
Internet Sharing in Community
Networks

Emmanouil Dimogerontakis

a dissertation
presented to the

Universitat Politècnica de Catalunya
in candidacy for the degree

of Doctor of Philosophy

recommended for acceptance
by the Department of

Computer Architecture

Advisors: Dr. Leandro Navarro & Dr. Luís Veiga &
Dr. Roc Meseguer

March 2017

Abstract

The majority of the world’s population does not have any or adequate Internet
access. This implies that the Internet cannot provide service to the general
public, to reach anyone without discrimination. Global access to the Inter-
net for all requires a dramatic reduction in Internet access costs especially
in geographies and populations with low penetration. In response to this
problem, various local communities build their own network infrastructures,
Community Networks(CN),and provide affordable inter-networking with the
Internet, based mostly on wireless technologies. Sharing resources, such as
infrastructure or Internet access, is encouraged at all levels to lower the cost
of network infrastructures and services. Communities can develop their own
network infrastructures as a commons, using several interconnected Wireless
Mesh Networks (WMN) given its sheer size, and sharing several Internet
gateways among their participants. These Internet gateways are typically
web proxies for Web access, the most popular traffic, and a small fraction
using IP tunnels.

Access to the Internet through web proxy gateways relies on users or or-
ganisations sharing the full or spare capacity of its Internet connection with
other users. However these gateway nodes may be overloaded by the demand,
and their Internet capacity may experience problems under lack of regulation.
The purpose of this thesis is to analyze the behaviour of already existing In-
ternet sharing mechanisms used by communities and propose and evaluate a
framework that allows users to access and share Internet bandwidth achieving
fairness across the users and best effort utilization of the available resources.

iii

Keywords

community networks; Internet access; resource sharing;

iv

Contents

Abstract i

1 Introduction 1
1.1 Community Networks . 2
1.2 guifi.net Web Proxy Service . 3
1.3 Spare Internet Capacity . 4
1.4 Problem Statement . 5

2 Contributions 9
2.1 List of Publications . 9
2.2 Contributions . 11

3 Current State in CN Usage for Basic Internet Access 13
3.1 Introduction . 13
3.2 Data Collection . 14
3.3 Service Usage Viewpoint . 14
3.4 The Proxy Viewpoint . 16
3.5 The Local Network Viewpoint 22
3.6 Related Work . 26
3.7 Summary of Lessons Learned . 27

4 A Web Proxies regulation mechanism for CNs 29
4.1 Introduction . 29
4.2 Overview . 30

4.2.1 System Model . 32
4.2.2 Experimental Environment 33

v

4.3 Network Performance . 34
4.3.1 Measuring network performance 35

4.4 Measuring Proxy Performance 37
4.4.1 Measuring Proxy Load And Internet Connection Delays . 40
4.4.2 Sharing TTFB . 41

4.5 Overhead Analysis . 43
4.6 Proxy Selection . 44
4.7 Related Work . 48
4.8 Conclusions . 50

5 Exploiting Traffic Patterns and Network Locality 51
5.1 Introduction . 51
5.2 Clustering of Users . 52

5.2.1 Clustering according to usage 52
5.2.2 Clustering according to Network Locality 54
5.2.3 Influence of the criteria for proxy selection 56

5.3 Network perspective . 56
5.4 Proxy perspective . 58
5.5 Users perspective . 60
5.6 Conclusions . 63

6 Sharing Only The Exceeding Bandwidth 65
6.1 Introduction . 65
6.2 Experimental framework . 66

6.2.1 Traffic sharing between primary and secondary 68
6.3 Results . 70

6.3.1 Gateway not overloaded 70
6.3.2 Gateway is overloaded . 71
6.3.3 Sensitivity analysis . 74

6.4 Conclusions . 79

vi

7 Conclusion 81

Bibliography 82

vii

1
Introduction

Internet access has become a requirement to participate in society; for in-
stance, to access public services, education material, social media and also
to support everyday work of millions of organizations. However, the major-
ity of the world’s population is not online [28] yet, far from the vision of
“universal service”. Global access to the Internet for all requires a dramatic
reduction in Internet access costs especially in geographies and populations
with low penetration [23]. This situation enhances the digital divide between
several communities/regions/countries, and the rest of the world. Therefore,
while the Internet is for everyone [16], as Vint Cerf says: “it won’t be if it
isn’t affordable by all that wish to partake of its services, so we must dedic-
ate ourselves to making the Internet as affordable as other infrastructures so
critical to our well-being”.

As a way to mitigate this challenge, in many regions worldwide the citizens
self-organize in order to explore alternative models for getting Internet access
under reasonable conditions. An example of it are the Community Networks
(CN) [52], that are crowdsourced data network infrastructures built by citizens

1

and organisations, who pool their resources and coordinate their efforts [6] to
provide an Internet community access service to their members, including the
deepest rural communities worldwide [43].

For instance guifi.net, probably the largest community network in the world
has more than 30,000 network nodes. It is organised as an inter-network
with several local WMN. 12,500 registered users can use any of the 356 web
proxies (May 2016). The network links between nodes are contributed and
managed by the participants. Therefore paths between nodes, such as client
to proxy may not be reliable [3] or guaranteed, especially when compared to
commercial offerings from centrally managed ISPs. Access to the Internet
through web proxy gateways relies on users or organisations sharing the full
or spare capacity of its Internet connection with other guifi.net users.

1.1 Community Networks

The community networks are quite new, and they represent an alternative
paradigm for developing network infrastructures and services in a broad sense.
Communities can propose locally adapted self-organized cooperative schemes
for developing self-provided data networking solutions, sharing wireless links
and spectrum, optical fibre, and Internet gateways; and even sharing Internet
connectivity with other members of the community.

These communities communities usually describe themselves as open, free,
and neutral. They are open since everyone has the right to know how they
are built. They are free because the network access is driven by the non-
discriminatory principle; thus, they are universal. Moreover, they are neutral
in terms of technology solutions to extend the network, and neutral for sup-
porting data transfers.

When these fundamental principles are applied to an infrastructure, they
often result in networks that are collective goods, socially produced, and gov-
erned as common-pool resources (CPR). Natural CPR, also called commons
(such as, communal pastures, fisheries, forests), were studied in depth by E.

2

Ostrom [42]. According to that we use the term network infrastructure com-
mons [39].

These infrastructures developed cooperatively become regional IP networks
that enable inexpensive interaction and access to local digital content and
services. In addition, there exists the issue of access to the global Internet,
that can be reached through Internet Service Providers (ISP) in these regional
network infrastructures.

There are many examples of community networks that can fit in this scheme.
In [40] we outline 18 cases, with 9 described in detail, and 267 potential cases
in 41 countries. There are also several studies that consider structural [15, 37,
51], technological [7, 36, 52] and organisational [6, 35, 40] points of view of
these networks.

1.2 guifi.net Web Proxy Service

Guifi.net is an open, free, and neutral network built by its members: citizens
and organisations pooling their resources to build and operate a local net-
work infrastructure, governed as a common pool resource [6]. The network
infrastructure is mostly wireless [52] with a fiber backbone. Participants can
extend the network to reach new locations and use the network to reach
intranet services such as the web proxy service.

The most popular application in community networks is web access and
guifi.net is no exception. Web proxy nodes connected both to guifi.net and
an ISP act as free gateways to the Internet to the community network users.
Proxies run on simple servers and take advantage of individuals or organisa-
tions (like libraries or municipalities) offering their Internet access to other
guifi.net users. Using web proxies, public entities can provide free Internet
access without infringing telecom market competence regulations.While some
of the web proxies are kept as a private service, 356 out of the 477 registered
web proxy servers in the network (May 2016) are shared with all the network
registered participants (12,500). A registered member is allowed to use any

3

proxy of their convenience, although recommended to use one nearby. Users
can select or change its choice based on quality of experience. Therefore,
while some proxies may become popular and highly used, others may remain
underused.

Without access to one of these proxies or a guifi.net connected ISP, com-
munity members can still share contents and access applications within the
same community network, but not to external resources. In order to get Web
access, the clients manually specify a list of proxies, by starting with the
main proxy and following with the secondary ones. Proxy access is performed
through federated authentication credentials. In case a proxy does not re-
spond (timeout) or rejects the connection, the client automatically switches
to the next proxy in the list. The choice of proxies is manual and the list
usually comes from acquaintances in the community or personal experience.

Internet access through web proxies is clearly a limited service compared
to an IP tunnel, as the service is usually restricted to a set of protocols/ports;
however, it can enhance privacy as the origin IP addresses are hidden. The
most popular application in community networks is Web access. Many cit-
izens, private and public organizations involved in community networks, such
as freifunk.net or guifi.net, have chosen to provide that service within their
community network. Using Web proxies through local networking infrastruc-
tures (e.g., Community Networks) that provides local/regional connectivity,
the citizens can reach Internet content and services at no additional cost.

1.3 Spare Internet Capacity

We define spare Internet capacity as the network traffic that can be moved to
and from the Internet by secondary users with no performance degradation or
cost penalty for primary users. Secondary traffic can have short term effects
for the primary in packet queueing, resulting in service degradation, such
as packet delay, loss and reduced throughput. That affects data transport
(TCP) generating a lower throughput with longer and more variable down-

4

load times, and also an overall degradation of quality of the user experience.
Therefore, the secondary traffic should be unnoticed by the primary user,
both when the sum of primary and secondary is below the capacity of the
Internet access link, and when exceeded. Peak usage is an extreme case,
where the secondary traffic may need to be blocked to avoid an impact on
cost under the common 95-percentile pricing schemes [25] used by transit
ISPs to charge according to peak demand.

There is a rich body of work focused on reducing the cost and increasing
the coverage of Internet in several scenarios. For instance, the Lowest Cost
Denominator Networking (LCD-Net) [44] explores resource pooling Internet
technologies to support benevolence in the Internet. Some of these ideas are
illustrated by WiFi sharing schemes, community-led (PAWS) or commercially-
run (FON), where home broadband subscribers donate their controlled (but
for free) broadband Internet spare capacity to fellow citizens. This is done by
sharing a fixed portion of throughput [1]. In contrast, this work considers not
just local access to a shared WiFi hotspot, but also remote access to the shared
resource over a community network that can use any network technology, such
as, wired or wireless meshes. This research also takes advantage of all spare
capacity, with little or no visible impact on the primary user. This means
secondary users can get from all to nothing, depending on the demand of
primary use.

1.4 Problem Statement

Studying the Internet access based on web proxies in guifi.net we observed
that some proxies may be overloaded and, therefore, offer degraded or unus-
able performance, while others may remain underused, due to bad or manual
choice. Users of overloaded proxies, or that use congested links to reach their
proxy, experience degraded quality of experience (QoE) in Internet access. It
is also interesting to note that the set of overloaded and underutilized proxies
varies according to the access patterns of the users. Moreover, we observed

5

that this challenge is an instance of the more general problem where a WMN
inter-network community accesses the Internet using a pool of shared Web
proxies in different WMN nodes. We decompose this general problem in two
major components. First, the relation between users-proxies, which concerns
how in a macroscopic level the demand of the users can meet in an efficient
way the offered resources. Second, the relation between each user who offers
his resources (primary) and the consumers of his resources (secondary), which
concerns the preservation of the experience of the primary users, since they
are a critical factor of the service producing as low as possible overhead to
the secondaries.

In the users-proxies relation, the challenge is that clients in any WMN node
should select the right proxy according to the performance of the internal
network path and the load of the web proxies. The net effect is that a large
population of 𝐶 clients can browse the web taking advantage of the aggregated
capacity of a pool of 𝑃 web proxies, with 𝐶 ≫ 𝑃 , over a WMN infrastructure,
at a fraction of the cost of 𝐶 Internet connections.

The designed solution must be:

• Incremental and backwards-compatible: should be able to be deployed
incrementally, so it should work fine for both baseline or enhanced cli-
ents.

• Dynamic: Users can and should switch proxies wisely to maximize their
QoE. This can be the result of changes in network topology, path load,
or proxy performance.

• Decentralized: should not require any central component.

• Scalable: could scale up to the current number of users and proxies and
beyond.

• Routing-agnostic: should not depend on the transport and routing al-
gorithms, or on specific network features.

6

Concerning the primary-secondary users relation, we consider 𝑁 citizens or
organizations sharing their unused Internet access capacity benevolently with
𝑀 neighbors and members of their community, through a local or regional
community network. In order to provide such a service without negatively
affecting the quality of access of the primary users, we propose utilizing gate-
ways to aggregate the primary traffic (i.e., that of the Internet access donors)
from the one of the beneficiaries (i.e., the secondary traffic) fairly.

Each of the 𝑀 beneficiary nodes selects one or a few of the 𝑁 Internet
gateways, where they send their traffic. The gateways receive the IP traffic or
HTTP requests from these secondary nodes and try to provide them with a
solution. Although this traffic uses the spare capacity of the Internet access,
it may compete with the primary source traffic, hinder its performance, and
also increase its cost. Therefore, only making this sharing process innocuous
for the donors, will allow this mechanism be sustainable over time. However,
keeping under control this aspect of the traffic represents a major challenge
for the managers of community networks.

7

2
Contributions

2.1 List of Publications

Accepted

P1. Dimogerontakis, E., Meseguer, R. & Navarro, L. Internet Access for All: As-
sessing a Crowdsourced Web Proxy Service in a Community Network in Passive
and Active Measurement Conference (CORE2014 Rank B) (2017).

P2. Dimogerontakis, E., Neto, J., Meseguer, R. & Navarro, L. Client-Side Routing-
Agnostic Gateway Selection for heterogeneous Wireless Mesh Networks in
IFIP/IEEE International Symposium on Integrated Network Management
(CORE2014 Rank A) (2017).

Pending Review

The following papers have been submitted for review.

P4. Dimogerontakis, E., Meseguer, R., Navarro, L., Ochoa, S. & Veiga, L. Com-
munity Sharing of Spare Network Capacity in IEEE International Conference
on Networking, Sensing and Control (ERA2010 Rank C),(under review) (2017).

9

P3. Dimogerontakis, E., Meseguer, R., Navarro, L., Ochoa, S. & Veiga, L. Design
Trade-offs of Crowdsourced Web Access in Community Networks in IEEE 21st
International Conference on Computer Supported Cooperative Work in Design
(CORE2014 Rank B),(Under Review) (2017).

Under Preparation

P5. Dimogerontakis, E., Braem, B., Meseguer, R. & Navarro, L. Socio-Economic
Experiences, Challenges and Lessons in Community Networks around the world
in – (2017).

Other Publications

The background research to this thesis has led to the following publications:

1. Millan, P., Molina, C., Dimogerontakis, E., Navarro, L., Meseguer, R., Braem,
B. & Blondia, C. Tracking and Predicting End-to-End Quality in Wireless
Community Networks in 2015 3rd International Conference on Future Internet
of Things and Cloud (Aug. 2015), 794–799.

2. Selimi, M., Khan, A. M., Dimogerontakis, E., Freitag, F. & Centelles, R. P.
Cloud services in the Guifi.net community network. Computer Networks 93,
Part 2. Community Networks, 373–388 (2015).

