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Abstract— Since energy has emerging as the first class 

computing resource, we need to characterize this resource in 

different granularity. On the other hand, the computing paradigm 

is shifting to the multi-tenant ecosystems. Therefore, characterizing 

the power consumption on Virtual Machines(VMs), running in data 

center hosts is necessary to attain energy efficient cloud ecosystems. 

In this paper, we study the challenges should be addressed in VM 

power modeling in cloud service provisioning. 

 

I. INTRODUCTION 

Energy and associated environmental costs (cooling, 

carbon footprint, etc.) of IT services constitute a remarkable 

portion of service dynamic cost. Indeed, estimating energy 

consumption at each level of service provisioning stack, i.e. from 

hardware to , operating system/Virtual Machine(VM) and 

application is the cornerstone of research toward energy 

efficiency all through the stack.  

 

Although there is a growing body of work centered on the 

energy aware resource management, allocation and scheduling 

[7,10,11] they mainly considered the whole system energy 

measurement, estimation, improvement and optimization. There 

is only limited work focusing on the energy issues per individual 

job [1,5,8,18]. However, they only aim  at reducing total energy 

consumption in the infrastructure without taking into account the 

energy-related behavior of each individual , its performance and  

price, i.e., how expensive and efficient is the energy employed 

for the observed job performance or progress. 

 

Nonetheless, energy-based job pricing confronts some more 

challenges further to the system wide energy efficiency issues. In 

the system wide energy efficiency, the energy consumption of the 

resources are  measurable simply by plugging the energy meter 

devices or exploiting the embedded sensors of the contemporary 

devices. Nonetheless, it is nontrivial to measure the energy 

consumed per VM, since we cannot embed a physical sensor in a 

VM or plug a metering device to it. Therefore, estimation is still 

the only option in this case. Estimation results in a more 

complicated model since it has to deal with uncertainty and error. 

 

In this work, we study the challenges of VM power modeling 

in a multi-tenant ecosystem. In the next section, we outline the 

background terms and hypothesis that we use in this work. 

Section 3 surveys the sate of the art in VM power modeling and 

introduces the challenges in this area.  The work is concluded in 

Section 4. 

 

II. BACKGROUND 

In this section we introduce the background and hypothesis 

required to drive the discussion in the rest of this paper. 

 

Energy Proportionality 

 

The vision of energy proportional system implies the power 

model of an ideal system in which no power is used by idle 

systems (Ps=0), and dynamic power dissipation is linearly 

proportional to the system load.  

LDR indicates the maximum difference of the actual power 

consumption, P(U), and linear power model over the linear 

power model as in (1). 

 

(1) 

 

IPR is the indicator of idle to peak power consumption as 

illustrated in (2) 

 

(2) 

 

To measure how far a system power model is from the ideal 

(energy proportional) one, Proportionality Gap(PG) (19) is 

defined as the normalized difference of the real power value and 

the ideal power value, which is indicated as PMax × U, under a 

certain utilization level as shown in (3). Therefore, having 

proportionality gap values for a given device, we can reconstruct 

the power model of the device. 

 

(3) 

 

Given the state of the art hardware, designing hardware 

which is fully energy proportional remains an open challenge, 

power model of a non-energy proportional system is illustrated 

in Figure 1. However, even in the absence of redesigned 

hardware, we can approximate the behavior of energy 

proportional systems by leveraging combined power saving 

mechanisms [16] and engaging  heterogeneous commodity 

devices combined with powerful server machines in lieu of 

homogeneous server hardware platform [19]. 
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Figure 9 - Energy Proportionality. 

 

 

II.1. Server power modeling 

 

State of the art platforms are not capable of fine-grained 

power measurement. Therefore, to manage dynamic power 

proportionality, a power model is required. Currently, Running 

Average Power Limit (RAPL) counters, available in the recent 

Intel CPUs, is the closest to the hardware based monitoring. 

RAPL allows monitoring of whole CPU package, cores, and 

DRAM. Since these counters are not available in all CPUs, to 

cope with the heterogeneous infrastructure, a group of works rely 

on performance counters for synthesising a power model. 

