorithms).

For other applications, resources must be restricted, imposing limits to their consumption,

regardless of some performance penalties (that should also be mitigated). In any case, these

changes should be operationally transparent to the developer and specially to the application’s

user.

1.3 Current shortcomings

Existing approaches to cluster-enabled runtimes adaptability and internal mechanisms such

as checkpointing and resource-awareness, are still not adequate for this intended scenario as

they have not been combined into a single infrastructure for unmodified applications.

Existing public runtimes are not resource-aware in the sense that the use of resources

is mostly bounded by the underlying operative system. On the other hand, in the research

community, the proposed runtimes are focused on accounting resource usage to avoid appli-

cation’s bad behavior, and do not support the desired reconfigurability of their inner mecha-

nisms [32, 12]. There is no notion of resource effectiveness in the sense that when there are

scarce resources, there is no attempt to determine where to take such resources from applica-

tions (i.e. either isolation domains or the whole VM) where they hurt performance the least.

Others have recently shown the importance of adaptability at the level of HLL-VMs, either

4 1 Introduction

Resource Management in the JVM

JSR 284
Heap grow/

shrink Matrices

Distributed Oject Heap (Terracotta) and High

Level Policies for Workload Distribution

Distributed Oject Heap (Terracotta) and High

Level Policies for Workload Distribution

Application Profiles based on Resource

Utilization and Efficiency

Application Profiles based on Resource

Utilization and Efficiency

Classification framework for

Adaptability in Virtual

Machines

Classification framework for

Adaptability in Virtual

Machines

Workload distribution mechanisms

Thread

spawning

Concurrent

Checkpoint/

migratrion

Progress Monitoring

Economics-inspired Resource Management Model

Yield-based (QoE) and Return

On Investement (RoI)
Partial Utility-driven

JVM agent

High-level

Models and

Classifications

Distributed

architecture

Low-level inner

mechanisms

Fig. 1.1. Layered view of the researched topics

based on the application performance [56] or by changes in their environment [30]. Neverthe-

less, they are either dependent on a global optimization phase, limited to a single given type

of resource, or make the application dependent on a new programming interface.

Furthermore, traditional mechanisms of checkpoint and migration are supported at process

level or at system virtual machine. These approaches are insufficient because they either

require to store/transfer information that is not on the application itself (e.g. information on

the operating system on which it runs), or limit the portability of it.

Previous works in distributed execution environment have researched the semantics of

single system image, mainly regarding data access. However they are neither elastic nor re-

source aware, and therefore are not fit for the multi-tenant scenarios we address. Several

new programming models and languages [20, 73, 75, 51] have been proposed. They require

the program to be bounded to yet an other programming interface, which invalidates the

use of previous working solutions by non programming-expert users, e.g. some groups of e-

science researchers. The architecture presented in [26] federates the multi-task virtual machine

[27], forming a cluster where there are local and global resources that can be monitored and

constrained. However, Czajkowski’s work lacks the capacity to relocate workload across the

cluster. Regarding policies, theirs are only defined programmatically and cannot be changed

without recompiling the programs/libraries responsible by clustering mechanisms (e.g. load

balancer).

1.4 Contributions

Because our system proposal is an adaptable, resource-aware, distributed execution environ-

ment, the contributions include all these topics with different emphasis. Figure 1.1 presents

a schematic view of the topics which are currently under research, design and evaluation.

1.4 Contributions 5

The following list presents a short description of the specific contributions covered in this

document.

1. VM’s adaptability framework. The first contribution is a framework to classify adapt-

ability in virtual machines. It describes the adaptability loop of virtual machines discussing

their mechanisms and techniques. It then proposes a way to classify each of those accord-

ing to their responsiveness, i.e. the capacity to react to changes, their comprehensiveness,

i.e. the scope of the mechanisms involved, and their intricateness, i.e. the complexity of

the modifications to the code base or to the underlying systems.

2. Adaptability model. We have design an Economics-inspired model to drive adaptability

in environments where resources are shared by several tenants. Our adaptability model is

used to determine from which tenants resource scarcity will hurt performance the least,

putting resources where they can do the most good to applications and the cloud infras-

tructure provider. We describe the integration of this model into QoE-JVM , a distributed

execution environment, where nodes cooperate to make an efficient management of the

available local and global resources.

Currently, we developed (and is under evaluation) a yield-based model to measure the

results of different strategies regarding: a) the heap size, based on the relation between

the ratio of live objects and the time spent in GC; b) CPU allocation in a per workload

way; c) number of threads available in workloads with flexible configuration.

We are also investigating how a partial utility-driven cost model can be used in scheduling

at a lower system level, i.e. system-wide virtual machines. This is important for providers

(either public or private) of the Infrastruture-as-a-Service (IaaS) service model, where

system-wide virtual machines are rented to different clients.

3. Low-level resource management. As the fundamental building block of the distributed

execution environment, we propose a HLL-VM with the ability to monitor base mecha-

nisms (e.g. garbage collection performance, memory or network consumptions) in order

to assess an application’s performance and resource usage, and reconfigure these mecha-

nisms in run-time according to previously defined resource allocation policies (or quality-

of-execution specifications). These policies regulate how resources should be used by the

application in the cluster, leading to the adaptation of components at different levels of the

cluster in order to enforce them. High-level policies are evaluated by consumption points

inside the HLL-VM but are defined externally to the execution environment, that is, by

the application owner or the provider.

4. Concurrent checkpointing. We propose a novel solution to Java applications with long

execution times, by incorporating checkpoint and migration mechanisms in a Java VM

(Jikes RVM [2]). It is able to checkpoint multi-threaded applications, ensuring the check-

point is a consistent snapshot of the execution taking into account thread concurrency

6 1 Introduction

and synchronization, while avoiding application pause by performing the checkpoint con-

currently (or incrementally) alongside with the application execution. Our techniques rely

on two base mechanisms: on-stack-replacement (OSR) and yield points, existent in many

other VM implementations (e.g. Sun HotSpot). Therefore, our techniques could be ap-

plied to other VMs. The main objectives are focused on the problems of transparency and

completeness, and how these mechanisms can be activated according to low-level resource

management and monitoring driven by policies.

5. Cluster-wide thread placement. We use a middleware that aggregates the heap space

of individual VMs to form, within the cluster, a distributed shared object space assigned

to a specific application. It gives running applications support for single system image

(SSI) semantics, across the cluster, regarding objects address space and thread allocation.

Techniques like bytecode enhancement/instrumentation or rewriting are used, so that

unmodified applications can operate in a partitioned global address space, where some

objects exist only as local copies and others are shared in a global heap. The middleware

has been extended to provide SSI semantics regarding the execution of individual threads

of each application. Furthermore, we present how the spawning of new threads can be

controlled by high-level policies.

1.5 Published work

The work described in this document was partially published in the following journals, inter-

national conferences and associated events, i.e. workshops and poster sessions:

• Journals

J.1 José Simão and Tiago Garrochinho and Lúıs Veiga, A Checkpointing-enabled and

Resource-Aware Java VM for Efficient and Robust e-Science Applications in Grid

Environments, Concurrency and Computation: Practice and Experience, 24(13), pp.

1421-1442, Sep. 2012, Wiley. ISI Web of Knowledge IF 0.84, RADIST A.

J.2 José Simão and Carlos Nuno da Cruz Ribeiro and Paulo Ferreira and Lúıs Veiga,

Jano: Location-Privacy Enforcement in Mobile and Pervasive Environments through

Declarative Policies , Journal of Internet Services and Applications (JISA), 3(3), pp.

291-310, Dec. 2012, Springer. SCImago SJR 1.6, Quartile 1 in category “Computer

Networks and Communications”, RADIST A.

• Conferences

C.1 José Simão and João Lemos and Lúıs Veiga, A2 − VM : A Cooperative Java VM

with Support for Resource-Awareness and Cluster-Wide Thread Scheduling, 19th In-

1.5 Published work 7

ternational Conference on Cooperative Information Systems (CoopIS 2011), Sep. 2011,

LNCS, Springer. RADIST B, Core A, Acceptance ratio ≈ 20%.

C.2 José Simão and Lúıs Veiga, QoE-JVM: An Adaptive and Resource-Aware Java Run-

time for Cloud Computing, 2nd International Symposium on Secure Virtual Infrastruc-

tures (DOA-SVI 2012), OTM Conferences 2012, Sep. 2012, Springer, LNCS. Acceptance

ratio ≈ 30%.

• Workshops

W.1 José Simão and Paulo Ferreira and Carlos Nuno da Cruz Ribeiro and Lúıs Veiga,

Jano - Specification and Enforcement of Location Privacy in Mobile and Pervasive En-

vironments, Workshop on Middleware for Pervasive Mobile and Embedded Computing

(M-MPAC 2010), in Middleware 2010., Dec. 2010, ACM.

W.2 José Simão and Lúıs Veiga, VM Economics for Java Cloud Computing: An Adaptive

and Resource-Aware Java Runtime with Quality-of-Execution, The 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012) -

Doctoral Symposium: Cloud Scheduling, Clusters and Data Centers, May. 2012, IEEE.

W.3 José Simão and Lúıs Veiga, A Classification of Middleware to Support Virtual Ma-

chines Adaptability in IaaS, 11th International Workshop on Adaptive and Reflective

Middleware (ARM 2012), In conjunction with Middleware 2012, Dec. 2012, ACM.

• Posters and talks

P.1 José Simão and Lúıs Veiga, Towards an Adaptive and Resource-Aware Java Runtime

for Cloud Computing with Quality-of-Execution, Poster session of the 17th Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), Mar. 2011. Main conference is CORE A, RADIST A.

T.1 José Simão and Lúıs Veiga, Invited talk in the Middleware’12 Doctoral Symposium,

Dec. 2012.

P.2 José Simão and Axel Domingues and Lúıs Veiga, Flexible SLAs in the Cloud With

Partial-Utility Scheduling, Poster Session of EuroSys 2013, Apr. 2013. Main conference

is CORE A, RADIST A.

The following list shortly presents the publications and communications that support this

document:

1. C.1 describes the architecture and implementation details of the resource aware runtime

and the cluster enabling mechanisms. It shows how general low-level resource accounting

and thread placement can be determined by declarative policies loaded by the JVM.

2. J.1 presents the extensions made to a JVM to support concurrent checkpoint and migra-

tion of the virtual machine and application’s state. The paper also presents policies that

can be used to govern checkpoint and/or migration.

8 1 Introduction

3. P.1, W.2 and C.2, describes an Economics-inspired adaptability model and the adapta-

tion mechanisms for heap size and CPU allocation.

4. W.3 presents a novel classification framework for adaptive resource management in

system-level virtual machines.

5. P.2 presents preliminary research on the partial utility-driven scheduling.

During the PhD program I have also published further extensions to the policy-based work

presented in my MSc. dissertation. It focus on the efficient evaluation of high-level policies

in the context of a location service. W.1 and J.2 describe the usage and extension of the

Security Policy Language [61] to support a location service where location information is

disclosed conditioned by the enforcement of history-based and discretionary security policies.

1.6 Outline

The rest of the document is organized in the following chapters:

• Chapter 2 - The Adaptability Loop of Virtual Machines. In this chapter, we present

the fundamental building blocks of virtual machines which are used and extended in the

literature in order to be adapted to the particularities of workloads. Next, a novel and

systematic approach for the classification of adaptable resource-aware virtual machines or

their components is described. Several state of the art systems are evaluated according to

this classification framework.

• Chapter 3 - Architecture and design of an adaptable and distributed execution

environment. This chapter starts by presenting the building blocks of the adaptive run-

time environment. It describes each building block requisite in order to support transpar-

ent adaptation regarding the application programming model and execution. Section 3.2

presents a rationale to drive adaptability so that resources can be transferred from ap-

plications that use them poorly to the ones that can use them more efficiently. Finally,

Section 3.3 delves into some relevant implementation details of the proposed mechanisms.

• Chapter 4 - Evaluation. This chapter starts by evaluating how effective the adaptability

model is, demonstrating that the tailored allocating of resources to each application as

benefits. Follows the evaluation of overheads and improvements over the baseline execution

of the three adaptation mechanisms, showing their advantages.

• Chapter 5 - Conclusions. This chapter concludes the document discussing the over-

all work and some future directions which we consider as important improvements or

extensions, either to the resource management models or the inner mechanisms.

2

The Adaptability Loop of Virtual Machines

2.1 Introduction

Virtual machines (VM) are being used today both at the system and programming language

level. At the system level they virtualize the hardware, giving the ability to guest multiple

instances of an operating system on multi-core architectures, sharing computational resources

in a secure way. Regarding high level programming languages, and similarly to the system level

virtual machines, these VMs abstract from the underlying hardware resources, introducing a

layer that can be used for fine grained resource control. Furthermore, they promote portability

through dynamic translation of an intermediate representation to a specific instruction set.

High level language virtual machines (HLL-VM) are also an important building block in the

organization of modern applications, due to techniques such as runtime component loading

or automatic memory management.

System level VMs, or hypervisors, are strongly motivated by the sharing of low-level re-

sources. In result of this, many research and industry work can be found about how resources

are to be delivered to each guest operating system. The partition is done with different rea-

sonings, ranging from a simple round robin algorithm, to autonomic behavior where the hy-

pervisor automatically distributes the available resources to the guests that, given the current

workload, can make the best out of them. Among all resources, CPU [84, 22, 64, 76] and

memory [35, 78, 44] are the two for which a larger body of work can be found. Nevertheless,

other resources such as storage and network are also target of adaptation.

High level language VMs have also been designed as a way to isolate and abstract from the

underlying environment. Despite this middleware position, HLL-VMs have only one guest at

each time - the application. As a consequence, in most cases, some resources are monitored not

to be partitioned but for the runtime to adapt its algorithms to the available environment. For

example, a memory outage could force some of the already compiled methods to be unloaded,

freeing memory to maintain more data resident. There are some works about controlling

system resources usage in HLL-VMs, most of them targeting the Java runtime (e.g. [28, 27,

12, 47]). They use different approaches: making modifications to a standard VM, or even

10 2 The Adaptability Loop of Virtual Machines

proposing a new implementation from scratch, to modifications in the byte codes and hybrid

solutions. In each work different compromises are made, putting more emphasis either on the

portability of the solution (i.e. not requiring changes to the VM) or on the portability of the

guests (i.e. not requiring changes to the application source code).

Virtual machines are not only a isomorphism between the guest system and a host [69],

but a powerful software layer that can adapt its behavior, or be instructed to adapt, in order

to transparently improve their guests’s performance, minimizing the virtualization cost. In

order to do so, VMs, or systems augmenting their services, can be framed into the well known

adaptation loop [63]: i) monitoring or sensing, ii) control and decision, and iii) enforcement

or actuation. Monitoring determines which components of the VM are observed. Control

and decision take these observations and use them in some simple or complex strategy to

decide what has to be changed. Enforcement deals with applying the decision to a given

component/mechanism of the VM.

In both types of VMs, adaptation is accomplished at different levels. As a consequence,

monitoring, control and enforcement are applied in a way that has different impacts. For

example, for the allocation of processing resources, the adaptation can be limited to the

tuning of a parameter in the scheduling algorithm, the replacement of the algorithm, or the

migration of the guest VM to another node.

In this chapter, we present a novel framework to classify resource monitoring and adapta-

tion techniques in virtual machines, both at system and language level, using an alternative

approach to existing survey work [7, 33, 81]. Section 2.2 presents the architecture of these

VMs, depicting the building blocks that are used in research regarding resource usage. Sec-

tion 2.3 presents several adaptation techniques found in the literature and frames them into

the adaptability loop. In Section 2.4 the classification framework is presented. For each of the

resource management components of VMs, and for each of the three steps of the adaptation

loop, we propose the use of a quantitative classification regarding the impact of the mech-

anisms used by each system. We use this framework to classify state of the art systems in

Section 2.5, aiming to compare and better understand the benefits and limitations of each one.

Section 2.6 closes this chapter presenting some conclusions based on the previous discussion.

2.2 Virtual Machines Fundamentals

Virtual machines have their roots in the 60’s with the IBM 360 and 370 [4]. These systems

provided a time-sharing environment where users had a complete abstraction of the underlying

hardware resources. IBM goal was to provide better isolation among different users, providing

virtual machines to each one. The architecture of the IBM System/370 was divided in three

layers: the hardware, the control program (CP) and the conversational monitor system (CMS).

The CP controlled the resource provision and the CMS delivered the services to the end user

2.2 Virtual Machines Fundamentals 11

Hardware (CPUs, memory, I/O

devices)

Operative System

Native

Application1

Native

Applicationn

...

(a)

HW

OS1

App App

OSn

App

...

App

Virtual Machine Monitor

(b)

HW

C1
... Cn

...

OS

HLL VM

Native

Application

(c)

Fig. 2.1. Virtualization layers

underpinned on this resources. Today, the same architecture can be found in modern System

VMs [10]. Figure 2.1 depicts these three layers, where CP’s role is given to the virtual machine

monitor (VMM). VMM purpose is to control the access of the guest operating systems running

in each virtual machine to the physical resources, virtualizing processors, memory and I/O.

High Level Language VMs, highly influenced by the Smalltalk virtual machine [29], also

provide a machine abstraction to their guest, which is an end-user application. This abstraction

promotes portability in the sense that the source code is compiled not to a specific hardware

but to a virtual ISA, whose running machine can be implemented in different ways by different

operating systems and hardware.

The just in time (JIT) compiler is responsible for this translation and is in itself a source of

adaption. Regarding its self-adaptive behavior, the JIT compiler adaptations are not driven

by resource allocation but by the dynamics in the flow of execution (e.g. hot methods are

compiled using more sophisticated optimizations). On the other hand, memory management

has an high impact both at memory and CPU as computational resources. Research work has

shown that the performance enabled by different garbage collectors algorithms is dependent

on the behavior of the application as well as on the available resources (i.e. heap size). These

observations motivated the development of heuristics to adapt the available heap size or the

GC algorithm [55, 41, 71].