3. Escrich, P., Baig, R., Dimogerontakis, E., Carbó, E., Neumann, A., Fonseca, A.,
Freitag, F. & Navarro, L. WiBed, a platform for commodity wireless testbeds in
2014 IEEE 10th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob) (Oct. 2014), 85–91.

4. Dimogerontakis, E., Vilata, I. & Navarro, L. Software Defined Networking for
community network testbeds in 2013 IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob)
(Oct. 2013), 111–118.

10

2.2 Contributions

Analysis of a crowdsourced web proxy service Global access to the Internet
for all requires a dramatic reduction in Internet access costs particularly in
developing areas. This access is often achieved through several shared web
proxy gateways in commercially and community driven local or regional access
networks. In an effort to understand the functionality and performance of this
shared Internet access we performed a measurement study of a crowdsourced
Internet proxy service in the guifi.net community network that provides free
Internet access to a large community with a high ratio of users to proxies.
Our study focus on a representative subset of the whole network with about
900 nodes and roughly 470 users of the web proxy service. We analyze the
service from three viewpoints: web content traffic from users, performance of
proxies and influence of the access network. We observed that CNs can and
are being used for providing a basic Internet access, by the means of Web
proxies. Nevertheless, we observed the necessity of a regulation mechanism
that would enable the fair and efficient usage of the resources.
The main results related with this contribution are presented in Chapter 3 and
were originally reported in [P1].

Internet Gateway selection mechanism In order to facilitate the fair usage
of the Web Proxy service we start by investigating and building the users-
proxies regulation mechanism. We developed a client-side distributed system
that optimizes the client-gateway mapping, agnostic to underlying infrastruc-
ture and protocols, requiring no modification of proxies or the underlying
network [P2]. Clients choose proxies considering network congestion, proxy
load and proxy performance, without requiring a minimum number of parti-
cipating nodes. Our proposal was evaluated experimentally with clients and
proxies deployed in guifi.net. Our selection mechanism avoids proxies with
heavy load and slow internal network paths, while achieved a network over-
head linear to the number of clients and proxies. Moreover, we demonstrated

11

that the trade-offs between informed proxy selection and admission control
in proxies, could alleviate imbalances and uncertainty, and also improve the
service with little additional burden [P3]. Nevertheless, the Internet sharing
process can negatively affect the service received by the users sharing their
connections, thus jeopardizing the continuity of this community service.
The main results related with this contribution are presented in Chapter 4 and
Chapter 5 and were originally reported in [P3, P2] correspondingly.

Secondary usage of spare Internet capacity In the studied model of proxy
usage, we argue that it is important to differentiate between primary users,
who share their Internet connection, and the secondary users. To address
the possible performance degradation of the users sharing their connections
we proposed a middlebox that separates the traffic of the primary users from
that of the secondary users. We analysed the impact and behaviour of several
mechanisms for using this gateway, in order to determine how to maximize
network utilization, use of the excess network capacity, and minimize the
impact on the primary traffic. Finally, we presented a set recommendations
to achieve the best performance isolation for the primary user, while the
secondary user obtains the spare capacity equivalent to non-differentiated
best effort.
The main results related with this contribution are presented in Chapter 6 and
were originally reported in [P4].

12

3
Current State in CN Usage for Basic

Internet Access

3.1 Introduction

guifi.net exemplifies how regional communities can develop their own network
infrastructures, using wired and wireless links to create a regional IP network,
and sharing several Internet gateways among all their participants. These
gateways are usually web proxies for Web access, the most popular traffic,
but can accommodate other traffic through HTTP CONNECT, SOCKS or
tunneling. Proxies, not exempt from the drawbacks of middleboxes, have also
additional advantages: some content and DNS resolution can be shared in
caches, and most important, proxies can protect the privacy of end users if
they trust the proxy provider.

In this chapter we present an study of the existing Web proxy service in
a guifi.net zone We first describe the collected datasets in Section 3.2. Then
we analyse the service from three viewpoints: 1) service usage by end-users:
patterns of usage and content in Section 3.3, 2) the proxy, Section 3.4, in

13

terms of caching, users, performance and variability, and 3) the local network,
Section 3.5, in terms of topology and usage. Our measurements describe the
effectiveness of a simple setup of a regional network sharing a set of Web
proxies in delivering free basic Web access to a large population.

3.2 Data Collection

For our analysis we choose to study the guifi.net zone Llucanes, a region
in the Osona county of Catalunya, Spain. As explained in [22], this zone
is representative of other rural guifi.net networks. Furthermore, Llucanes is
the only guifi.net zone with published anonymized logs for all (four) involved
operational proxies. Even-day proxy log entries anoymise the client IP address
and show information about the requested URLs, while odd-day proxy logs
show the opposite. We assisted in the preparation and publication of these
logs*. The logs combined with openly accessible information about network
topology, network links and network traffic information, provide a consistent
and complete view of this regional network.

3.3 Service Usage Viewpoint

The behaviour of the users and the service can be described at macro-level
as a set of time series concerning metrics that can be extracted from the
monthly logs, namely bytes per request, number of requests and number of
users. Figure 3.1 illustrates the traffic time series for the aggregate set of
proxies showing a daily repetitive pattern, but also strong aperiodic negative
spikes, which were statistically verified as a dominant period of 1 day, and
the second largest peak at 12 hours.

*Logs in Squid format: http://dsg.ac.upc.edu/anon_guifi_proxy_logs

14

http://dsg.ac.upc.edu/anon_guifi_proxy_logs

Figure 3.1: Web proxy time series (days in April 2016)
Service Usage: The majority of the traffic is due to a relatively small

number of large requests (20% of the requests produce 97% of the traffic),
while the rest of the requests present little variation in size. Additionally, as
expected, the majority of the traffic (90%) is created by 15% of the users, but
in contrast to the distribution of request size, the distribution of traffic and
number of requests per user varies exponentially across users.

For the analysis of the service processing rate we calculate the request
processing throughput as the bits per time elapsed for each request, depic-
ted in fig. 3.2, ranging from less than 107 for the worst 10% to at least 108

for more than 80% of requests.

Figure 3.2: Processing rate per request

Domain Traffic Fraction

googlevideo 27.85%
mega 16.73%
fbcdn 5.40%
rncdn3 2.80%
nflxvideo 2.70%
xvideos 2.60%
tv3 2.54%
level3 2.51%
google 1.96%
apple 1.78%

Table 3.1: Top Domains by traffic
Content analysis: Using the even-day proxy logs we looked at request

types and target URL of users’ requests. The majority of the traffic, almost
50%, consists of HTTP CONNECT requests, which is the method to establish
TCP tunnels over HTTP, including HTTPS which is indisputably the main
usage appearing in the logs. While for HTTP CONNECT we cannot know
the corresponding content type, the most common type for the rest of the

15

requests is the generic application/* with 23%, followed by video (19%) and
image (5.5%).

The traffic for all analysed proxies in Table 3.1, including HTTP CON-
NECT, shows that the top video portal traffic occupies 36% of the traffic,
which is an impressive large amount. For completeness, we mention that this
is not reflected in the number of requests, therefore it is attributed on the
size of the objects requested. Since video is by far the HTTP type with most
traffic, it is not surprising to find that 4 out of 10 top domains are video
portals. The distribution of web traffic per URL we found that it can roughly
approximate a Zipf distribution, equivalent to results in [38] with domestic
Internet connections.

3.4 The Proxy Viewpoint

In this section we investigate the capabilities and influence of the proxy servers
involved. Our dataset concerns the only 4 proxies operating in the Llucanes
zone. Table 3.2 shows the CPU and RAM characteristics of the proxy servers,
as well as the nominal maximum throughput of the Internet connection they
offer. They are very diverse, with great differences in Internet throughput
(4–80Mbps). We also observe that proxy 11252 has the slowest combined
characteristics. Despite that these servers provide other services, e.g. SNMP,
the interference caused by other services is expected to be negligible.

Id CPU RAM Max Throughput

3982 Intel amd64 2-core 2.6GHz 2GB 80Mbps
10473 Intel x86 2-core 2.6GHz 0.5GB 6Mbps
11252 AMD Athlon(tm) XP 1700+ 0.5GB 4Mbps
18202 Intel amd64 2-core 2.7 2GB 8MBps

Table 3.2: Description of Proxies

The analysis of logs for the four proxies is summarized in Table 3.3. The
values are averages for each proxy over a month of daily logs. The first group
of columns (Different data) shows a data object storage perspective, with

16

Different Data (MB) Data transferred (MB) Ratio (/All transfrd)
Proxy All Repetd Cached All Repetd Cached Connect Repetd Cached Connect
10473 606 37 9.2 1481 95 14.3 943 6.4% 0.9% 63.7%
11252 3572 1234 28 15352 5512 99 7578 35.9% 0.6% 49.4%
18202 6384 1498 151 15963 3039 253 9274 19.0% 1.6% 58.1%
3982 2542 435 55 6019 855 96 3128 14.2% 1.6% 52.0%
Avg 3276 801 61 9704 2376 115 5231 18.9% 1.2% 55.8%

Table 3.3: Average volume of data in four proxies and ratios in a month of logs

the amount of different data objects requested (disregarding the number of
requests for each). The second group (Data transferred) shows a data transfer
perspective, with the amount of traffic in each category. The third group
shows data transfer ratios to the total transferred. We distinguish between
“All” content, seen or transferred by the proxy, content requested repeatedly
(same URL, cacheable or not), content served from the cache (checked or not
against the server), and content that is invisible (Connect method, typically
HTTPS, passed through blindly).

Cache effectiveness: As introduced before, the passed through content
(HTTPS) represents the majority of the proxy traffic (49.4–64%). Although
URLs repeat significantly (6.4–36% of proxy traffic), the content successfully
served from the cache (after validation or not) only represents a negligible
amount (1–1.6%). Considering number of requests instead of the amount of
data, despite URLs repeat often (20–41%), the content does not seem cache
friendly, as cache hits only represent a very small portion (3–10%). The
analysis in number of requests compared to byte count indicates that cached
content usually corresponds to small objects. Bad cache performance can be
attributed to characteristics of the proxy service, such as small cache size,
small number of concurrent users per proxy, or to increasingly non-cacheable
served content. We next look at how these apply to our scenario, claiming that
that non-cacheable content is the main factor affecting cache performance.

Cache size: As far as the cache size, the default allocated cache size in
guifi.net proxy settings is 10GB of secondary storage, while in some proxies
caching is not enabled. However, we found out that cached content that
results in cache hits only accounts for a maximum of 151 MB (if all repeated

17

URLs were cacheable) and an average of 61 MB (based on HITs) of data per
day. In the extreme case where all content as cacheable and discounting the
transparent CONNECT/HTTPS data, the amount of daily data seen (i.e. all
content for all URL seen) accounts for a maximum of 1.5 GB and 801 MB on
average, easily achievable with RAM-based caches.

Figure 3.3: Rank of URLs by number of clients requesting them, by proxy

Sharing across clients: Proxies can provide the benefit of sharing net-
work resources reusing not only HTTP content, but also reusing DNS resolu-
tion data as client web browsers delegate that to the proxy, or even reusing
established TCP connections among multiple clients. Figure 3.3 shows the
popularity of URLs across different clients in each proxy over a month, with
top values between 60 to 212 different clients accessing the same URL. The
number is related to the structure of the service, with many decentralized
proxies and few users each and no inter-cache cooperation, which limits the
potential of sharing cached content across more users.

Proxy selection: Users are instructed to check the public list of nearby
proxies (in their network zone) in the network management directory† with
shows a list of nearby proxies, including status and availability ratio, or follow
the advice of trusted neighbours with previous usage experience. Therefore

†Llucanes: https://guifi.net/en/node/8346/view/services

18

https://guifi.net/en/node/8346/view/services

the choice is influenced by social factors and the reputation of the service, but
in most cases the first choice is the nearest operational proxy with acceptable
availability or reputation. Typically several nearby Web proxy services are
configured in client Web browsers. As all federated proxies use the same
authentication service, users are free to choose whatever proxy they prefer.
The choice of proxy is rather fixed and prioritized, only switching to lower
choice proxies when the first fails.

Users and proxies: Figure 3.4 presents the distribution of the average
number of users per hour. The different proxies show similar distributions,
though we observe that proxy 10473 has a differentiated demand, with 40%
of time without any user and a maximum of 10 users per hour. For the rest of
proxies, the majority of time (60%) have an almost linear distribution between
5 and 25 users, with near equally distributed values, and an average of around
17 users per hour for proxies 11252 and 18202, and an average of 12 users for
proxy 3982. The difference in distribution among proxies comes as a result of
preference for proximity and manual selection. To complete the picture, we
found an average of 10 users in periods of 10 secs, an average of 76 different
users per proxy and day, and a maximum of 254 in a month.

The user’s distribution among proxies has a clear impact in the distribution
of the number of requests in figure 3.5. The ordering of proxies with respect to
the number of users remains visible in the distribution of requests. Also, there
is close-linear behaviour between 20% and 60% for all proxies except 10473.
For proxies 11272 and 18202 the number of requests per hour is typically
between 1K and 10K requests, with a mean of 8187 and 6716 respectively. In
proxy 3982 typical values are between 500 and 1K requests per hour.

Regarding the number of clients seen by a proxy every day, the values
(min, average, max) range from the lowest in proxy 10473 (14, 20, 27) to the
highest in proxy 3982 (59, 82, 101). These numbers reflects the spirit of a
highly decentralized service with many small capacity local proxies.

Internet connection and processing performance: Figure 3.6
provides the distribution of the Internet connection usage per proxy, cal-

19

Figure 3.4: Hourly average number of
users per proxy

Figure 3.5: Hourly average number of
requests per proxy

Figure 3.6: Network usage per Proxy Figure 3.7: Hourly average request
processing throughput per Proxy

culated as the approximate instant connection throughput of each proxy
normalized by its maximum Internet throughput as provided in Table 3.2.
All proxies show low utilization of their network resources, being approxim-
ately less than 0.3 (30%) for all the proxies for 80% of the time. Nevertheless,
proxies 11252 and 18202 have significantly higher traffic.

Figure 3.7 shows the distribution of the request processing throughput, as
defined in Table 3.2. We observe that all proxies have almost identical distri-
bution but around different mean values, depending on the individual char-
acteristics of the proxy. Moreover, we can see that a significant percentage
(>60%) of the time proxies serve at a very narrow range of processing through-
put, meaning they can offer a stable service. Even in the worst cases, the ser-

20

vice does not suffer from extreme degradation, while remaining higher than
100Kbps 80% of the time. We also observe that for proxies 3982 and 11252,
the processing throughput distribution resembles the number of requests dis-
tribution in Figure 3.5 possibly indicating, as before, that the proxies are not
saturated.

