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Abstract

Weak consistency, more precisely eventual consistency, is the most common consistency provided by
the majority of the cloud storage providers. But there are many other consistency guarantees that can be
ensured without the use of strong consistency, also known as sequential consistency.

This paper gives a general overview of the most important weak consistency models and looks at
their advantages, disadvantages, properties and additionally gives some general implementation ideas.

Finally, it will provide an insight into the works of some new approaches to improve the trade-off
between performance, availability and consistency. Some of them change the consistency level dynami-
cally during runtime. It also gives a general idea how these techniques work and what they bring to the
table in contrast to static assigned consistency.

1 Introduction

As the Internet grew more and more in the last past few years, ensuring performance properties like
scalability, availability, low latency and reliability has become a big problem. This is especially true for
big online communities and web shops like Facebook, Google, Twitter, and Amazon just to name a few
of them. The problem is that many users want to use the offered services at the same time. With only
one big datacenter, this would lead to a impractical situation where the servers are overloaded. When
this happens, users become dissatisfied, because they are not getting their information fast enough. This
can result in high losses for these companies as customers may move to competitors.

Therefore, the data of these big websites are distributed on many servers. This use of several ”micro-
data centers” instead of one big ”mega-data center” [8] is an important improvement regarding perfor-
mance, e. g. lower network latency between server and client, availability and reliability. Such systems
are much more robust against any network or server errors which would cause the web service to be
unavailable. Using such cloud systems allow web services to scale limitless with little to no reduction of
performance.

One problem these highly distributed systems have is the assurance of consistency of the data repli-
cations. According to the CAP theorem [4][11] it is impossible to simultaneously ensure consistency,
availability and partition tolerance in a distributed system. As availability and partition tolerance are the
more important aspects of a web service, most of the time consistency is relaxed in favor of the former
two properties.

The rest of the paper is structured as follows. The next section gives an overview of recent related
work. Section 3 explains why data replication and distribution are important aspects of today’s cloud
storage systems. The 4th section introduces several different weak consistency models and their prop-
erties and gives some general implementation ideas. Section 5 then introduces different ideas of how to
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improve the cloud storage system by special approaches dealing with more than one kind of consistency
at once. Finally, Section 6 concludes the paper.

2 Related Work

There are many papers dealing with the different levels of consistency. Eventual consistency in particular
has been in focus of a lot of research in the past. The first part of this paper lists and explains some of the
most important weak consistency models. The most similar work here is Tanenbaum et al. [18] as this
paper adopts their classification of the different consistency models into client-centric and data-centric
models. They explain in detail what each model provides and how to implement it with some examples.

Another paper that lists different consistency models is Dough Terry’s ”Replicated data consistency
explained through baseball” [20]. The authors approach is less formal and he tries to explain the different
consistency models using baseball as an example. He shows that strong consistency is not always needed
and you can save costs if you know what application needs which type of consistency.

Vogels (2009) [22] gives an overview about so called session guarantees that can be used to increase
consistency based on eventual consistency. It also shows that some of these guarantees can be combined
to increase consistency even more to satisfy demands that otherwise may need strong consistency.

Other papers giving a review of weak consistency models are Fekete and Ramamritham (2010) [10],
Fuertes et al. (2012) [17] and Terry et al. (1994) [19]. The last one additionally gives some ideas for
implementation and several use cases for the different models.

The second big part of this paper is the improvement of the consistency of the cloud storage system
by using more than one kind of consistency. Most important papers here are Kraska et al. (2009) [13],
Chihoub et al. (2013) [6], Esteves et al. (2012) [8] and Lu et al. (2007)[15] or Lu et al. (2008) [16] All
are introducing a different approach to handle consistency.

The advantage of this paper over others it that it first gives a general overview of the most important
weak consistency models for cloud computing, including their properties and their implementation in a
general way. It then shows the different approaches how people try to increase performance even more.
This paper can be used to get to know the techniques of cloud storage systems, how they work, how they
are used, and why replicating data is so important.

