
1 | P a g e  

 

International Journal of Computer Science & Mechatronics 
A peer reviewed International Journal | Article Available online www.ijcsm.in 

©smsamspublications.com | Vol.1.Issue 2.2015 

Consistency as a Service: A Novel Service in Cloud for Auditing 

 
Sk.Noor Fathima

1
, Md.Imran

2 

1
M.Tech (CSE), Nimra Institute of Science & Technology, A.P., India. 

2
Assistant Professor, Dept. of Computer Science & Engineering, Nimra Institute of Science & 

Technology, A.P., India. 

 

Abstract: A cloud provider is a company that offers some component of cloud computing – 

typically Infrastructure as a Service (IaaS), Software as a Service (SaaS) or Platform as a 

Service (PaaS) – to other businesses or individuals. Ever Cloud storage services have become 

commercially popular due to their overwhelming advantages. To provide ubiquitous always-

on access, a cloud service provider (CSP) maintains multiple replicas for each piece of data 

on geographically distributed servers. A key problem of using the replication technique in 

clouds is that it is very expensive to achieve strong consistency on a worldwide scale. In this 

paper, we first present a novel consistency as a service (CaaS) model, which consists of a 

large data cloud and multiple small audit clouds. In the CaaS model, a data cloud is 

maintained by a CSP, and a group of users that constitute an audit cloud can verify whether 

the data cloud provides the promised level of consistency or not. We propose a two-level 

auditing architecture, which only requires a loosely synchronized clock in the audit cloud. 

Then, we design algorithms to quantify the severity of violations with two metrics: the 

commonality of violations, and the staleness of the value of a read. Finally, we devise a 

heuristic auditing strategy (HAS) to reveal as many violations as possible. Extensive 

experiments were performed using a combination of simulations and real cloud deployments 

to validate HAVE. 

Keywords —Cloud storage, consistency as a service (CaaS), two-level auditing, heuristic 

auditing strategy (HAS). 

I. INTRODUCTION 

Ever since Cloud computing is a model for 

enabling ubiquitous network access to a 

shared pool of configurable computing 

resources. Cloud computing has become 

commercially popular, as it promises to 

guarantee scalability, elasticity, and high 

availability at a low cost [1], [2]. Guided by 

the trend of the everything-as-a-service 

(XaaS) model, data storages, virtualized 

infrastructure, virtualized platforms, as well 

as software and applications are being 

provided and consumed as services in the 

cloud. Cloud storage services can be 

regarded as a typical service in cloud 

computing, which involves the delivery of 

data storage as a service, including database-

like services and network attached storage, 

often billed on a utility computing basis, 

e.g., per gigabyte per month. Examples 

include Amazon SimpleDB1, Microsoft  

 

 

 

 

 

 

Research Article 

ISSN: 2455-1910 

http://www.ijcsm.in/


2 | P a g e  

 

 

Fig. 1. An application that requires causal 

consistency. 

Azure storage2 and so on. By using the 

cloud storage services, the customers can 

access data stored in a cloud anytime and 

anywhere, using any device, without caring 

about a large amount of capital investment 

when deploying the underlying hardware 

infrastructures. To meet the promise of 

ubiquitous 24/7 access, the cloud service 

provider (CSP) stores data replicas on 

multiple geographically distributed servers. 

A key problem of using the replication 

technique in clouds is that it is very 

expensive to achieve strong consistency on a 

worldwide scale, where a user is ensured to 

see the latest updates. Actually, mandated by 

the CAP principle3, many CSPs (e.g., 

Amazon S3) only ensure weak consistency, 

such as eventual consistency, for 

performance and high availability, where a 

user can read stale data for a period of time. 

The domain name system (DNS) is one of 

the most popular applications that implement 

eventual consistency. Updates to a name will 

not be visible immediately, but all clients are 

ensured to see them eventually. However, 

eventual consistency is not a catholicon for 

all applications. Especially for the interactive 

applications, stronger consistency assurance 

is of increasing importance. Consider the 

following scenario as shown in Fig. 1.  

Suppose that Alice and Bob are cooperating 

on a project using a cloud storage service, 

where all of the related data is replicated to 

five cloud servers, CS1, . . ., CS5. After 

uploading a new version of the requirement 

analysis to a CS4, Alice calls Bob to 

download the latest version for integrated 

design. Here, after Alice calls Bob, the 

causal relationship [5] is established between 

Alice’s update and Bob’s read. Therefore, 

the cloud should provide causal consistency, 

which ensures that Alice’s update is 

committed to all of the replicas before Bob’s 

read. If the cloud provides only eventual 

consistency, then Bob is allowed to access 

an old version of the requirement analysis 

from CS5. In this case, the integrated design 

that is based on an old version may not 

satisfy the real requirements of customers. 