Figure 3.8: Daily average request pro-
cessing throughput compared to traffic

Figure 3.9: Daily Median Loadavg per
proxy normalized by #CPUs

To gain a more complete perspective we also studied the daily aggregates of
the traffic, users and requests clearly observing not only the expected human
daily pattern but also a clear effect of the different way each proxy receives
and serves request as a result of the users’ manual proxy selection. Moreover,
studying the mean daily patterns, we noticed that, as seen in fig. 3.8, that
the processing throughput presents very small variations implying a stable
service behaviour. Furthermore, the traffic volume varies more than 1.5 orders
of magnitude. The fact that the processing throughput is not affected by
the traffic size confirms our observation that the servers are not saturated.
Additionally, in order to verify that the processing capabilities of proxies
are not a bottleneck for the service, we monitored the proxies’ CPU using
the loadvg Linux metric. The results, showing a strong daily cyclic pattern,
are summarized in Figure 3.9 that shows the daily median of the per-minute
loadavg for each proxy normalized by the number of CPUs. Except from 3982,
affected by other co-located network services, the proxies are not overloaded.
The brief daily peak in each proxy is due to the daily restart of the proxy that
includes a cache reindexing.

21

graph nodes edges degree
max/mean /min diameter

base-graph 902 914 98/2.04/1 11
proxy-clients-graph 463 472 60/2.04/1 10
backbone-graph 47 56 10/2.38/1 9

Table 3.4: Summary of Llucanes network graph

Even at that small scale, we observed the daily cycle of human activity with
preference for evenings and really reduced traffic during the first hours of the
day. The pattern is visible in all the described metrics in different degrees.

From all the above we can conclude that the proxies are able to offer a
stable service, with respect to the traffic load, allowing them to be used as an
alternative domestic Internet connection. Moreover, in our concrete scenario,
the network capacity of the proxies is underutilized assuming that no other
services co-located in the host of the proxy are heavily using the Internet
network capacity.

3.5 The Local Network Viewpoint

The local network infrastructure has also an influence in the final user exper-
ience. For the analysis we used information extracted from odd day logs that
provide these details while hiding URL destinations.

Network structure: For the local network we considered all operational
nodes and links of the Llucanes guifi.net zone‡. We refer to the entire zone
network as the base-graph. Moreover, we refer as Proxy-Clients graph to the
part of the Llucanes network including only the nodes (clients, routers, prox-
ies) that participate in the proxy service. More information concerning the
network structure, hardware characteristics, and protocols used in guifi.net
can be found in [14].

Similarly to the rest of Osona county zones, and in general to many rural
community network deployments, the network consists of a small set of in-

‡More information on the Llucanes zone https://guifi.net/en/node/8346/

22

https://guifi.net/en/node/8346/

terconnected routers, the backbone graph, where each router is connected
with a large number of end nodes, most of all wireless links, mainly 802.11b
Wlan connections [14]. Users access the entire guifi.net network from the end
nodes. Some of the routers act also as hosts for various guifi.net services, in-
cluding the proxy service. Table 3.4 describes the main characteristics of the
aforementioned graphs. We notice that the mean degree of the base-graph
and of the proxy-clients-graph is very low since the end-nodes with degree
1 dominate the distribution of degrees. The low mean degree value in the
backbone-graph is more interesting though, since it implies that the majority
of the routers have only two neighbours. Figures 3.10 and 3.11 provide a
view of the Proxy-Clients graph and the backbone-graph. The colors of the
participating nodes and routers indicate that they are using the proxy with
the same color. Moreover, in fig. 3.11 the darkness of the link color denotes
the cost in latency for a byte to cross this link, therefore the darker the color
the more expensive is the link to use.

Figure 3.10: Llucanes Proxy/Clients Figure 3.11: Llucanes Backbone

Network usage: Since the selection among proxies is static (manual con-
figuration), the analysis of local network usage can show the effect of selection

23

on local network usage and the perceived user experience. Towards that end,
we first analyse metrics of distance between the users and the proxies. Figure
3.12 shows the distribution of the number of hops between the users and the
selected proxies. The distribution is almost uniform for 95% of the users with
values between 1 and 6 hops. The remaining 5% is split between 7 and 8 hops.
Nevertheless, we observe that manual choices result to a slight increase in
number of hops, therefore possibly introducing small unnecessary overheads.
The latency involved, depicted in fig. 3.13, shows a different behaviour. Al-
most 80% of the users experience an average latency smaller than 15ms to
reach their proxy. The remaining 20% lies between 20ms to 35ms. Despite the
almost uniform distribution of hops, latency values vary much less, implying
that during normal network conditions, the distance between the users and
proxies is not significantly deteriorating the user experience for web services.

Figure 3.12: Number of network hops
between users and their selected proxies

Figure 3.13: Average latency between
users and their selected proxies

Download throughput: As we described earlier, the request processing
throughput is calculated in the proxy based on the request elapsed time, which
includes the time the proxy requires until sending the last byte of the web
object to the client. Therefore, any significant local network deterioration
affects the throughput behaviour. Based on this observation we can utilize
the request processing throughput metric for objects larger than 1MB, in order
to estimate significant deterioration on the user experience. Including smaller

24

Figure 3.14: Estimation of user experi-
ence throughput with objects >1MB

Figure 3.15: User cost as sum of down-
load times (1 month)

objects would give unreliable throughput results due to the major influence of
network buffering in the proxy, DNS caching and network latency variations
for short connections. Figure 3.14 illustrates the individual user experience
in throughput. We estimated from proxy logs the download speed for objects
larger than 1 MB. A simplifying assumption is that users focus on few or a
single large object at a time. If so, our measures could be taken as a lower
bound for the experienced individual download throughput. Median values
of download throughput appear quite stable with median values ranging from
0.1Mbps to 10Mbps for different users. Quite good result for the many users
of a free crowdsourced service.

Furthermore, in order to show the margin for improvement in the user
experience using other proxy selection strategies, we simulated the traffic of
the users using a min_hop and a random strategy taking into account local
link latencies. As seen in Figure 3.15, the total download time of each user
throughout the month in the manual selection is asymptotically better than
the random selection while asymptotically worse than the min_hop selection.
Considering that the proxies are not the bottleneck, this result shows that
a proxy selection mechanism would improve user experience of the proxy
service. Nevertheless, we plan to extend our simulations taking into account
the proxies processing and download speed.

25

3.6 Related Work

Most work on wireless networks focuses on usage traffic patterns, link level
characteristics and topologies, but not user experience, e.g. MadMesh [39],
Google WiFi [31] and Meraki [8] networks. In these studies, Internet access is
direct instead of using proxies, and these wireless networks are homogeneous.
Thus, measurement results cannot easily be compared with this. In the Google
WiFi and MadMesh transfer rates are limited to 1 Mbps, but 80% getting less
than 80Kbps in Google WiFi. In MadMesh 80% get less than 1Mbps with
85% of the clients connected within 3 hops to Internet, comparable with our
results that achieve higher speed but more hops to a web proxy.

The evaluation of Facebook’s Free Basic Service [4] shows comparable per-
formance (80-600Kbps for FB vs. 0.1-10 Mbps median speeds) better in
our case, despite significant differences: in clients (mobile devices vs. any
device), access network (cellular mobile carrier vs. wireless fixed community
network), web proxies (centralized large servers vs. distributed small servers
with network locality), and web service and content providers (redesigned and
optimized vs. unmodified content).

The web proxy business has changed significantly over the years. The
percentage of cacheable content has been decreasing, coupled with a dramatic
increase of HTTPS traffic. The performance of web proxies is not only about
high-level metrics such as hit rates. Low-level details such as HTTP cookies,
aborted connections, and persistent connections between clients and proxies
as well as between proxies and servers have a visible impact on performance,
particularly in heterogeneous bandwidth environments [50]. In [26], authors
analyse a mobile network topology with a two level cache hierarchy. Their
claim that a caching system can be efficient when only 5.1% of traffic is
suitable for caching, what shows that caching in our case with lower rates
may not be that beneficial.

Wireless network user experience has been characterized previously. The
first [29] focuses on web traffic and the use of proxies to access Internet con-

26

tent in rural areas. Five years ago, using a single high latency and slower
VSAT Internet connection (64-128Kbps) obtained RTTs sometimes over 10
secs, closer to a DTN case, and cache hit rates of 43%. There are complement-
ary lessons, about security or that content from CDN is usually not cacheable,
but the scenarios are too different. The second study [28] looks at web traffic
patterns and content caching. They mention the decreasing cache hit rates
over previous studies, even lower in our study 5 years later with a dramatic
increase of HTTPS traffic.

3.7 Summary of Lessons Learned

The analysis of the guifi.net proxy service describes a crowdsourced, social
solidarity driven, free basic Internet service built from many small proxy serv-
ers spread across a regional community network, contributed by locals for
locals. These proxies act as gateways to Web content and DNS, that can be
cached and shared among clients or act as middleboxes for HTTPS transfers,
the majority of traffic. Being in the middle can also help protect the privacy
of clients.

The analysis confirms the trend to non-cacheable content, small cacheable
objects, and therefore small object caches that can even fit in RAM. Proxies
have a small number of clients, ranging from 14 to 101 per day. Moreover,
there is a good balance of traffic and number of clients per proxy despite
the manual proxy selection, driven by locality (same zone), client choice and
advice from neighbors. The system is simple and resilient since each proxy is
independent and clients just switch to their next choice in case of failure of
their proxy.

The service has satisfactory performance (0.1-10 Mbps, good client-proxy
latency), with no perceived Internet, access network or service congestion,
despite the typical daily patterns of usage. That can be attributed to the
use of small servers spread over the regional access network, close to end-
users with locality preference. Nevertheless, scaling or coordination between

27

services in different zones does not seem trivial.

28

4
A Web Proxies regulation mechanism for

CNs

4.1 Introduction

As a consequence of the lack of regulation, presented Chapter 3,and despite
being a critical service for the community, current proxy gateway services are
quite fragile. As described in 1.4 one of the problem components concerns the
relation between the users’ and the proxies. More specifically, in this chapter
we present and evaluate a passive user-side distributed system that optimizes
the client-gateway mapping. Moreover, considering that, CNs and WMNs
consist of heterogeneous technologies and combine diverse routing protocols,
agnostic to underlying infrastructure and protocols, requiring no modification
of proxies or the underlying network. To our knowledge, Network-aware state-
of-art proxy selection schemes for WMNs do not work in this heterogeneous
environment. Our selection mechanism avoids proxies with heavy load and
slow internal network paths. The overhead is linear to the number of clients
and proxies.

29

For the performance estimation we propose two metrics, one to estimate
proxy service latency (see Sec. 4.4) and another client-proxy path (see Sec. 4.3)
latency. An extended Vivaldi mechanism is used to indicate client-proxy path
performance and the Time-To-First-Byte (TTFB) moving average of their
HTTP requests to indicate proxy performance. Second, we propose a mech-
anism where clients use these metrics to rank proxies and use these indicators
to select the top ones in terms of QoE, or to switch to the next best proxy
when performance degrades. This mechanism is client-side (see Sec. 4.2), it
avoids hotspots (see Sec. 4.6) and has a low overhead (see Sec. 4.5).

The metrics and the client selection mechanism were instantiated in the
Community-Lab.net experimental testbed in nodes acting as clients inside
guifi.net interacting with a set of guifi.net web proxies.The result from exper-
iments show that our procedure is sound: our method is able to provide good
measures of client-proxy and proxy-Internet latencies and follow its variab-
ility. We found out that our client selection mechanism is cost-effective in
finding out proxies that result in good web performance and QoE for clients.
Our results improve in cost-benefit over other quick-to-measure alternatives
(such as Vivaldi-only and minimum hops) and less costly in traffic and delay
than slower performance-oriented measures.

The rest of this chapter is structured as follows: Section 4.2 describes the
approach, system model, experimental environment. The measurement of
network performance is discussed in Section 4.3 and proxy performance in
Section 4.4. Proxy selection is presented in Section 4.6. Section 4.5 provides
an analysis of overhead. In § 4.7 we discuss the related work and we finally
conclude in Section 4.8.

4.2 Overview

Our goal is to design a practical, non-optimal but best-effort, scheme where
clients can select a proxy using network and proxy performance metrics that
would not require the modification of any network components and that could

30

function in a heterogeneous environment. To this end, we implemented an
estimation-based framework, where clients cooperate sharing their network
and proxy performance estimations in order to prioritize their list of known
proxies, being able to make an informed proxy selection. Unlike other propos-
als, the framework does not try to find an optimal client-proxy assignment,
but helps clients to avoid bad choices that would significantly degrade their
service experience. The non-optimality is the price we have to pay in order to
achieve a scalable solution that can be applied in real heterogeneous WMN
preserving a low overhead. More specifically, we present a proxy selection
framework, which using information from a network performance estimator
and a proxy performance estimator as shown in § 4.6, can select good proxies
and can manage to avoid proxies that are overloaded, or have very slow
Internet connections, or are located behind very slow internal mesh paths.

The network performance estimator provides estimates of client-client and
client-proxy network latency. It is a Vivaldi network coordinates system
based on [45], extended similarly to [41] in order to estimate the round-trip
latency of nodes that are not part of the Vivaldi network – the proxies. All
the clients of the proxy selection system participate in the Vivaldi network
and thus, exchanging a small amount of messages periodically they maintain
an updated view of the latencies across them. Moreover, each client peri-
odically has to monitor one of the proxies and share this information with
the rest of the clients. As we demonstrate in § 4.3, these measurements are
sufficient to allow the clients to create a preference list ordering the proxies
according to their network latency.

The proxy performance estimator provides estimates of the load of the
proxy, concerning the quality of the service currently provided. It is based
on the widely used practical assumption that the TTFB of an HTTP request
can reflect the service performance [10, 20]. In our framework, each client is
passively calculating the TTFB of the HTTP replies that he receives from
his proxy. Then the client can use this value to estimate the load of his
proxy and share it with his Vivaldi neighbours. As we present in § 4.4,

31

this mechanism allows clients to avoid proxies with heavy load or high delay
Internet connections.

4.2.1 System Model

For the description of the model we assume a static topology in a wireless
mesh network. We make no assumptions about the quality of the mesh
network, and we allow dynamic link conditions (a very slow link is indistin-
guishable from a very congested link). We use latency as our metric of load,
both for links and proxies.

Let 𝐶 denote the set of clients, and 𝑃 denote the set of proxies. For every
request that a client 𝑐 ∈ 𝐶 is sending to a proxy 𝑝 ∈ 𝑃 the experienced latency
is:

𝑡𝑙𝑎𝑡 ≈ 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐_𝑝 + 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 + 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑐_𝑝 (4.1)

where 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐_𝑝 represents the time required by client 𝑐 to connect to
proxy 𝑝 and send the request. It is proportional to the round-trip time
between 𝑐 and 𝑝, 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝:

𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐_𝑝 ≈ 𝐴 ∗ 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝 (4.2)

The 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝 latency depends on the network conditions of the
chosen path between client 𝑐 and proxy 𝑝. For the rest of this chapter we
will assume that A equals to 2, which corresponds to the client-proxy TCP
handshake and the HTTP request.

The 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 latency represents the total time that proxy 𝑝 needs to pro-
cess the request until he initiates the request to the remote server. This in-
cludes the time that the request is waiting before starting to be served, which
is a good indicator of the load of proxy 𝑝, as it correlates directly with the
number of outstanding proxy requests yet to be served. We assume that at a
given point in time different clients experience the same 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 if they use
proxy 𝑝, independently of who is measuring it - § 4.4 validates our assumption.