3 Why Use Replicated Data

As already mentioned, using replicated data improves the performance of the cloud service. There are
several servers geographically spread across a country or even the world, so there is always one server
close to the client. Due to smaller distances, the transportation time is much smaller assuming that the
client wouldn’t be close to the single server. Furthermore, the fact that there is more than one hotspot
allows the load of the network and the work of responding requests to be divided. This improves the
speed of both the network and the server-system. As every server has a more or less fresh copy of the
data, it is possible to access the data stored in the cloud even if one or more of the servers are down
due to network errors, system failures etc. The client just connects to another server that can perform
its request. These properties cause the system to be much more available and reliable than a single data
center. Another advantage of distributed and replicated data is that corrupt writes can be undone easily.
When a write fails and the system needs to recover the right value, it can just query other servers that are
more or less up to date to determine the old value.

lveiga
Highlight
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4 Weak Consistency Models

Unfortunately, the replication of data causes some problems, too. The most convenient way for the client
would be to provide strong consistency as it assures actuality of the data in the cloud storage. That means
every update on any server will be applied on any other replica. This way every client then sees the most
recent value regardless of which data item, server, or client that updated that item. Providing strong
consistency causes a lot of network traffic in data centers and between them. This is because the updates
must be immediately propagated to the other servers and the protocols for distributing the data are much
more complex.

Therefore, performance would be lowered causing higher response times, more computation costs
and loss of quality of service which leads to monetary loss. So on the one hand replication increases the
performance, but on the other hand this performance gain is decreased by the communication overhead
of strong consistency provoking a higher cost per transaction. In addition to performance availability is
reduced as well [3].

Fortunately, strong consistency is not needed in most cases. Therefore, many big solutions like Ama-
zons Simple Storage Service [1] and Googles BigTable [5] use a weak consistency model like eventual
consistency. Many other weak consistency models have been developed to allow the host to relax consis-
tency and still satisfy the demands of its customers by ensuring some additional guarantees. Using weak
consistency improves performance at the cost of the guarantee of consistent data. Although the returned
value of a request may not be up to date, some applications can still use the data. Especially with some of
these additional guarantees, many applications can run on top of a cloud storage system only providing
weak consistency, without any limitations.

This paper adapts the division of the weak consistency models into two different types from Tanen-
baum et al. [18]. They distinguish data-centric models from client-centric models. Data-centric models
describe a setup where multiple processes try to access data simultaneously whereas client-centric mod-
els look at the consistency for a single client. Such a client may be mobile, so it can update and read data
from any place. Which model to use strongly depends on the applications flexibility.

The following section gives an overview of the most important weak consistency models. Each
subsection describes one model by its properties and shows a general way how to implement it.

4.1 Data-Centric Consistency Models

4.1.1 Sequential Consistency

Although, sequential consistency is not really a weak consistency model we will have a short look at
it, as the next consistency level is based on this one. Sequential consistency originates from multipro-
cessor computing and was introduced by Lamport in 1979 [14]. The following condition for sequential
consistency is taken from Tanenbaum et al.[18]:

”The result of any execution is the same as if the (read and write) operations by all pro-
cesses on the data store were executed in some sequential order and the operations of-each
individual process appear in this sequence in the order specified by its program”

That means that there is an order for all operations on the data in the cloud storage. All processes must
see the same order of writes. But this order does not have to be the real time order an omniscient observer
would see. The order is time independent and has to be determined and propagated to all servers.

Sequential consistency can be seen as a border between strong and weak consistency. All models
that have weaker consistency than sequential consistency can be called weak consistency models.
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4.1.2 Causal Consistency

As mentioned before, causal consistency is deduced by relaxing sequential consistency. This model
uses the fact that there are causally related and unrelated operations. There is no need to have a strict
order for unrelated operations as a disordered execution of operations will not cause any inconsistency
of a stored value. But if there is a causal relation between two or more operations, their order must be
identical for all servers similar to sequential consistency. As updates are propagated in the background
from server to server, it may happen that the updates arrive in different ordering at the servers. To prevent
inconsistencies because of a different execution order, a global order has to be ensured.

As an example of how to determine if events are causally related the system may proceed like this:
If there is a read on data item x and then a write, these operations may be causally related. If there are
two or more writes simultaneously on different data items, these operations may not be causally related,
as they occur concurrent.

This division between causally related and unrelated operations increases the performance of the
system, simply because less operations have to be kept in order. Therefore, less computation and admin-
istrative costs are needed for this unrelated data.