The next three sections will briefly describe how fundamental resources, CPU, memory

and I/O are virtualized by the two types of VMs. The systems presented in Section 2.5 are

based on the building blocks presented here, extending them towards self-adaptation based

on resource usage.

2.2.1 Computation as a resource

In a VM, virtualization of computation concerns two distinct aspects: i) the translation of

instructions if the guest and host use a different ISA ii) the scheduling of virtual CPUs to a

12 2 The Adaptability Loop of Virtual Machines

physical CPU (or CPU core on Symmetric Multiprocessors - SMP). These two aspects have

different degrees of importance in System and HLL VMs.

Instruction emulation (i.e. the translating from a set of instructions to another one) is

common to both types of VMs. In System VMs, emulation is necessary to adapt different

ISAs or in response to the execution of a privileged instruction (or a resource or behavior-

sensitive instruction, even if not privileged) in the guest OS. Adaptation in binary, and byte

code translation, is achieved by changing the translation technique (i.e. interpretation or

compilation) and by replacing code previously translated with a more optimized one. These

adaptations are driven by profiling information gather during program execution.

Typically HLL-VMs rely on the underlying OS to schedule their threads of execution.

In spite of this portability aspect, the specification of HLL VMs is supported by a memory

model [54] making it possible to reason about the program behavior. Regarding System VMs,

because they operate directly above the hardware, the VMMmust decide the mapping between

the real CPUs and each running VM [10, 22]. The next section will discuss different types of

algorithms to schedule VMs in physical CPUs.

System VMs scheduling

CPU scheduling is a well known issue in operating systems [74]. In single or multi-core systems,

one of the operating system’s task is to schedule runnable threads to a physical CPU. On a

VMM running above the hardware, each guest VM is assigned one or more virtual CPUs

(VCPU), whose total number can be larger than the available physical CPUs. When ready,

the VCPU needs to be scheduled to a physical CPU. This results in a system with two layers

of scheduling: inside the VMM and inside each guest OS.

A VMM scheduler has additional requirements when compared to the OS scheduler, namely

the capacity to enforce a resource usage specified at the user’s level. To achieve this, the CPU

scheduler must take into account the share (or weight) given to each VM and make scheduling

decisions proportional to this share [72, 22]. This family of schedulers are named Proportional

Share. Operating systems have traditionally used a related type of share scheduling, named

Fair Share.

In these schedulers, shares are not directly seen by the end user, making it hard to define

a high level resource management policy [77]. Cherkasova et al. [22] classifies schedulers as:

i) work conservative or non work conservative, and ii) preemptive or non preemptive. Work

conservative schedulers take the share as a minimum allocation of CPU to the VM. If there

are available CPUs, VCPUs will be assigned to them, regardless the VM’s share. In non work

conservative, even if there are available CPUs, VCPUs will not be assigned above a given

previously defined value. A preemptive scheduler can interrupt running VCPUs if a ready to

run VCPU has a higher priority. Section 2.5 presents systems that dynamically change the

2.2 Virtual Machines Fundamentals 13

scheduler parameters to give guest VMs the capacity that best fits their needs. If the scheduler

cannot correctly enforce these decisions, this will lead to frequent changes of the scheduler

parameters.

2.2.2 Memory as a resource

Memory is virtualized in both system and HLL-VMs with a similar goal: give the illusion to

their guests of a virtually unbounded address space. Because memory is effectively limited, it

will eventually become full and the guest (operating systems or application) will have to deal

with memory shortage.

In System VMs, an extra level of indirection is added to the already virtualized environ-

ment of the guest operating systems. Operating systems give to their guests (i.e. processes) a

dedicated address space, eventually larger than the real available hardware. As pointed out in

the work [69], the VMM extra level of indirection generalizes the virtual memory mechanisms

of operating systems.

In HLL-VMs, memory is requested on demand by the guest application, without the need

to be explicit freed by it. When a given threshold is reached, a garbage collection activity is

started to detect unreachable objects and reclaim their memory. There is no “one size fits all”

garbage collector algorithm. We will next present more details about classical issues about

memory management in systems and HLL-VMs.

Memory management in System VMs

The VMM can be managing multiple VMs, each with his guest OS instance and type. There-

fore, the mapping between physical and real addresses must be extended because what is

seen by an OS as a real address (i.e. machine address), can now change each time the VM

hosting the OS is scheduled to run. The VMM introduces an extra level of indirection to

the virtual → real mapping of each OS, keeping a real → physical to each of the running

VMs. On the other hand, user level applications use a virtual address to accomplish their

operations. To avoid a two folded conversion, the VMM keeps shadow pages for each process

running on each VM, mapping virtual → physical addresses. Access to the page table pointer

is virtualized by the VMM, trapping read or write attempts and returning the corresponding

table pointer of the running VM. The translation look aside buffer (TLB) continues to play

its accelerating role because it will still keep in cache the virtual → physical addresses.

When the VMM needs to free memory it has to decide which page(s) from which VM(s) to

reclaim. This decision might have a poor performance impact. If the wrong choice is made, the

guest OS will soon need to access the reclaimed page, resulting in wasted time. Another issue

related to memory management in the VMM is the sharing of machine pages between different

VMs. If these pages have code or read-only data they can be shared avoiding redundant copies.

14 2 The Adaptability Loop of Virtual Machines

Section 2.5 presents the way some relevant systems are built so that their choices are based

on monitored parameters from the VM’s memory utilization.

Automatic memory management in High Level Language VMs

The goal of memory’s virtualization in HLL-VMs is to free the application from explicit

dealing with memory deallocation, giving the perception of an unlimited address space. This

avoids keeping track of clients of data structures (i.e. objects), promoting easier extensibil-

ity of functionalities because the bookkeeping code that must be written in non virtualized

environment is no longer needed [80, 69].

Different strategies have been researched and used during the last decades. Simple mark

and sweep, compacting or copying collectors, all identify live objects starting from a root set

(i.e. the initial set of references from which live objects can be found). All these approaches

strive a balance between the time the program needs to stop and the frequency the collecting

process needs to execute. This is mostly influenced by the heap dimension and, in practice,

some kind of nursery space is used to avoid transversing all the heap. New objects are created

in a smaller space (e.g. 512 KBytes). When this space fills up, live objects are promoted to

a bigger space, leaving the nursery empty and ready for new allocations. These collectors are

called generational collectors. The nursery space can be generalized and the heap organized

in more than two generations.

Investigators have been analyzing the impact of different data inputs on the performance

of garbage collectors [55]. Based on these observations, several adaptation strategies have been

proposed [7], ranging from parameters adjustments (e.g. the nursery size [38]) to changing the

algorithm itself in runtime [70]. Section 2.5 discusses these different approaches.

2.3 Adaptation techniques

In a software system, adaptation is regulated by monitoring, analyzing, deciding and act-

ing [63]. Monitoring is fed by sensors and actions are accomplished by effectors, forming a

process known as the adaptation loop. Virtual machines, regardless of their type, are no ex-

ception. Adaptability mechanisms are not only confined to VM’s internal structures but also

to systems that externally reconfigure VM’s parameters or algorithms. An example of the

former is the adaptive JIT compilation process of HLL-VMs [7]. An example of the latter is

the work of Shao et al. [64] to regulate VCPU to CPU mapping based on the CPU usage of

specific applications.

There are a broad range of strategies regarding the analysis and decision processes. Many

solutions that augment system VMs use control theory elements such as the proportional-

integral-derivative (PID) controller and Additive-Increase/Multiplicative-Decrease (AIMD)

2.3 Adaptation techniques 15

rules to regulate one or more VM’s parameters. Typically, when the analysis and decision is

done in the critical execution path (e.g. scheduling, JIT, GC), the choice must be done as fast

as possible, and so, a simpler logic is used.

Next we will present and discuss the state of the art regarding the three major steps of the

adaptability loop for each type of VM and their internal resource management mechanisms.

2.3.1 System Virtual Machine

The VMM has built-in parameters to regulate how resources are shared by their different

guests. These parameters regulate the allocation of resources to each VM and can be adapted

at runtime to improve the behavior of the applications given a specific workload. The adap-

tation process can be internal, driven by profiling made exclusively inside of the VMM, or

external, which depends on application’s events such as the number of pending requests. In

this section, the two major VMM subsystems, CPU scheduling and Memory Manager, will be

framed into the adaptation processes.

CPU Management

CPU management relates to activities that can be done exclusively inside the hypervisor or

both inside and outside. An example of an exclusively inside activity is the CPU scheduling

algorithm. To enforce the weight assigned to each VM, the hypervisor has to monitor the time

of CPU assigned to each VCPUs of a VM, decide which VCPU(s) will run next, and assign

it to a CPU [10, 22]. An example of an inside and outside management strategy is the one

employed by systems that monitor events outside the hypervisor (e.g. operating systems load

queue, application level events) [84, 64], that use their own control strategy, such as linear

optimization, control theory using a proportional-integral-derivative (PID) controller [60] or

signal processing and statistical learning algorithms [34]. Nevertheless, such systems act on

mechanisms inside the hypervisor (e.g. weight assigned to VMs, number of VCPUs).

Memory Management

The memory manager virtualizes hardware pages and determines how they are mapped to

each VM. To establish which and how many pages each VM is using, the VMM can mon-

itor page’s utilization using either whole page or sub-page scope. The monitoring activities

aim to reveal how pages are being used by each VM, and so information collected relates

to: i) page utilization [78, 79], and ii) page contents equality or similarity [78, 10]. Applica-

tion performance (either by modification of the application or external monitoring) is also

considered [44].

Because operating systems do not support dynamic changes to physical memory, the maxi-

mum amount of memory that can be allocated is statically assigned to each VM. Nevertheless,

16 2 The Adaptability Loop of Virtual Machines

Fig. 2.2. Techniques used by System VMs to monitor, control and enforce

when total allocated memory exceeds the one that is physically available, the VMM must de-

cide which clients must relinquish their allocated memory pages in favor of the current request.

Decisions regarding memory pages allocation to each VM are made using: i) shares [78], ii)

history pattern [79], or iii) linear programming [44].

After deciding that a new configuration must be applied to a set of VMs, the VMM can

enforce: i) page sharing [78], or ii) page transfer between VMs. Page sharing relies on the

mechanisms that exist at the VMM layer to map real → physical page numbers, as described

in Section 2.2.2. On the other hand, the page transfer mechanism relies on the operating

systems running at each VM, so that each operating system can use its own paging policy.

This is accomplished using a balloon driver installed in each VM [10, 78].

Summary of adaptation loop techniques

Figure 2.2 presents the techniques used in the adaptation loop. They are grouped by the

two major adaptation targets, CPU and memory, and then into the three major phases of the

adaptability loop. The CPU management sub-tree is the one that has more elements (i.e. more

adaptation techniques). This reflects the emphasis given by researchers to this component of

Sys-VMs. Regarding memory, early work of Waldspurger [78] and Barham et al. [10] laid solid

techniques for virtualizing and managing this resource. Recent work shows that, to improve

2.3 Adaptation techniques 17

perform of workloads regarding their use of memory is crucial to have more application-level

information [79, 44].

2.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC and Resource

manager, will be framed into the adaptation processes. HLL-VMs monitor events inside their

runtime services or in the underlying platform. As always, there is a trade off between deciding

fast but poorly, or deciding well (or even optimally), but spending too much resources in the

process of doing so. Most systems base their decision on an heuristic, that is, some kind of

adjustment function or criterion that, although it cannot be fully formally reasoned about, it

still gives good results when properly used. Nevertheless, some do have a mathematical model

guiding their behavior. Next we will analyze the most common strategies.

Just in time compilation

The JIT is mostly self contained in the sense that the monitoring process (also know as pro-

filing in this context) collects data only inside the VM. Modern JIT compilers are consumers

of a significant amount of data collected during the compilation and execution of code.1 Hot

methods information is acquired using i) sampling [3] or ii) instrumentation. In the first case,

the execution stacks are periodically observed to determine hot methods. In the second case,

method’s code is instrumented so that its execution will fill the appropriate runtime profiling

structures. Sampling is known to be more efficient [7] despite its partial view of events.

To determine which methods should be compiled or further optimized there are two dis-

tinct group of techniques: i) counter-based ii) model-based. Counter-based systems look at

different counters (e.g. method entry, loop execution) to determine if a method should be

further optimized. The threshold values are typically found by experimenting with different

programs [6, 7]. In a model driven system, optimization decisions are made based on a math-

ematical model which can be reasoned about. Examples include a cost-benefit model where

the recompilation cost is weighted against further execution with the current optimization

level [3].

Adaptability techniques in the JIT compiler are used to produce native optimized code

while minimizing impact in application’s execution time. Because native takes more mem-

ory than intermediate representations, some early VMs discarded native code compilations

when memory became scarce. With the growth of hardware capacity this technique is less

used. So, the actions that can complete the adaptability loop are: i) partial or total method

recompilation, ii) inlining or iii) deoptimization.

1 The adaptive optimization system (AOS) in Jikes RVM [3] produces a log with approximately 700Kbytes of
information regarding call graphs, edge counters and compilation advices when running and JIT compiling
one of DaCapo’s benchmark [13] - bloat

18 2 The Adaptability Loop of Virtual Machines

Garbage collection

Tradicional GC algorithms are not adaptive in the sense that the strategy to allocate new

objects, the kind of spaces used to do so, and the way garbage is detected, does not change

during program’s execution. Nevertheless, most research and comercial runtimes incorporate

some form of adaptation strategy regarding memory management [7]. To accomplish these

adaptations, monitoring is done by observing: i) memory structures dimensions (e.g. total

heap size, nursery size) [67, 68], ii) the program behavior (e.g. allocation rate, stack height,

key objects) [70] and, iii) relevant events in the operating systems (e.g. page faults, allocation

stalls) [37, 43].

Decision regarding the adaptation of heap related structures are taken either i) offline

or ii) inline with execution. Offline analysis takes in consideration the result of executing

different programs so see which parameter or algorithm has the best performance for a given

application. Inline decisions must be taken either based on a mathematic model or on some

kind of heuristic. Some authors have elaborated mathematical models of objects’ lifetimes.

These models are mostly used to give a rationale of the GC behavior, rather than being

used in a decision process [9]. So, most systems have a decision process based on some kind

of heuristics. The decision process includes: i) machine learning, ii) PID controller, and iii)

microeconomic theories such as the elasticity of demand curves.

Similarly to the JIT compiler, adaptability regarding memory management aims to im-

prove overall system performance. Classic GC algorithms provide base memory virtualization.

Recent works have been focused on optimizing memory usage and execution time, taking in

consideration not only the program dynamics and but also the state of the execution envi-

ronment [41]. Some work also adapts GC to avoid memory exhaustion in environments where

memory is constrained [70]. To accomplish this, actions regarding GC adaptability are related

to changing: i) heap size [67], ii) GC parameters [68] iii) GC algorithm [70].

Resource management

Monitoring resources, that is, collecting usage or consumption information about different

kinds of resources at runtime (e.g. state of threads, loaded classes) can be done through:

i) a service exposed by the runtime [8, 27], or ii) byte code instrumentation [47]. In the

former, it is possible to collect more information, both from a quantitative and qualitative

perspective. A well know example is the Java Virtual Machine Tool Interface [58], which is

mainly used by development environments to display debug information. Because HLL-VMs

do not necessarily expose this kind of service, instrumentation allows some accounting in a

portable way. Accounted resources usually include CPU usage, allocated memory and system

objects like threads or files.

2.3 Adaptation techniques 19

Fig. 2.3. Techniques used by HLL-VMs to monitor, control and enforce

This subsystem has to decide if a given action (e.g. consumption) over a resource can be

done or not. This is accomplished with a policy, which can be classified as: i) internal or ii)

external. In a internal policy, the reasoning is hard coded in the runtime, eventually only

giving the chance to vary a parameter (e.g. number of allowed opened files). An external

policy is defined outside the scope of the runtime, and thus, it can change for each execution

or even during execution.

This subsystem is particularly important in VMs that support several independent pro-

cesses running in a single instance of runtime. Research and commercial systems apply resource

management actions to: i) limit resource usage and ii) resource reservation. Limiting resource

usage aims to avoid denial of service, or to ensure that the (eventually payed) resource quota

is not overused. The last scenario is less explored in the literature [27]. Resource reservation

ensures that, when multiple processes are running in the same runtime, it’s possible to ensure

a minimum amount of resources to a given process.

20 2 The Adaptability Loop of Virtual Machines

Summary of adaptation loop techniques

Figure 2.3 presents the techniques used in the adaptation loop of systems using HLL-VMs.

They are grouped into the three major adaptation targets: i) JIT compiler, ii) garbage col-

lection, and iii) resource management. Each adaptation target is then divided into the three

phases of the adaptability loop. The garbage collection sub-tree has a higher number of ele-

ments when compared with any of the other two. This reflects different research paths, but also

a higher dependency of the garbage collection process on the workloads and on the context

of execution (i.e. shared environment, limited memory, etc).

2.4 The RCI Framework for classification of VM’s adaptation techniques

To understand and compare different adaptation processes we now introduce a framework

for classification of VM’s adaptation techniques. It addresses the three classical adaptation

steps. Each of this steps makes use of the different techniques described earlier and depicted

in Figure 2.2 and Figure 2.3.

The analysis and classification of the techniques for each of these steps revolves around

three fundamental criteria: Responsiveness, Comprehensiveness and Intricateness. We call it

RCI framework. Responsiveness represents how fast the system is able to adapt, thus it gets

smaller as the following metrics increase: i) overhead of monitoring, ii) duration of the decision

process, iii) the latency of applying adaptation actions.

Comprehensiveness takes into account the breadth and scope of the adaptation process.

It gets greater as the following metrics increase. In particular, it regards: i) the quantity

or quality of the monitored sensors, ii) the easiness to relate the decision process with the

underlying system, and iii) the quantity or quality of the effectors that the system can engage.