32

Finally, 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑐_𝑝 is the time that proxy 𝑝 takes to complete the
HTTP request. This time depends on the load and capacity of the proxy’s
Internet connection and on the latency to access and retrieve the content,
related to the distance from the content and content availability. From all the
above, we deduce that the request latency can be approximated by:

𝑡𝑙𝑎𝑡 ≈ 2 ∗ 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝 + 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 + 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑐_𝑝 (4.3)

We argue that 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡 and 𝑡𝑝𝑟𝑜𝑥𝑦 can be used together to provide clients
with a good preference indicator allowing him to avoid loaded proxies and
proxies located behind slow paths. In § 4.3 we describe how we use Vivaldi
to estimate 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡. In § 4.4 we elaborate on how TTFB can be used to
estimate 𝑡𝑝𝑟𝑜𝑥𝑦.

4.2.2 Experimental Environment

In order to assess our decisions, we experimented separately with each com-
ponent of our solution. Following the practical approach of our work, we
decided to perform our experiments in guifi.net, under real mesh network
conditions. For the experiments, we were given access to 5 end-nodes across
different guifi.net mesh networks and 3 proxies that are also being used by
the guifi.net users. The nodes and the proxies are distributed in various
locations in Catalonia, Spain. Despite the small scale of our experiments, we
are still able to assess the behaviour of the presented components.

As explained in § 4.3, proxies do not actively participate in the measure-
ments, they nevertheless need to respond to UDP pings allowing clients to
estimate their round-trip latency. Therefore it is worth mentioning that for
the results presented here we used a UDP echo server in the proxies, obstacle
which can be practically overcome with tools such as [47].

33

4.3 Network Performance

In this section we describe and demonstrate how an extended version of Viv-
aldi [45] can be used to estimate the current performance of the mesh network,
expressed as a latency metric, helping the clients to avoid overloaded paths.

Each client in our system participates in a Vivaldi network to estimate his
round-trip latencies to the other clients. Moreover, implementing the ideas
described in [41] modified for providing more accurate estimates, we allow
Vivaldi to monitor nodes external to the Vivaldi network. We show that
this allows the clients to maintain an updated estimation about their latency
towards each of the proxies, excluding though the proxies from the Vivaldi
network. Although Vivaldi was designed to predict latency between hosts in
the Internet (mostly wired), we show that it can also coverage and be used to
predict latencies in WMNs despite the RTT variations caused by the wireless
environment.

Vivaldi estimates RTT by performing ping between nodes. Each Vivaldi
node maintains a list of 𝐶 + 𝑅 neighbors: 𝐶 that are estimated to be closest,
and 𝑅 other random nodes, located anywhere in the network. The algorithm
works in rounds, which are triggered every 𝑇 seconds. In every round, a
node randomly selects a neighbor from the list, performs 𝑁 UDP pings to
him, and asks him to send back its own and its neighbors’ coordinates. The
variables 𝐶 and 𝑅 can be tuned depending on the size of the network and
the topology in order to increase random/remote node discovery or create
strong local clusters. The variable 𝑁 affects the accuracy of the prediction
in exchange for the ping traffic overhead.

In addition, as mentioned, we can also satisfactorily predict round-trip
latency from a Vivaldi node to each proxy, even if they do not actively
participate in the network coordinates system. To achieve this each Vivaldi
node maintains coordinates that represent 𝐶 + 𝑅 proxies, as described above.
In every round, a node performs 𝑁 UDP pings to a proxy 𝑝, selected in a
similar manner that he selects neighbours. Then, he updates the coordinates

34

he maintains for 𝑝 and shares the measured latency with his selected neighbor
for this round. Then, the neighbour updates the coordinates he maintains
for proxy 𝑝 as described in [41].

4.3.1 Measuring network performance

Similarly to [45], we define the error of a path as the absolute difference
between the predicted RTT for the path (using the coordinates for the two
nodes at the ends of the link) and the actual RTT. We define the error of
a node as the median of the path errors for paths involving that node. We
define the error of the system as the median of the node errors for all nodes.

We experimented, using the described environment, in order to characterize
the behaviour of the Vivaldi coordinates in a wireless mesh network. First, we
performed an experiment where clients are using Vivaldi to estimate the laten-
cies between them and the extended version of Vivaldi to estimate their RTT
to the proxies. This way we can understand the predictive potential of the
selected algorithms. It is worth mentioning that our experiment was executed
in nodes that participate in a real network and therefore were processing real
network traffic and using shared mesh links. Figures 4.1a and 4.1b show the
real and predicted latency between clients throughout the experiment. The
median latency between the clients was 22.29 ms, while the median predicted
was 20.82 ms. The median latency between clients and proxies was 9.8 ms
while the corresponding median predicted was 9.36 ms. Figure 4.1c depicts the
absolute prediction error of the Vivaldi estimation between clients as well as
the one between clients and proxies. We observe that the error of the latency
prediction between clients and proxies is lower. This fact can be attributed to
the smaller variation of the real latency between clients and proxies, but also
to our described improvements in [41] . The empirical cumulative distribution
function of the prediction absolute errors, as seen in fig. 4.1d, helps us observe
that the median absolute error of the predicted latency between clients is
3.37 ms while 80% of the experiment time the nodes present a median error of

35

(a) Comparison of median RTT and me-
dian Vivaldi estimated latency between
clients.

(b) Comparison of median RTT and me-
dian Vivaldi estimated latency between
clients.

(c) Absolute error in estimated RTT for
Vivaldi nodes and proxies.

(d) Empirical cumulative distribution func-
tion for the absolute error in the estim-
ated RTT for Vivaldi nodes and proxies.

Figure 4.1: RTT and Absolute Error

less than 5 ms. As far as client-proxy Vivaldi latency prediction is concerned,
the median absolute prediction error is 1.07 ms while 80% of the experiment
time the nodes present a median error of less than 2.5 ms.

In our second experiment we tested the ability of Vivaldi, extended version
as well, to adapt to network changes. Figure 4.2a shows that there is some
delay in Vivaldi adapting to latency changes between the clients, taking
around 30 rounds to adjust its estimates to be over 200 ms. However, as
seen in fig. 4.2b, proxy estimates are much faster to adapt, taking around 12
rounds to re-adjust the estimates.

36

(a) Timeline showing the changes in Pre-
dicted RTT reflecting the changes in real
RTT for clients.

(b) Timeline showing the changes in Pre-
dicted RTT reflecting the changes in real
RTT for proxies.

Figure 4.2: Delay Proxies and clients

We show that our system can estimate the round-trip times between clients,
as well as between clients and proxies with error less than 5 ms and 2.5 ms
respectively, under real mesh network conditions. These low prediction and
triangulation errors (median relative error in the range of 10%) are compar-
able to the original Vivaldi on the Internet. Moreover, we demonstrated that
our estimation can eventually trace serious anomalies in the latency of paths.
Therefore, we argue that these estimates are satisfactory in order to prioritize
paths from clients to proxies that present differences in latency higher than
5 ms and avoid highly loaded paths.

4.4 Measuring Proxy Performance

In this section we describe and show how TTFB can be used to estimate the
current performance of the proxy, expressed as a latency metric, helping the
clients to rank choices, avoiding overloaded proxies and proxies with Internet
connection that exhibits high delays.

TTFB has been widely used in real deployments but also in recent Internet
measurement research [10, 20] to indicate the responsiveness of a web service
since it combines the TCP connection time and the remote server processing

37

time. TTFB is a useful web performance estimator since it is measured
passively on the client-side, leveraging information from the already existing
client traffic. Nevertheless, our scenario is more complicated, since we aspire
to utilize TTFB measurements on the client-side to estimate the performance
of the proxy that mediates between the client and the requested content.

Assuming that 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 is the time the proxy needs to receive the first
byte of response from the remote server then 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 from eq. (4.3) can
also be expressed as:

𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑐_𝑝 ≈ 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 + 𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (4.4)

where 𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is the time until the client has received the
complete response. Both 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 and 𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 depend on
the available bandwidth of the Internet connection of the proxy, and the
delays in the path from the proxy to the destination server, as well as the
responsiveness of the remote end-server. Additionally, 𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
depends on the performance of the path between the client and the proxy.
Considering eq. (4.3), the TTFB as measured on the client-side can be
expressed as:

𝑡𝑡𝑡𝑓𝑏_𝑐_𝑝 ≈ 2 ∗ 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝 + 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 + 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 (4.5)

𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 differs depending on the proxy, the remote server and the re-
quested content. The analysis of the variability of different 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 laten-
cies, related to how well the proxies are connected to specific remote servers,
lies beyond the scope of this work. Therefore, in our current work we choose
not to study 𝑡𝑝𝑟𝑜𝑥𝑦_𝑡𝑡𝑓𝑏 and assume it is stationary for each proxy, represent-
ing the delays in the proxy’s Internet connection. Nevertheless, as part of our
future work we plan to investigate whether and how it is possible to create an
estimation model, where each client will be able to use his current and previ-
ous HTTP connections to various remote servers in order to identify how this

38

metric affects the measured TTFB. For the rest of this chapter we are assum-
ing that all the clients are trying to access the same content that is always
available, located in remote servers in similar distance from all the proxies
and all the proxies have the same Internet connection bandwidth capacity.

Therefore, based on eqs. (4.3) and (4.5), the latency incurred by the proxy
could be expressed as:

𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 ≈ 𝑡𝑡𝑡𝑓𝑏_𝑐_𝑝 − 2 ∗ 𝑡𝑚𝑒𝑠ℎ_𝑟𝑡𝑡_𝑐_𝑝 (4.6)

𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 can provide us with an estimation of the proxy performance,
calculated by eq. (4.6) with the measured TTFB on the client-side and the
network. However, the TTFB measurements can be very noisy (sometimes
packets are significantly delayed due the proxy or network load, or proxies
may complete a request quickly despite heavy load). To minimize the effect
of noise in our estimation, we filter the obtained 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 values with an
exponential moving average which can be tuned by a parameter 𝛼. If the
value of 𝛼 is too high, the effect of noise in the measurements leaks into the
filtered value, while if 𝛼 is too low, the filtered values adapt slower to the
measured real values, smoothing the peaks and valleys. Moreover, measuring
periodically the TTFB of HTTP requests, we have to handle delays that are
higher than the measurement period. To this end, we developed a penalty
scheme, assuming that the request will eventually be completed, our scheme
is based on the simple idea that the TTFB will be at least as high as the
time that the client waited for it. Thus, if a client has not received the first
byte for longer than the last 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 value then the estimated value keeps
increasing in every measurement period until it is received.

Clients periodically exchange the calculated 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝, thus reducing the
need for probing, as the value indicates how good a proxy is at serving
requests for any client. These messages are forwarded through the Vivaldi
network. Currently, we assume that the client is performing HTTP requests
sequentially. However, this is not a realistic assumption, since in a typical

39

scenario a browser is generating multiple parallel HTTP requests which can
target different servers. As part of our future work we plan to investigate how
to choose or combine measures from multiple HTTP transfers to estimate a
TTFB value for each proxy.

4.4.1 Measuring Proxy Load And Internet Connection Delays

In our first experiment we evaluate the relation between the 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 and
the proxy load. The proxy load is represented by various variables monitored
on the proxy, including the CPU and the number of incoming and outgoing
packets per second in the internal and the external interfaces. Figure 4.3
allows the comparison between the normalized median of the proxy variables
compared to the estimation and the extended estimation of 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝. The
proxy is loaded with external requests 150 seconds after the beginning of the
experiment and 𝑡𝑝𝑟𝑜𝑥𝑦_𝑝 starts presenting high peaks while the extended
estimator presents a more clear relation to the load behaviour. Figure 4.4
presents another perspective of the relation between the proxy load and the
extended estimator, including the plot of the Principal Component Analysis
which demonstrates that the higher the load values are the higher the values
of the extended estimator. As a result, we can argue that our extended
estimator is behaving similarly to the proxy load, and therefore we can claim
it can be used to detect heavily loaded servers.

The goal of our second experiment was to evaluate how our estimator
responds to proxies with Internet connections that have significant delays.
To achieve that, we introduce artificial network delay in the external network
interface of the proxy. As seen in fig. 4.5, both the simple and the extended
estimator successfully measure the introduced delay. Nevertheless, the ex-
tended estimator appears to need more time to return to the normal levels,
as expected. Therefore we verify that our estimators are responsive to the
proxies’ Internet connection delays.

40

Figure 4.3: Median comparison of the normalized proxy load metrics with a clients’ normal-
ized Extended TTFB (𝛼 0.05)

Figure 4.4: Principal Component Analysis of the median of the proxy load metrics compared
to the Extended TTFB (𝛼 0.05)

Figure 4.5: Median TTFB and Extended TTFB (𝛼 0.05)

4.4.2 Sharing TTFB

Despite the fact that our estimators behave similarly with the proxy load, we
need to verify that the estimator measured from client 𝑐 for proxy 𝑝 can be

41

useful for other clients as well. To investigate this issue, we performed an ex-
periment where one single proxy was used that was serving all the nodes. Fig-
ure 4.6 represents the Spearman’s rank correlation coefficient[52] between the
extended estimators of the different clients throughout the experiment. Spear-
man’s rank correlation coefficient targets to identify correlations that can be
expressed by a monotonic function, thus resulting in high values, as we observe
in our result, when both of the compared sets ascend or descend similarly.

Figure 4.6: Spearman’s rank correlation heatmap of the various clients Extended TTFB es-
timator (𝛼=0.05)

The described proxy performance estimator is not an accurate estimator
in terms of absolute values, but has a behaviour similar to the proxy load,
enabling the client to rank choices and avoid saturated proxies. Moreover,
the extended estimator calculated by one client behaves similarly throughout
the different clients and can, thus, be disseminated across them reducing the
overhead and allowing clients to have updated information concerning proxies
they are not currently using.

42

4.5 Overhead Analysis

The two performance estimation components of our system function in
parallel. Thus, the total overhead is:

overhead = overheadvivaldi + overheadttfb (4.7)

According to the challenges that Vivaldi [45] faces by design, a network
coordinates system should produce a minimal amount of overhead traffic when
probing. The overhead network traffic generated by Vivaldi is, in bytes per
second:

overheadvivaldi = (2 ∗ pingsize ∗ pingfreq + data) ∗ 𝑛 (4.8)

datavivaldi = (𝑛𝑝 ∗ 160 + 𝑛𝑛 ∗ 160 + 10)/roundperiod (4.9)
pingfreq = roundpings/roundperiod (4.10)

In the formulas above, 𝑛 is the number of nodes in the Vivaldi system and
𝑛𝑛 and 𝑝𝑛 are, correspondingly, the maximum number of known neighbours
and proxies. We can see that the overhead of Vivaldi increases linearly with
the amount of participants. Vivaldi works in rounds: every round each
node sends a few pings to each of its neighbors, and rounds occur every few
seconds. In our deployment we use 8 pings per round, with a round starting
every 10 seconds. Moreover, in our case it corresponds to one neighbour
plus one proxy, and the maximum number of neighbours and proxies is 8.
That equates to 436 bytes per second per client, which is acceptable even
in a wireless mesh network environment. For example, assuming all the
30,000 nodes of guifi.net were clients, the overhead would be approximately
1.5 MB/s distributed all over the network, which sums up to be 1.6% of the
average daily incoming Internet traffic [6](data from 2015).