4.1.3 Bounded Staleness

The idea behind bounded staleness is to guarantee a client that the requested value will not be too far out
of date. So with every read the client will see all updates that happened before a specific point. This point
can be a time value, a number of missed updates, or a simple value. First one is called time bound, which
means that the read includes all updates that were applied a certain amount of time before, for example
5 minutes. The second one ensures that the data item did not miss a specific number of updates. Last
one, called value bound, assures that the value of the up-to-date data item differs no more than the bound
from the current value on the requested server. The second and the third version of bounded staleness
could be useful for example for a web-shop. To prevent overselling, the number of available products
should be updated every 5 sales or so. The time bound version could be used for news pages, where all
servers should show the latest news after a maximum delay of 5 minutes.

4.2 Client-Centric Consistency Models

Instead of looking at multiple processes and simultaneous accesses, client-centric consistency only looks
at the guarantees given to a single client and their operations in the cloud storage. They provide no
additional guarantees for concurrent operations of different clients.

First, we will have a look at eventual consistency. The weakest and simplest model of all of them.
The consistency models following that section are all build upon eventually consistency by adding some
more properties. As all these models use sessions as a basis of their improvements, they are called session
guarantees. Each respective section will describe the model and then give an idea of how to implement
it. For implementation we assume following:

Server side:

• Any server receiving a write assigns a globally unique identifier like a number to the operation.
This number can be used to identify both the write itself and the server the write had been sent to.

• All servers have to store the write operations so it can be sent to other servers to update them.
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Client side:

• Read and write operations can be sent to any server. The selection is random.

• There is no caching. Therefore we don’t have to consider problems with too small caches e. g.

• Every client stores a write set with the writes committed by itself, and a read set containing the
writes already seen by the clients former reads.

• A session begins with the start of the communication. Whenever the communication ends, inten-
tionally or because of errors, the session is closed. When the client starts a communication again,
a new session is created.

This paper also ignores problems with the amount of bandwidth between clients and the cloud servers.
All these guarantees are bound to their session. There are no cross-session guarantees provided.

4.2.1 Eventual Consistency

Eventual consistency is the most common consistency model offered by the most providers of big cloud
systems as its the easiest property to guarantee. The only thing that has to be considered is that if there
are no writes for a period of time the distributed data will be consistent for all servers so that a read
will return the latest update. Clients can send updates to any server. The update is then propagated in
the background using a simple gossip/epidemic protocol that assures all servers will eventually see the
update. That kind of operation that updates all replicas to the newest version is called anti-entropy. This
explains why weak consistency causes the system to be so robust and still available in face of network
partition. Because of the simple way eventual consistency spreads operations, it may happen that updates
arrive at different times and in different orders. To solve such a conflict, a resolution method is needed
that can undo operations and apply the operations in the correct order again. Especially in systems where
only few clients write and many clients read the data, this model of weak consistency is recommendable
as there will only be a small number of conflicts that have to be resolved. But in the end eventual
consistency guarantees that all replicas converge to identical copies. But as presented in Wada et al.
(2011) [23] this time is relatively short for current cloud services (see Figure 1). They ran tests with
26,500 writes and 3,975,000 reads for different consistency levels. The results show that for eventual
consistency, about 33% reads already return consistent data from 0ms to 450ms. After that there is a
sharp jump to 98% and after 507ms the data is already 100% consistent. Although the results of that test
show that an eventually consistent system may reach a consistent state relatively quick, it theoretically
can return any value that was written in the past. Because of that, it is difficult for software engineers to
develop some applications using cloud storage systems with eventual consistency. Therefore, additional
constraints will be introduced with the next models, based on session guarantees.

4.2.2 Monotonic Reads

The idea behind the monotonic reads model is relatively simple. It guarantees that if a client reads the
same data item several times, the returned value of a read will not be older than the value of the former
read. In other words, the client reads a data item and the server returns value x. Whenever the client
reads the same data item again the returned value will be the same or if it has changed already, the newer
value might be returned. So the client will never see a value that is older than the already seen value.
With increasing time the cloud storage is more and more up-to-date. This can be done by only allowing
the client to read from replicas that already have applied all previous updates seen by the first read.
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Figure 1: Time elapsed from completing write until consistent read . Wada (2011) Figure 2 [23]

To achieve monotonic read the client must send its read set to the server to which the request is
directed to. The read set stores all the writes the client saw in former reads of the session. These writes
are relevant for the reads in the same session. The server is then able to check if it has seen all writes
the client already saw by checking the identifiers of the operations in the clients read set. If there are
operations missing on server side, the request can be forwarded to the other servers that carried out the
updates. Remember that the identifier of an operation can be used to determine the server which applied
the update. Therefore, the server that noticed the missing update is even able to ask the specific servers
for their updates in order to update its own database. There are cases where there are essential writes at
the server responding to the client’s request that were unseen by the client. But the client’s read set is
extended with these updates.