Finally, Intricateness addresses the depth of the adaption process. In particular, it regards

low-level implications, interference and complexity of: i) the monitoring sensors, ii) decision

strategy, and iii) the enforcing sensors.

These aspects were chosen, not only because they encompass many of the relevant goals and

challenges in VM adaptability research, but mainly because they also embody a fundamental

underlying tension: that a given adaptation technique aiming at achieving improvements on

two of these aspects, can only do so at the cost of the remaining one. We came across this

observation during the process of analyzing and classifying the techniques and systems studied.

Initially, we realized that no technique was able to combine full comprehensiveness and full

intricateness, and still be able to perform without significant overhead and latency (possibly

even requiring off-line processing). Full responsiveness, for example, will potentially always

implies some level of restriction either to comprehensiveness or to intricateness. This RCI

conjecture is yet another manifestation in systems research of where the constant improvement

2.4 The RCI Framework for classification of VM’s adaptation techniques 21

on a given set of properties, or the behavior of a given set of mechanisms, can only come at an

asymptotically increasing cost. This always forces designers to choose one of them to degrade

in order to ensure the other two.

A paramount example is the CAP conjecture (or CAP theorem) [18], portraying the ten-

sion in large-scale distributed systems among (C)onsistency, (A)vailability, and tolerance to

(P)artitions. Another example is the tension, in the domain of peer-to-peer systems, among

high availability, scalability, and support for dynamic populations [16].

Additionally, we also note that the tension inherent in the RCI conjecture is also present, at

a higher-level of abstraction, among monitoring, decision, and action. The more the emphasis

(regarded as an aggregate value of all RCI aspects) is given to two of the steps in the control

loop, the less emphasis is possible to the remaining one, without breaking the viability and

feasibility of the approach. We call this derived conjecture that applies to whole systems (and

not to individual adaptation techniques) the MDA conjecture, for Monitoring, Decision and

Action.

In order to quantitatively compare different systems (e.g. more responsive or more com-

prehensive), each of the previously discussed metrics must be assigned with a quantitative

value, which depend on the analyzed adaptation technique. Table 2.4 presents the nature of

these metrics.

Responsiveness Comprehensiveness Intricateness

Monitor ISL Q SL
Decision PT Q IC
Action ISL Q SL

Table 2.1. Quantitative units of the classification metrics

Table 2.4 shows the meaning of each metric for each of the quantitative values that the

framework allows techniques to be classified (1, 2 or 3). Quantitative (Q) intervals, Processing

Times (PT), System level (SL), Inverse system level (ISL) and Intrinsic Complexity (IC) used

in the framework are presented. System level (SL) represents the natural organization of a

computer system, assigning 1 to hardware, 2 to OS and hypervisor and 3 to applications.

Inverse system level (ISL) uses this scale in reverse order so that the term Responsiveness

can be understood as described previously. Second, Regarding the decision characterization

of the control step we adopted the criteria of Maggio et al. [53].

To better understand how the framework is used, hypothetical techniques (Ta..Tf) are

presented in Table 2.3. After having a classification of each technique the framework builds

the RCI of a system by aggregating each criteria’ value. For a given system, Sα, the three

criteria of the framework, responsiveness, comprehensiveness and intricateness, are represented

22 2 The Adaptability Loop of Virtual Machines

Level 1 2 3

Q [1..2] [3..4] [4..N]
SL hardware hypervisor/OS application
ISL application hypervisor/OS hardware
PT milliseconds seconds minutes
IC simple medium complex

Table 2.2. Relation between classification levels (on top) and classification metrics

by R(Sα), C(Sα), I(Sα), respectively. The corresponding criteria of each technique (t) used

by Sα is summed (e.g. R(Sα) =
∑

t responsiveness(t)).

Phase Tecnhique Responsiveness Comprehensiveness Intricateness

Monitor Ta 1 2 3
Tb 2 3 1

Decision
Tc 3 2 3
Td 1 1 2

Action
Te 2 3 1
Tf 1 2 1

Table 2.3. Hypothetical techniques and their quantification

Using the mock techniques presented in Table 2.3, Table 2.4 presents, in the bottom row,

the resulting RCI of Sα. Furthermore, the table also presents, in the most right column, the

MDA characteristic of Sα.

System Phase Responsiveness Comprehensiveness Intricateness MDA

Sα

Monitor Ta(1) Ta(2) Ta(3) 6
Decision Tc(3) Tc(2) Tc(3) 8
Action Tf(1) Tf(2) Tf(1) 4

RCI 5 6 7

Table 2.4. RCI and MDA of hypothetical system Sα

Figures 2.4 and 2.5 use a triangular chart to represent the techniques previously addressed

in Section 2.3, regarding both system and high level virtual machines (see Figure 2.2 and 2.3).

In each main figure, techniques are further categorized into the three phases of the adaptation

loop - (a) monitoring, (b) decision, and (c) action.

In the next section, we analyze relevant works regarding monitoring and adaptability in

virtual machines, both at system as well as managed languages level. The RCI framework

2.4 The RCI Framework for classification of VM’s adaptation techniques 23

R

CI

page utilization

page contents

application's performance

Virtual time clock

CPU consumed by each

VCPU

Cache space

memory bandwidth

(a)

R

CI

share based

linear optimization

feedback control

statical analyisis

(b)

R

CI

page sharing

page/memory transfer

assign/remove CPU

number of VCPUs assigned

to CPU

change shares or caps

number of

processes/threads

Cache space

memory bandwidth

(c)

Fig. 2.4. Relation of responsiveness, comprehensiveness and intricateness for the different techniques used in
System VMs

R

CI

Memory structures

dimensions

Events of the operative

system

Program behavior

(a)

R

CI

Generic condition

Machine learning

Control theory

Elasticity (micro!economy)

(b)

R

CI

Change heap parameter

Change GC algorithm

paramater

Change GC algorithm

Limit usage

Reservation

(c)

Fig. 2.5. Relation of responsiveness, comprehensiveness and intricateness for the different techniques used in
HLL VMs

24 2 The Adaptability Loop of Virtual Machines

is used to compare different systems and better understand how virtual machine researchers

have explored the tension between responsiveness, comprehensiveness and intricateness.

2.5 Systems and their classification

The first two sections survey several state of the art systems. The last section frames them

into the classification framework presented in Section 2.4, classifying adaptability techniques

and, afterwards, complete systems.

2.5.1 System Virtual Machine

Xen. In Xen [10] each VM is called a domain. A special domain0 (called driver domain)

handles I/O requests of all other domains (called guest domain) and runs the administration

tools. Because Xen’s core solution is developed by the open source community, several works

have studied Xen’s scheduling strategies, for example in face of intensive I/O. Others pro-

pose adaptation strategies to be applied by the VMM regarding CPU to VCPU mapping or

dynamically changing the scheduling algorithms parameters.

Xen includes three scheduling algorithms: Borrow Virtual Time (BVT), Simple Earliest

Deadline First (SEDF) and Credit2 [22]. The former two are deprecated and will probably be

removed. Credit is a proportional fair scheduler. This means that the interval of time allocated

for each VCPU is proportional to its weight, excluding small allocation errors. Additionally to

weight, each domain has a cap value representing the percentage of extra CPU it can consume

if its quantum has elapsed and there are idle CPUs. At each clock tick, the running VPCUs

are charged and eventually some will loose all their credit and tagged as over, while the others

are tagged under. VCPUs tagged as under have priority in scheduling decisions. Picking the

next VCPU to run on a given CPU, Credit looks, in this order for an under VCPU from the

local running queue, an over VCPU from the local running queue or an under VCPU from

the running queue of a remote CPU, in a work-stealing inspired fashion.

Friendly Virtual Machines (FVM). The Friendly Virtual Machines (FVM) [84] aims to

enable efficient and fair usage of the underlying resources. Efficient in the sense that underlying

system resources are neither overused nor underused. Fairness in the sense that each VM gets

a proportional share of the bottleneck resource. Each VM is responsible for adjusting its

demand of the underlying resources, resulting in a distributed adaptation system.

The adaptation strategy is done using feedback control rules such as Additive-Increase/Multiplicative-

Decrease (AIMD), typically used in network congestion avoidance [23], driven by a single

control signal - the Virtual Clock Time (VCT) to detect overload situations. VCT is the real

2 http://wiki.xen.org/wiki/Credit Scheduler, visited at 6-03-2013

2.5 Systems and their classification 25

time taken by the VMM to increment the virtual clock of a given VM. An increase in VCT

means that the host VMM is taking longer to respond to the VM which indicates a contention

on a bottlenecked resource. Depending on the nature of the resource, the VCT will evolve

differently as more VMs are added to the system. For example, with more VMs sharing the

same memory, more page faults will occur, and even a small increase in the number of page

faults will result in a significant increase in VCT.

A VM runs inside a hosted virtual machine, the User Mode Linux, an so, two types of

mechanisms are used to adapt VM’s demand to the available underlying resources. FVM

imposes upper bounds on: i) the Multi Programming Level (MPL), and on ii) the rate of

execution. MPL controls the number of processes and threads that are effectively running at

each VM. When only a single thread of execution exists, FVM will adapt the rate of execution

forcing the VM to periodically sleep.

HPC computing. Shao et al. [64] adapt the VCPU mapping of Xen [10], based on runtime

information collected by a monitor that must be running inside each guest’s operating system.

They adjust the numbers of VCPUs to meet the real needs of each guest. Decisions are made

based on two metrics: the average VCPU utilization rate and the parallel level. The parallel

level mainly depends on the length of each VCPU’s run queue. The adaptation process uses

an addictive increase and subtractive decrease (AISD) strategy. Shao et al. focus their work

on native applications representative of high performance computing applications.

Ginko. Ginko [44] is an application-driven memory overcommitment framework which al-

lows cloud providers to run more System VMs with the same memory. For each VM, Ginkgo

uses a profiling phase where it collects samples of the application performance, memory us-

age, and submitted load. Then, in production phase, instead of assigning the same amount

of memory for each VM, Ginko takes the previously built model and, using a linear program,

determines the VM ideal amount of memory to avoid violations of service level agreements.

This means that the linear program will determine the memory allocation that, for the current

load, maximizes the application performance (e.g. response time, throughput).

Auto Control. Padala et al. [60] propose a system which uses a control theory model to

regulate resource allocation, based on multiple inputs and driving multiple outputs. Inputs

are applications running in a VMM and can spawn several nodes of the data center (i.e.

web and DB tier can be located in different nodes). Outputs are the resource allocation of

CPU and disk I/O caps. For each application, there is an application controller which collects

the application performance metrics (e.g. application throughput or average response time)

and, based on the application’s performance target, determines the new requested allocation.

Because computational systems are non linear, the model is adjusted automatically, aiming

to adapt to different operating points and workloads. Based on each application controller

output, a per node controller will determine the actual resource allocation. It does so by solving

26 2 The Adaptability Loop of Virtual Machines

the optimization problem of minimizing the penalty function for not meeting the performance

targets of the applications. To evaluate their system, applications were instrumented to collect

performance statistics. Xen monitoring tool (i.e. xm) was used to collect CPU usage and iostat

was used to collect CPU and disk usage statistics. Enforcement is made by changing Xen’s

credit scheduler parameters and a proportional-share I/O scheduler [39].

PRESS. PRESS [34] is an online resource demand prediction system, which aims to handle

both cyclic and non-cyclic workloads. It tries to allocate just enough resources to avoid service

level violations while minimizing resource waste. PRESS tracks resource usage and predicts

how resource demands will evolve in the near future. To detect repeating patterns it employs

signal processing techniques (i.e. Fast Fourier Transform and the Pearson correlation), looking

for a signature in the resource usage history. If a signature is not found, PRESS uses a

discrete-time Markov chain. This technique allows PRESS to calculate how the system should

change the resource allocation policy, by transitioning to the highest probability state, given

the current state. The work in [34] the authors focus on CPU usage. Thus, the prediction

scheme is used to set the CPU cap of the target VM. The evaluation was made based on

a synthetic workload applied to the RUBiS benchmark, built from observations of two real

world workloads.

VM3. The work in VM3 [49] aims at measuring, modeling and managing shared resources

in virtual machines. It operates in the context of virtual machine consolidation in cloud sce-

narios proposing a benchmark (vConsolidate). It places emphasis on balancing quickness of

adaptation, and the intricateness and low-level of the resources monitored, while sacrific-

ing comprehensiveness, by being restricted to deciding migration of virtual machines among

cluster nodes.

2.5.2 High Level Language Virtual Machines

Adaptation in high language virtual machines is made changing their building blocks parame-

ters (e.g. GC heap size) or the actual algorithm used to perform certain operations. The cycle

of adaptation begins with acquiring the usage of the relevant resources. Acquiring has always

a cost that should be minimized using either low impact operations or resource counters al-

ready available in the system to accomplish other tasks. After collecting this information, the

VM can either restrain usage or make adaptations to the building blocks. This section will

present and discuss different strategies related to monitoring resources, controlling usage and

adaptations policies in HLL VMs.

Two approaches have been used to collect resource usage information, one that relies on

the VM privileged connection to the operating system, and runtime libraries contribution and

another one which is independent of the VM platform and uses byte code instrumentation or

transformation.

2.5 Systems and their classification 27

Aroma. Accounting for CPU usage is done inside the bytecode interpreter and is specified

by the number of instructions allowed to execute in a certain time interval. Before each byte-

code is executed, Aroma checks if the number of bytecodes per interval, previously calculated,

have already been executed. If so, the interpreter goes into a passive wait until the remaining

time of the interval elapses.

KaffeOS. Built on top of Kaffe virtual machine [1], KaffeOS [8] provides the ability to

run Java applications isolated from each other and also to limit their resource consumption.

FKaffeOS, adds a process model to Java that allows a JVM to run multiple untrusted programs

safely. The runtime system is able to account for and control all of the CPU and memory

resources consumed on behalf of any process. Consumption of individual processes can be

separately accounted for, because the allocation and garbage collection activities of different

processes are separated. To account for memory, KaffeOS uses a hierarchical structure where

each process is assigned a hard and a soft limit. Hard limits relate to reserved memory. Soft

limits acts as guard limit not assuring that the process can effectively use that memory.

Children tasks can have, globally, a soft limit bigger than their parent but only some of them

will be able to reach that limit.

JRES. The work of Czajkowski et al. [28] uses native code, library rewriting and byte code

transformations to account and control resource usage. JRES was the first work to specify an

interface to account for heap memory, CPU time, and network consumed by individual threads

or groups of threads. The proposed interface allows for the registration of callbacks, used

when resource consumption exceeds and when new threads are created. The only resources

supported are the CPU usage (in miliseconds), the total amount of used memory (in bytes)

and the number of bytes sent and received through a network interface. CPU time is accounted

by instrumenting the run method of each new thread, placing the native thread identification

in a global registry. Then, at regular intervals, the registry is traversed and native calls are

used to ask the operating system for the time spent in each thread. Byte code rewriting is

also used to know how much memory is used by objects allocated by each thread.

Multitask Virtual Machine (MVM). The MVM [27] extends the Sun Hotspot JVM to

support isolates and resource management. Isolates are similar to processes in KaffeOS. The

distinguishing difference of MVM is in its generic Resource Management (RM) API, which

uses three abstractions: resource attributes, resource domain and dispenser. Each resource

is characterized by a set of attributes (e.g. memory granularity of consumption, reservable,

disposable). In [27] the MVM is able to manage the number of open sockets, the amount of

data sent over the network, the CPU usage and heap memory size. When the code running on

an isolate wants to consume a resource, it will use a library (e.g. send data to the network) or

runtime service (e.g. memory allocation). In these places, the resource domain to which the

isolate is bounded will be retrieved. Then, a call to the dispenser of the resource is made, which

28 2 The Adaptability Loop of Virtual Machines

will interrogate all registered user-defined policies to know if the operation can continue. A

dispenser controls the quantity of a resource available to resource domains. CPU accounting

is done in a similar way to JRES [28] using native calls to the operating systems. On the other

hand, memory accounting was done modifying the memory management system.

J-RAF2. Hulaas et al. [47] uses an instrumentation only solution to account for resources.

Hulaas et al. discuss the limitations and overheads of their previous work (J-SEAL2), regarding

CPU accounting, and present some techniques to optimize this process. Analysis of their

first proposed transformation algorithm shows that most of the overhead is associated to

finding the proper instruction counter, and to the frequents updates of this counter in each

method. To minimize these overheads, J-RAF2 uses the following strategies. First, it changes

every method’s signature to receive the CPU accounting object, which is created and first

used when the thread starts. Second, they design and implemented a new path prediction

scheme to reduce the number of updates. The algorithm works by trying to predict, during

the bytecode transformation phase, the outcome at runtime of the conditional branches. For

example, instead of accounting all blocks inside a loop, they predict what will the runtime

path be and add this path cost only once per loop. If the execution flow takes a different path

(resulting in a miss prediction) account will be compensated by decreasing the non executed

part of the composed block and the cost of the new path.

Lightweight VMs. Duran et al. [30] take a middleware-oriented approach by using a thin

high-level language virtual machine to virtualize CPU and network bandwidth. Their goal is

to provide an environment for resource management, that is, resource allocation or adapta-

tion. Applications targeting this lightweight VM use a special purpose programming interface

to specify reservations and adaptation strategies. When compared to more heavyweight ap-

proaches like System VMs, this lightweight framework can adapt more efficiently for I/O

intensive applications. The approach taken in Duran’s work, bounds however, the application

to a given resource adaptation interface, raising transparency issues.

Garbage collection is known to have different performance impacts in different ap-

plications [70, 55]. The remainder of this section analyzes recent works belonging to one

of the following categories: i) adjust heap related parameters (e.g. nursery size, total heap

size) [41, 37, 67]; ii) algorithms that take execution environment events into account [42]; iii)

VMs that switch the GC algorithm at runtime [70]. Common to all these solutions is the goal

to decrease application’s total execution time or, in some scenarios, to continue operation

despite memory exhaustion.