The gathering of TTFB metrics is passive for the proxy currently selected
by the client, and then shared between the nodes of the system. Nevertheless,

43

we may ping a proxy if we haven’t had any metrics for a a certain time period
as described in § 4.6. The network overhead of the proxy TTFB protocol is,
in bytes per second:

overheadttfb = 𝑂(proxies) ∗ payload/timeout (4.11)
payload = payloadrequest + payloadresponse (4.12)

timeout = 𝑚1 ∗ proxydistance + 𝑚2 ∗ num_closer + 𝑏 (4.13)

Whenever a client overcomes the personalized timeout in the proxy informa-
tion, we query it. If we set the 𝑚 factor too low, the information won’t have
time to propagate and many nodes will query the proxy. However, if we set
the 𝑚 factor too high, it may take a long time until a node is finally queried.

Due to the randomly selected neighbors, let us make the assumption that
any node may be connected to any other node. Let us assume a single
node pings the proxy. Then, in the next round (assuming a synchronous
model), any of the other 𝑁 − 1 nodes may query this knowledgeable node
with probability 1/(𝑁 − 1), pulling the desired proxy information.

The number of nodes learning the desired information at a given round can
be modelled through a binomial distribution with 𝑝 = 𝑘/𝑁 , where 𝑘 is the
number of nodes that possess said information. The expected value is 𝑘 – we
expect 𝑘 nodes learning the information at each round. This means that we ex-
pect all nodes, on average, to learn the information after 𝑙𝑜𝑔2(𝑁) rounds. For
the 30, 000 nodes currently registered in guifi.net, that equates to 15 rounds.

It is worth noting Equation (4.11) assumes m and b parameters are cor-
rectly tuned so that the proxy is contacted by a very low number of nodes
with high probability.

4.6 Proxy Selection

After describing our approach for measuring the performance of the network
and the proxies, in this section we describe how clients are able to select prox-

44

ies informed by the presented metrics. Moreover, we present an experiment
where clients, adopting our solution, manage to avoid overloaded proxies,
very slow internal paths and very slow Internet connections, where as if a
minimum hop or minimum delay approach was to be adopted the clients
would not be able to avoid service deterioration.

On top of our performance estimation tools we built an application-level
proxy selection platform. Each client maintains a proxy selection table,
similarly to a routing table, where each line corresponds to a known proxy
and contains the estimated distance, as described in § 4.3, the extended
estimation of the proxy latency, as described in § 4.4 and the number of hops
to that proxy. Based on this information various proxy selection strategies
can be implemented. Nevertheless, the implementations need to take into
account the described sensitivity of the provided estimators.

We used the provided estimators to implement a proxy selection strategy
suitable to their rationale, aiming to avoid saturated proxies, proxies with
saturated Internet connection as well as proxies behind saturated paths. To
achieve that, the selection strategy orders the proxies according to the sum
of the network latency estimation and the proxy latency estimation, selecting
the lowest value. Our implementation avoids unnecessary oscillations by de-
fining a minimum threshold which should be overcome in order to change the
selected proxy. Additionally, we implemented a recovery mechanism for situ-
ations where a proxy is not being used by any client for a significant amount
of time, therefore his current performance estimation value is unknown. In
order to prevent all the clients from querying the proxy at the same time, the
clients maintain a personalized timeout that depends on a global recovery
time, the locally last known measurement of the proxy and their personal
mesh distance to that proxy. If the timeout is reached without receiving any
updates the client is actively probing the proxy to learn its know TTFB value.
This way, we manage to make clients that are close to the proxy in charge of
querying it and then propagate the information to the other nodes.

In order to evaluate our minimum load selection strategy we implemented

45

two simple proxy selection strategies based on the minimum hop metric and
the minimum network delay metric, that were used to compare to the min-
imum load solution. Under the minimum hop strategy each client selects the
closest proxy in terms of hops while in the minimum network delay strategy
the clients select the proxy that has the smallest Vivaldi latency estimator.

The objective of the evaluation experiment was to describe how the differ-
ent strategies of the clients deal with the disruptions of the provided service.
The clients use the proxies selected by the routing strategies to repeatedly
download files of 1 Mb from the same remote server choosing every 10 seconds,
our Vivaldi period, a new proxy if necessary. The value of 1Mb was chosen
because in normal conditions a client needs less than the period of 10 seconds
to download the file, therefore we can evaluate more accurately the selection
alterations. We adopt as evaluation metric the download time experienced
by the clients. The experiment lasted 1600 seconds and was repeated for
each strategy. Between 50 and 350 seconds we introduce a high amount of
requests in one of the proxies. Between 550 and 850 seconds we simulate in
one of the proxies an external Internet connection with high delays. Between
1050 and 1350 seconds we simulate a slow mesh path in one of the proxies.

Figure 4.7 depicts the median clients’ download time per strategy. We
observe that our strategy leads the clients to experience a very small amount
of download time peaks, especially compared to the static min_hops solution.
The y axis of the plot is limited to 2 seconds in order to allow easier compar-
ison, nevertheless the overall distribution of the values can be seen in fig. 4.8.
As depicted, min_hop and min_delay present higher average values com-
pared to min_load (0.76s,0.71s and 0.48s respectively). Most importantly,
related to avoiding overloaded options, min_hop and min_delay have many
more and significantly higher peaks - than min_load (maximum 6.33s,4.89s
and 1.23 respectively), especially min_hop that is a static strategy. min_load
manages to minimize the number of peaks, confirming our argument that
it succeeds to avoid the loaded options. The manner in which min_load is
avoiding the loaded options is also shown in fig. 4.9, where we observe that

46

clients avoid the loaded by requests proxy_3 between 150 and 350 seconds, as
well as proxy_2 in the ranges of 550-650 seconds and 1050-1350 seconds where
we simulate the mesh path delay and Internet connection delay respectively.
It is also worth pointing out that in the performed experiment min_delay
and min_hop do not appear to be affected by some overloaded conditions
introduced, but this is a result of the specific experiment conditions (network
latencies and distances) and not of their ability to avoid it.

Figure 4.7: Median client download time for 1Mb per strategy

Figure 4.8: Empirical Cumulative Distribution Function comparison between the median time
to download 1Mb per strategy

The results we presented in this section verify how the performance estim-
ators presented in the previous sections can be used by clients to rank and
make informed choices from a large set of proxy Internet gateways, avoiding

47

Figure 4.9: Number of clients per proxy for min_load strategy

proxies that would deteriorate their user experience.

4.7 Related Work

Proxy selection in wireless mesh networks is strongly related with the topic
of gateway selection in wireless mesh networks which has been extensively
studied in the past. The solution presented here for web proxy gateways and
HTTP requests is applicable to IP tunnel gateways and IP flows. The works
presented in [25, 32] fail to function in heterogeneous environments and to
avoid infrastructure modifications since they present solutions that operate
in the mesh routing layer which are inherently prohibitive for heterogeneous
environments, while they require modifications in the infrastructure routers.
[34, 40] require additional software in the side of the gateways. All the works
mentioned, despite the fact the presented solutions are interesting, they lack
practical implementation and/or testing in real environment. An exception to
the above, and closer to our work is [17], where the clients cooperate to probe
the gateways and then use the results to select a proxy. Furthermore, while
conceptually [17] can function in heterogeneous environments, in practice it
needs modification of the existing underlying routing protocols.

Concerning mesh network performance measurements, the majority of
the solutions for wireless mesh networks propose solutions based on active

48

monitoring of network metrics, such as path delay in [17, 42], estimated link
quality in [25, 34], link interference in [25, 34] and path packet loss rate [17].
All these approaches would entail a high monitoring overhead, except [17],
where monitoring is done cooperatively to reduce the overhead.

As far as Internet gateway performance measurement is concerned all the
above proposals use active measurements to evaluate its performance. More
specifically [42] uses a congestion delay function, [32] monitors the unused
Internet Connection (available capacity). [25, 34] force the gateways to
participate in the monitoring process by measuring the queue length of their
Internet interface, while [17] is performing active probes. Contrary to these
approaches, our solution is totally passive, implying though less accuracy.

Finally, while we used the Vivaldi[45] system for estimating network
performance there are various network coordinates approaches that allow
nodes to estimate the latency between them while reducing the measurement
overhead. From an abstract perspective, network coordinates are a virtual
positioning system where nodes gather information about the network to
position themselves and other nodes in a coordinate space and are used to
estimate the inter-node latency Vivaldi[45] is a fully distributed network
coordinates system that functions based on the idea of placing nodes in a
two-dimensional euclidean space. The measured ping latency between the
nodes is used to position them in the euclidean space. In addition to the
probing, Vivaldi also uses spring-relaxation to nudge nodes in the Euclidean
space to minimize prediction errors. While there have been proposals for
updates of the Vivaldi algorithm the original algorithm is performing fine
compared to the improvements[27]. Moreover, the state of the art of network
coordinates includes more sophisticated and more accurate systems, which
nevertheless are not fully distributed since they are based on the idea of the
external landmarks, like Pharos[35]. As a result, we argue that the Vivaldi
algorithm is a satisfactory option for our goal.

49

4.8 Conclusions

This chapter introduces reliable and inexpensive latency-based metrics cap-
able of predicting and triangulating performance indicators, and a client-side
proxy selection mechanism that combines these metrics to make good choices
in terms of QoE or performance, taking into account the contribution of the
local network, proxy gateways and their Internet connection. This mechan-
ism avoids proxies with heavy load and slow internal network paths. The
overhead is linear to the number of the clients and proxies.

50

5
Exploiting Traffic Patterns and Network

Locality

5.1 Introduction

The users-proxies selection regulation mechanism described in 4 succeeds to
dynamically assign users to proxies in a best effort manner, without though
considering information that is related with the user traffic and the network
infrastructure. In this chapter we present how this kind of information can be
leveraged that could lead to a more informed proxy selection from the users,
improving the final user experience as well as the overall service performance.
This study considers several data inputs; e.g., the patterns of usage from
service logs, the design choices and implications (considering client and proxy
choices) according to patterns of usage, and the relative location of users and
proxies in the network topology. The results show the key metrics, the design
space for cooperative choices, the involved trade-offs, and the effects on the
service cost and performance.

Section 5.2 looks at the behavior and clustering of users according to con-

51

tent and network locality, and it also analyzes the impact on the criteria for
proxy selection. We present an analysis of the current scenario, limitations
and potential for improvement from the perspective of the access network
in Section 5.3, proxies in Section 5.4 and users in Section 5.5. Section 5.6
presents the conclusions and the future work.

5.2 Clustering of Users

We started the study exploring data concerning the service usage, in order
to group users according to their behavior. Then, we identified the graph
communities that exist in the network to analyze the factor of network locality.
Thus, we tried to understand the trade-offs of grouping users according to
similarities in their behavior and/or according to their location in the network.

5.2.1 Clustering according to usage

For the analysis of service usage according to patterns of data traffic, and
based on [43], we considered four different types of clustering algorithms: K-
means, suitable for generic applications, DBSCAN and Ward’s hierarchical
clustering (HC) that can trace complex patterns. The input used by the
algorithms was the total data transferred per user in bytes, as well as the
corresponding amount of traffic for contents that constitute a large amount
of the total service traffic, like video (20%), image (6%) and HTML (2%). We
experimented with various cluster sizes for K-means and Ward’s HC, including
well-known empirical estimation methods like the ’elbow method’, as well as
many parameters for DBSCAN. Table 5.1 presents the optimal results for
each method in terms of cluster validation. For the validation we used the
coefficient Shilouette score that has values in [-1,1]. As described in Table 5.1,
for all the cases there is a big cluster of 450-480 users with a Shilouette score
of 0.9, indicating a very strong cluster density. Nonetheless, the rest of the
users belong to overlapping clusters, with scores close to 0. After manually
reviewing other results of the algorithms for getting a better insight, since it

52

Table 5.1: Results from clustering algorithms on usage

Method Clusters # Clusters Size Clusters Shilouettes
DBSCAN 2 7, 499 0.03, 0.90

2 33, 473 -0.04, 0.89Ward’s 3 4, 29, 473 0.30, 0.01, 0.87
2 21, 485 0.09, 0.89K-Means 3 10, 44, 452 0.07, -0.04, 0.88

is the standard process in these cases, we chose Ward’s HC method with 3
clusters, that partitions the users in one large consistent cluster and two small
overlapping clusters, minimizing thus overlapping elements.

Table 5.2: Users Behavior Clusters Description (Ward’s)

ID Size Shilouette Characteristics Alias
1 473 0.87 Low total traffic Light
2 29 0.01 Medium total and

video/images traffic
Medium

3 4 0.30 High total and video/im-
ages traffic

Heavy

Table 5.2 presents the characteristics of the clusters, as formed using Ward’s
HC for 3 clusters. We find two consistent clusters of users with distinct prop-
erties. The fig. 5.1 depicts the comparison of the clusters in terms of traffic
and size (number of users). Cluster 1 of light users, includes the majority of
users and their profile consists of generating very low traffic, as low as 1%
of the maximum noticed per user value, mostly HTML browsing. Cluster
3, heavy users, consists of only 4 users and it is characterized by high total
traffic, where most of it is spent on downloading video and images. Cluster 2,
medium users, presents an intermediate behavior; nevertheless, following the
patterns of the heavy users. Medium users create a significant portion of the
total traffic, around 20% of the maximum value, which they consume mostly
on videos and images. This cluster has low consistency, with users presenting

53

a behavior similar to cluster 3, but with traffic level close to cluster 1.

Cluster 1 Cluster 2 Cluster 3
0.0

0.2

0.4

0.6

0.8

1.0
Cluster Traffic Percentage
Cluster Users Percentage

Figure 5.1: Traffic and Users Percentage per Cluster

5.2.2 Clustering according to Network Locality

For the analysis of user groups according to network locality, we use graph
community detection techniques. Based on [36], we choose three of the most
prominent detection algorithms: Spinglass, Multilevel and Infomap. The
data input for the algorithms is the backbone graph, consisting of 48 nodes.
Moreover, since the studied guifi.net zone has a small well-connected back-
bone, with many clients connected to the routers of the backbone, we used
the number of clients using those routers to establish the graph weight for
the InfoMap algorithm. The weight for each link is defined as the average
time to transfer a single byte according to our topology dataset. The results
of the different algorithms can be seen in Table 5.3. We compare the al-
gorithms using the modularity score, which lies in the range [-1/2, 1), where
the higher the value, the more consistent the community. Experimenting
with the algorithms we noticed that the node size argument of the Infomap
does not affect significantly the output, thus Infomap does not offer any addi-
tional information. Therefore, we choose the Multi-level Algorithm that has
the highest modularity score and smaller number of clusters, considering the

54

small backbone.

Table 5.3: Comparison of Community Detection Algorithms

Infomap Multilevel Spinglass
Modularity 0.699 0.712 0.702
Clusters 12 9 15

Figure 5.2 shows the resulting graph for the Multi-level algorithm. The
squares represent the routers that operate also as proxies. As depicted, the
proxies are not well positioned relatively to the network clusters, considering
that most of the clusters have no proxies, while one of the clusters has two
proxies. Additionally, we observe that there are clusters poorly connected to
their neighbouring clusters, resulting in an infrastructure far from ideal. For
the rest of this work we assume that all the clients of a router belong to the
cluster of that router.

