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and Pricing Arbitration in Clouds

José Simão, Luı́s Veiga, Member, IEEE

Abstract—Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible
because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We
propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and
across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources
between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given
by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community
Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads
are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the
partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource
utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an
utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an
SLA-based redistribution of their VM’s computational power.

Index Terms—Cloud Computing, Community Clouds, Service Level Agreements, Utility-driven Scheduling, VM allocation, VM
scheduling
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1 INTRODUCTION

Currently cloud providers provide a resource selection
interface based on abstract computational units (e.g.
EC2 compute unit). This business model is known as
Infrastructure-as-a-Service (IaaS). Cloud users rent com-
putational units taking into account the estimated peak
usage of their workloads. To accommodate this simplistic
interface, cloud providers have to deal with massive
hardware deployments, and all the management and
environmental costs that are inherent to such a solution.
These costs will eventually be reflected in the price of
each computational unit.

Today, cloud providers’ SLAs already establish some
compensation in consumption credits when availability,
or uptime, fall below a certain threshold.1 The problem
with availability is that, from a quantitative point of
view, it is often equivalent to all-or-nothing, i.e. either
availability level fulfills the agreed uptime or not. Even
so, to get their compensation credits, users have to fill a
form and wait for the next charging cycle.

Some argue that although virtualization brings key
benefits for the organizations, full migration to a public
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cloud is sometimes not the better option. A middle
ground approach is to deploy workloads in a private (or
hybrid) cloud. Doing so has the potential to limit costs on
a foreseeable future and, also important, keeps private
data in-premises. Others propose to bring private clouds
even closer to users to provide a more environmentally
reasonable, or cheaper to cool and operate, cluster [1],
[2].

1.1 Overcommitted environments
Figure 1 shows what means to bring the cloud closer
to the user. Small, geo-distributed near-the-client data-
centers (private, shared) save money, the environment,
and reduce latency by keeping data on premises. This
kind of vision is sometimes referred as Community
Cloud Computing (C3) [3], which can take advantage of
previous research in peer-to-peer and grid systems [4].
Nevertheless, many of the fundamental research and the
technological deployments are yet to be explored.
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Fig. 1: Cloud deployments: From heavy clouds to small, geo-
distributed near-the-client datacenters
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From a resource management point of view, these
new approaches highlight two issues. In one hand, the
deployment sites are more lightly resourced [5], [6],
either because the hardware is intrinsically less pow-
ered or the hardware layer is made of unused parts
of deployments already used for other tasks. So, over-
commitment, which is commonly used in virtualized
environments [7], [8], [9], will become more frequent.
Techniques such as dynamic resource allocation and
accurate cost modeling must be researched to manage
this kind of clouds. Because of the federated and low-
cost nature, overcommitment of resources is perhaps
a more common (and needed) scenario than in public
clouds. Second, in such environments there will be many
classes of users which, in most cases, are willing to trade
the performance of their workloads for a lower (or even
free) usage cost.

To overcommit with minimal impact on performance
and maximum cost-benefits ratio, cloud providers need
to relate how the partial release of resources will im-
pact in the workload performance and user satisfaction.
While users can easily decide about their relative sat-
isfaction in the presence of resource degradation, they
cannot easily determine how their workloads react to
events such as peak demands, hardware failures, or any
reconfiguration in general.

As private clouds become more frequent in medium
and large scale organizations, it is necessary to promote
a fair use of the available resources. Usually, these or-
ganizations are made of several departments, working
on different projects. Each project has a budget to rent
computational shared resources. For example, Intel owns
a distributed compute farm that is used for running its
massive chip-simulation workloads [10]. The various In-
tel’s projects that need to use the infrastructure purchase
different amount of servers. Also in this context, it is
relevant to know how each department values or priori-
tizes each of its workloads, which will influence the price
they are willing to pay for the execution environment.

All-or-nothing resource allocation is not flexible
enough for these multi-tenant multi-typed user envi-
ronments, especially when users may not know exactly
how many resources are actually required. While no
one complaints because there is no real market, it does
not mean there is no room for improvements in more
flexible pricing models that can foster competition and
entry of smaller players. Like other telecommunications
and commodity markets before, such as electricity, the
still emergent Cloud market is still seen by some as
an oligopoly (hence not a real market with an even
playing field) because it still lacks a large number of big
suppliers [11]. From the provider or owner point of view,
this is important if there can be cost reductions and/or
there are environmental gains by restricting resources,
which will still be more favorable than simply delaying
or queuing their workloads as a whole.