Mapping the counter and power values is usually done through 

linear regression. Nonetheless, linear power model is not 

sufficient in many cases due to non-proportional power 

dissipation characteristics of CPUs. 

 

Moreover, linear models rely on the non-correlated covered 

features, which is not a valid assumption in the state of the art 

systems. A quadratic solution fits better the power modeling of 

multi-core systems [2]. 

However, Hyperthreading and turbo-boost may still impede 

the model from accurate estimation, due to hidden states they 

make. A hyperthread aware power modeling mechanism is 

introduce in [20]. The introduced model differentiates between 

the cases where either single or both hardware threads of a core 

are in use. 

The most recent work in this line is BitWatts [5], which 

introduces a counter based power model for each individual 

frequency. 

 

Nonetheless, there is a trade off between accuracy and the 

overhead. Targeting the community of commodity devices 

forming a collaborative system, in edge layer, integrated with 

data center to form P2P assisted clouds, we should particularly 

tune the trade off level due to the lower energy consumption in 

such devices, which acquires adaptive models. 

 

III. ESTIMATING VM ENERGY 

 

In multi-tenant platforms, the efficiency of VM 

consolidation, power dependent cost modeling, and power 

provisioning are highly dependent on accurate power models. 

Such models are particularly needed because it is not possible to 

attach a power meter to a virtual machine. In this section we 

review the state of the art VM power models and demonstrate 

their shortcomings. 

 

III.1. Related Work 

 

In general, VMs can be monitored as black-box systems for 

coarse-grained scheduling decisions. However, for fine-grained 

scheduling decisions—e.g., with heterogeneous hardware— 

finer-grained estimation at sub-system level is required and 

might even need to step inside the VM. 

So far, fine-grained power estimation of VMs required 

profiling each application separately. To exemplify, WattApp 

[12], which relies on application throughput instead of  

performance counters as a basis for the power model.  PMapper 

[17] maps resources using a centralized step-wise decision 

algorithm in lieu of   application power estimation. 

 

To generalize power estimation, JouleMeter [9] assumes that 

each VM only hosts a single application and thus treat VMs as 

black boxes. In a multi-VM system, they try to compute the 

resource usage of each VM in isolation and feed the resulting 

values in a power model. Bertran et al. [1] propose an approach 

employes a sampling phase to gather data related to 

performance-monitoring counters (PMCs) and compute energy 

models from these samples. With the gathered energy models, it 

is possible to predict the power consumption of a process, and 

therefore apply it to estimate the power consumption of the entire 

VM. Another example is VMeter [3], which estimates the 

consumption of all active VMs on a system. A linear model is 

us   to  omput  th  V s’ pow    onsumption with the help of 

available statistics (processor utilization and I/O accesses) from 

each physical node. The total power consumption is 

subs qu nt y  omput   by summing th  V s’  onsumption with 

the power consumed by the infrastructure. 

 

Janacek et al. [6] exploit a linear power model to compute the 

server consumption with postmortem analysis. The computed 

power consumption is then mapped to VMs depending on their 

load. This technique is not effective when runtime information is 

required. In general, VMs can be monitored as black-box 

systems for coarse-grained scheduling decisions. However, for 

fine-grained scheduling decisions—e.g., with heterogeneous 

hardware— finer-grained estimation at sub-system level is 

required and might even need to step inside the VM. 

 

So far, fine-grained power estimation of VMs required 

profiling each application separately.To exemplify,  WattApp 

[12], which relies on application throughput instead of 

performance counters as a basis for the power model.  PMapper 

[17] maps resources using a centralized step-wise decision 

algorithm in lieu of application power estimation. 

 

IV. CHALLENGES 

 

However, collocation of applications has its own challenges. 

Workload intensity is often highly dynamic. The power profile of 

the data center hardware is inherently heterogeneous; this makes 

the optimal VM power modeling problem more complicated. 