Figure 5.2: Multi-level Community Detection for the backbone network (colors)

55

5.2.3 Influence of the criteria for proxy selection

According to our clustering analysis, we present simulations that exploit the
two clustering techniques in algorithms for proxy selection, in order to provide
alternatives to the current manual proxy selection. The objective is to demon-
strate the impact of network locality and user traffic behavior on the perform-
ance of the proxy service and user experience. Thus, we show how they can
be used to inform the design of an improved service.

Next, we present an initial evaluation of the mentioned techniques under
the perspectives of the network, the proxies and the users. It is important
to clarify that our algorithms implement one of several ways to use the in-
formation from user behavior clustering and community detection. The first
algorithm we implemented, referred as data_cluster, uses the clustering
of user behavior to assign equivalent user load to each proxy by equally
distributing the users of each cluster. In the cases where a new user has
to be assigned to a proxy and all existing assignments from the clusters
are equally balanced, the algorithm selects a proxy randomly. The second
algorithm, referred as network_cluster, uses graph community detection to
assign users to proxies according to the proximity of their community. For
instance, a user with an available proxy in his community will be assigned to
this proxy, while in the opposite case, it will be assigned to the proxy that
is located in the closest community. In case of equal proximity, the proxy
selection is random. Finally, we implemented an algorithm that combines
both solutions in one of the possible ways. The algorithm data+network is
mainly based on the data_cluster algorithm, but in case it encounters equal
assignments, it uses the network_cluster algorithm to decide. All these
algorithms are compared with the manual manual service selection.

5.3 Network perspective

The impact on the network is studied according to the total bytes transferred
through each link during the simulation. We do not take into account possible

56

106 107 108 109 1010 1011

 Total Bytes Per Link

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
C

D
F

manual
data_cluster
network_cluster
data+network

Figure 5.3: Comparison of Total Links Bytes Per Strategy ECDF

retransmissions, and we assume that the links cannot be saturated and have
always the same performance, even across different links.

As shown in Figure 5.3, the network_cluster algorithm outperforms signi-
ficantly the other algorithms in distributing the load in the links. It maintains
the total traffic of 50% of the links, one order of magnitude lower than the
other algorithms without compensating that by overloading a few links, as
we would expect for the links that connect the clusters. The other algorithms
present a similar, but shifted, distribution. Moreover, considering that each
algorithm is using different number of links to send the traffic, it is worth men-
tioning that network_cluster transfers the lowest total amount of bytes, 1
Terabyte, while data_cluster is the most expensive transferring 1.7 Tera-
bytes. We also find that data+network lies between network_cluster and
data_cluster, with 1.4 Terabytes, while manual transfers 1.3 Terabytes.

Overall, we observe that network locality plays a significant role in dis-
tributing the load on the network. Even in the case of existing communities
without proxies, like the studied case, a locality-aware service can reduce its
network impact.

57

5.4 Proxy perspective

From the perspective of the proxies, it is important for both the service per-
formance and the user’s experience to distribute the load according to the
capacity and performance of each proxy.

Proxy1 Proxy2 Proxy3 Proxy4
1010

1011

1012

T
ot

al
 B

yt
es

manual

cluster

1
2
3

Proxy1 Proxy2 Proxy3 Proxy4
1010

1011

1012

T
ot

al
 B

yt
es

data_cluster

cluster

1
2
3

Proxy1 Proxy2 Proxy3 Proxy4
1010

1011

1012

T
ot

al
 B

yt
es

network_cluster

cluster

1
2
3

Proxy1 Proxy2 Proxy3 Proxy4
1010

1011

1012

T
ot

al
 B

yt
es

data+network

cluster

1
2
3

Figure 5.4: Comparison of Strategies: Traffic per Proxy and Clustering

In our simulations we start by assuming that all proxies have infinite capa-
city and the same processing performance (i.e., unlimited throughput). We
evaluate the different algorithms by the total amount of bytes sent to each
proxy per strategy, with information of the corresponding clusters, as seen
in fig. 5.4. We initially observed that the heavy users occupy an important
percentage of the traffic, even though they are nearly the 1% of the total
users. Nonetheless, light users generate the majority of traffic despite the
fact that each of them use the service comparatively much less. Therefore,

58

data+network data_cluster manual network_cluster
0

1

2

3

4

5

6

R
el

at
iv

e
P

ro
xi

es
 T

ra
ffi

c
V

ar
ia

nc
e

Figure 5.5: Proxies per second Relative Traffic Variance

as a result of manual selection the proxy load is very unbalanced, but the
data_cluster and data+network algorithms succeed in balancing the traffic.
The network_cluster approach can result to an imbalance in the load among
proxies, due to sub-networks with an uneven number of clients and the proxies
inconveniently placed with respect to the clients. It is worth noting that, from
the proxy perspective, the data+network algorithm achieves its goal very suc-
cessfully since it is mainly based on the data_cluster algorithm; however,
it also achieves a better performance than data_cluster from the network
perspective. Moreover, as shown in fig. 5.5, the sum of distances of traffic
values for each proxy to the mean at each instant is clearly smaller for the
data_cluster or data+network. This small variability implies that these al-
gorithms work well over both short and long term periods. We can therefore
deduce that an algorithm that combines both, user clustering and network
graph community detection, can be used for tuning the trade-off of impact of
uneven proxy load and excessive network impact, due to long network paths.
This lesson is applicable to server selection in a decentralized service.

If we take into consideration the limited capacity and throughput in proxies,
then balancing the traffic across them according to the capacity of each proxy
becomes a key issue. For example, in the case of a large number of users

59

the clustering information could be used to perform admission control and
therefore congestion control in the proxy.

In the current scenario proxies have a rough admission control based ex-
haustion of limits, and they do not on congestion control according to load
or performance. Proxies take new requests based on a maximum number of
concurrent clients, even when the proxy service is already under-performing
for ongoing responses. This results in poor performance during peaks of large
requests that cause congestion or a service timeout. In our decentralized
scheme, clients have a list of several proxy choices. Clients make an initial
choice, proxies can reject connections, and clients can just make a new local
choice, transparently retry and continue from there, with no major visible ef-
fect to the user. The combination of clients using a list of proxy choices, proxy
admission control, and network routing choices results in a simple, decentral-
ized and cooperative regulation scheme that requires little coordination.

Admission control is important in large user populations, e.g., wide-area
networks with many proxies, since proxies have a limited Internet access ca-
pacity. Any hotspot or imbalance in a massive system can easily lead to
congestion, either in the access network, any proxy or the Internet access,
resulting in a dramatic reduction of service throughput for many users of that
proxy.

In addition to the local choices at each client and proxy, there is potential
for a global optimization in balancing global choices, across all proxies, by
combining the user traffic behaviour, user proxy choices, and proxy capacities.
Thus, we can help avoid globally imbalanced scenarios, where a proxy is
saturated or providing low throughput, while at the same time another proxy
is underutilized.

5.5 Users perspective

The evaluation of impact on service performance from the user perspective
is the most complex, as users have different metrics to assess their service

60

according to their diverse usage habits. While exploring these metrics is
future work, here we present a first simple cost model to estimate how users
perceive the impact of the presented algorithms. We assume that users try to
minimize the transfer time in the local network, combined with the processing
time in the proxy server.

As far as the network is concerned, we define as 𝑐l the cost of the link 𝑙,
in terms of time, to transfer one byte, assuming that the links have infinite
capacity, although we plan to study more sophisticated models in the future.

For each user we calculate the total cost of the network transfer as
∑n

𝑙=0 𝑐l ∗ 𝑏u, 𝑙𝜖𝐿u, where 𝐿u is the set of links and 𝑏u the total number of
bytes attributed to user 𝑢.

The users’ perception of the proxy performance is modeled similarly to the
network performance. We define 𝑐p as the cost of proxy 𝑝 to process one byte,
from the time it receives the request from the user, until it sends the last
byte. We calculate the cost 𝑐𝑝 of each proxy 𝑝 separately for every strategy
as 𝑡/ ∑ 𝑏u, 𝑢𝜖𝑈p, where 𝑡 is the total measurement time, 𝑏u the total number
of bytes sent by user 𝑢 and 𝑈p the set of users of proxy 𝑝. Based on that,
the proxy perceived cost for each user is: 𝑐p ∗ 𝑏u.

min_hop network_cluster manual data+network data_cluster random

105

106

107

108

109

T
ot

al
 T

im
e

pe
r

U
se

r
(s

)

Figure 5.6: Cost per user ECDF

61

Considering that the costs are linear and independent, we can assume that
the overall cost perceived by a user 𝑢 is: 𝐶u = ∑n

𝑙=0 𝑐l ∗ 𝑏u + 𝑐p ∗ 𝑡u, 𝑙𝜖𝐿u.
Hence, the objective of user 𝑢 would be to minimize 𝐶u. Figure 5.6 presents
the distribution of the users’ costs for each of the presented strategies.

While the distributions have very similar behavior, we can observe that for
80% of the users, the network community detection strategy performs slightly
better than the current situation, and the rest of the strategies follow. The
community strategy achieves equivalent results to a 𝑚𝑖𝑛 − ℎ𝑜𝑝 strategy, only
differing when proxies are not in the center of its zone. The 𝑟𝑎𝑛𝑑𝑜𝑚 strategy
achieves equivalent results to cluster, as the latter only cares about contents
and none about infrastructural aspects.

The network efficiency of community-based proxy selection, and therefore
the impact of network locality, appears as an important factor. Studying the
individual costs we observe that the network transfer time cost is in average
significantly higher than the proxy processing cost, a fact that explains why
the community solution performs better overall, even though it is an inefficient
option for load distribution in the proxies. The (clustering according to) user
behavior appears to have an influence on the user perceived performance
(cost), since it presents a differentiated behavior from the current situation
(manual proxy selection). However, the simplicity of the model does not allow
us to draw more conclusions.

In contrast, the current situation is that clients (Web browsers) have a list
of proxy servers manually defined or adjusted. The initial configuration is
based on hints from other nearby users, or by downloading the list from a
local guifi.net forum. The adjustments come from similar sources, personal
usage experience, hints from other users or news about new proxies being
offered. Web browsers switch to another proxy server just when a proxy
fails to respond and do not provide load balancing, or more effective choices
considering to degradation, congestion signals or relative performance. These
models enables us to design a service selection algorithm that takes into
account the characteristics of the users and the local network, confronting

62

thus the inefficiencies caused in the service and the user experience by the
manual static proxy selection.

5.6 Conclusions

The analysis of service logs shows patterns of usage and network topology
grouping users and proxies, that influence of the criteria for proxy selection.
The currently manual and not well-informed choice of proxies by clients work
rather well for its users, but it result in inefficiencies that affect the service cost
and shows episodes of degraded performance. Considering that situation, this
chapter explores alternatives for cost reduction and service improvement when
going from a simple but rigid mapping between users and proxies, towards
coordinated informed choices based on several metrics. Design trade-offs lie in
considering infrastructural aspects (e.g., reduce network cost, avoid network
and proxy congestion) and service aspects (e.g., good response time or QoE).

The combination of server alternatives in clients, finer grain proxy admis-
sion control, and the underlying network routing decisions result in a decent-
ralized cooperative regulation scheme that can provide a crowdsourced proxy
service, with good performance and requiring little coordination. Moreover,
that scheme allows the network scaling up to larger sizes.

63

64

6
Sharing Only The Exceeding Bandwidth

6.1 Introduction

Chapters 4 and 5 describe our approach on how the users-proxies selection
regulation mechanism can be improved, without introducing significant over-
head. In this chapter we focus on the second component of the Internet
sharing problem, as described in § 1.4. More specifically we look at the cost
reductions resulting from 𝑁 citizens or organizations sharing their unused In-
ternet access capacity benevolently with 𝑀 neighbors and members of their
community, through a local or regional community network. In order to
provide such a service without negatively affecting the quality of access of the
primary users, we propose utilizing gateways to separate the primary traffic
(i.e., that of the Internet access donors) from the one of the beneficiaries (i.e.,
the secondary traffic).

Each of the M beneficiary nodes selects one or a few of the N Internet
gateways, where they send their traffic. The gateways receive the IP traffic or
HTTP requests from these secondary nodes and try to provide them with a
solution. Although this traffic uses the spare capacity of the Internet access,

65

it may compete with the primary source traffic, hinder its performance, and
also increase its cost. Therefore, only making this sharing process innocuous
for the donors, will allow this mechanism be sustainable over time. However,
keeping under control this aspect of the traffic represents a major challenge
for the managers of community networks.

In order to help address this challenge, we analyze several of the mechan-
isms for sharing the spare Internet capacity among third parties in guifi.net,
the ways to provide it, and the performance implications of connectivity shar-
ing at no additional economic cost. Based on the obtained results, we present
a set of lessons learned that can help make suitable and sustainable this shar-
ing process.

The already introduced premise of no additional cost implies that in 95-
percentile pricing schemes [46], secondary users cannot top-up the primary
traffic or it will incur in an additional cost. Of course, other cost models
come with different limits, or none at all for most fixed domestic broadband
Internet with unlimited traffic and flat cost. Some previous works [49] [37]
have shown that water-filling (taking advantage of already-paid-for off-peak
bandwidth resulting from diurnal traffic patterns and percentile pricing), al-
lows delay tolerant asynchronous bulk data to be transferred effectively at no
transmission cost to the ISP. In a scenario with multiple Internet gateways
available to users, while one could stop serving secondaries to avoid extra
traffic charges, clients could switch to another available proxy, as seen in
Chapter 4.

Section 6.2 describes the experimental framework, and it shows the eval-
uation results in Section 6.3. Section 6.4 presents the lessons learned and
conclusions.

6.2 Experimental framework

The system model and the scenario for experimental evaluation represent
a gateway middlebox that separates the primary traffic from the secondary

66

coming from a number of nodes in the local access network, the wired or
wireless community network. All primary and secondary traffic go to the
Internet. In our experiments we assume the traffic is Web-like, where primary
and secondary traffic comes from clients that make Web requests that result
in downloading Web objects. We also assume that all clients interact with
a single server that provides content to both primary and secondary clients.
Figure 6.1 shows the nodes participating in the testbed: (1) primary and
secondary clients, (2) the gateway that routes traffic from both types of clients,
and that interact with a server on the Internet (3). The gateway node manages
both primary and secondary traffic, and it applies different techniques for each
class, considering the limited capacity of the available Internet access, while
trying to assess and minimize the impact of secondary traffic on the primary
one.

Secondary (1)

Primary (1)

Gateway (2)

Internet

Server (3)

Figure 6.1: Physical architecture of the testbed

Model for Internet access with primary and secondary users Inter-
net access is modelled at the gateway using the traffic control and queueing dis-
ciplines tools available in Linux. The Client-Gateway connection is 100 Mbps.
The Gateway-Server link uses values obtained from the Measurement-Lab
testbed of Telefonica [33], the largest ISP in Spain: 1.72 download through-
put (Mbps), analysed in [9]. The bottleneck is at the gateway. In order to
validate our experimental setup we used the Network Diagnostic Test, which
is the same tool used to characterise real ISPs. In addition to the modeled

67

values, we have validated that the modeled access behaves as we expect.
Traffic modeling In the scenario of community networks, and specifically

in the guifi.net [14], gateways act as Web proxies and therefore the traffic will
be HTTP. We have used the wrk2 tool to generate customer traffic. This
allows performing realistic HTTP benchmarking removing the effects of ”co-
ordinated omission” [21] from the measurements.