Both memory and CPU/cores [12], [9], [13] are com-
mon targets of overcommitment. The two major ap-

proaches consist of adapting the resources based on
current observation of the system performance or using
predictive methods that estimate the best resource allo-
cation in the future based on past observations. Others
incorporate explicit or implicit risk-based QoS require-
ments and try do decide which requested VMs should
be favored but depend on non-deterministic parameters
(e.g. client’s willingness to pay) and make uncommon
assumptions about the requested VM characteristics (e.g.
homogeneous types) [14], [15]. Moreover they do not
consider the partial utility of applying resource allocation,
i.e. that reducing shares equally or in equal proportion
may not yield the best overall result.

1.2 Scheduling Based on Partial-Utility

In this work we propose to schedule CPU processing
capacity to VMs (the isolation unit of IaaS) using an al-
gorithm that strives to account for user’s and provider’s
potentially opposing interests. While the users want their
workloads to complete with maximum performance and
minimal cost, the provider will eventually need to con-
solidate workloads, overcommitting resources and so
inevitably degrading the performance of some of them.

The proposed strategy operates when new VM re-
quests are made to the provider, and takes the user’s
partial utility specification, which relates the user’s sat-
isfaction for a given amount of resources, and correlates
it with the provider analysis of the workload progress
given the resources applied. This gives an operational
interval which the provider can use to maximize the user
satisfaction and the need to save resources. Resources
can be taken from workloads that use them poorly, or do
not mind in having an agreed performance degradation
(and so pay less for the service), and assign them to
workloads that can use them better, or belong to users
with a more demanding satisfaction rate (and so are
willing to pay more).

We have implemented our algorithm as an extension
to scheduling policies of a state of the art cloud infras-
tructures simulator, CloudSim [8], [16]. After extensive
simulations using synthetic and real workloads, the re-
sults are encouraging and show that resources can be
taken from workloads, while improving global utility of
the user renting cost and of the provider infrastructure
management.

This paper extends a previous one [17] by (i) enhanc-
ing and detailing the cost model and discussing how
different utility matrices can be compared; (ii) comparing
the proposed strategy with a more comprehensive list
of utility-oblivious algorithms; (iii) detailing the imple-
mentation in CloudSim; (iv) presenting the results of a
larger set of datacenter configurations. In summary the
contributions of this work are the following:

• An architectural extension to the current relation be-
tween cloud users and providers, particularly useful
for private and hybrid cloud deployments;
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• A cost model which takes into account the clients’
partial utility of having their VMs release resources
when in overcommit;

• Strategies to determine, in a overcommitted sce-
nario, the best distribution of workloads (from dif-
ferent classes of users) among VMs with different
execution capacities, aiming to maximize the overall
utility of the allocation;

• Extension of state of the art cloud simulator. Imple-
mentation and evaluation of the cost model in the
extended simulator.

1.3 Document roadmap
The rest of the paper is organized as follows. Section 2
starts by framing our contributions with other related
works. In Section 3 we describe our utility model and
in Section 4 the scheduling strategies are presented.
Section 5 discusses the extensions made to the simu-
lation environment in order to support our requisites.
Section 6 discusses the development and deployment in
the simulation environment of CloudSim, and presents
the results of our evaluation in simulated workloads.
Section 7 presents our conclusions and work to address
in the future.

2 RELATED WORK

With the advent of Cloud Computing, particularly
with the Infrastructure-as-a-Service business model, re-
source scheduling in virtualized environments received
a prominent attention from the research community [18],
[19], [20], [21], [22], addressed as either a resource man-
agement or a fair allocation challenge. At the same time
the research community has built simulation environ-
ments to more realistically explore new strategies while
making a significant contribution to repeatable science [23],
[16], [8].

The management of virtual machines, and particularly
their assignment to the execution of different workloads,
is a critical operation in these infrastructures [24]. Al-
though virtual machine monitors provide the necessary
mechanisms to determine how resources are shared,
finding an efficiency balance of allocations, for the cus-
tomer and the provider, is a non trivial task. In recent
years a significant amount of effort has been devoted
to investigate new mechanisms and allocation strategies,
aiming to improve the efficiency of Infrastructure-as-a-
Service datacenters. Improvements to allocation mech-
anisms at the hypervisor level, or in an application’s
agnostic way, aim to make a fair distribution of available
resources to the several virtual machines running on
top of an hypervisor, with intervention over CPU and
memory shares or I/O-related mechanisms [7].