4.2.3 Monotonic Writes

This consistency model ensures that a clients writes will be applied to the database in the same order as
they were committed. There may be writes from other clients in between, but it is guaranteed that new
writes are done after the previous ones made within the same session. To make that possible the client is
only allowed to write to replications that include all previous writes from the same session.

It’s important to at least provide monotonic writes as it is quite hard for software engineers to write
applications on top of a cloud without that guarantee.

The implementation idea for monotonic write consistency is pretty much the same as for monotonic
reads. Just swap writes and reads. The client sends its write and write set to the server to which the
write is directed to. The client’s write set stores all the writes committed by itself in the same session.
With the write set the server is able to check if all writes of the client have already been performed at its
replica. The writes must have been performed in the right order as well. If the server is not up-to-date
it can apply the missed writes from the client’s write set or request them from other replicas. When the
operation is applied the write is added to the write set of the performing client.

4.2.4 Read Your Writes

Read your writes consistency is roughly a mixture of both of the previous models. It states that the effects
of all writes done in the same session have to be visible for a subsequent read within this session. So the
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client is only allowed to read from servers containing all write changes from that session. There may be
other writes from other clients, too. Therefore, the returned value is not necessarily the up-to-date-value.
Only if the globally last write of the data item has been done by the same client in the same session the
read sees the latest value.

Implementing read your writes consistency uses the same approach as monotonic writes except that
the writes from other clients do not have to be considered.

4.2.5 Writes Follow Reads

This consistency model is build upon the monotonic read consistency model. Tanenbaum et al. [18]
defined the writes follow reads property as follows:

”A write operation by a process on a data item x following a previous read operation on x
by the same process is guaranteed to take place on the same or a more recent value of x that
was read.”

That means that a write is never applied to an older version of a data item than the former read operation
returned. The writes are always applied to the read value, or if the last change has been sent from an
other client it may be applied on this newer version.

Instead of only reading from a replication that contains the same or a newer value seen in the last
read similar to monotonic reads, it is only allowed to write to those replicas that contain the same or a
newer value seen by the last read.

The implementation for writes follow reads consistency uses the same pattern. Together with the
write the client’s read set is sent to a server. This server can use the set to update its own database if some
writes are missing. After the operation is finished, the identifiers of the write and the writes applied from
the read set are added to the write set.

The described way of implementation of any model is a simple approach and therefore not a perfect
solution. For example, applying missing updates during a request unnecessarily delay the response time
for the client. Therefore, it’s better to redirect the request to the right server for the operation instead of
updating a random one and performing the operation there. The server containing the outdated replica
can then update its data in the background.

5 Improving Consistency Cost Trade-Off

As a famous example, Facebook uses a cloud system called Cassandra 1 using eventual consistency to
provide high performance, scalability, and availability. But as the experiments in Wada et al. (2011)
[23] show, the stale read rate under heavy access is higher than 60%. As an example, 1.39 billion people
use Facebook each month and 890 million people daily [7]. Therefore, the term ”heavy access” can
be assumed to be valid at all times. Because 60% of stale reads is not enough for such a big company
they search for ways to improve the usage of weak consistency. Not all data or all operations need to
be treated with the same level of consistency. Therefore, several methods were devised that use these
possibilities to improve the trade-off between consistency and cost in money and performance.

The following approaches can be developed on top of an existing cloud storage database providing
eventual consistency.

1http://cassandra.apache.org/
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5.1 Static Consistency

Instead of providing only one consistency model for the whole cloud service, the data is statically sepa-
rated into different groups. These groups are treated by different levels of consistency. For a web-shop,
as an example, there exists data that has to be handled with a stronger consistency like transaction in-
formation. Other groups of data like profile settings of users won’t be changed or accessed very often
and therefore only need weak consistency. Also, there is data that has to be handled between those two
groups. For example, the stock amount of products is accessed and changed by many users simulta-
neously. Therefore, additional properties have to be provided and a model like causal consistency is
needed.