GC and the allocation stalls. Grzegorczyk et al. [37] takes into account allocation stalls. In

Linux, a process will be stalled during the request of a new page if the system has very few

free memory pages. If this happens, a resident page must be evicted to disk. This operation is

2.5 Systems and their classification 29

done synchronously during page allocation. They have implemented an algorithm that grows

the heap linearly when there are no allocation stalls. Otherwise, the heap shrinks and the

growth factor for successive heap growth decisions is reduced, in an attempt to converge to a

heap size that balances the tradeoff between paging and GC cost.

GC in shared environment. Hertz et al. [43] observe that the same application operating

with different heap sizes can perform differently if the heap size is under or over dimensioned,

resulting in many collections or many page faults, respectively. Based on this observation

they have devised the time-memory curve, that is, the shortest running time of a program

independently of his heap size for a given amount of physical memory. Their approach allows

that the heaps of multiple applications remain small enough to avoid the negative impacts

of paging, while still taking advantage of any memory that is available within the system.

They have modified the slow path of the GC (i.e. code path that can result in tracing alive

objects) to also take into account two conditions: i) if the resident set has decreased or, ii)

if the number of page faults have increased. If any of these conditions is true a GC will be

triggered. They call this situation a resource-driven garbage collection.

GC in a MapReduce environment. Singer et al. [68] propose to automatically change the

GC configuration, in order to improve the performance of a MapReduce’s Java implementation

for multi-core hardware. For each relevant benchmark, machine learning techniques are used

to find the best execution time for each combination of input size, heap size and number of

threads in relation to a given GC algorithm (i.e. serial, parallel or concurrent). Their goal is

to make a good decision about a GC policy when a new MapReduce application arrives. The

decision is made locally to an instance of the JVM.

GC economics. In [67], Singer et al. discuss the economics of GC, relating heap size and

number of collections with the price and demand law of micro-economics - with bigger heaps

there will be less collections. This relation extends to the notion of elasticity to measure the

sensitivity of the heap size to the size of the number of GCs. They devise an heuristic based

on elasticity to find a tradeoff between heap size and execution time. The user of the VM

provides a target elasticity. During execution, the VM will take into account this target to

grow, shrink or keep the heap size. Doing so, the user can supply a value that will determine

the growth ratio of the heap, independently of the application specific behavior.

GC switch. Soman et al. [70] add to the memory management system the capacity of chang-

ing the GC algorithm during program execution. The system considers program annotations

(if available), application behavior, and resource availability, in order to decide when to switch

dynamically, and to which GC it should switch to. The modified runtime incorporates all the

available GC algorithms into a single VM image. At load time all possible virtual memory

resources are reserved. The layout of each space (i.e. nursery, Mark-Sweep, High Semispace,

30 2 The Adaptability Loop of Virtual Machines

Low Semispace) is designed to avoid a full garbage collection for as many different switches

as possible. For example, a switch from Semi-Space to Generational Semi-Space determines

that the allocation site will be done at a nursery space, but the two half-spaces are shared.

Switching can be triggered by points statically determined by previous profiling the applica-

tion execution, or by dynamically evaluating the GC load versus the application threads. If

the load is high they switch from a Semi-Space (which performs better when more memory

is available) to a Generational Mark-Sweep collector (which performs better when memory is

more constrained).

2.5.3 Quantitative comparison of different adaptability techniques

In Figures 2.6 and 2.7, we analyze the responsiveness, comprehensiveness and intricateness

aspects for the different adaptability techniques used in the two types of VMs. The global

observation is that different systems have a different RCI coverage, which is the result of using

diverse adaptations techniques. Regarding the tension described by the RCI conjecture, we

note that, in system VMs, intricateness seems to dominate but responsiveness is also strong,

while in HLL VMs, responsiveness and comprehensive seem to dominate over intricateness.

Also in system VM deployments, they exhibit larger responsiveness and intricateness but are

less comprehensive. In HLL-VMs intricateness is larger in deployments focused on GC. All

this reinforce the observation and conjecture that the three properties cannot be covered to

the same degree.

R

CI

FVM

Ginko

AutoControl

Press

HPC

VM3

Fig. 2.6. Relationship of responsiveness, comprehensiveness and intricateness for the different adaptability
techniques used in System VMs.

In Figures 2.8 and 2.9, we analyze the adaptation loop for the two types of VMs. The three

phases,monitoring, decision and action, are quantitatively compared using the responsiveness,

2.5 Systems and their classification 31

R

CI

KaffeOS

JRES

MVM

JRAF2

GC-alloc stalls

GC in shared environment

GC with mapreduce

GC economics

GC switch

Fig. 2.7. Relationship of responsiveness, comprehensiveness and intricateness for the different adaptability
techniques used in HLL VMs.

comprehensiveness and intricateness of the techniques used in each step. When analyzing the

overall results, we can see that HLL-VMs use more uniform monitoring techniques, decision

techniques in Sys-VMs are more alike and effectors used in the action phase are more uniform

in Sys-VMs.

M

DA

FVM

AutoControl

Ginko

Press

HPC

VM3

Fig. 2.8. Relationship of emphasis on responsiveness, comprehensiveness and intricateness, regarding the
adaptation steps monitoring, decision and action in System VMs.

32 2 The Adaptability Loop of Virtual Machines

M

DA

KaffeOS

JRES

MVM

JRAF2

GC-alloc stalls

GC in shared environment

GC with mapreduce

GC economics

GC switch

Fig. 2.9. Relationship of emphasis on responsiveness, comprehensiveness and intricateness, regarding the
adaptation steps monitoring, decision and action in HLL VMs.

2.6 Summary

In this chapter we reviewed the main approaches for adaptation and monitoring in virtual

machines, their tradeoffs, and their main mechanisms for resource management. We framed

them into the control loop (monitoring, decision and actuation). Furthermore, we proposed a

novel taxonomy and classification framework that, when applied to a group of systems, can

help visually in determining their similarities and differences. Framed by this, we presented

a comprehensive survey and analysis of relevant techniques and systems in the context of

virtual machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis of existing

relevant work in monitoring and adaptability of virtual machines. We presented the RCI

conjecture on monitoring and adaptability in systems, identifying the fundamental tension

among Responsiveness, Comprehensiveness, and Intricateness, and how a given adaptation

technique aiming at achieving improvements on two of these aspects, can only do so at the

cost of the remaining one. Then we presented a derived conjecture, the MDA conjecture

identifying a related tension, in the context of whole systems, among emphasis on monitoring,

decision and action.

3

Architecture and design of an adaptable and distributed

managed execution environment

3.1 Architecture of the QoE-JVM

Our vision is that QoE-JVM will execute applications with different requirements regarding

their QoE. Target applications have typically a long execution time and can dynamically

spawn several execution flows to parallelize their work. This is common in the field of science

supported by informatics like economics and statistics, computational biology and network

protocols simulation [36, 82, 40].

Figure 3.1 presents the overall architecture of our distributed platform as a service for

Cloud environments. QoE-JVM is supported by several runtime instances, eventually dis-

tributed by several computational nodes, each one cooperating to the sharing of resources.

For an effective resource sharing, a coordinated mechanism must be in place to make weak

(e.g. change parameters) or strong (e.g. change GC algorithm, migrate running application)

adaptations [63]. QoE-JVM encompasses a distributed shared objects middleware, a recon-

figurable high-level language virtual machine (HLL-VM), and, at the bottom, available re-

configurable mechanisms of system level virtual machine (Sys-VM). In this architecture, the

operating system (OS) services are only used, not extended.

3.1.1 A cluster-wide execution environment

We consider a cluster as a typical aggregation of a number of nodes which are usually machines

with one or more multi-core CPUs, with several GB of RAM, interconnected by a regular LAN

network link (100 Mbit, 1 Gbit transfer rate). We assume there may be several applications,

possibly from different users, running on the cluster at a given time, i.e., the cluster is not

necessarily dedicated to a single application. The cluster (or each fraction of it) has one top-

level coordinator, the QoE Manager that monitors the Quality-of-Execution of applications.

Each node is capable of executing several instances of a Java VM, with each VM holding

part of the data and executing part of the threads of an application. As these VMs may

compete for the resources of the underlying cluster node, there must be a node manager

34 3 Architecture and design of an adaptable and distributed managed execution environment

��������	
��
��
������

���

���

���

���

�����������������

����
����

��������	
��
��������

�����
������

��������	
��
��
������

���

����������	
���
��
�		����
�����

���

� ��!����"#
���
�"���

$%&������
�

����	
��
������

'�

���
���"
�

�
 � ��!����"#

���
�"���

%#���� ��	
�

��()�
�� ��	
�

(
	���������
�
���"�*(%������
*���"���
�"�

��	"�������������

+,"������
	�"����
��������"�

����������������

-�+�(�
����
������

��������
��	
��������
��������

�����������
������

�����������

��������
������

�����������
���
��������

���
��������

�	
"��"����"����
���"���

Fig. 3.1. Overall architecture

in each node, in charge of VM deployment, lifecycle management, resource monitoring and

resource management/restriction. In order for the node and cluster manager to be able to

obtain monitoring data and get their policies and decisions carried out, the Java VMs must

be resource-aware, essentially, report on resource usage and enforce limits on resource con-

sumption. Finally, cooperation among VMs is carried out via the QoE Manager, that receives

information regarding resource consumption in each VM, by each application, and instructs

VMs to allow or restrict further resource usage.

Each instance of an HLL-VM is enhanced with services that are not available in regular

VMs. These services include: i) the accounting of resource consumption, ii) dynamic recon-

figuration of internal parameters and/or mechanisms, and iii) mechanisms for checkpointing,

restore and migration of the whole application. These services should and must be made

available at a lower-level, inside an extended HLL-VM, for reasons of control, interception

and efficiency. They are transparent to the application, and so, the extended HLL-VM con-

tinues to run existing applications as they are.

In summary, the responsibilities of each of these entities are the following, as depicted in

Figure 3.2:

• Cluster QoE Manager

– collect global data of cluster applications (i.e. partitioned across VMs and nodes)

– deploy/regulate nodes based on user’s QoE

• Node QoE Manager

– report information about node load

– deploy new policies on VMs

– create or destroy new instances

– collect VM’s resource usage data

• (resource-aware) HLL-VM

3.1 Architecture of the QoE-JVM 35

����
�������

�����

����
�������

�����

���	
�������

�����

���
��
�������

�
����
�������

������������
�����������
���
����������
����������

�
��

����
�������

�����

����
�������

�����

�
��

���

������ !����"#�����$ %���������"�#��!�����&�"$"'�(
������	

�"$"�(
�������

���

�������

)
*���!�����
�������

�"$�(
����!�����+�����+���

���
��
�������

�
����
�������

Fig. 3.2. A cluster-wide execution environment

– enforce resource usage limits

– give internal information about resource usage

– concurrent checkpoint and migration of execution state

QoE-JVM is thus comprised of several components, or building blocks. Each one gives

a contribution to support applications with a global distributed image of a virtual machine

runtime, where resource consumption and allocation are driven by a high-level policies, system-

wide, application or user related. From a bottom-up point of view, the first building block

above the operating system in each node is a process-level managed language virtual machine,

enhanced with mechanisms and services that are not available in regular VMs. These include

the accounting of resource consumption.

The second building block aggregates individual VMs, as the ones mentioned above, to

form within the cluster a distributed shared object space assigned to a specific application. It

gives running applications support for single system image semantics, across the cluster, with

regard to the object address space, enabling a truly elastic heap for applications. Techniques

like bytecode enhancement/instrumentation or rewriting must be used, so that unmodified

applications can operate in a partitioned global address space, where some objects exist only

as local copies and others are shared in a global heap.

The third building block turns QoE-JVM into a cluster-aware cooperative virtual ma-

chine. This abstraction layer is responsible for the global thread scheduling in the cluster,

starting new work items in local or remote nodes, depending on a cluster wide policy and

the assessment of available resources, possibly taking into account application-related infor-

mation (profiling past executions). Mechanisms for checkpointing, restore and migration can

also be activated in order to migrate whole instances of VMs to a different node. This layer

is the QoE-JVM boundary that the cluster-enabled applications interface with (note that

for the applications, the cluster looks like a single, yet much larger and larger, virtual ma-

36 3 Architecture and design of an adaptable and distributed managed execution environment

chine). Similarly to the previous block, application classes are further instrumented/enhanced

(although the two sets of instrumentation can be applied in a single phase), in order to guar-

antee correct behavior in the cluster. Finally, it exposes the underlying mechanisms to the

adaptability policy engine, and accepts external commands that will regulate how the VM’s

internal mechanisms should behave.

The resource-aware HLL-VM, the distributed shared object layer, and the cluster level

scheduler are all sources of relevant monitoring information to the policy engine of QoE-

JVM . This data can be used as input to declarative policies in order to determine a certain

rule outcome, i.e. what action to perform when a resource is exhausted or has reached its

limit, regarding a user or application. The other purpose of collecting this data is to infer a

profile for a given application. Such profiles will result in the automatic use of policies for a

certain group of applications, aiming to improve their performance. The effects, positive or

negative, of applying such policies are then used to confirm, or reject, the level of correlation

between the profile and the applications.

On top of this distributed runtime are the applications, consuming resources on each

node and using the services provided by the resource-aware VM that is executing on each

one. QoE-JVM targets mainly applications with a long execution time and that may spawn

several threads to parallelize their work, as usual in e-Science fields such as those mentioned

before.

3.1.2 Resource Awareness and Control

The Resource Aware virtual machine is the underlying component of the proposed infras-

tructure. It has two main characteristics: i) resource usage monitoring, and ii) resource usage

restriction or limitation. Current virtual machines for managed languages can report about

several aspects of their internal components, like used memory, number of threads, classes

loaded [58, 57]. However they do not enforce limits on the resources consumed by their single

node applications. In a cluster of collaborating virtual machines, because there is a limited

amount of resources to be shared among several instances, some resources must be constrained

in favor of an application or group of applications.

Extending a managed language VM to be aware of the existing resources must be done

without compromising the usability (mainly portability) of application code. The VM must

continue to run existing applications as they are. This component is an extended Java virtual

machine with the capacity to extract high and low level VM parameters, e.g., heap memory,

network and system threads usage. Along with the capacity to obtain these parameters, they

can also be constrained to reflect a cluster policy. The monitoring system is extensible in the

number and type of resources to consider.

3.1 Architecture of the QoE-JVM 37

3.1.3 Checkpointing and migration of the execution state

The counterpart of resource containment is when an application needs more resources but

the node where it is running is highly loaded, exhausted. If the application is allowed some

elasticity in the resources used, they should be made available in spite of the limitations on

the current executing node. In that case, it may be necessary for that application, or others

less demanding, to migrate to another node. This migration should be done without the

need for an application restart. To this end, the resource aware VM includes a mechanism

for checkpointing and migration, which enables the whole application to migrate to another

node, where another resource-aware VM is running with the necessary amount of resources.

The migration is performed without restarting the application, avoiding losing all the work

previously done. This is particularly useful for applications with long execution times, as

in various fields related with e-Science (mostly in the context of Grid and Cloud computing)

where managed languages are becoming dominant, including chemistry, computational biology

and bio-informatics [36, 52], with many available Java-based APIs (e.g., Neobio).

The checkpointing component of the architecture represents the necessary extensions to the

HLL-VM so that fine-grained checkpointing, restore and migration of applications is possible.

Our checkpoint mechanism can also run concurrently with the main program, preventing full

pause of the application during checkpointing, thus further reducing the overhead experienced

by applications. It addresses checkpoint consistency and excessive resource consumption (i.e.

CPU, memory).

The activation of these mechanisms is regulated either by local rules, activated to provide

a failure tolerant environment, or by a Quality of Execution Controller (QoE Controller). In

the last case, based on execution requirements (e.g. CPU, memory and network usage), the

QoE controller can apply two coarse grained measures: i) checkpoint and suspension of a

VM, ii) migration of the application execution state to another node. Next, we describe the

main aspects of the architecture of the checkpoint-enabled HLL-VM, consisting of a set of

components that focus on transparency and completeness properties. There are three primary

components:

• Application Execution State Extraction: Applications execute in the context of an

extended VM with mechanisms to support checkpoint, restore and migration. State extrac-

tion captures the execution state related with all threads within the application. Check-

point has the obligation to stop all threads (to guarantee consistency), then calls state

extraction and finally saves the state persistently into a file system. Migration calls check-

point and sends that execution state via network.

State restoration has the responsibility to rebuild the execution state in a newly created

application, which corresponds to reconstructing and resuming the execution of all stack

frames. for all threads, and when ready, restart execution. Restore guarantees that the

38 3 Architecture and design of an adaptable and distributed managed execution environment

newly created application can initiate state restoration, and additionally if requested,

obtains the state from a file system.

• Checkpoint and Migration API. The execution runtime must provide a local and

remote interface so that the checkpoint or migrate operation can be trigger either by rules

running on the local process or by an external controller.

• Migration Service: To receive an application state a HLL-VM must be running or be

started on request on the destinaton node. To that end, a migration service must be present

on all nodes to receive migrated applications.

3.1.4 Cluster-wide thread placement

To enable effective distribution of load among different nodes of the cluster, our system relies

on a cluster level load balancer capable of spawning new threads (or work tasks) on any cluster

node based on a cluster wide policy. When an application asks for a new thread to be created

(e.g., by invoking the start method on a Thread object), the request can be either denied

or granted based on the resource allocation decided for the cluster. If it is granted, the load

balancer will create the new thread in the most appropriate node to fulfill the cluster policy.