We can organize this research space in two main
categories: (i) scheduling with energy awareness, which
is usually transparent to the client; (ii) scheduling with
negotiated service-level objectives, which has implica-
tions in the client and provider goals. In this paper we

focus on the second category, but both topics can benefit
by our approach. The following is a briefly survey of
these two areas.

Scheduling with Energy Awareness: A low-level
energy-aware hypervisor scheduler is proposed in [25].
The scheduler takes into account the energy consump-
tion measured based on in-processor events. It considers
the dynamic power, which can change with different
scheduling decisions (unlike leakage power which is
always constant). A common approach is to use dy-
namic voltage and frequency scaling (DVFS). Typically,
a globally underloaded system will have its frequency
reduced. But this will have a negative and unpredictable
impact on other VMs that, although having a smaller
share of the system, are using it fully. To avoid inflict-
ing performance penalties on these VMs, recent work
[26] proposes extensions to the credit scheduler so that
the allocated share of CPU to these smaller but over-
loaded VMs remains proportionally the same after the
adjustment. Nevertheless, recent findings [27] show that
frequency scaling and dynamic voltage have a small
contribution on the reduction of energy consumption.
Instead, systems based on modern commodity hardware
should favor the idle state.

Others determine which is the minimum number of
servers that needs to be active in order to fulfill the
workload’s demand, without breaking the service level
objectives [28], [8], [29]. Meng et al. [28] determine which
are the best VM pairs to be co-located based on their past
resource demand. Given historic workload timeseries
and an SLA-based characterization of the VM’s demand,
they determine the number of servers that need to
be used for a given set of VMs. Beloglazov et al. [8]
detect over and under utilization peaks, and migrate
VMs between hosts to minimize the power consumption
inside the datacenter. Mastroianni et al. [29] have sim-
ilar goals with their ecoCloud, but use a probabilistic
process to determine the consolidation of VMs. These
solutions usually impose constraints on the number of
VMs that can be co-located and do not use client’s utility
to drive allocation, missing the opportunity to explore
combinations with advantage to both parties, provider
and clients, that is, higher revenue per resource (which
is on the provider’s interest) and more progress for each
dollar payed (which is on the clients’ interest).

Scheduling with Service-Level Objectives: Clouds in-
herit the potential for resource sharing and pooling
due to their inherent multi-tenancy support. In Grids,
resource allocation and scheduling can be performed
mostly based on initially predefined, a priori and static,
job requirements [20]. In clouds, resource allocation can
also be changed elastically (up or down) at runtime in
order to meet the application load and effective needs at
each time, improving flexibility and resource usage.

To avoid strict service level objectives violations main
research works can be framed into three methods: (i) sta-
tistical learning and prediction; (ii) linear optimization
methods; (iii) and economic-oriented strategies.
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Resource management can also be based on microeco-
nomic game theory models, mostly in two directions: i)
forecast the number of virtual machines (or their char-
acteristics) a given workload will need to operate [30],
[31] and ii) change allocations at runtime to improve a
given metric such as workload fairness or the provider’s
energy costs [22]. Auction-based approaches have also
been proposed in the context of provisioning VMs [32],
[33], [34] when available resources are less abundant
than requests. Commercial systems such as the Ama-
zon EC2 Spot Instances have adopted this strategy. S.
Costache et al. [35] proposes a market where the users
bid for a VM with a certain amount of resources. To
guarantee a steady amount of resources, their system
migrates VMs between different nodes which has the
potential to impose a significant performance penalty
[36].

In [14] clients choose the SLA based on a class of risk,
which has impact on the price the client will pay for the
service - the lower the risk the higher the price. Based
on this negotiation, an allocation policy would be used
to allocate resources for each user, either minimizing the
risk (of the client) or the cost (of the provider). They
are however unable to explicitly select the VM or set
of VMs to degrade. In [15] a method is presented to
decide which VMs should release their resources, based
on each client willingness to pay for the service. This
approach is similar to our work but they assume that
some amount of SLA violations will occur because they
demand the victim VM to release its full resources. They
try to minimize the impact on the user’s satisfaction,
based on a probabilistic metric, decided only by the
provider. Moreover, they assume homogeneous VM’s
types and with explicitly assessed different reliability
levels, which in uncommon in cloud deployments.

Seokho et al. [37] focus on datacenters that are dis-
tributed across several sites, and use SLAs to distribute
the load among them. Their system selects a data cen-
ter according to a utility function that evaluates the
appropriateness of placing a VM. This utility function
depends on the distance between the user and the
datacenter, together with the expected response time of
the workload to be placed. Therefore, a VM request
is allocated in the physical machine that is closest to
the user and has a recent history of low utilization.
For network bounded workloads, their system could
integrate our approach by also considering the partial
assignment of resources, eventually exchanging locality
(and so, smaller network delays) by, for example, a small
deferment in the workload finish time.