Actually, different applications have 

different consistency requirements. For 

example, mail services need monotonic read 

consistency and read-your-write consistency, 

but social network services need causal 

consistency [6]. In cloud storage, 

consistency not only determines correctness 

but also the actual cost per transaction. In 

this paper, we present a novel consistency as 

a service (CaaS) model for this situation. 

The CaaS model consists of a large data 

cloud and multiple small audit clouds. The 

data cloud is maintained by a CSP, and an 

audit cloud consists of a group of users that 

cooperate on a job, e.g., a document or a 

project. A service level agreement (SLA) 

will be engaged between the data cloud and 

the audit cloud, which will stipulate what 

level of consistency the data cloud should 

provide, and how much (monetary or 

otherwise) will be charged if the data cloud 

violates the SLA. 

The implementation of the data cloud is 

opaque to all users due to the virtualization 

technique. Thus, it is hard for the users to 

verify whether each replica in the data cloud 

is the latest one or not. Inspired by the 

solution in [7], we allow the users in the 

audit cloud to verify cloud consistency by 

analyzing a trace of interactive operations. 

Unlike their work, we do not require a global 

clock among all users for total ordering of 

operations. A loosely synchronized clock is 

suitable for our solution. Specifically, we 

require each user to maintain a logical vector 

[8] for partial ordering of operations, and we 

adopt a two-level auditing structure: each 

user can perform local auditing 

independently with a local trace of 

operations; periodically, an auditor is elected 

from the audit cloud to perform global 

auditing with a global trace of operations. 

Local auditing focuses on monotonic-read 

and read-your-write consistencies, which can 

be performed by a light-weight online 



3 | P a g e  

 

algorithm. Global auditing focuses on causal 

consistency, which is performed by 

constructing a directed graph. If the 

constructed graph is a directed acyclic graph 

(DAG), we claim that causal consistency is 

preserved. We quantify the severity of 

violations by two metrics for the CaaS 

model: commonality of violations and 

staleness of the value of a read, as in [9]. 

Finally, we propose a heuristic auditing 

strategy (HAS) which adds appropriate reads 

to reveal as many violations as possible. 

Our key contributions are as follows: 

1) We present a novel consistency as a 

service (CaaS) model, where a group of 

users that constitute an audit cloud can 

verify whether the data cloud provides the 

promised level of consistency or not. 

2) We propose a two-level auditing 

structure, which only requires a loosely 

synchronized clock for ordering operations 

in an audit cloud.  

3) We design algorithms to quantify the 

severity of violations with different metrics. 

4) We devise a heuristic auditing strategy 

(HAS) to reveal as many violations as 

possible. Extensive experiments were 

performed using a combination of 

simulations and real cloud deployments to 

validate HAVE. 

II. PROBLEM STATEMENT 

By using the cloud storage services, the 

customers can access data stored in a cloud 

anytime and anywhere using any device, 

without caring about a large amount of 

capital investment when deploying the 

underlying hardware infrastructures. The 

cloud service provider (CSP) stores data 

replicas on multiple geographically 

distributed servers. Where a user can read 

stale data for a period of time. The domain 

name system (DNS) is one of the most 

popular applications that implement eventual 

consistency. Updates to a name will not be 

visible immediately, but all clients are 

ensured to see them eventually. The 

replication technique in clouds is that it is 

very expensive to achieve strong 

consistency. Hard to verify replica in the 

data cloud is the latest one or not. 

III. RELATED WORK 

In this paper, we presented a consistency as 

a service (CaaS) model and a two-level 

auditing structure to help users verify 

whether the cloud service provider (CSP) is 

providing the promised consistency, and to 

quantify the severity of the violations, if any. 

With the CaaS model, the users can assess 

the quality of cloud services and choose a 

right CSP among various candidates, e.g, the 

least expensive one that still provides 

adequate consistency for the users’ 

applications. Do not require a global clock 

among all users for total ordering of 

operations. The users can assess the quality 

of cloud services. Choose a right CSP. 

Among various candidates, e.g, the least 

expensive one that still provides adequate 

consistency for the users’ applications. 

 A cloud is essentially a large-scale 

distributed system where each piece of data 

is replicated on multiple   geographically 

distributed servers to achieve high 

availability and high performance. Thus, we 

first review the consistency models in 

distributed systems. Ref. [10], as a standard 

textbook, proposed two classes of 

consistency models: data-centric consistency 

and client-centric consistency. Data-centric 

consistency model considers the internal 

state of a storage system, i.e., how updates 

flow through the system and what guarantees 

the system can provide with respect to 

updates. However, to a customer, it really 

does not matter whether or not a storage 

system internally contains any stale copies. 