For example, if the application has a high priority order compared to other applications of the

cluster, then the thread could be created in a lesser loaded node (preferably, one with a VM

already assigned to the application’s DSO; if needed and allowed, a new VM on any lesser

loaded node). The decision on what node new threads are created is left to the policy engine

to decide with current information. Nevertheless, the resource-aware VM has an important

role in this process, by making it possible to impose a hard limit on resources, e.g., the number

of running threads of the application at a specific node, or globally.

3.1.5 Adaptability and the Policy Engine

The policy engine is responsible for loading and enforcing the policies provided by administra-

tors and possibly users regarding resource management. It achieves this by, globally, sending

the necessary commands to the resource-aware HLL-VMs, in order for them to modify some

runtime parameters, or the type of algorithm used to accomplish a cluster related task, as

well as instructing them to spawn threads or activate checkpointing/restore and migration

mechanisms. A special focus of this component of QoE-JVM is also on the improvement of

applications’ performance, and what can be adapted in the underlying resource-aware VMs

in order to achieve it.

It operates autonomously or in reaction to a given resource outage in the VMs. Autonomous

behavior is governed by maintaining knowledge about the applications’ previous execution,

and adjusting the VMs and cluster parameters to achieve better performance for that specific

application. Reactive operation is driven by declarative policies that determine the response

3.1 Architecture of the QoE-JVM 39

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<RAMConfiguration>

<ResourceAttr ibutes name=”NumberOfThreads” i n i t a l L im i t=”15” />

<ResourceAttr ibutes name=”CpuUsage” i n i t a l L im i t=”75%” />

. . .

<Rule t a r g e t=”NumberOfThreads”>

< !−− Determines how accumulation i s done −−>
<OnConsume> <Counter/> </OnConsume>

< !−− Determines what happens i f l imit i s reached −−>
<OnLimit> <ResourceException /> </OnLimit>

< !−− Determines what happens i f consumption i s successful −−>
<OnAfterComsumption>

<UseCluster th r e sho ld=”AllCpus”/>

</OnAfterComsumption>

</Rule>

<Rule t a r g e t=”CpuUsage”>

<OnConsume> <HistoryAverage window=”5”/> </OnConsume>

<OnLimit> <Suspend mi l i s e conds=”500”/> </OnLimit>

</Rule>

. . .

</RAMConfiguration>

Fig. 3.3. Declarative policy

to a resource outage. This response may result in a local adaptation (e.g. restrain the resources

of another VM in the same node, or change the GC algorithm to consume less memory but

eventually taking more time to execute) or have cluster wide impact (e.g. migrate the entire

application to a VM in another node).

Figure 3.3 presents a declarative policy to be used by VM instances represented in Fig-

ure 3.2 (i.e. VM1..5). It defines limits for CPU usage, and the number of threads and sockets

the application is allowed to use. CPU usage and threads are monitored and managed by

specific rules but using a similar, reusable approach: i) CPU usage is monitored with a sliding

window in order to filter irrelevant peaks, while ii) the number of active threads is also moni-

tored with a sliding window in order to trigger rescheduling only when the limit is consistently

exceeded.

Summary

Section 3.2 presented the general view of the proposed distributed managed runtime, QoE-

JVM , and some details regarding the organization of its core components. Regarding its

operation, QoE-JVM resorts to a policy-driven adaptability engine that drives resource man-

agement, global scheduling of threads, and determines the activation of other coarse-grained

mechanisms (e.g., checkpointing and migration among VMs). The goal of such an infrastruc-

40 3 Architecture and design of an adaptable and distributed managed execution environment

ture is to provide more flexibility, control, scalability and efficiency to applications running in

clusters.

3.2 Driving Adaptability with Quality-of-Execution

In this section we start by presenting how a simple and generic metric can be used to determine

which runtime resource management strategy can be used for each workload in order to

maximize it’s performance in face of resource degradation. We then describe which kind of

performance or progress metrics are relevant to be used. We finish by presenting the kind

of resources that are relevant to be controlled, in order to have an elastic behavior, without

breaking the application execution.

3.2.1 QoE-JVM Economics

Our goal with QoE-JVM is to maximize the applications’ Quality-of-execution (QoE). We

initially regard QoE as a best effort notion of effectiveness of the resources allocated to the

application, based on the computational work actually carried out by the application (i.e., by

employing those allocated resources). To that end, we resort to the Cobb-Douglas production

function from Economics to motivate and to help characterize the QoE, as described next.

As said, we are partially inspired by the Cobb-Douglas [25] production function (henceforth

referred as equation) from Economics to motivate and to help characterize the QoE. The Cobb-

Douglas equation, presented in Equation 3.1, is used in Economics to represent the production

of a certain good.

Y = A ·Kα · Lβ (3.1)

In this equation, Y is the total production, or the revenue of all the goods produced in a

given period, L represents the labour applied in the production and K is the capital invested.

It asserts the now common knowledge (not at the time it was initially proposed, ca. 1928)

that value in a society (regarded simplistically as an economy) is created by the combined

employment of human work (labour) and capital (the ability to grant resources for a given

project instead of to a different one). The extra elements in the equation (A, α, β) are mostly

mathematical fine-tuning artifacts that allow tailoring the equation to each set of real-life data

(a frequent approach in social-economic science, where exact data may be hard to attain and to

assess). They take into account technological and civilization multiplicative factors (embodied

in A) and the relative weight (cost, value) of capital (α) and labour (β) incorporated in the

production output (e.g., more capital intensive operations such as heavy industry, oil refining,

or more labour intensive such as teaching and health care).

3.2 Driving Adaptability with Quality-of-Execution 41

Alternatively, labour can be regarded, not as a variable representing a measure of human

work employed, but as a result, representing the efficiency of the capital invested, given the

production output achieved, i.e., labour as a multiplier of resources into production output.

This is usually expressed by representing Equation 3.1 in terms of L, as in Equation 3.2. For

simplicity, we have assumed the three extra elements to be equal to one. First, the technological

and civilization context does not apply, and since the data center economy is simpler, as there

is a single kind of activity, computation, and not several, the relative weight of labour and

capital is not relevant. Furthermore, we will be more interested in the variations (relative

increments) of efficiency than on efficiency values themselves, hence the simplification does

not introduce error.

L =
Y

K
(3.2)

Now, we need to map these variables to relevant factors in a cloud computing site (a data

center). Production output (Y) maps easily to application progress (the amount of computa-

tion that gets carried out), while capital (K), associated with money, maps easily to resources

committed to the application (e.g., CPU, memory, or their pricing) that are usually charged

to users deploying applications. Therefore, we can regard labour (considered as the human

factor, the efficiency of the capital invested in a project, given a certain output achieved) as

how effectively the resources were employed by an application to attain a certain progress.

While resources can be measured easily by CPU shares and memory allocated, application

progress is more difficult to characterize. We are mostly interested in relative variations in

application progress (regardless of the way it is measured), as shown in Equation 3.3, accord-

ing to relative variations in resources (to assess resource efficiency), and their complementary

variations in production cost per unit, PCU , as an approximation of the marginal cost (cap-

ital), in resources, to achieve the obtained progress (output). The term unit is a generic one

because we want to apply this rationale to different kinds of resources, as described next.

∆ L ≈ ∆ Y

∆ K
, and thus ∆ PCU ≈ ∆ K

∆ Y
(3.3)

We assume a scenario where, when applications are executed in a constrained (overcom-

mitted) environment, the infrastructure may remove m units of a given resource from a set of

resources R (e.g. memory size, CPU cores, bandwidth) and give them to another application

that can benefit from this transfer. Examples of transferable units are 50MiBytes of heap

size, 1 core and 2MiBytes of bandwidth. This transfer may have a negative impact in the

application that offers resources and it is expected to have a positive impact in the receiv-

ing application. To assess the effectiveness of the transfer, the infrastructure must be able to

measure the impact on the giver and receiver applications, namely somehow to measure the

42 3 Architecture and design of an adaptable and distributed managed execution environment

approximate savings in PCU, that is, the relation between employed resources and effective

progress, as described next.

Variations in the PCU can be regarded as an opportunity for yield regarding a given

resource r, and a management strategy. The term strategy generically identifies the currently

in use and the available configuration options. Naturally, comparing strategy sa and sb only

makes sense if they are of the same nature. For example, sa and sb can represent different

kinds of garbage collection algorithms or different ratios to grow/shrink the heap size. So, the

yield is a return or reward from applying a given strategy to some managed resource, during

the time span ts, as presented in Equation 3.4.

Y ieldr(ts, sa, sb) =
Savingsr(sa, sb)

Degradation(sa, sb)
(3.4)

Because QoE-JVM is continuously monitoring the application progress, it is possible to

incrementally measure the yield. Each partial Y ieldr, obtained in a given time span ts, con-

tributes to the total one obtained. This can be evaluated either over each time slice or globally

when applications, batches or workloads complete. For a given execution or evaluation pe-

riod, the total yield is the result of summing all significant partial yields, as presented in

Equation 3.5.

TotalY ieldr(sa, sb) =
n∑

ts=0

Y ieldr(ts, sa, sb) (3.5)

The definition of Savingsr represents the savings of a given resource r when two allocation

or management strategies are compared, sa and sb, as presented in Equation 3.6. The functions

Ur(sa) and Ur(sb) relates the usage of resource r, given two allocation configurations, sa and

sb. We allow only those reconfigurations which offer savings in resource usage to be considered

in order to calculate yields.

Savingsr(sa, sb) =
Ur(sa)− Ur(sb)

Ur(sa)
(3.6)

Regarding performance degradation, it represents the impact of the savings, given a specific

performance metric, as presented in Equation 3.7. Considering the time taken to execute an

application (or part of it), the performance degradation relates the execution time of the

original configuration, P (sa), and the execution time after the resource allocation strategy

has been modified, P (sb).

Degradation(sa, sb) =
P (sb)− P (sa)

P (sa)
(3.7)

3.2 Driving Adaptability with Quality-of-Execution 43

Each instance of the QoE-JVM continuously monitors the application progress, measuring

the yield of the applied strategies. As a consequence of this process, QoE, for a given set

of resources, can be enforced observing the yield of the applied strategy, and then keeping

or changing it as a result of having a good or a bad impact. To accomplish the desired

reconfiguration, the underlying resource-aware VM must be able to change strategies during

execution, guided by the global QoE manager. Section 3.3 shows how existing high-level

language virtual machines can be extended to accommodate the desired adaptability.

To effectively apply the economic model presented in this section it is necessary to quantify

the application progress metric, what resources are relevant and which extensions points exist

or need to be created inside the HLL-VM. The following section discuss these topics in further

detail.

3.2.2 Progress monitoring

Our economics-inspired metric needs to take as input the performance degradation of the

application. In practical terms, performance relates to the progress, slower or faster, the

application can make with the allocated resources.

To compare different metrics to measure progress, we classify applications as request driven

(or interactive) and continuous process (or batch). Request driven applications process work

in response to an outside event (e.g. HTTP request, new work item in the processing queue).

Continuous processing applications have a target goal that drives their calculations (e.g. align

DNA sequences). For most non-interactive applications, measuring progress is directly related

to the work done and the work that is still pending. For example, some algorithms to analyze

graphs of objects have a visited/processed objects set, which typically will encompass all

objects when the algorithm terminates (or at least, a significant part of it). If the rate of

objects processed can be determined it will indicate how the application is making progress.

Other examples would be applications to perform video encoding, where the number of frames

processed is a measure of progress [45].

There is a balance and trade-off in measuring progress, using a metric that is close to the

application semantics, and the transparency of progress measuring. The number of requests

processed, for example, is a metric closely related to the application semantics, which gives

an almost direct notion of progress. Nevertheless, it will not always be possible to acquire

such information. On the other hand, low level activity, such as I/O or memory pages access,

is always possible to acquire inside the VM or the OS. But relating this type of metrics to

the application effective progress is a challenging task. The following are relevant examples of

metrics that can be used to monitor the progress of an application, presented in a decreasing

order of closeness to application semantics, but with an increasing order regarding the level

of transparency.

44 3 Architecture and design of an adaptable and distributed managed execution environment

• Number of requests processed: This metric is typically associated with interactive

applications, such as web applications or with Bag-of-Tasks jobs;

• Completion time: For short and medium time living applications, where it is not possible

to change the source code or no information is available to lead an instrumentation process,

this metric will be the more effective one. This metric only requires the QoE-JVM to mea-

sure wall clock time when starting and ending the application (or alternatively measuring

CPU time used);

• Code: instrumented or annotated: If information is available about the application

high level structure, instrumentation can be used to dynamically insert probes at load

time, so that the QoE-JVM can measure progress using a metric that is semantically

more relevant to the application;

• Mutator execution time. When mutators (i.e. execution flows of applications) have high

execution percentages, in proportion to the time spent in garbage collector, this indicates

that the application is making more progress than others where garbage collection is using

a higher percentage of total execution.

• I/O: storage and network: For applications dependent on I/O operations, changes in

the quantity of data saved or read from files, or in the information sent and received from

the network, can contribute to determine whether the application reached a bottleneck or

is making progress;

• Memory page activity: Allocation of new memory pages is a low level indicator (col-

lected from the OS or the VMM) that the application is making effective progress. A

similar indication will be given when the application is writing in new or previously un-

used (or unmodified) memory pages.

Although QoE-JVM could read low level indicators as I/O storage and network activity

or memory page activity, we currently use the metric completion time to measure perfor-

mance degradation, as defined in Section 3.2.1. This is so because the applications used to

demonstrate the benefits of our system are benchmarks that are representative of different

types of workloads but tend to have a short execution time (more details in Chapter 4).

3.2.3 Resource types and usage

In the model presented at Section 3.2.1, Savingsr refers to any computational resource (r)

which applications consume to make progress. Resources can be classified as either explicit

or implicit, regarding the way they are consumed. Explicit resources are the ones that appli-

cations request during execution, such as, number of allocated objects, number of network

connections, number of opened files. Implicit resources are consumed as the result of executing

the application, but are not explicitly requested through a given library interface. Examples

include, the heap size, the number of cores or the network transfer rate.

3.2 Driving Adaptability with Quality-of-Execution 45

CPU Mem Net Disk Pools

Counted number
of cores

size - - size (min,
max)

Rate cap per-
centage

growth/
shrink
rate

I/O rate I/O rate -

Table 3.1. Implicit resources and their throttling properties

Both types of resource are relevant to be monitored and regulated. Explicit and implicit

resources might be constrained as a protection mechanism against ill behaved or misusing

applications [32]. For well behaved applications, restraining these resources further below

the application contractual levels will lead to an execution failure. On the other hand, the

regulation of implicit resources determines how the application will progress. For example,

allocating more memory will potentially have a positive impact, while restraining memory

will have a negative effect. Nevertheless, giving too much of memory space is not a guarantee

that the application will benefit from that allocation, while restraining memory space will still

allow the application to make some progress.

In this work, we focus on controlling some types of implicit resources because of their

potential to provide elasticity to resource management. QoE-JVM can control the admission

of these resources, that is, it can throttle resource usage. It gives more to the applications that

will progress faster if more resources are allocated. Because resources are finite, they will be

taken from (or not given to) other applications. Even so, the QoE-JVM will strive to choose

the applications where progress degradation is comparatively smaller.

Table 3.1 presents implicit resources and the throttling properties associated to each

one. These properties can be either counted values (e.g. x number of cores) or rates (e.g.

y KiBytes/seconds). To regulate CPU and memory both types of properties are applicable.

For example, CPU can be throttled either by controlling the number of cores or the cap (i.e.

the maximum percentage of CPU a VM is able to use, even if there is available CPU time).

Memory usage can be regulated either through a fixed limit or by using a factor to shrink

or grow this limit. Although the heap size cannot be smaller than the working set of the

application, the size of the extra allocated memory influences the application progress. A

similar rationale can be made about resource pools, which are a common strategy to manage

resources in applications handling multiple requests, such as web and database servers (e.g.

thread pools, connection pools).

46 3 Architecture and design of an adaptable and distributed managed execution environment

Summary

Section 3.2 presented a general resource allocation and adaptation schema that obeys to a

VM economics model, based on aiming overall quality-of-execution (QoE) through resource

efficiency. Essentially, QoE-JVM puts resources where they can do the most good to appli-

cations and the cloud infrastructure provider, while taking them from where they can do the

least harm to applications.

3.3 Resource Management Mechanisms

In this chapter we present some implementation details of the three main resource manage-

ment mechanisms that are supported by our execution platform. We focus on the necessary

extensions to a high level virtual machine, regarding resource accounting, internal mechanisms

adaptability and checkpointing. We also present the transparent integration with external mid-

dleware through byte code instrumentation for the mechanism that spawns threads across the

cluster.

3.3.1 Resource accounting and adaptability

To implement our architecture we need to develop a managed language virtual machine with

the capacity to monitor and restraint the use of resources based on a dynamic policy, de-

fined declaratively outside the VM. Some work has been done in the past aiming to introduce

resource-awareness in such high level virtual machines (which details were presented in Sec-

tion 2.5.2). Nevertheless, to the best of our knowledge, none of them is publicly available or

currently usable with popular software, operating systems and hardware architectures. Based

on this observation, we have chosen to extend the Jikes RVM [3] to be resource-aware. Thus,

in the next subsection we will describe different aspects of our current work on Jikes RVM.

Later on, we describe the main implementation aspects of our system regarding the spawning

and scheduling of threads in other nodes.

Figure 3.4 depicts further details on the architecture of the resource-aware VM we devel-

oped for QoE-JVM . The resource-aware HLL-VM has a specific module for each type of

manageable resource (e.g., files, threads, CPU usage, connections, bandwidth, and memory).