Metrics The goal of this study is to compare the different mechanisms
to share excess bandwidth: i) with the primary only (Prim_only), and
ii) with the primary and secondary traffic without any specific mechanism
(Best_effort). These two experiments are the best case for Prim_only, and
the case that we want to improve in the Best_effort. To evaluate the be-
haviour of the tests mechanisms we utilize two metrics: 1. co-inflicted delay
on the service time of HTTP requests for each mechanism (it is normalized
to the mean delay throughout the best-effort primary and secondary traffic),
and 2. the network throughput.

6.2.1 Traffic sharing between primary and secondary

The mechanisms of ”traffic engineering” have to: a) act only at the gateway
not requiring end-to-end changes, b) be transparent to clients and servers,
and c) be innocuous (i.e., to have no impact or cost) when the gateway is not
congested.

We have experimented with three types of mechanisms based on: i) traffic
shaping, ii) Active Queue Management (AQM) and iii) tunnelling. In the
first one the gateway monitors traffic and discards non-compliant packets. In
AQM the gateway does not use a FIFO strategy for packets, and it tries to
prioritize packages by type or flow. In the last case we replace the congestion
control of the end-to-end transport protocol to that of the tunnel.

Figure 6.2 shows the location of these three types of mechanisms in the net-
work stack, indicating the types of test applied to the primary traffic (column
a) and the secondary one (column b). In dark it marks the layer in which the

68

https://github.com/giltene/wrk2

mechanism acts. Next, we explain the mechanisms considered in this study.

Application

Transport layer (TCP and UDP)

Internet layer (IP)

Link layer

a)

Application

Transport layer (TCP and UDP)

Tunnel

Internet layer (IP)

Link layer

b)

Figure 6.2: Types of tests applied to primary (left column) and secondary (right) traffic

Based on traffic shaping In this case we used a Borrowing strategy,
in which the primary and the secondary traffic have a guaranteed minimum
throughput. Moreover, the borrowed unused throughput can be utilized with
priority to the primary traffic.

Based on active queue management Here we used Stochastic Fairness
Queueing (SFQ) and CODEL mechanisms. The first one is used by several
ISP [15], since it tries to order the packets more fairly (a packet from each flow).
The second mechanism has been successfully used to significantly mitigate the
bufferbloat phenomenon [23].

Based on tunneling In this case we used three strategies: TCP_Cubic,
TCP_Vegas and TCP_LP. In the first case we use the tunnel TCP congestion
control algorithm to manage the secondary traffic. In the second case, the sec-
ondary traffic was managed through a TCP Vegas tunnel, and the congestion
avoidance algorithm emphasized packet delay (Round-trip time) rather than
packet loss. In the last case (TCP_LP), the secondary traffic was managed
through a TCP type low-priority tunnel, with the idea of controlling conges-
tion [30]. It would give less priority to secondary traffic than the best effort,
and its main goal is to utilize only the excess network bandwidth.

69

6.3 Results

The experiments considered in this study are intended to evaluate the im-
pact of secondary traffic in the primary traffic, considering the Prim_only
and Best_effort cases as reference. Moreover, the experimentation intended
to determine the impact of the different techniques when the gateway is not
overloaded, the impact of the different techniques under overload, the sensitiv-
ity to the characteristics of the traffic, the overhead cost of tunneling, and the
overhead of using WiFi links, typical of access networks such as community
networks. In order to make service time results comparable across differ-
ent experiments, where possible, the results were normalized to the overall
best_effort service time mean of each experiment.

6.3.1 Gateway not overloaded

The client traffic model to represent the case of a not overloaded gateway
consists on a single primary user with two concurrent connections each, and
four to five secondary users with ten concurrent connections each. All HTTP
requests involve to objects weighting 0.1MB. There is a random time between
HTTP requests that ranges from 10 to 50 ms. The Internet connection model
corresponds to 1.72 Mbps of download throughput. The resulting total traffic
(primary + secondary) does not exceed on average the maximum throughput
of the connection. Although both traffic compete, there is sufficient through-
put for both of them.

From the results shown in Figures 6.3 and 6.4 we can conclude that the
difference of service time for the primary traffic (between Prim_only and
Best_effort) is relevant. Moreover, the service time achieved by the secondary
traffic has a large impact on the service time of the primary one. On the other
hand, the Best_effort strategy is already usable, it will not require major
improvements. Looking at the service time of the primary traffic, TCP_LP
offers values very close to Prim_only. However, if we consider the service time
of the secondary traffic, the TCP_LP mechanism offers comparable values to

70

prim_only best_effort tcplp
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Figure 6.3: Normalized service time of primary traffic with underutilized Internet Connection

best_effort tcplp
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Figure 6.4: Normalized service time of secondary traffic with underutilized Internet Connec-
tion

Best_effort. Therefore, it significantly improves the primary traffic without
penalizing the secondary one.

Applying the TCP_LP mechanism has no significant effect on the primary
traffic when the gateway is not overloaded. Therefore, from now on we will
focus only on cases in which the gateway is nearly or fully overloaded.

6.3.2 Gateway is overloaded

In order to simulate and reproduce an overloaded Internet connection, we use
the following HTTP traffic generation model: the primary traffic (represents

71

one user) is generated with a rate of 5 requests per second, while the secondary
one (represents 5 users) is generated with a rate of 25 requests per second. All
the HTTP requested objects have a fixed size of 12.5 KB, except if explicitly
stated otherwise. Moreover, the primary traffic is generated with a random
user think time in the range of 10-50ms between every request. Additionally,
we limit the throughput of the Internet connection to 1.72 Mbps for down-
loading and 0.54 Mbps for uploading to provide a more realistic experimental
environment. Throughout all the experiments the total traffic is generated
with a rate greater than 1.72 Mbps to achieve the saturation of the Internet
connection. As a result, the primary and the secondary traffic have to compete
to access the Internet connection. The results are shown in Figures 6.5 to 6.8.

prim_onlybest_effort codel sfq tcplp tcpvegasborrowing
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Figure 6.5: Comparison of the effect of strategies on Service Time of the primary traffic un-
der saturated Internet Connection

CODEL and SFQ are applied to all traffic without differentiating primary
and secondary. From the results shown in Figures 6.5 and 6.6 we can conclude
that the difference of service time between Prim_only and Best_effort (for
the primary traffic) is very important, which means that the secondary traffic
has a very large impact on the first one, even with no comparatively relevant
improvement on the secondary’s traffic, meaning poorer utilization overall.
Moreover, the service time of the primary traffic (TCP_LP, TCP_Vegas and
Borrowing) offers good values, very close to Prim_only. In case of the second-
ary traffic these values are somewhat higher than Best_effort. They penalize

72

best_effort codel sfq tcplp tcpvegas borrowing
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Figure 6.6: Comparison of the effect of the strategies on Service Time of the secondary
traffic under saturated Internet Connection

the secondary traffic by a small factor around 20%. In case of CODEL, it
even brings a slight improvement to the service time compared to Best_effort
for both primary and secondary traffic. SFQ does not seem to bring any
significant improvement to any of them.

primary secondary
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
A

ch
ie

ve
d

T
hr

ou
gh

pu
t best_effort

codel
sfq
tcplp
tcpvegas
borrowing

Figure 6.7: Throughput comparison under saturated Internet Connection

The effect on TCP is illustrated by Figure 6.8. Based on these results
we can conclude that the number of retransmissions is very low compared to
the number of HTTP requests performed in each experiment. Here CODEL
makes a difference over the rest. The greater number of retransmissions for

73

primary secondary
0

500

1000

1500

2000

2500

R
et

ra
ns

m
is

si
on

s

best_effort
codel
sfq
tcplp
tcpvegas
borrowing

Figure 6.8: Retransmission comparison under saturated Internet Connection

the secondary traffic reduces the throughput, compared to the Best_effort.

The secondary traffic has a very large impact on the service time and
throughput of the primary traffic, especially when competing by the ac-
cess in an overloaded gateway. TCP_LP, TCP_Vegas and Borrowing are
good candidates, since their values for the primary traffic are very close to
Prim_only. They penalize the secondary traffic, with latency and throughput
values slightly worse than Best_effort. CODEL and SFQ do not show any
significant difference compared to the Best_effort approach; however, they
could be applied at the same time with the previous ones; e.g., TCP_LP +
CODEL.

6.3.3 Sensitivity analysis

Here we analyze, both the sensitivity to object size, and to the distribution
of concurrent requests of the different techniques. Additionally, we show the
behavior of the techniques in experiments on a setup with extreme values for
several parameters.

74

prim_only best_effort codel sfq tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.1Mb objects
0.15Mb objects
0.2Mb objects

Figure 6.9: Primary traffic Service time sensitivity on Object Size of the strategies

Object Size

In this case the results are normalized based on the mean throughout the
primary and secondary service time results for 0.1 Mb. Considering the res-
ults shown in Figure 6.9 we can conclude that there is a clear relationship
between service time and object size. Increasing the object size results into
an increasing service time, which is expected since we increase as well the data
request rate. Moreover, as far as the primary traffic is concerned, CODEL
and SFQ present a behaviour close to the Best_Effort, but slightly varying
based on the object size; TCP_LP and TCP_Vegas are the solutions with a
behaviour closest to Prim_only.

On the other hand, while the Borrowing strategy seems to have a perform-
ance similar to the Prim_only, it appears to be more sensitive to the the size
of requested objects. When the object size is increased (by increasing the
stress on the server), the service time for the primary deviates significantly
from Prim_only. There is a very similar pattern of increasing service time
while increasing object size for all secondaries.

75

Proportion of requests primary-secondary

We vary the proportion of requests between primary and secondary traffic,
while keeping the total throughput and the total number of requests. Results
are normalized based on the mean throughout the primary and secondary
service time results for the pair of 5/25 reqs/s. As expected, there is no
visible difference between CODEL and SFQ when they are applied without
differentiating primary and secondary traffic, and the aggregation of primary
and secondary connections is kept at 30 concurrent connections. Therefore,
Figure 6.10 only presents strategies affected by the changes, omitting CODEL
and SFQ.

prim_only best_effort tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Req/s: 5/25
Req/s: 10/20
Req/s: 15/15

Figure 6.10: Primary traffic service time sensitivity on requests rate

Considering the service time of the primary traffic, TCP_LP and TCP_Vegas
still behave very similar to Prim_only. However, Borrowing presents again a
differentiated behaviour. It is very sensitive to the proportion of connections
between the primary and secondary nodes. In any case where the primary
or secondary traffic exceeds its configured upper bound data rate, the service
time will increase accordingly. Regarding the secondary traffic, all service
times are more or less close to the Best_effort service time.

76

“Edge Cases” for object size

The objective of this experiment is to show extreme cases while keeping the
overall throughput with a very small object size, which fits in a single TCP
segment, compared to a large object size. In this case, the results are nor-
malized based on the mean throughout the primary and secondary service
time for the pair of 0.01Mb objects - 150 reqs/s. Analyzing the results in
Figures 6.11 and 6.12 we can conclude that they seem to make sense with
previous ones. SFQ and CODEL work well, but they only provide small im-
provements mostly when there are many requests. In the primary, TCP_LP
and TCP_Vegas behave almost like the Prim_only, with an advantage for
TCP_LP with small objects. Moreover, the Borrowing strategy seems to
make the situation worse when there are a lot of requests, while it improves
(for both to primary and secondary traffic) with larger objects.

prim_onlybest_effort codel sfq tcplp tcpvegasborrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.01Mb objects­150Req/s
1Mb objects­1Req/s

Figure 6.11: Primary traffic Service time comparison on edge scenarios

Our main lessons here are as follows. TCP_Vegas and Borrowing are
very sensitive to Object size. In a real scenario we do not know the size of
objects. They are not the best candidates for selection. Borrowing is very
sensitive to the distribution of the number of connections. In a real scenario
we do not know the number of concurrent connections of the primary or the
secondary. It is not the best candidate for selection. Even in extreme cases,

77

best_effort codel sfq tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.01Mb objects­150Req/s
1Mb objects­1Req/s

Figure 6.12: Secondary traffic Service time comparison on edge scenarios

in the primary traffic, TCP_LP behaves very close to Single. So far it ranks
as the best candidate.

Other factors

We have compared the differences in behaviour among different types of TCP
tunnels. Comparing the experiment results we observed that the IP in IP
tunnel has the same behavior as Best_effort in the primary traffic, with or
without delay, with relative differences less than 0.04%. Therefore, we can
conclude that tunnel based techniques do not add any penalty. Additionally,
we compared the behaviour of TCP_LP and TCP_Vegas used in the sec-
ondary tunnels against TCP_Cubic that was used for the the primary traffic
and as transport under the tunnels. We observed that the aggressiveness of
TCP_Cubic is the reason that TCP_Vegas behaves similarly to TCP_LP in
our experiments. Substituting TCP_Cubic in the primary tunnels for other
TCP algorthim we expect to obtain similar results for TCP_LP tunnels, but
TCP_Vegas tunnels would deteriorate the primary service time while improv-
ing the secondary service time.

We have evaluated the overhead of wireless (WiFi-based) links for second-
ary users, as this is quite common in access networks, such as community

78

networks. We evaluated an ad-hoc (IBSS) network in channel 4 of the 2.4
GHz band. The results show equivalent results to a wired Ethernet connec-
tion, just with a slight improvement for CODEL and SFQ both, for the the
primary and secondary traffic.

Finally, we want to mention that there is other important traffic in the
network that may be affected by the secondary traffic and by the overload;
for instance, some important IP packets such as DNS, ICMP or SYN. The
results in Figure 6.13 show that even in the case of an overloaded gateway,
CODEL and SFQ contribute to improve the behavior of TCP_LP. Flows with
very few packets, ICMP ping in the figure, no longer suffer from “starvation”
by virtue of not being trapped in a FIFO queue. The same effect is achieved
for the secondary traffic, and also also in the primary and secondary traffic
for a non-overloaded gateway.

prim_only best_effort tcplp tcplpcodel tcplpsfq
0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(m
s)

Figure 6.13: Primary client ping latency combining AQM and TCP_LP

6.4 Conclusions

In this chapter, we look at cost reduction of the Internet access that bene-
volently citizens share with others through a local community network. The
analysis of several mechanisms for sharing spare Internet capacity shows the

79

performance and drawbacks for primary and secondary users. In summary,
TCP_LP appears as the most promising option, regardless of whether the
gateway is overloaded or not. The primary traffic is apparently not affected
by the secondary one (it behaves like Prim_only). The secondary traffic
achieves to get the spare capacity (it behaves like the non-differentiated case,
best effort, with a limited penalty around 20%). Combined with complement-
ary queueing techniques (e.g., TCP_LP + CODEL or TCP_LP + SFQ)
instead of just a FIFO queue, it allows to “treat well” other small, but very
important packets for the user experience, such as DNS or ICMP. We believe
that combining multiple shared Internet connections at no additional pen-
alty in performance and cost over a local or regional community network is a
valuable method to accelerate the expansion to Internet for everybody.