The nonlinearity and in some cases unpredictability of the energy 

efficiency profile  aggravates the complexity of energy efficient 

collocation management, due to inaccurate VM power 

characterization. 
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IV.1. Static Power and Overhead Modeling 

 

Energy consumption of the host per job embraces the static 

power consumption, independent of the resource utilization, and 

the dynamic power, which is degraded not only proportional to 

the VM's allocated resources but also on account of the overhead 

caused in the hypervisor, and the interference due to collocation. 

Estimating this overhead is complicated since the pattern of the 

hypervisor overhead is tightly coupled with the number of VMs, 

the type of resources each VM asks for, and the number of times 

the switching occurs between VMs and hypervisor. Thus, for a 

more accurate estimation, further to individual VM's energy, VM  

interference energy overhead should also be estimated. Some 

estimation methods have been proposed in the state of the art: 

e.g. [3,4,14]. In [15] the authors argue that, in virtualized 

environments, energy monitoring has to be integrated within the 

VM as well as the hypervisor.  

Work in [13] introduces an interference coefficient, defined 

to model the energy interference. The major contribution of this 

work is to estimate the energy interference according to the 

previous knowledge of standalone application running on the 

same machine. They model interference as a separate implicit 

task. Moreover, an energy efficient collocation management 

policy is introduced in this work that is modeled as an 

optimization problem solvable by data mining techniques. All 

the VMs running on the same machine are known as a collection. 

The energy consumption of a collection is the sum of idle energy 

consumed for the longest VM run, dynamic energy consumed by 

each VM if they were run in isolated environment, and the 

energy depleted due to interference between each VM pair. The 

interference energy can be positive or negative depending on the 

intersection of resources between each VM pair. Interference 

energy is estimated as the coefficient of the summation of idle 

and isolated run for each VM. On the other hand, performance is 

measured as the delay, which is measured by modeling the 

system as a M/M/1 queue and calculating the imaginary 

interference tasks response time as the delay due to interference. 

 

IV.2. Non-energy Proportional Host Effect 

 

Besides the hypervisor and interference overhead in multi-

tenant systems, the non-energy proportional hardware adds more 

complexity to the VM power modeling agenda. In non-energy 

proportional hardware platform, since the hardware power model 

is non-linear, two identical VMs, sharing the same hardware, 

may end up with different dynamic power usage estimation 

during the runtime, which may lead to unfair energy based 

service charging, and planning.  

Figure 2, visualizes such a case. In this scenario, there are 

two identical VMs, i.e. VM1 and VM2, collocated on a host with 

the power model demonstrated in the Figure. 

If we only run VM1, the dynamic power estimated for this 

VM will be P1, whereas running the second identical VM on the 

same machine predicted as P2 < P1. Therefore, in case of 

collocation, there should be a strategy to divide the dynamic 

power fairly among the running VMs. 

 

Figure 10 - VM power modeling issues in non-energy proportional 

systems. 

 
To address the fairness issue introduced in the previous 

section we propose the weighted division VM power model. In 

this model as illustrated in [4], a particular VM's power 

consumption, PVM(i) is calculated according to the relative 

utilization, i.e. u(i)/U, contributed by that particular VM. In this 

equation, u(i) represents the utilization incurred by VM i, and U 

denotes the overall machine utilization. 

 

                                   (4) 

 

 

V. CONCLUSION 

In this paper, we explained the state of the art Virtual 

Machine(VM) power modeling techniques and their 

shortcomings. We demonstrated that current VM power models, 

fail to capture the effect of non-energy proportional hosts in a 

multi-tenat cloud ecosystems. We argued that a fair VM power 

model needs not only to be able to characterize per VM resource 

usage and translate it to power, but also it requires to be aware of 

the overall host utilization for fair power division.  

Moreover, interference and other vitalization overhead 

require an accurate model which can be mappable to the power 

consumption. Therefore, future line of work in VM power 

modeling should address overhead modeling in multi-tenant 

ecosystems baring in mind the properties of non-energy 

proportional hosts. 
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