Each of the module exports to the Resource Awareness and Management Module (RAMM)

an attribute that abstracts the specifics of the resource. This way, when the RAMM decides

to limit, reduce or block the usage of a resource by the application, it can instruct the re-

spective attribute without worrying about the details of applying limitation to that specific

resource (e.g., disallowing file open, or take a thread out of scheduling). The RAMM consumes

profile information from the main VM and QoE-JVM mechanisms (GC and JIT level, and

3.3 Resource Management Mechanisms 47

������

���������	
	����
�

���	
���
���������

���
���������

�����

�
������� ����
��������

�
�	������	��

���	� ��
��!"�
�	�#	�����
��$�$
������!
���
�����
"���%
�������	�%

&�
#"���%
�'�
	#����(���	�
"���"�

'�
��

��
�

"
)

*

+
��

��
�

"
�

�
�
	

��

�

�

�
�

�
	

��

�
,�"��

�-.
.���� .���
���	�/

������
���	
���

�����
���

0	��

�������

0	��

�"
��������!"��
�##"�����	�

*����	�����

�1�%
0���	�2%
�-.%
$$$�

������

�������������
��	�������

���������	��������

��	��

�������

Fig. 3.4. Interactions with the Resource Awareness and Management Module

distributed scheduling and migration, respectively). These mechanisms can be adapted and

reconfigured by command of the RAMM.

Resource management policies

Being RAMM the engine that enables awareness and adaptation, all its decisions are carried

out according to the evaluation of rules in the policies loaded by the node manager. The node

manager is also notified by the RAMM, in each VM, about the application’s performance and

outcome of RAMM’s decisions.

The management of a given resource implies the capacity to monitor its current state

and to be able to directly or indirectly control its use and usage. The resources that can be

monitored in a virtual machine can be either specific of the runtime (e.g. number of threads,

number of objects, amount of memory) or be strongly dependent of the underlying architecture

and operating system (e.g. CPU usage). To unify the management of such disparate types of

resources, we carried out the implementation of JSR 284 - The Resource Management API [31]

in the context of Jikes RVM, previously not implemented in the context of any widely usable

virtual machine.

The relevant elements to resource management as prescribed by JSR 284 are: resources,

consumers and resource management policies. Resources are represented by their attributes.

For example resources can be classified as Bounded or Unbounded. Unbounded resources are

those that have no intrinsic limit (or if it exists, it is large enough to be essentially ignored)

on the consumption of the resource (e.g. number of threads). The limits on the consumption

of unbounded resources are only those imposed by application-level resource usage policies.

Resources can also be Bounded if it is possible to reserve a priori a given number of units of

a resource to an application.

48 3 Architecture and design of an adaptable and distributed managed execution environment

public class ThreadsCreationNode implements No t i f i c a t i o n {
long t h r e sho l d ;

public ThreadsCreationNode (long th r e sho ld) {
t h r e sho l d = thre sho ld ;

}
public void postConsume (

ResourceDomain domain ,

long previousUsage , long currentUsage) {
i f (currentUsage >= thr e sho l d)

Scheduler . g e t In s tance () . changeAl locat ionToCluster () ;

}
}

Fig. 3.5. A sample notification handling to change thread allocation to the cluster

A Consumer represents an executing entity which can be a thread or the whole VM. Each

consumer is bound to a resource through a Resource Domain. Resource domains impose a

common resource management policy to all consumers registered. This policy is programmable

through callback functions to the executing application. Although consumers can be bound to

different Resource Domains, they cannot be associated to the same resource through different

Domains.

When a resource is about to be consumed, the resource-aware VM, implementing JSR 284,

delegates this decision, via a callback, that can be handled by RAMM, and either allowed,

delayed or denied (with an exception thrown).

Figure 3.5 shows a notification, ThreadsCreationNode, which can be used to configure an

QoE-JVM instance. This callback would be called on each local thread allocation (in Jikes

RVM, Java threads are backed by a native class, RVMThread that is shown, and that interacts

with the host OS threads). It determines that if the number of threads created in the local

node reaches a certain threshold new threads will be created elsewhere in the cluster. The

exact node where they will be placed is left to be determined by the distributed scheduler

own policy.

Figure 3.6 shows a constraint, HistoryAverage, which can be used to regulate a CPU

usage policy. Consider a scenario where the running application cannot use the CPU above

a threshold for a given time window, because the remaining CPU available is reserved for

another application (e.g., as part of the quality-of-execution awarded to it). In this case, when

the CPU usage monitor evaluates this rule, it would suspend all threads (i.e. return 0 for the

allowed usage) if the intended usage is above the average of the last wndSize observations. A

practical case would be to suspend the application if the CPU usage is above 75% for more

than 5 observations.

3.3 Resource Management Mechanisms 49

public class HistoryAverage implements Constra int {
. . .

long [] sample sHi s tory ;

public HistoryAverage (int wndSize , long maxConsumption)

{ . . . }
public long preConsume (ResourceDomain domain ,

long currentUsage , long proposedUsage) {
long average = 0 ;

i f (nSamples == samplesHi s tory . l ength) {
average = currentSum / nSamples ;

currentSum −= samplesHi s tory [i dx] ;

}
else { nSamples += 1 ; }
currentSum += proposedUsage ;

sample sHi s tory [i dx] = proposedUsage ;

i dx = (idx + 1) % samplesHi s tory . l ength ;

return average > maxConsumption ? 0 : proposedUsage ;

}
}

Fig. 3.6. Regulate consumption based on past wndSize observations

Changes to the VM and Classpath

Our first experiences were done in order to have control on the spawning of new threads, a

common source of CPU contention and performance degradation when multiple applications

are running. We made modifications to the Jikes runtime classes and extended the GNU

classpath. The Jikes boot sequence was augmented with the setup of a resource domain to

manage the creation of application level threads. VM threads (e.g. GC, finalizer) are not

accounted. The Jikes component responsible for the creation and representation of system

level threads was extended to use the callbacks of the previous mentioned resource domain,

such that the number of new threads is determined by a policy defined declaratively outside

the runtime.

All native system information, including CPU usage, is currently obtained using the kernel

/proc filesystem. In the Jikes RVM, the interaction with OS system calls, are efficiently

supported by the available JIT compilers. When a properly annotated method is called, the

JIT compiler will generate a call to a “C” language stub, using the platform’s underlying

calling convention. Our stub then reads from /proc, and returns the results.

Finally, a new package of classes was integrated in the GNU classpath in order for ap-

plications to be able to specify their policies. These classes interact with the resource-aware

underlying VM so that the application can add their own resource consumption policies, if

needed. Nevertheless, policies can be installed with total transparency to the application.

50 3 Architecture and design of an adaptable and distributed managed execution environment

With this infrastructure, all consumable resources monitored, or directly controlled by the

VM and class library, can be constrained by high-level policies defined externally to the VM

runtime.

3.3.2 Concurrent checkpoint

Our checkpoint mechanism can also run concurrently with the main program, preventing full

pause of the application during checkpointing, thus further reducing the overhead experi-

enced by applications. There are two main implementation issues regarding concurrent (or

incremental) checkpointing: i) ensuring checkpoint consistency, since the application contin-

ues executing while the checkpoint is created, and ii) avoiding excessive resource consumption

(CPU, memory), due to the extra load of executing the application and the checkpointing

mechanism simultaneously, that could lead to thrashing and preclude the very performance

gains sought by executing the checkpointing concurrently.

The first issue is related with isolation and atomicity. The checkpoint, while being carried

out concurrently, must still be atomic regarding the running application. This means it must

reflect a snapshot of the execution state that would also be obtained with the application

paused or suspended (while the application is not modifying its state). Otherwise, there could

co-exist in the snapshot objects checkpointed at different times, making the whole object graph

inconsistent and violating application invariants. In essence, the challenge in this operation

is that the application’s working set (and VM’s internal structures) will change, while the

checkpointing is being carried out. If the changes were to be reflected into the data being

saved, the checkpoint would be useless for virtue of being inconsistent.

The second issue stems from the fact that if we want to simultaneously freeze a clone

of the application state in time (to be able to save it in the checkpoint concurrently), while

the application keeps executing and accessing the original object graph, it would potentially

almost double the memory occupied by the virtual machine. Furthermore, performing the

serialization of the clone object graph, will cause contention for the CPU, with the applica-

tion code that is simultaneously being executed (although the OS is able to interleave their

execution with some degree of efficiency).

Fortunately, two aspects of current architectures help when dealing with these issues: i)

lazy memory duplication, as embodied in copy-on-write mechanisms provided by the mem-

ory management modules in modern operating systems, and ii) the increasing prevalence of

multicore hardware, available in most computers today. These two aspects are leveraged to

ensure concurrent checkpointing offers smaller overhead to applications running.

In fact, the original and clone version of the object graph need not exist physically in

their entirety. To efficiently support this, we use the copy-on-write mechanism that allows

two processes to share the whole of the address space, with pages modified by one of them

3.3 Resource Management Mechanisms 51

��������	

��
���	
�

��
���	
�

��
���	
�

�
�����������

�
�	
�������

������
���
	
����������
������
���
	
����������

��������	

�
�����������

�
�	
�������

�
�����
	
�����������
�����
	
����������

�
�
���

�
�����

�
�����

Fig. 3.7. Timelines of serial and concurrent checkpoint

copied on demand. Currently, our implementation in Linux relies on Linux’s system call,

fork(), which has the desired semantics [74]. In Windows, the same primitive and semantics

is available through the POSIX subsystem, thus ensuring portability across the two operating

systems. Therefore, the memory overhead will be bounded to the memory pages containing

objects that are actually modified during the checkpointing. Due to the locality in memory

accesses during application execution (locality-of-reference and working set principles), this

amount is limited.

Figure 3.7 illustrates how the concurrent checkpoint progresses, along with the application,

in comparison with the serial (non-concurrent) approach. tcalculation is the free run time,

without any checkpoint. ttotal is the total execution time, considering either serial or concurrent

checkpoint.

With serial checkpointing, the total execution time of an application is, expectably, the

sum of the time performing its calculations or processing (hereafter calculation time), with

the time to perform a checkpoint (once in the figure), assuming approximate times, multiplied

by the number of checkpoints taken. Therefore, checkpointing is always in the critical path

regarding the total execution time, precluding so frequent checkpointing (for instance, very

large working sets, and not very long executions, probably only once at mid execution time).

With concurrent checkpointing, most of the checkpointing time is removed from the critical

path regarding total execution time (only the time to setup the child-VM remains). This makes

it feasible to perform checkpoints more frequently, without significantly penalizing application

execution times, thus reducing even more the amount of lost computation (lost work) whenever

a failure takes place.

52 3 Architecture and design of an adaptable and distributed managed execution environment

3.3.3 Cluster-wide thread placement

Our mechanism to distribute threads among the cluster is built by leveraging and extend-

ing the Terracotta [17] Distributed Shared Objects. This middleware uses the client/server

terminology and calls the application JVMs that are clustered together Terracotta clients

or Terracotta cluster nodes. These clients run the same application code in each JVM and

are clustered together by injecting cluster-aware bytecode into the application Java code at

runtime, as the classes are loaded by each JVM. This bytecode injection mechanism is what

makes Terracotta transparent to the application. Part of the cluster-aware bytecode injected

causes each JVM to connect to the Terracotta server instances. In a cluster, a Terracotta

server instance handles the storage and retrieval of object data in the shared clustered virtual

heap. The server instance can also store this heap data on disk, making it persistent just as if

it were part of a database. Multiple terracotta server instances can exist as a cohesive array.

In a single JVM, objects in the heap are addressed through references. In the Terracotta

clustered virtual heap objects are addressed in a similar way, through references to clustered

objects which we refer to as distributed shared objects or managed objects in the Terracotta

cluster. To the application, these objects are just like regular objects on the heap of the

local JVMs, the Terracotta clients. However Terracotta knows that clustered objects need to

be handled differently than regular objects. When changes are made to a clustered object,

Terracotta keeps track of those changes and sends them to all Terracotta server instances.

Server instances, in turn, make sure those changes are visible to all the other JVMs in the

cluster as necessary. This way, clustered objects are always up-to-date whenever they are

accessed, just as they are in a single JVM. Consistency is assured by enforcing the same

synchronization semantics already present in Java language (with monitors), which turns into

Terracotta transaction boundaries. Piggybacked on these operations, Terracotta injects code

to update and fetch data from remote nodes at the beginning and end of these transactions.

Therefore we need to perform additional byte-code enhancement on application classes as

a previous step to the byte-code enhancing performed by the Terracotta cluster middleware

before applications are run. The class, method and field visitors of the ASM framework [19]

are used to perform this task. Creation of threads in remote nodes is a result of invoking

the Resource Awareness Management Module, described in Section 3.3.1, in order to attempt

to consume a thread resource at that node. The most intricate aspects deal with the issue

of enforcing thread transparency (regarding its actual running node) and identity across the

cluster (regarding monitor ownership and thread synchronization operations such as join,

etc.), as we explain next.

The instrumentation replaces Java type opcodes that have the Java Thread type as argu-

ment with equal opcodes with our custom type ClusterThread. It also replaces the getfield

and getstatic opcodes type with ClusterThread instead of Thread. As the ClusterThread

3.3 Resource Management Mechanisms 53

class extends the original Java Thread class, type compatibility is guaranteed. For the method

calls, some of the methods belonging to the Thread class are final, and therefore cannot be

overridden. To circumvent this, we aliased the final methods and replaced Thread method calls

with the aliased method. For example, if we have an invokevirtual opcode that invokes the

final “join” method of the Thread class, we invoke the “clusterJoin” method instead.

Summary

Section 3.3 presented relevant implementation details of three mechanisms for resource man-

agement. The incorporation of these mechanisms in the execution environment was made by

changing the code base of a Java HLL-VM (Jikes RVM) and taking advantage of a shared

objects middleware (Terracotta DSO). The mechanisms are transparent to the application

developer, allowing the owner of the execution infrastructure to activate them autonomously.

54 3 Architecture and design of an adaptable and distributed managed execution environment

4

Evaluation

In this chapter we show the current evaluation of the adaptability metric and adaptability

mechanisms described Chapter 3. The evaluations were made in a cluster where nodes had a

Intel(R) Core(TM)2 Quad processors (with four cores) and 8GB of RAM, each running Linux

Ubuntu 9.04. Jikes RVM [3] code base is version 3.1.1 and the production configuration was

used to build the source code (both base version and modifications).

4.1 QoE applied to memory and CPU management

The resource management economics, presented in Chapter 3.2.1, were applied to manage the

heap size and CPU usage regarding different types of workloads.

4.1.1 Heap Size

The default heap growing matrix (hereafter known as M0) is presented in Figure 4.1.a. In

this, and in the remaining matrices, 1.0 is the neutral value, representing a situation where

the heap will neither grow nor shrink. Other values represent a factor of growth or shrink,

depending if the value is greater or smaller than 1, respectively. To assess the benefits of our

resource management economics, we have setup three new heap size changing matrices. The

distinctive factors are the growth and decrease rates determined by each matrix.

Matrices M1 and M2, presented in Figure 4.1.b and 4.1.c, impose a strong reduction on the

heap size when memory usage and management activity is low (i.e. few live objects and short

time spent on GC). Nevertheless they provide very different growth rates, with M1 having a

faster rate when heap space is scarce. Finally, matrix M3 makes the heap grow and shrink

very slowly, enforcing a more rigid and conservative heap size until program dynamics reach

a high activity point (i.e. high rate of live objects and longer time spent on GC) or decrease

activity sharply.

Each tenant using the Cloud provider infrastructure can potentially be running different

programs. Each of these programs will have a different production, i.e. execution time, based

56 4 Evaluation

0
0.1

0.3
0.6

0.8
1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

Ratio of time spent in GC

R
a

ti
o

 o
f

li
v

e
 o

b
je

ct
s

G
ro

w
th

 r
a

te

(a) M0

0

0.1
0.3

0.6
0.8

1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

Ratio of time spent in GC

R
a

ti
o

 o
f

li
v

e
 o

b
je

ct
s

G
ro

w
th

 r
a

te

(b) M1

0

0.1
0.3

0.6
0.8

1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

Ratio of time spent in GC

R
a

ti
o

 o
f

li
v

e
 o

b
je

ct
s

G
ro

w
th

 r
a

te

(c) M2

0

0.1
0.3

0.6
0.8

1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.01 0.02 0.07 0.15 0.4 1

Ratio of time spent in GC

R
a

ti
o

 o
f

li
v

e
 o

b
je

ct
s

G
ro

w
th

 r
a

te

(d) M3

Fig. 4.1. Default (M0) and alternative matrices to control the heap growth.

on the capital applied, i.e. growth rate of the heap. To represent this diversity, we used the well

known DaCapo benchmarks [14], a set of programs which explore different ways of organizing

programs in the Java language.

To measure the yield of each matrix we have setup an identity matrix (all 1’s), that is,

a matrix that never changes the heap size. Figures 4.2.a shows the maximum heap size (left

axis) after running the DaCapo benchmarks with configuration large and a maximum heap

size of 350 MiBytes, using all the matrices presented in Figure 4.1. In the right axis we present

the maximum and minimum of resource savings, as defined in Equation 3.6. These values were

obtained for each of the matrices when compared to the identity matrix with heap size fixed

at 350 MiBytes. The resource savings are above 40% for the majority of the workloads, as

can be seen in more detail in Table 4.1.

In Figure 4.2.b we present the evaluation time of the benchmarks (left axis) and the average

performance degradation (right axis), as defined in Equation 3.7, regarding the use of each of

the ratio matrices. Degradation of execution time reaches a maximum of 35% for lusearch,

Apache’s fast text search engine library, but stays below 25% for the rest of the benchmarks.

Table 4.1, summarizes the yield, as defined in Equation 3.4, when using different matrices to

manage the heap size.

4.1 QoE applied to memory and CPU management 57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

300

350

400

xalan hsqldb jython pmd lusearch luindex bloat antlr fop

M
a

x
im

u
m

 H
e

a
p

 S
iz

e
 (

M
iB

y
te

s)

M0 M1 M2 M3 Max. Saving Min. Saving

(a) Maximum heap size and average savings percentage

-5%

5%

15%

25%

35%

45%

55%

0

10

20

30

40

50

60

70

xalan hsqldb jython pmd lusearch luindex bloat antlr fop

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

M0 M1 M2 M3 Max. Degradation Min. Degradation

(b) Execution time and average performance degradation percentage

Fig. 4.2. Results of using each of the matrices (M0..3), including savings and degradation when compared to
a fixed heap size.