As long as no stale data is observed from the 

client’s point of view, the customer is 

satisfied. Therefore, client-centric 

consistency model concentrates on what 

specific customers want, i.e., how the 

customers observe data updates. Their work 

also describes different levels of consistency 

in distributed systems, from strict 

consistency to weak consistency. High 

consistency implies high cost and reduced 

availability. Ref. [11] states that strict 

consistency is never needed in practice, and 

is even considered harmful. In reality, 

mandated by the CAP protocol [3], [4], 

many distributed systems sacrifice strict 

consistency for high availability. Then, we 

review the work on achieving different 

levels of consistency in a cloud. Ref. [12] 

investigated the consistency properties 



4 | P a g e  

 

provided by commercial clouds and made 

several useful observations. Existing 

commercial clouds usually restrict strong 

consistency guarantees to small datasets 

(Google’s Mega Store and Microsoft’s SQL 

Data Services), or provide only eventual 

consistency (Amazon’s simple DB and 

Google’s Big Table). Ref. [13] described 

several solutions to achieve different levels 

of consistency while deploying database 

applications on Amazon S3. In Ref. [14], the 

consistency requirements vary over time 

depending on actual availability of the data, 

and the authors provide techniques that make 

the system dynamically adapt to the 

consistency level by monitoring the state of 

the data. Ref. [15] proposed a novel 

consistency model that allows it to 

automatically adjust the consistency levels 

for different semantic data. Finally, we 

review the work on verifying the levels of 

consistency provided by the CSPs from the 

users’ point of view. Existing solutions can 

be classified into trace-based verifications 

[7], [9] and benchmark-based verifications 

[13]–[16].  Trace-based verifications focus 

on three consistency semantics: safety, 

regularity, and atomicity, which are 

proposed by Lamport [10], and extended by 

Aiyer et al. [11]. A register is safe if a read 

that is not concurrent with any write returns 

the value of the most recent write, and a read 

that is concurrent with a write can return any 

value. A register is regular if a  

 

Fig. 2. Consistency as a service model. 

read that is not concurrent with any write 

returns the value of the most recent write, 

and a read that is concurrent with a write 

returns either the value of the most recent 

write, or the value of the concurrent write. A 

register is atomic if every read returns the 

value of the most recent write. Misra [2] is 

the first to present an algorithm for verifying 

whether the trace on a read/write register is 

atomic. Following his work, Ref. [7] 

proposed offline algorithms for verifying 

whether a key-value storage system has 

safety, regularity, and atomicity properties 

by constructing a directed graph. Ref. [9] 

proposed an online verification algorithm by 

using the GK algorithm [13], and used 

different metrics to quantify the severity of 

violations. The main weakness of the 

existing trace-based verifications is that a 

global clock is required among all users. Our 

solution belongs to trace-based verifications. 

However, we focus on different consistency 

semantics in commercial cloud systems, 

where a loosely synchronized clock is 

suitable for our solution. Benchmark-based 

verifications focus on benchmarking 

staleness in a storage system. Both [16] and 

[7] evaluated consistency in Amazon’s S3, 

but showed different results. Ref. [16] used 

only one user to read data in the 

experiments, and showed that few 

inconsistencies exist in S3. Ref. [7] used 

multiple geographically-distributed users to 

read data, and found that S3 frequently 

violates monotonic-read consistency. The 

results of [7] justify our two-level auditing 

structure. Ref. [8] presents a client-centric 

benchmarking methodology for 

understanding eventual consistency in 

distributed key value storage systems. Ref. 

[1] assessed Amazon, Google, and 

Microsoft’s offerings, and showed that, in 

Amazon S3, consistency was sacrificed and 

only a weak consistency level known as, 

eventual consistency was achieved. 

 
Fig. 3. The update process of logical vector 

and physical vector. 

A black solid circle denotes an event 

(read/write/send message/receive message), 

and the arrows from top to bottom denote the 

increase of physical time. The logical vector 

is updated via the vector clocks algorithm 



5 | P a g e  

 

[8]. The physical vector is updated in the 

same way as the logical vector, except that 

the user’s physical clock keeps increasing as 

time passes, no matter whether an event 

(read/write/send message/receive message) 

happens or not. The update process is as 

follows: All clocks are initialized with zero 

(for two vectors); The user increases his own 

physical clock in the physical vector 

continuously, and increases his own logical 

clock in the logical vector by one only when 

an event happens; Two vectors will be sent 

along with the message being sent. When a 

user receives a message, he updates each 

element in his vector with the maximum of 

the value in his own vector and the value in 

the received vector (for two vectors). 

Monotonic-read consistency. If a process 

reads the value of data K, any successive 

reads on data K by that process will 

 
 

Fig. 4. An application that has different 

consistency requirements. 