5.2 IDEA - Infrastructure For Detection-Based Adaptive Consistency Guarantees

Another approach that tries to improve performance and consistency is presented in Lu et al. (2007) [15]
and Lu et al. (2008) [16]. They suggest to let the user decide which level of consistency is needed. Their
system design, named IDEA, then guarantees that all requests will be processed with at least this level.
As the users might not know what consistency is needed, they can give feedback to the system if they
are not satisfied or if their needs have changed. The system then tries to adapt consistency to fulfill the
demands of the user.

They improved the achieving of consistency, performance and availability by quickly detecting and
resolving inconsistency among the replicas of the cloud storage. They implemented their system as a
two-layer overlay for every data item. All nodes that frequently update this item are in the top layer. The
other nodes form the bottom layer. To check inconsistency, they first look at the top layer which is where
95% of all inconsistencies can be found. Because the number of nodes in the top layer is relatively small,
this check can be done very quickly.

To detect inconsistency, version vectors are utilized. Each data item in the cloud has its own version
vector on each replica. The standard version vector stores information about which client updated it
how often. They expand these vectors by a timestamp, some metadata showing the difference between
the replicas and a triple of errors: <numerical error, order error, staleness>. The numerical error is the
difference in the metadata values. The order error shows the difference between the amount of updates,
and the staleness is the difference of the timestamps of the replicas. If the version vectors of different
replicas are not the same, their data is inconsistent.

The consistency check of the replicas in the IDEA system starts frequently in the background by
itself. It is also initiated whenever a user commits a write, as every write causes the other replicas to
become inconsistent, and by some reads. For example, if a client requests a data item it never read, the
system checks if it is consistent enough to satisfy the users demands. If the consistency level is good
enough for the requesting client, then there is no resolution happening until the system is under low load
so the resolution process won’t influence the performance of the systems work. But in the case that the
consistency provided does not satisfy the users demands, then the nearest replica sends a message to all
top layer nodes that it wants to resolve a conflict. If there is no other resolution in progress all top layer
nodes acknowledge this request and the initiating node starts the resolution process. The acknowledge
is used to avoid having more then one resolution run at the same time. If one is already running the
requesting node waits a random amount of time before it sends the request again.

In the resolution process the system chooses a so called reference consistent state. In other words it
determines which replica is set to be the correct state.
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There are three different ways to chose a node:

• Invalidate Both: Independent of their current values both replicas undo the applied updates and are
rolled back to the last known consistent state.

• ID Based: Each node is assigned an unique ID. The node with the larger ID wins and becomes the
reference state.

• Priority Based: Every node gets a priority. The node with the highest priority is chosen as the
reference node.

After the reference status is determined the errors can be calculated. As already mentioned above, the
numerical error is calculated by the metadata values, the order error is the difference between the num-
ber of updates and the staleness is the timestamp difference. These errors can be used to calculate the
consistency using the maximal values of the elements of the triple and the errors as follows:

Consistency = max num − num error
max num ×num weight

+max order − order error
max order ×order weight

+max staleness − staleness error
max staleness × staleness weight

The weights can be used to uniquely customize the weight of the errors depending on the wishes of
the user. When the reference consistency state node is chosen the missing updates can be determined.
The requesting node can then ask the top nodes and other involved nodes for those updates to get an
up-to-date replica.

As the users may not be able to tell the system the needed consistency level, there are different
methods to adjust the consistency:

• Hint-Based: The consistency is given by the user before the application starts. In this case the user
needs to know how much consistency is needed.

• On-Demand: The wanted consistency can be adjusted by the client any time if it’s not contented
or its needs have changed.

• Fully Automatic: The system automatically determines the needed consistency level based on
the balance between consistency and the message overhead. This maximal overhead is used to
determine the frequency of the background resolution processes.

As the users may not be able to find the right setting of the three error weights these values can
automatically be adapted by the system by giving feedback about the satisfaction as well.