Matrix M0 M1 M2 M3

Sav Deg Yield Sav Deg Yield Sav Deg Yield Sav Deg Yield
xalan 2.3% 0.8% 3.1 53.7% 5.5% 9.7 57.9% 5.4% 10.7 57.9% 6.9% 8.4

hsqldb 7.1% 20.2% 0.4 2.3% 16.4% 0.1 34.4%16.2% 2.1 31.6%11.1% 2.9
jython76.8% 1.9% 39.9 77.7%-1.9% -40.4 80.5%-2.9% -27.5 83.8% 0.8% 104.6
pmd68.5% 3.6% 18.9 75.4% 5.9% 12.8 82.7%11.8% 7.0 81.3% 5.1% 16.1

lusearch53.1%18.3% 2.9 58.4%19.3% 3.0 72.4%42.0% 1.7 73.8%42.8% 1.7
luindex84.1%-2.8% -30.4 86.6%-2.5%-34.6 90.8% 4.3% 21.3 85.7%-4.3% -20.1
bloat76.3%14.8% 5.2 80.2%34.4% 2.3 84.7%18.2% 4.6 85.2%14.2% 6.0
antlr83.5% 7.9% 10.5 86.6% 8.9% 9.7 89.4% 9.4% 9.5 85.7% 8.5% 10.0
fop83.0% 2.7% 30.7 84.9% 1.0% 89.0 85.7% 2.7% 31.7 85.7% 1.8% 48.1

Table 4.1. The yield of the matrices presented in Figure 4.1

58 4 Evaluation

0

10

20

30

40

50

60

0% 25% 50% 75%

pmd 14150 18707 27791 50218

antlr 4115 5722 7922 16889

fop 1933 2393 3798 8077

luindex 7572 10179 15388 26917

lusearch 13560 17515 24819 31908

E
x
e

c
u

ti
o

n
 t

im
e

 (
se

c
.)

pmd

antlr

fop

luindex

lusearch

(a) Effects of restraining CPU by 25%, 50% and 75%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 (100%) 1.33 (75%) 2 (50%) 4 (25%)

R
e

la
ti

v
e

 s
lo

w
d

o
w

n

(p
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
)

Relative restriction of CPU allocated

neutral

efficiency

pmd

antlr

fop

luindex

lusearch

(b) Relative slowdown

Fig. 4.3. Effects of restraining CPU and corresponding relative slowdown

Two aspects are worth nothing. First, under the same resource allocation strategy, resource

savings and performance degradation vary between applications. This demonstrates the use-

fulness of applying different strategies to specific applications. If the cloud provider uses M2

for a tenant running lusearch type workload it will have a yield of 1.7. If it uses this aggres-

sive saving matrix in xalan type workloads (Apache’s XML transformation processor) it will

yield 10.7, because it saves more memory but the execution time suffers a smaller degradation.

Second, a negative value represents a strategy that actually saves execution time. Not only

memory is saved but execution time is also lower. These scenarios are a minority though, as

they may simply reveal that the 350 MiBytes of fixed heap size is already causing to much

page faults for that workload.

4.1.2 CPU

Our system also takes advantage of CPU restriction in a coarse-grained approach. Figure 4.3.a

shows how five different Java workloads (taken from the DaCapo benchmarks) react to the

deprivation of CPU (in steps of 25%), regarding their total execution time. Figure 4.3.b shows

the relative performance slowdown, which represents the yield of allocating 75%, 50% and 25%,

comparing with 100% of CPU allocation. Note that, comparing with previous graphics, some

applications have longer execution times with 0% CPU taken because they are multithreaded

and we used only 1 core for this test.

As expected, the execution time grows when more CPU is taken. This enables priority

applications (e.g. paying users, priority calculus applications) to run efficiently over our run-

time, having the CPU usage transparently restricted and given to others (a capability in itself

currently unavailable in HLL-VMs). Finally, we note that 3 applications (pmd, luindex and

lusearch) have yields greater than 1 when CPU restriction is equal or above 50%, as they

stay below the neutral efficiency line in Figure 4.3.b, due to memory or I/O contention.

4.2 Resource consumption constraints 59

440
467

495
529

551
571

0

100

200

300

400

500

600

0 50 100 150 200 250

ti
m

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of constraints evaluated

(a) Thread creation time with increasing number of
constraints to evaluate

0

500

1000

1500

2000

2500

3000

3500

4000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

C
re

a
ti

o
n

 t
im

e
 (

m
ic

ro
 s

e
c.

)

w
it

h
 3

0
0

 c
o

n
st

ra
in

ts

Number of threads

(b) Thread creation time during execution with 200
constraints (GC spikes omitted)

Fig. 4.4. Policy evaluation cost

4.2 Resource consumption constraints

The first part of our performance evaluation regards the resource-aware VM and its impact

on rules’ evaluation during regular VM operations.Therefore we conducted a series of tests,

measuring different aspects of a running application: i) the overhead introduced in the con-

sumption of a specific resource and ii) policy evaluation in a complete benchmark scenario. All

these evaluations are made locally in a single modified Jikes RVM (version 3.1.1), compiled

with the production profile1.

In Figure 4.4.a we can observe the evolution of the overhead introduced to thread creation,

by measuring average thread creation and start time, as the policy engine has increasingly

larger numbers of rules to evaluate, up to 250 (simulating a highly complex policy). The

graph shows that this overhead, while increasing, does not hinder scalability as it is very

small. When evaluating 50 constrains (which would correspond to a more reasonable but

still complex policy), each checking if a certain limit has been reached, the increment is 27

microseconds in each thread creation, which represents an increase of ≈ 6% to the baseline

thread creation time (i.e. no constraints evaluated).

In Figure 4.4.b we evaluate whether resource monitoring and policy evaluation (with 300

constraints) introduce any kind of performance degradation as more and more threads are

created, resources consumed. Figure 4.4.b clearly shows (omitting Garbage Collection spikes)

that thread creation time does not degrade during application execution, being below 1 mil-

lisecond; although subject to some variation, it presents no lasting degradation.

The previous results were obtained monitoring only a single resource, i.e. number of appli-

cation threads. For other counted resources, e.g. number of bytes sent and received, similar

results are expected. Although the allocation of new objects can also be seen as a counted

resource, e.g. number of bytes allocated in heap, it is more efficient to evaluate it differently.

The cost of checking for constraints regarding object allocation was thus transferred to the

1 it includes a two-generation garbage collector [15] and the optimized and adaptive compilation system.

60 4 Evaluation

1

2

4

8

16

32

64

2

5
1

1
0

0

1
4

9

1
9

8

2
4

7

2
9

6

3
4

5

3
9

4

4
4

3

4
9

2

5
4

1

5
9

0

6
3

9

6
8

8

7
3

7

7
8

6

8
3

5

8
8

4

9
3

3

9
8

2

1
,0

3
1

1
,0

8
0

1
,1

2
9

1
,1

7
8

1
,2

2
7

1
,2

7
6

1
,3

2
5

1
,3

7
4

1
,4

2
3

1
,4

7
2

1
,5

2
1

1
,5

7
0

G
C

 e
x

e
c
u

t
io

n
 t

im
e

 i
n

 m
il

is
e

c
o

n
d

s

GC activations timeline

Instance of A2VM (RAM enabled) Instance of JikesRVM (RAM disabled)

(a) GC execution time during Dacapo’s LuSearch
benchmarck

6800

4835

5911

3424

7048

4949

5984

3609

0

1000

2000

3000

4000

5000

6000

7000

8000

sunflow xalan lusearch luindex

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

il
is

e
c
o

n
d

s)

Instance of JikesRVM (RAM disabled) Instance of A2VM (RAM enabled)

(b) Four Dacapo’s multi threaded benchmarks with
RAM enabled and disabled

Fig. 4.5. Macro evaluation of an instance of QoE-JVM

garbage collection process, leaving the very frequent allocation operation new of additional

verifications.

Figure 4.5.a presents the duration of each GC cycle during the execution of DaCapo’s

benchmark [14] 2. lusearch, with and without evaluating constraints on heap consumption

(i.e. RAM enabled and disabled). The lusearch benchmark was configured with a small data

set, one thread for each available processor (i.e. four threads) and the convergence option

active, resulting in some extra warm up runs before the final evaluation.

Because of the generational garbage collection algorithm used in our modified Jikes RVM,

we can observe many small collection cycles, interleaved with some full heap transversal and

defragmentation operations. The two runs share approximately the same average execution

time and a similar average deviation: 1.38±0.31ms and 1.38±0.27ms, where the former value

is when the RAM module is enabled and the last when RAMM is disabled. With these results

we conclude that performance of object allocation and garbage collection is not diminished

with the extra work introduced.

To conclude the evaluation of the RAM module, we stressed an instance of our resource-

aware VM with four macro benchmarks, as presented in Figure 4.5.b. These four benchmarks

are multi-threaded applications, which allows us to do a macro evaluation of the proposed

modifications. During the execution of these benchmarks there were three resources being

monitored (and eventually constrained): the number of threads, the total allocated memory

and the CPU usage. The constraints used in evaluation did not restrain the usage of resources

so that the benchmarks could properly assess the impact of monitoring different resources si-

multaneously in real applications (as opposed to the specific benchmarks presented previously

in Figures 4.4 and 4.4). The results show only a negligible overhead: 3% in average.

2 The version 9.12 used in the evaluation ofQoE-JVM ’s RAMM is available at http://www.dacapobench.org/

4.3 Concurrent checkpoint 61

4.3 Concurrent checkpoint

To evaluate the concurrent checkpoint specifically, we set up two different checkpoint scenarios

using SOR, which we identify as Test 1 and Test 2 checkpoints. These tests use a large array

of equations so that larger amounts of data need to be saved, while keeping the number of

iterations to 7500, for running times close to 2 hours. We intend to show that concurrent

checkpointing makes it feasible to checkpoint larger applications and more frequently. Thus,

for each of these classes of tests, SOR was run with a matrix of 3000, 3600 and 4200 equations.

The two available cores were used to fully exploit the concurrent checkpointing. We averaged

5 executions of each test.

1500 3000 4500 6000 7500

SOR 11,32 22,54 33,77 45,01 56,27

SOR + concurrent 11,33 22,55 33,78 45,02 56,28

SOR + serial 24,63 40,30 51,53 62,77 74,03

Serial overhead 118% 79% 53% 39% 32%

Concurrent overhead 0,08% 0,04% 0,03% 0,02% 0,02%

0%

40%

80%

120%

160%

0
10
20
30
40
50
60
70
80

Minuts

SOR SOR + concurrent SOR + serial

Serial overhead Concurrent overhead

(a) Test 1 - 3000 equations

1500 3000 4500 6000 7500

SOR 11,32 22,54 33,77 45,01 56,27

SOR + parallel ckp 11,32 22,54 33,77 45,01 56,28

SOR + serial ckp 15,76 35,86 55,97 76,08 96,22

Serial overhead 39,21% 59,08% 65,73% 69,04% 71,00%

Concurrent overhead 0,00% 0,01% 0,01% 0,01% 0,01%

0%

20%

40%

60%

80%

0

20

40

60

80

100

120

Minuts

(b) Test 2 - 3000 equations

Fig. 4.6. Checkpointing experiences

The distinguishing factor between these two types of tests is the event or reason triggering

each checkpoint. In Test 1, the checkpoint is done when a percentage of the work is completed.

In Figure 4.6.a checkpoint is done at 20%, 40%, 60% and 80% of computation progress. From

this data we conclude that i) the overhead of concurrent checkpoint is negligible - less than

1% in all configurations, and ii) the overhead of the serial checkpoint has a decreasing impact

on the application’s execution time, as the number of total iterations increases. This evident

decrease is due to the fact that, as computation time increases, the fixed number of serial

checkpoints taken (4) will have progressively smaller impact on the total execution time.

Nevertheless, as application total execution time increases, triggering checkpoint with per-

centage of progress may lead, in case of a failure, to significant loss of work performed and

data (i.e., all the computation done since the previous checkpoint and its results). Further-

more, the percentage of progress may be difficult to estimate in most applications, and would

require explicit checkpoint invocation by programmers.

To avoid all this, the checkpoint should be triggered whenever a given time has elapsed,

e.g., roughly every 5 minutes. This scenario is represented by Test 2 checkpointing. Results are

presented in Figures 4.6.b. Here, since longer executions imply more checkpoints taken (with 5

62 4 Evaluation

minute periodicity), the serial checkpoint now increasingly stretches the total execution time

of the application (up to 70% more, broadly), while the overhead introduced by the concurrent

checkpoint always remains very low.

So, to applications that need frequent checkpoint, given their longer total execution time

and larger working set size, the concurrent checkpoint is a very effective alternative. Fur-

thermore, given that all approaches described in the literature are serial in nature, their

performance would always be much worse than our new proposal, added to the fact that they

also lack on transparency and completeness, namely: i) either imposing the usage of an API,

or ii) requiring extension of class code by programmers, or iii) not supporting multithreaded

and cooperative, synchronized applications.

4.4 Cluster-wide thread placement

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8 12

S
p

e
e

d
u

p

Number of threads (2 and 4 run in local node)

Local Local+Terracotta - Inst. only QoE-JVM Linear (QoE-JVM)

Fig. 4.7. Fibonacci - Execution times

For the execution time measurements, we configured an application to compute the first

1200 numbers of the Fibonacci sequence, with a number of threads equal to the number of cores

available. With two and four threads, the application is executed in a single node. In Figure 4.7

the first two series shows the results in a standard local JVM, for comparison purposes with our

distributed solution. Next, we tested our application using only the Terracotta middleware,

to have a general idea of how the usage of the original Terracotta platform impacts the

performance (this is the price to pay for the memory scalability and elasticity it provides).

Finally, the QoE-JVM series includes the Terracota instrumentation and our shared struc-

tures to schedule threads across a total of 3 node (8 threads take 2 nodes and 12 threads will

need 3 nodes). The overhead introduced is low, as we only share a relatively small array in

each thread for storing the Fibonacci numbers, along with some auxiliary variables. By adding

our middleware, we introduce an extra overhead which is not very significant, and as such, it

is possible to obtain smaller execution times by adding more nodes to the Terracotta cluster.

4.4 Cluster-wide thread placement 63

Summary

In this chapter we have demonstrated the potential of the three major mechanisms to manage

resources in a cluster where several instances of a HLL-VM run in competition for a limited

number of resources. Although all mechanisms impose a degradation penalty to the execution

time of applications, this penalty is in most cases small.

64 4 Evaluation

5

Conclusions and Future Work

In this document, we described the ongoing research to design a distributed execution environ-

ment, where each node executes an extended resource-aware runtime for a managed language,

Java, and where resources are allocated based on their effectiveness for a given workload. We

presented the architecture of QoE-JVM with the ability to monitor base mechanisms (e.g.

CPU, memory or network consumptions) in order to assess application’s performance and

reconfigure these mechanisms in runtime.

Resource allocation and adaptation obeys to a VM economics model, based on aiming

overall quality-of-execution (QoE) through resource efficiency. Our adaptation model, based

on the yield obtained from applying different strategies to each tenant’s workload, aims at

putting resources where they can do the most good to applications and the cloud infrastructure

provider, while taking them from where they can do the least harm to applications.

A more coarse-grained resource management action is checkpoint and migrate the appli-

cation execution state to another node in the cluster. We have extended a Java VM with

checkpointing (serial and concurrent), restore and migration mechanisms that can be em-

ployed with transparency to the programmers which need not modify their applications. The

proposed solution was implemented and we evaluated its adequacy and performance, with

encouraging results.

We presented the details of our adaptation mechanisms in each VM (for heap size, and CPU

allocation) and their metrics. We experimentally evaluated their benefits, showing resources

can be reverted among applications, from where they hurt performance the least (higher

yields in our metrics), to more higher priority or requirements applications. The overall goal

is to improve flexibility, control and efficiency of infrastructures running long applications in

clusters.

Semantically, this execution environment provides a partitioned global address space where

an application uses resources in several nodes, where objects are shared, and threads are

spawned and scheduled globally. Regarding its operation, QoE-JVM resorts to a policy-

driven adaptability engine that drives resource management, global scheduling of threads,

66 5 Conclusions and Future Work

and determines the activation of other coarse-grained mechanisms (e.g., checkpointing and

migration among VMs).

5.1 Future Work

Several topics can be regarded as future work. First, overall new research directions that have

the potential to bring benefits to our system. Second, some of the current design choices can

also be improved. The following are examples that fit into these two areas.

Scheduling with Client Selected Utility Functions

The work presented in Section 3.2 aims to identity the workloads which will have a smaller

impact when resources are removed. To have a more complete scheduling decision we should

take into account the clients perceived utility to service degradation (e.g. virtual machine

with less capacity). He can consider different classes of users, each with a different proportion

between utility and service degradation. These different classes (i.e. utility functions) would

have a corresponding price, which would be higher for functions that with a small degradation

in service have a large degradation in utility.

Integration with state of the art cloud scheduling simulators

Currently, state of the art cloud scheduling simulators, such as the CloudSim [11], assume

that workloads make progress only based on the assigned CPU (i.e. number of instructions

per second). We believe that the simulator progress model is still too simple, because it

does not account for degradation due to memory or even bandwidth shortage, trashing or

congestion. There must be further investigating in how we can simulate such behavior, taking

into account the progress measurements versus allocated resources, based on real workloads.

Statistical methods applied to the selection of heap growth matrices.

Statistical learning methods, also known as machine learning, can be used to select the matrix

that best fits an unknown workload. For each of the current evaluated workloads, a classifica-

tion of their static and dynamic structure is described in the DaCapo benchmark paper [13].