 

 
Always return that same value or a more 

recent value. Read-your-write consistency. 

The effect of a write by a process on data K 

will always be seen by a successive read on 

data K by the same process. Intuitively, 

monotonic-read consistency requires that a 

user must read either a newer value or the 

same value, and read your-write consistency 

requires that a user always reads his latest 

updates. To illustrate, let us consider the 

example in Fig.4. Suppose that Alice often 

commutes between New York and Chicago 

to work, and the CSP maintains two replicas 

on cloud servers in New York and Chicago, 

respectively, to provide high availability. In 

Fig. 4, after reading Bob’s new report and 

revising this report in New York, Alice 

moves to Chicago. Monotonic-read 

consistency requires that, in Chicago, Alice 

must read Bob’s new version, i.e., the last 

update she ever saw in New York must have 

been propagated to the server in Chicago. 

Read-your-write consistency requires that, in 

Chicago, Alice must read her revision for the 

new report, i.e., her own last update issued in 

New York must have been propagated to the 

server in Chicago. The above models can be 

combined. The users can choose a subset of 

consistency models for their applications. 

IV. CONCLUSION 

 In this paper, with the CaaS model, the 

users can assess the quality of cloud services 

and choose a right CSP among various 

candidates, e.g, the least expensive one that 

still provides adequate consistency for the 

users’ applications .We  have presented a 

consistency as a service (CaaS) model and a 

two-level auditing structure to help users 

verify whether the cloud service provider 

(CSP) is providing the promised 

consistency, and to quantify the severity of 

the violations, if any. For our future work, 

we will conduct a thorough theoretical study 

of consistency models in cloud computing. 

REFERENCES 

 

[1] M. Armbrust, A. Fox, R. Griffith, A. 

Joseph, R. Katz, A. Konwinski, 

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et 

al., ―A view of cloud computing,‖ Commun. 

ACM, vol. 53, no. 4, 2010. 

 

[2] P. Mell and T. Grance, ―The NIST 

definition of cloud computing (draft),‖ 

NIST Special Publication 800-145 (Draft), 

2011. 

 

[3] E. Brewer, ―Towards robust distributed 

systems,‖ in Proc. 2000 ACM PODC. 

 



6 | P a g e  

 

[4] ——, ―Pushing the CAP: strategies for 

consistency and availability,‖ Computer, vol. 

45, no. 2, 2012. 

 

[5] M. Ahamad, G. Neiger, J. Burns, P. 

Kohli, and P. Hutto, ―Causal memory: 

definitions, implementation, and 

programming,‖ Distributed Computing, vol. 

9, no. 1, 1995. 

 

[6] W. Lloyd, M. Freedman, M. Kaminsky, 

and D. Andersen, ―Don’t settle for eventual: 

scalable causal consistency for wide-area 

storage with COPS,‖ in Proc. 2011 ACM 

SOSP. 

 

[7] E. Anderson, X. Li, M. Shah, J. Tucek, 

and J. Wylie, ―What consistency does your 

key-value store actually provide,‖ in Proc. 

2010 USENIX HotDep. 

 

[8] C. Fidge, ―Timestamps in message-

passing systems that preserve the partial 

ordering,‖ in Proc. 1988 ACSC. 

 

[9] W. Golab, X. Li, and M. Shah, 

―Analyzing consistency properties for fun 

and profit,‖ in Proc. 2011 ACM PODC. 

 

[10] A. Tanenbaum and M. Van Steen, 

Distributed Systems: Principles and 

Paradigms. Prentice Hall PTR, 2002. 

 

[11] W. Vogels, ―Data access patterns in the 

Amazon.com technology platform,‖ in Proc. 

2007 VLDB. 

 

[12] ——, ―Eventually consistent,‖ 

Commun. ACM, vol. 52, no. 1, 2009. 

 

[13] M. Brantner, D. Florescu, D. Graf, D. 

Kossmann, and T. Kraska, ―Building a 

database on S3,‖ in Proc. 2008 ACM 

SIGMOD. 

 

[14] T. Kraska, M. Hentschel, G. Alonso, 

and D. Kossmann, ―Consistency rationing in 

the cloud: pay only when it matters,‖ in 

Proc. 2009 VLDB. 

 

[15] S. Esteves, J. Silva, and L. Veiga, 

―Quality-of-service for consistency of data 

geo-replication in cloud computing,‖ Euro-

Par 2012 Parallel Processing, vol. 7484, 

2012. 

 

[16] H. Wada, A. Fekete, L. Zhao, K. Lee, 

and A. Liu, ―Data consistency properties and 

the trade-offs in commercial cloud storages: 

the consumers’ perspective,‖ in Proc. 2011 

CIDR. 

 

 