80

7
Conclusion

Communities of citizens develop network infrastructures cooperatively based
on heterogeneous Wireless Mesh Networks. They can achieve global Inter-
net or Web access using a pool of web proxy gateways shared across many
participants in the local community network. This affordable Internet access
requires a simple but effective mechanism to arbitrate the client-proxy choice
to ensure a good quality of experience and avoid degraded service.

Analyzing part of a community network we observed that the system is
simple and resilient since each proxy is independent and clients just switch to
their next choice in case of failure of their proxy. While the system shows a
satisfactory performance in a small scale, the manual proxy selection of the
users and the traffic patterns would not allow the Web access service to scale
properly. In our effort to address this problem we decompose it in two major
components: users-proxies relation and primary-secondary users relation.

Concerning the relation between the users and the proxies we presented
two reliable and inexpensive latency-based metrics capable of predicting and
triangulating performance indicators, and a client-side proxy selection mech-

81

anism that combines these metrics to make good choices in terms of QoE or
performance, taking into account the contribution of the local network, proxy
gateways and their Internet connection. This mechanism avoids proxies with
heavy load and slow internal network paths. The overhead is linear to the
number of the clients and proxies. Additionally, we analyzed how the cur-
rently manual and not well-informed choice of proxies by clients work rather
well for its users, but it results in inefficiencies that affect the service cost and
shows episodes of degraded performance. Considering that situation, this pa-
per explores alternatives for cost reduction and service improvement when
going from a simple but rigid mapping between users and proxies, towards
coordinated informed choices based on several metrics.

Concerning the relation between primary (who share their Internet connec-
tion) and secondary (the beneficiaries) users we studied several mechanisms
for sharing spare Internet capacity shows the performance and drawbacks
for primary and secondary users. We show that with a middlebox between
the gateway and users the Internet access experience of the primary users
can be retained, undermine the experience of the secondaries. Studying vari-
ous strategies, we proposed a combination of congestion-level tunneling and
queuing techniques that can be used for this middlebox that guarantee the
user experience of the primary when the shared Internet connection is satur-
ated, without introducing overhead the rest of the time.

Overall, we believe that we have carved the path for a way to use already
existing Community Network infrastructures in order to provide basic Internet
access.

82

Bibliography

1. GAIA WG. Global Access to the Internet for All Research Group [Online; ac-
cessed 14-September-2016]. 2016 (cit. on p. 1).

2. Navarro, L., Freitag, F., Baig, R. & Roca, R. in (ed on Community Connectivity
(DC3), D. C.) 25–71 (Internet Governance Forum, 2016) (cit. on p. 3).

3. netCommons. Deliverable D1.2, Report on the Existing CNs and their Organ-
ization (v2) Tech. Rep. D1.2. Sept. 2016 (cit. on p. 3).

4. Sen, R. et al. On the Free Bridge Across the Digital Divide: Assessing the
Quality of Facebook’s Free Basics Service in Proceedings of the 2016 ACM on
Internet Measurement Conference (2016), 127–133 (cit. on p. 26).

5. Abujoda, A., Dietrich, D., Papadimitriou, P. & Sathiaseelan, A. Software-
defined wireless mesh networks for internet access sharing. Computer Networks
93, Part 2, 359–372 (2015) (cit. on p. 5).

6. Baig, R., Roca, R., Freitag, F. & Navarro, L. guifi. net, a crowdsourced network
infrastructure held in common. Computer Networks 90, 150–165 (2015) (cit. on
pp. 2, 3, 43).

7. Baldesi, L., Maccari, L. & Lo Cigno, R. Improving P2P streaming in Wireless
Community Networks. Computer Networks 93, Part 2, 389–403 (2015) (cit. on
p. 3).

8. Biswas, S. et al. Large-scale measurements of wireless network behavior. ACM
SIGCOMM Computer Communication Review 45, 153–165 (2015) (cit. on
p. 26).

9. Braem, B., Bergs, J., Blondia, C., Navarro, L. & Wittevrongel, S. Analysis of
End-User QoE in Community Networks in Computing for Development (ACM-
DEV) (London, UK, 2015), 159–166 (cit. on p. 67).

10. Chen, F., Sitaraman, R. K. & Torres, M. End-user mapping: Next generation
request routing for content delivery. ACM SIGCOMM Computer Communica-
tion Review 45, 167–181 (2015) (cit. on pp. 31, 37).

83

11. Internet Society. Global Internet Report 2015 Oct. 2015 (cit. on p. 1).

12. Maccari, L., Baldesi, L., Lo Cigno, R., Forconi, J. & Caiazza, A. Live Video
Streaming for Community Networks, Experimenting with PeerStreamer on the
Ninux Community in Proc. Workshop on Do-it-yourself Networking: An In-
terdisciplinary Approach (DIYNetworking) (Florence, Italy, 2015), 1–6 (cit. on
p. 3).

13. Maccari, L. & Lo Cigno, R. A week in the life of three large Wireless Community
Networks. Ad Hoc Networks 24, Part B, 175–190 (2015) (cit. on p. 3).

14. Vega, D., Baig, R., Cerdà-Alabern, L., Medina, E., Meseguer, R. & Navarro,
L. A technological overview of the guifi.net community network. Computer
Networks 93, 260–278 (2015) (cit. on pp. 1, 3, 22, 23, 68).

15. Gong, Y., Rossi, D., Testa, C., Valenti, S. & Täht, M. D. Fighting the buf-
ferbloat: on the coexistence of AQM and low priority congestion control. Com-
puter Networks 65, 255–267 (2014) (cit. on p. 69).

16. Lo Cigno, R. & Maccari, L. Urban Wireless Community Networks: Challenges
and Solutions for Smart City Communications in ACM Int. Workshop Wire-
less and Mobile Technologies for Smart Cities (WiMobCity), part of MobiHoc
(Philadelphia, PA, US, 2014), 49–54 (cit. on p. 3).

17. Ko, B. J., Liu, S., Zafer, M., Wong, H. Y. S. & Lee, K. W. Gateway selec-
tion in hybrid wireless networks through cooperative probing in International
Symposium on Integrated Network Management (IM) (IEEE, 2013), 352–360
(cit. on pp. 48, 49).

18. Rey-Moreno, C., Roro, Z., Tucker, W. D., Siya, M. J., Bidwell, N. J. & Simo-
Reigadas, J. Experiences, challenges and lessons from rolling out a rural WiFi
mesh network in ACM Computing for Development (ACM-DEV) (2013), 11
(cit. on p. 2).

19. Sathiaseelan, A. & Crowcroft, J. LCD-Net: lowest cost denominator networking.
ACM SIGCOMM Computer Communication Review 43, 52–57 (2013) (cit. on
p. 5).

84

20. Sundaresan, S., Feamster, N., Teixeira, R. & Magharei, N. Community Con-
tribution Award – Measuring and Mitigating Web Performance Bottlenecks in
Broadband Access Networks in Internet Measurement Conference (IMC) (ACM,
2013), 213–226 (cit. on pp. 31, 37).

21. Tene, G. How not to measure latency in Low Latency Summit (2013) (cit. on
p. 68).

22. Cerda-Alabern, L. On the Topology Characterization of Guifi.Net in Proc.
Int. Conf. Wireless and Mobile Computing, Networking and Communications
(WiMob) (Barcelona, Spain, 2012), 389–396 (cit. on pp. 3, 14).

23. Nichols, K. & Jacobson, V. Controlling queue delay. Communications of the
ACM 55, 42–50 (2012) (cit. on p. 69).

24. Vega, D., Cerda-Alabern, L., Navarro, L. & Meseguer, R. Topology patterns of
a community network: Guifi.net in Proc. Int. Conf. Wireless and Mobile Com-
puting, Networking and Communications (WiMob) (Barcelona, Spain, 2012),
612–619 (cit. on p. 3).

25. Boushaba, M. & Hafid, A. Best path to best gateway scheme for multichan-
nel multi-interface wireless mesh networks in Wireless Communications and
Networking Conference (WCNC) (IEEE, 2011), 689–694 (cit. on pp. 48, 49).

26. Catrein, D. et al. An Analysis of Web Caching in Current Mobile Broadband
Scenarios in New Technologies, Mobility and Security (2011), 1–5 (cit. on p. 26).

27. Chen, Y., Wang, X., Shi, C., Lua, E. K., Fu, X., Deng, B. & Li, X. Phoenix: A
Weight-Based Network Coordinate System Using Matrix Factorization. IEEE
Transactions on Network and Service Management 8, 334–347 (2011) (cit. on
p. 49).

28. Ihm, S. & Pai, V. S. Towards understanding modern web traffic in Internet
measurement conference (2011), 295–312 (cit. on p. 27).

29. Johnson, D. L., Pejovic, V., Belding, E. M. & van Stam, G. Traffic character-
ization and internet usage in rural Africa in World Wide web (2011), 493–502
(cit. on p. 26).

30. Khare, R. & Lawrence, S. A Survey of Lower-than-Best-Effort Transport Pro-
tocols RFC 6297. 2011 (cit. on p. 69).

85

31. Afanasyev, M., Chen, T., Voelker, G. & Snoeren, A. Usage patterns in an urban
WiFi network. IEEE/ACM Transactions on Networking 18, 1359–1372 (2010)
(cit. on p. 26).

32. Ancillotti, E., Bruno, R. & Conti, M. Load-balanced routing and gateway selec-
tion in wireless mesh networks: Design, implementation and experimentation in
World of Wireless Mobile and Multimedia Networks (WoWMoM) (2010), 1–7
(cit. on pp. 48, 49).

33. Dovrolis, C., Gummadi, K., Kuzmanovic, A. & Meinrath, S. D. Measurement
Lab: Overview and an Invitation to the Research Community. ACM SIGCOMM
Computer Communication Review 40, 53–56 (2010) (cit. on p. 67).

34. Ashraf, U., Abdellatif, S. & Juanole, G. Gateway selection in backbone wire-
less mesh networks in Wireless Communications and Networking Conference,
(WCNC) (IEEE, 2009) (cit. on pp. 48, 49).

35. Chen, Y., Xiong, Y., Shi, X., Zhu, J., Deng, B. & Li, X. Pharos: accurate
and decentralised network coordinate system. IET Communications 3, 539–
548 (2009) (cit. on p. 49).

36. Lancichinetti, A. & Fortunato, S. Community detection algorithms: A compar-
ative analysis. Phys. Rev. E 80, 056117 (Nov. 2009) (cit. on p. 54).

37. Laoutaris, N., Smaragdakis, G., Rodriguez, P. & Sundaram, R. Delay toler-
ant bulk data transfers on the internet in ACM SIGMETRICS Performance
Evaluation Review 37 (2009), 229–238 (cit. on p. 66).

38. Maier, G. et al. On Dominant Characteristics of Residential Broadband Internet
Traffic in Internet Measurement Conference (2009), 90–102 (cit. on p. 16).

39. Brik, V. et al. A measurement study of a commercial-grade urban wifi mesh in
Internet measurement conference (2008), 111–124 (cit. on p. 26).

40. Galvez, J. J., Ruiz, P. M. & Skarmeta, A. F. G. A distributed algorithm for
gateway load-balancing in Wireless Mesh Networks in Wireless Days (2008),
1–5 (cit. on p. 48).

41. Ledlie, J., Seltzer, M. & Pietzuch, P. Proxy network coordinates. Target 22, 25
(2008) (cit. on pp. 31, 34, 35).

42. Bortnikov, E., Cidon, I. & Keidar, I. in Distributed Computing 77–91 (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007) (cit. on p. 49).

86

43. Berkhin, P. in (eds Kogan, J., Nicholas, C. & Teboulle, M.) 25–71 (Springer,
2006) (cit. on p. 52).

44. Akyildiz, I. F., Wang, X. & Wang, W. Wireless Mesh Networks: A Survey.
Computer networks 47, 445–487 (2005) (cit. on p. 2).

45. Dabek, F., Cox, R., Kaashoek, F. & Morris, R. Vivaldi: A decentralized network
coordinate system. ACM SIGCOMM Computer Communication Review 34, 15–
26 (2004) (cit. on pp. 31, 34, 35, 43, 49).

46. Goldenberg, D. K., Qiuy, L., Xie, H., Yang, Y. R. & Zhang, Y. Optimizing cost
and performance for multihoming. ACM SIGCOMM Computer Communication
Review 34, 79–92 (2004) (cit. on pp. 5, 66).

47. Spring, N., Wetherall, D. & Anderson, T. Scriptroute: A Public Internet Meas-
urement Facility in USENIX Symposium on Internet Technologies and Systems
(USITS) 4 (USENIX Association, 2003), 17–17 (cit. on p. 33).

48. Cerf, V. The Internet is for everyone RFC 3271. 2002 (cit. on p. 1).

49. Shalunov, S. & Teitelbaum., B. QBone Scavenger Service (QBSS) Definition.
Internet2 Technical Report, Proposed Service Definition, Internet2 QoS Work-
ing Group Document tech. rep. (2001) (cit. on p. 66).

50. Feldmann, A. et al. Performance of web proxy caching in heterogeneous band-
width environments in INFOCOM (1999), 107–116 (cit. on p. 26).

51. Ostrom, E. Governing the commons: the evolution of institutions for collective
action (Cambridge University Press, Nov. 1990) (cit. on p. 3).

52. Spearman, C. The proof and measurement of association between two things.
The American journal of psychology 15, 72–101 (1904) (cit. on p. 42).

87

	Abstract
	1 Introduction
	1.1 Community Networks
	1.2 guifi.net Web Proxy Service
	1.3 Spare Internet Capacity
	1.4 Problem Statement

	2 Contributions
	2.1 List of Publications
	2.2 Contributions

	3 Current State in CN Usage for Basic Internet Access
	3.1 Introduction
	3.2 Data Collection
	3.3 Service Usage Viewpoint
	3.4 The Proxy Viewpoint
	3.5 The Local Network Viewpoint
	3.6 Related Work
	3.7 Summary of Lessons Learned

	4 A Web Proxies regulation mechanism for CNs
	4.1 Introduction
	4.2 Overview
	4.2.1 System Model
	4.2.2 Experimental Environment

	4.3 Network Performance
	4.3.1 Measuring network performance

	4.4 Measuring Proxy Performance
	4.4.1 Measuring Proxy Load And Internet Connection Delays
	4.4.2 Sharing TTFB

	4.5 Overhead Analysis
	4.6 Proxy Selection
	4.7 Related Work
	4.8 Conclusions

	5 Exploiting Traffic Patterns and Network Locality
	5.1 Introduction
	5.2 Clustering of Users
	5.2.1 Clustering according to usage
	5.2.2 Clustering according to Network Locality
	5.2.3 Influence of the criteria for proxy selection

	5.3 Network perspective
	5.4 Proxy perspective
	5.5 Users perspective
	5.6 Conclusions

	6 Sharing Only The Exceeding Bandwidth
	6.1 Introduction
	6.2 Experimental framework
	6.2.1 Traffic sharing between primary and secondary

	6.3 Results
	6.3.1 Gateway not overloaded
	6.3.2 Gateway is overloaded
	6.3.3 Sensitivity analysis

	6.4 Conclusions

	7 Conclusion
	Bibliography