Each of the metrics has the potential to be an analysis variable of a supervised learning ex-

perience. Using, these variables, and the performance results of using different matrices, we

could then use the results from previous learning experiences and choose what is expected to

be the best matrix for the current workload.

5.1 Future Work 67

Correlation of threads for placement and migration

In a multi-threaded application there will be threads interacting among them selfs more

than with others. Thread interaction can be measured by counting the number (frequency,

etc.) of accesses to objects protected by monitors. Identifying these threads is important to

collocate them when threads are spawned over the cluster. Also, during the execution of

long running programs, highly correlated threads could be migrated, in groups, to less loaded

nodes. Currently, our checkpoint and migration solution takes into account all the HLL-VM

state but it would be useful to migrate only selected threads.

Automatic Confinement of Thread Local Variables

The thread scheduling solution still needs to be better accessed with applications whose

threads have some interaction. This will surely show the need for manual or automatic iden-

tification of memory accessed by multiple threads. Offline automatic processes like thread

escape analysis [24, 50], and online dynamic analysis regarding the locality and accesses to

objects (which can be leveraged from information available at the JIT compiler) have great

potential.

68 5 Conclusions and Future Work

References

1. Kaffe virtual machine, http://www.kaffe.org/, visited 29-05-2012, 2012.

2. B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng, J.D. Choi, A. Cocchi, S.J. Fink, D. Grove,

M. Hind, et al. The Jalapeno virtual machine. IBM Systems Journal, 39(1):211, 2000.

3. B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,

M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The jikes research virtual

machine project: building an open-source research community. IBM Syst. J., 44:399–417, January 2005.

4. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks. Architecture of the ibm system/360. IBM J. Res. Dev.,

8:87–101, April 1964.

5. Yariv Aridor, Michael Factor, and Avi Teperman. cjvm: a single system image of a jvm on a cluster. In

In Proceedings of the International Conference on Parallel Processing, pages 4–11, 1999.

6. Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Architecture and

Policy for Adaptive Optimization in Virtual Machines. Technical Report 23429, IBM Research, November

2004.

7. Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney. A survey of adaptive

optimization in virtual machines. In Proceedings of the IEEE, 93(2), 2005. Special Issue on Program

Generation, Optimization, ans Adaptation, 2005.

8. Godmar Back and Wilson C. Hsieh. The kaffeos java runtime system. ACM Trans. Program. Lang. Syst.,

27:583–630, July 2005.

9. Henry G. Baker. Thermodynamics and garbage collection. SIGPLAN Not., 29:58–63, April 1994.

10. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,

and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37:164–177, October

2003.

11. Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and adaptive heuristics

for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers.

Concurrency and Computation: Practice and Experience, 24(13):1397–1420, 2012.

12. Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villazón. Platform-independent profiling in a

virtual execution environment. Softw. Pract. Exper., 39:47–79, January 2009.

13. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,

D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java

benchmarking development and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN

conference on Object-Oriented Programing, Systems, Languages, and Applications, pages 169–190, New

York, NY, USA, October 2006. ACM Press.

70 References

14. Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem

Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosk-

ing, Maria Jump, Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas

VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking

development and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on

Object-oriented programming systems, languages, and applications, pages 169–190, New York, NY, USA,

2006. ACM.

15. Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region garbage collector with space

efficiency, fast collection, and mutator performance. In Proceedings of the 2008 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’08, pages 22–32, New York, NY, USA, 2008.

ACM.

16. Charles Blake and Rodrigo Rodrigues. High availability, scalable storage, dynamic peer networks: Pick

two. In Michael B. Jones, editor, HotOS, pages 1–6. USENIX, 2003.

17. Jonas Bonér and Eugene Kuleshov. Clustering the Java Virtual Machine using Aspect-Oriented Pro-

gramming. In AOSD ’07: Industry Track of the 6th international conference on Aspect-Oriented Software

Development. Conference on Aspect Oriented Software Development, March 2007.

18. Eric A. Brewer. A certain freedom: thoughts on the cap theorem. In Andréa W. Richa and Rachid

Guerraoui, editors, PODC, page 335. ACM, 2010.

19. Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to implement

adaptable systems. In In Adaptable and extensible component systems, 2002.

20. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal

Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to non-uniform

cluster computing. SIGPLAN Notices, 40(10):519–538, October 2005.

21. Lydia Y Chen, Giuseppe Serazzi, Danilo Ansaloni, Evgenia Smirni, and Walter Binder. What to expect

when you are consolidating: effective prediction models of application performance on multicores. Cluster

Computing, pages 1–19, 2013.

22. Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three cpu schedulers in xen.

SIGMETRICS Perform. Eval. Rev., 35:42–51, September 2007.

23. Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion avoidance

in computer networks. Comput. Netw. ISDN Syst., 17(1):1–14, June 1989.

24. Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff. Escape

analysis for java. In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’99, pages 1–19, New York, NY, USA, 1999. ACM.

25. C.W. Cobb and P.H. Douglas. A theory of production. The American Economic Review, 18(1):139–165,

1928.

26. G. Czajkowski, M. Wegiel, L. Daynes, K. Palacz, M. Jordan, G. Skinner, and C. Bryce. Resource man-

agement for clusters of virtual machines. In Proceedings of the Fifth IEEE International Symposium on

Cluster Computing and the Grid - Volume 01, CCGRID ’05, pages 382–389, Washington, DC, USA, 2005.

IEEE Computer Society.

27. Grzegorz Czajkowski, Stephen Hahn, Glenn Skinner, Pete Soper, and Ciarán Bryce. A resource manage-

ment interface for the java platform. Softw. Pract. Exper., 35:123–157, February 2005.

28. Grzegorz Czajkowski and Thorsten von Eicken. Jres: a resource accounting interface for java. In Pro-

ceedings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, OOPSLA ’98, pages 21–35, New York, NY, USA, 1998. ACM.

References 71

29. L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80 system. In Pro-

ceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL

’84, pages 297–302, New York, NY, USA, 1984. ACM.

30. H.A. Duran-Limon, M. Siller, G.S. Blair, A. Lopez, and J.F. Lombera-Landa. Using lightweight virtual

machines to achieve resource adaptation in middleware. IET Software, 5(2):229–237, 2011.

31. Grzegorz Czajkowski et al. Java specification request 284 - resource consumption management api, 2009.

32. N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frenot, and B. Folliot. I-JVM: a Java Virtual Machine

for component isolation in OSGi. In IEEE/IFIP International Conference on Dependable Systems &

Networks, 2009.

33. Robert P. Goldberg. Survey of virtual machine research. Computer, 7(9):34–45, September 1974.

34. Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press: Predictive elastic resource scaling for cloud systems.

In Network and Service Management (CNSM), 2010 International Conference on, pages 9 –16, oct. 2010.

35. Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular disco: resource man-

agement using virtual clusters on shared-memory multiprocessors. SIGOPS Oper. Syst. Rev., 33:154–169,

December 1999.

36. Dominik Gront and Andrzej Kolinski. Utility library for structural bioinformatics. Bioinformatics,

24(4):584–585, 2008.

37. Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski. Isla vista heap sizing: Using feedback

to avoid paging. In Proceedings of the International Symposium on Code Generation and Optimization,

CGO ’07, pages 325–340, Washington, DC, USA, 2007. IEEE Computer Society.

38. Xiaohua Guan, Witawas Srisa-an, and Chenghuan Jia. Investigating the effects of using different nursery

sizing policies on performance. In Proceedings of the 2009 international symposium on Memory manage-

ment, ISMM ’09, pages 59–68, New York, NY, USA, 2009. ACM.

39. Ajay Gulati, Arif Merchant, Mustafa Uysal, and Peter J. Varman. Efficient and adaptive proportional

share i/o scheduling. Technical report, HP Laboratories Palo Alto, 2007.

40. Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and Alex Pothen. Approximate

weighted matching on emerging manycore and multithreaded architectures. Int. J. High Perform. Comput.

Appl., 26(4):413–430, November 2012.

41. Matthew Hertz, Jonathan Bard, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Kirk Kelsey, and Chen

Ding. Waste not,want not: resource-based garbage collection in a shared environment. Technical Report

TR-2006-908, University of Rochester, 2009.

42. Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without paging. SIGPLAN Not.,

40:143–153, June 2005.

43. Matthew Hertz, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Chen Ding, Xiaoming Gu, and Jonathan E.

Bard. Waste not, want not: resource-based garbage collection in a shared environment. In Proceedings

of the international symposium on Memory management, ISMM ’11, pages 65–76, New York, NY, USA,

2011. ACM.

44. Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.

Applications know best: Performance-driven memory overcommit with ginkgo. In CloudCom ’11: 3rd

IEEE International Conference on Cloud Computing Technology and Science, 2011.

45. Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin C.

Rinard. Dynamic knobs for responsive power-aware computing. In ASPLOS, pages 199–212, 2011.

46. Richard C. G. Holland, Thomas A. Down, Matthew R. Pocock, Andreas Prlic, David Huen, Keith James,

Sylvain Foisy, Andreas Dräger, Andy Yates, Michael Heuer, and Mark J. Schreiber. Biojava: an open-source

framework for bioinformatics. Bioinformatics, 24(18):2096–2097, 2008.

72 References

47. Jarle Hulaas and Walter Binder. Program transformations for light-weight cpu accounting and control in

the java virtual machine. Higher Order Symbol. Comput., 21:119–146, June 2008.

48. Vatche Ishakian, Raymond Sweha, Azer Bestavros, and Jonathan Appavoo. Cloudpack: Exploiting work-

load flexibility through rational pricing. In Priya Narasimhan and Peter Triantafillou, editors, Middleware

2012, volume 7662 of Lecture Notes in Computer Science, pages 374–393. Springer Berlin Heidelberg, 2012.

49. Ravi Iyer, Ramesh Illikkal, Omesh Tickoo, Li Zhao, Padma Apparao, and Don Newell. Vm3: Measuring,

modeling and managing vm shared resources. Computer Networks, 53(17):2873–2887, December 2009.

50. Pramod G. Joisha, Robert S. Schreiber, Prithviraj Banerjee, Hans J. Boehm, and Dhruva R. Chakrabarti. A

technique for the effective and automatic reuse of classical compiler optimizations on multithreaded code.

In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’11, pages 623–636, New York, NY, USA, 2011. ACM.

51. Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and Schahram Dustdar. Cloud-

scale: a novel middleware for building transparently scaling cloud applications. In Proceedings of the 27th

Annual ACM Symposium on Applied Computing, SAC ’12, pages 434–440, New York, NY, USA, 2012.

ACM.

52. Ivan López-Arévalo, René Bañares-Alcántara, Arantza Aldea, and A. Rodŕıguez-Mart́ınez. A hierarchical

approach for the redesign of chemical processes. Knowl. Inf. Syst., 12(2):169–201, 2007.

53. Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo Panerati, Marco D. Santambrogio,

Anant Agarwal, and Alberto Leva. Comparison of decision-making strategies for self-optimization in

autonomic computing systems. ACM Trans. Auton. Adapt. Syst., 7(4):36:1–36:32, December 2012.

54. Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. SIGPLAN Not., 40:378–391,

January 2005.

55. Feng Mao, Eddy Z. Zhang, and Xipeng Shen. Influence of program inputs on the selection of garbage col-

lectors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments, VEE ’09, pages 91–100, New York, NY, USA, 2009. ACM.

56. Abel Gordon Michael Hines, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.

Applications know best: Performance-driven memory overcommit with ginkgo. In CloudCom ’11: 3rd

IEEE International Conference on Cloud Computing Technology and Science, 2011.

57. Microsoft. Clr profiler for the .net framework 2.0.

58. Oracle. Java virtual machine tool interface (JVMTI), http://download.oracle.com/javase-

/6/docs/technotes/guides/jvmti/.

59. Simon Ostermann and Radu Prodan. Impact of variable priced cloud resources on scientific workflow

scheduling. In Christos Kaklamanis, Theodore Papatheodorou, and Paul Spirakis, editors, Euro-Par 2012

Parallel Processing, volume 7484 of Lecture Notes in Computer Science, pages 350–362. Springer Berlin /

Heidelberg, 2012.

60. Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal,

and Arif Merchant. Automated control of multiple virtualized resources. In Proceedings of the 4th ACM

European conference on Computer systems, EuroSys ’09, pages 13–26, New York, NY, USA, 2009. ACM.

61. Carlos Ribeiro, André Zúquete, Paulo Ferreira, and Paulo Guedes. Spl: An access control language for

security policies with complex constraints. In In Proceedings of the Network and Distributed System Security

Symposium, pages 89–107, 1999.

62. Mohsen Amini Salehi, Bahman Javadi, and Rajkumar Buyya. Resource provisioning based on preempting

virtual machines in distributed systems. Concurrency and Computation: Practice and Experience, pages

n/a–n/a, 2013.

63. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research challenges. ACM

Trans. Auton. Adapt. Syst., 4:14:1–14:42, May 2009.

References 73

64. Zhiyuan Shao, Hai Jin, and Yong Li. Virtual machine resource management for high performance com-

puting applications. Parallel and Distributed Processing with Applications, International Symposium on,

0:137–144, 2009.

65. J.N. Silva, P. Ferreira, and L. Veiga. Service and resource discovery in cycle-sharing environments with

a utility algebra. In Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on,

pages 1–11, 2010.

66. João Nuno Silva, Lúıs Veiga, and Paulo Ferreira. A2ha - automatic and adaptive host allocation in utility

computing for bag-of-tasks. J. Internet Services and Applications, 2(2):171–185, 2011.

67. Jeremy Singer, Richard E. Jones, Gavin Brown, and Mikel Luján. The economics of garbage collection.

SIGPLAN Not., 45:103–112, June 2010.

68. Jeremy Singer, George Kovoor, Gavin Brown, and Mikel Luján. Garbage collection auto-tuning for java

mapreduce on multi-cores. In Proceedings of the international symposium on Memory management, ISMM

’11, pages 109–118, New York, NY, USA, 2011. ACM.

69. Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Morgan

Kaufmann, 2005.

70. Sunil Soman and Chandra Krintz. Application-specific garbage collection. J. Syst. Softw., 80:1037–1056,

July 2007.

71. Sunil Soman, Chandra Krintz, and David F. Bacon. Dynamic selection of application-specific garbage

collectors. In Proceedings of the 4th international symposium on Memory management, ISMM ’04, pages

49–60, New York, NY, USA, 2004. ACM.

72. I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the duality between resource reservation and proportional

share resource allocation. Technical report, Norfolk, VA, USA, 1996.

73. Jimmy Su and Katherine Yelick. Automatic support for irregular computations in a high-level language.

In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05),

IPDPS ’05, Washington, DC, USA, 2005. IEEE Computer Society.

74. Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle River, NJ, USA,

3rd edition, 2007.

75. Enric Tejedor, Montse Farreras, David Grove, Rosa M. Badia, Gheorghe Almasi, and Jesus Labarta. A

high-productivity task-based programming model for clusters. Concurrency and Computation: Practice

and Experience, pages 2421–2448, 2012.

76. VMware. Vmware vspher 4: The cpu scheduler in vmware esx 4.

77. Carl A. Waldspurger. Lottery and stride scheduling: flexible proportional-share resource management. PhD

thesis, 1995. AAI0576752.

78. Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Oper. Syst. Rev.,

36:181–194, December 2002.

79. Zhao Weiming and Wang Zhenlin. Dynamic memory balancing for virtual machines. In Proceedings of

the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments, VEE ’09,

pages 21–30, 2009.

80. Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the International Workshop

on Memory Management, IWMM ’92, pages 1–42, London, UK, 1992. Springer-Verlag.

81. Jie Xu, Paul Townend, Junaid Arshad, and Wei Jie. Cloud computing security: Opportunities and pitfalls.

Int. J. Grid High Perform. Comput., 4(1):52–66, January 2012.

82. Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: a library for parallel simulation of large-scale

wireless networks. SIGSIM Simul. Dig., 28(1):154–161, July 1998.

83. Hua Zhang, Joohan Lee, and Ratan Guha. Vcluster: a thread-based java middleware for smp and hetero-

geneous clusters with thread migration support. Softw. Pract. Exper., 38:1049–1071, August 2008.

74 References

84. Yuting Zhang, Azer Bestavros, Mina Guirguis, Ibrahim Matta, and Richard West. Friendly virtual

machines: leveraging a feedback-control model for application adaptation. In Proceedings of the 1st

ACM/USENIX international conference on Virtual execution environments, VEE ’05, pages 2–12, New

York, NY, USA, 2005. ACM.

85. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. Jessica2: A distributed java virtual machine with

transparent thread migration support. Cluster Computing, IEEE International Conference on, 0:381, 2002.

	Introduction
	Motivation
	Resource allocation and effective progress
	Current shortcomings
	Contributions
	Published work
	Outline

	The Adaptability Loop of Virtual Machines
	Introduction
	Virtual Machines Fundamentals
	Computation as a resource
	Memory as a resource

	Adaptation techniques
	System Virtual Machine
	High-Level Language Virtual Machine

	The RCI Framework for classification of VM's adaptation techniques
	Systems and their classification
	System Virtual Machine
	High Level Language Virtual Machines
	Quantitative comparison of different adaptability techniques

	Summary

	Architecture and design of an adaptable and distributed managed execution environment
	Architecture of the QoE-JVM
	A cluster-wide execution environment
	Resource Awareness and Control
	Checkpointing and migration of the execution state
	Cluster-wide thread placement
	Adaptability and the Policy Engine

	Driving Adaptability with Quality-of-Execution
	QoE-JVM Economics
	Progress monitoring
	Resource types and usage

	Resource Management Mechanisms
	Resource accounting and adaptability
	Concurrent checkpoint
	Cluster-wide thread placement

	Evaluation
	QoE applied to memory and CPU management
	Heap Size
	CPU

	Resource consumption constraints
	Concurrent checkpoint
	Cluster-wide thread placement

	Conclusions and Future Work
	Future Work

	References