The next two approaches try to improve the IDEA design by preventing inconsistency instead of
trying to quickly detect and resolve it. They try to adjust the consistency level during runtime, too. The
purpose of this method is to minimize the monetary costs for the provider of the cloud storage system.
It is necessary to find a balance between the consistencies. Using too weak consistency levels leads to
increased penalty costs because the servers have to be updated. This causes inter replication network
traffic that cost time and money. On the other side, providing strong consistency where it is not needed
involves unnecessary propagation of updates among the servers, which causes avoidable costs of time
and money. There are different approaches for that solution. This paper presents two of them in the
following subsections.
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5.3 Consistency Rationing

The first approach explained in Kraska et al. (2009) [13] assumes that consistency is defined on the
data-items in the cloud instead at the transaction level. Therefore, consistency models can be assigned
to the data depending on the costs for operations on them. It divides the server data into three different
priority groups (A, B, C) treated with the proper consistency model.

• A: Data that needs to be up-to-date and therefore has to be treated by strong consistency. If
inconsistency occurs there would be a large penalty cost to resolve that value discrepancy.

• C: As temporally inconsistency is acceptable, this group of data can be treated with weak con-
sistency such as read your writes consistency. Data in this group is never read or written concur-
rently. If inconsistency occurs almost no penalty cost in monetary or administrative way has to be
expected.

• B: This group is in between of the other ones. Data in this group is accessed concurrently by many
clients. Therefore, the needed consistency level can change anytime depending on the current
situation.

The focus in this paper is on the B category, as category A and C provide nothing new compared to
the idea of statically assigning different consistency models. As too high consistency may avoid penalty
costs but implicates higher operation costs, less availability and because too relaxed consistency may lead
to high penalty costs but provides cheaper operations, the system has to find the right trade-off between
the costs and the consistency. In Kraska et al. (2009) [13] the price of inconsistency is calculated as the
percentage of incorrect operations causing overhead for resolving the conflict leading to monetary cost
and lower user experience. They monitor the data stored in the cloud system and use temporal statistics to
find that balance that minimizes the costs for communication and penalty. They define different policies
describing when to switch consistency level:

• General policy: Calculates the probability for inconsistency by measuring the frequency of opera-
tions on the data items of the cloud storage.

• Time policy: switches consistency after a certain amount of time

• Fixed Threshold policy: depends on the value of the data

• Demarcation policy: Uses several values to consider a switch on the base of the demarcation
protocol [2]

• Dynamic policy: Probabilistic guarantee depending on the frequency of updates like general pol-
icy, but also using the data values. In simple terms it uses the probability that an update will cause
the value to exceed its constraint.

The problem with most of these policies is finding suitable values for the thresholds and limits that
determine when to change the consistency level to high or low.
In the general policy this can be described with a simple mathematical inequation saying: Switch to
strong consistency whenever the savings from weak consistency are lower than the costs of inconsistency
and switch back to weak consistency if the savings are higher than the penalty costs.
For time and value fixed policy the threshold has to be found by experimenting until a proper trade-off
between runtime cost and penalty cost is found.
The dynamic policy doesn’t have this problem. Statistics for any data item in the cloud are set up and
used to adjust the thresholds during runtime.
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Figure 2: cost per transaction [$/1000]. [13] Figure
3

Figure 3: Response time [ms]. [13] Figure 5

In Kraska et al. (2009) [13] they used the TPC-W benchmark [21] to check their implementation of
the consistency rationing concept. Using the dynamic policy for adjusting the consistency level emerged
as the best solution providing performance and low costs as it’s dynamic and reactive. They ran the test
with a 80-20 rule distribution as explained in Gray et al. (1994) [12] and a uniform one. Some of their
results are shown in Figure 2 and 3.

Figure 2 shows that the dynamic adaption of consistency (”Dynamic”) is much more efficient than
both, constant weak (”C data”) and constant strong consistency (”A data”) for both distributions. This
chart also shows that weak consistency is more efficient than strong efficiency. But in the biased 80-20
distribution it is way more expensive due to the high penalty costs.

Figure 3 shows the response times for the different consistencies. It illustrates how much faster
weak consistency is than strong consistency for both distributions regarding response time showing the
strength of weak consistency in cloud computing.

As a conclusion it is proved that dynamic consistency is way more effective than static consistency
as it clearly reduces response time and monetary cost of transactions. The improvements are so big that
the costs of rationing the data into different consistency categories can be neglected.

5.4 Consistency Adaption With Bismar

As defining consistency on data level causes an overhead for large data items, the second approach
described in Chihoub et al. (2013) [6] defines consistency at transaction level. They introduce an eco-
nomical consistency model called Bismar which changes the consistency level at runtime. This model
uses the current operation frequency and the network latency to determine the rate of stale reads and
relative costs. They segment the costs into three different groups:

• Computing: Charged for virtual machine hours needed to run the operations on the cloud.

• Storage: Charged for amount of storage leased per month and the number of I/O requests to or
from the storage. Increasing with a higher number of replicas and requests.

• Network: Network traffic among replicas for updating and repair. Grows with higher consistency
and higher amount of replicas.

Due to cheap storage the computing part takes up to 90% of the costs while storage and networking costs
only contribute 9% and 0.4%.
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Figure 4: Monetary Cost Figure 5: Staleness

To have values as a reference they ran tests to determine the costs for different consistency levels
from eventual consistency (”ONE”) over ”TWO” and ”QUORUM” to strong consistency (”ALL”). Their
results show that weak consistency is almost 48% cheaper than strong consistency.

To control their Bismar model they introduced a metric called consistency-cost efficiency, show-
ing how much a consistency level costs. Their model selects the consistency providing the maximum
consistency-cost efficiency to minimize the monetary costs. To determine the needed level of con-
sistency they calculate a probabilistic estimation model from the current read/write frequency and the
network latency. The arrival of transactions is considered as a Poisson process.

In the end they came up with a formula that can be used to compute the consistency-cost relation
depending on the consistency level. The only thing their system has to do is to continuously calculate
the possible values for that metric and choose the consistency level delivering the maximum efficiency.

As shown in Figure 4 the results of their tests reveal that the costs of the Bismar model are slightly
higher than the costs of eventual consistency (”ONE”). But the number of stale reads in Bismar (3%) is
much lower than in eventual consistency (61%).

As these two approaches show the dynamic adaption of consistency during runtime can obviously im-
prove the monetary costs and the response time in cloud storage systems.

6 Conclusion

This paper showed that there are many different ways to handle consistency in cloud storage systems.
Eventual consistency is the most important and is used most often. It is easy to provide and it increases
performance, availability and reliability. As mentioned in Fuertes et al. (2012) [17] and Vogels (2009)
[22] the system even provides these properties in the face of network or system errors causing network
partition. The system continues working. When the error is resolved the system may have several
different states of the data as some replicas may have continued running isolated from the rest of the
cloud storage system. Eventual consistency easily can resolve these states and therefore deserves its
status as the most popular consistency model.

In this paper I showed that eventual consistency alone is not a good way to run a cloud storage
system. Because of the unpredictable results of requests, the use of such a weak consistency is rather
unhandy. Especially for the software developers that have to write the software using the cloud.

We learned that there are several additional constraints for eventual consistency. These constraints
provide some additional guarantees to the returned data from a request and the order of execution of the
write operations from the same client in the same session. These so called session guarantees signifi-
cantly make it easier for developers to write applications that deal with the cloud data. The choice of the



13

right model strongly depends on the application it is designed for. As these different session models can
be combined arbitrary, the variety of possible consistency models is huge.

In the second part this paper showed that a cloud storage system is not limited to only provide one
level of consistency. Different kinds of data and different kinds of transactions can be treated with
different levels of consistency. This simple idea facilitates some great improvement for the performance
of the cloud system.

Some works like Lu et al. (2007) [15] or Lu et al. (2008) [16], Kraska et al. (2009) [13] and Chihoub
et al. (2013) [6] pursued this idea of using more than one consistency level in the same cloud even
more and developed some novel approaches for handling consistency. They all try to adapt the level of
consistency during runtime and try to adjust the consistency to the needs of the user. Their intention
is to find the weakest possible level of consistency that satisfies the client’s demands. Therefore, they
automatically use the method with the least costs of money possible.

In Lu et al. (2007) [15] and Lu et al. (2008) [16] they try to detect and resolve inconsistency as fast
as possible and then change the level of consistency to prevent repeating needs for resolution processes.
Kraska et al. (2009) [13] and Chihoub et al. (2013) [6] go one step further and predict the costs of a
operation in respect to a certain level of consistency. Then they chose the model with the best efficiency,
calculated by the costs per consistency.

The results of the tests run on the different approaches show the obvious improvement in operation
costs and response time. They make clear that such novel ideas can heavily boost the performance of
commercial cloud storage systems.
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