SageShift [38] targets the hosting of web services,
and uses SLAs to make admission control of new VMs
(Sage) based on the expected rate of co-arrival requests.
In addition, it presents an extension to an hypervisor
scheduler (Shift) to control the order of execution of co-
located VMs, and minimize the risk of failing to meet the
negotiated response time. Also in the case of Sage, no
alternative strategy exists when the system detects that

a new VM cannot strictly comply with a given SLA.
Flexible SLAs: In conclusion, our work is the first

that we are aware of that clearly accepts, and incor-
porates in the economic model, the notions of partial
utility degradation in the context of VM scheduling in
virtualized infrastructures, such as data centers, public,
private or hybrid clouds. It demonstrates that it can
render benefits for the providers, as well as reduce user
dissatisfaction in a structured and principled-based way,
instead of the typical all-or-nothing approach of queuing
or delaying requests, while still able to prioritize user
classes in an SLA-like manner.

3 A PARTIAL UTILITY MODEL FOR CLOUD
SCHEDULING

Our model uses a non-linear, range-based, reduction of
utility that is different for classes of users, and across dif-
ferent ranges of resource allocations that can be applied.
We name it partial utility.

To schedule VMs based on the partial utility of the
clients we have to define the several elements that con-
stitute our system model. The provider can offer several
categories of virtual machines, more compute or memory
optimized. In each category (e.g. compute optimized)
we consider that the various VM types are represented
by the set VMtypes = {VMt1 , V Mt2 , V Mt3 , . . . V Mtm}.
Elements of this set have a transitive less-than or-
der, where VMt1 < VMt2 iff VirtualPower(VMt1) <
VirtualPower(VMt2). The function VirtualPower repre-
sents the provider’s metric to advertise each VM com-
putational power, along with details about a particular
combination of CPU, memory and storage capacity. For
example, Amazon EC2 uses the Elastic Compute Unit
(ECU) which is an aggregated metric of several propri-
etary benchmarks. Other examples include the HP Cloud
Compute Unit (CCU).

Currently, infrastructure-as-a-service providers rent
virtual machines based on pays-as-you-go or pre-
reserved instances. In either case, a price for a charging
period is established, e.g. $ / hour, for each VM type.
This value, determined by the function Pr(VMti), is the
monetary value to pay when a VM of type ti is not in
overcommit with other VMs (from the same type or not).
Considering that for a given VM instance, vm, the type
(i.e. element of the set VMtypes) can be determined by
the function VMType(vm), and therefore the price can
be determined by Pr(VMType(vm)).

3.1 Degradation factor and Partial utility

For each VM, the provider can determine which is the
degradation factor, that is, which percentage of the VM
virtual power is diminished because of resource sharing
and overcommit with other VMs. For a given VM in-
stance, vm, this is determined by the function Df(vm).
In scenarios of overcommit described in the previous
section, each user can choose which fraction of the price
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he/she will pay when workloads are executed. When
the provider must allocate VMs in overcommitment,
the client will be affected by having its VMs with less
allocated resources, resulting in a potentially perceivable
degradation of performance of its workload. So, over-
commitment and the degradation factor refer to the same
process but represent either the provider’s or the client’s
view. We will use these expressions interchangeably
throughout the paper.

When overcommit must be engaged, the same client
will pay as described in Equation 1, where the function
Pu represents the partial utility that the owner of the VM
gives to the degradation. Both these terms are percentage
values.

Cost(vm) =

Pr(VMType(vm)) · (1−Df(vm)) · Pu(Df(vm)) (1)

Although this equation naturally shares the goals
of many SLA-based deployment [15], it takes into ac-
count specific aspects of our approach, as it factors
the elements taken from the partial utility specification
(detailed in the following paragraphs). For example, if
Df(vm) is 20% and Pu(Df(vm)) is 100% it means that
the client is willing to accept the overcommit of 20% and
still pay a value proportional to the degradation. But if
in the same scenario Pu(Df(vm)) is 50% it means the
client will only pay half of the value resulting from the
overcommit, i.e. Pr(VMType(vm)) × (1 − 0.2) × 0.5 =
Pr(VMType(vm))× 0.4.

In general, overcommit can vary during the renting
period. During a single hour, which we consider the
charging period, a single VM can have more than one
degradation factor. For example, during the first hour no
degradation may be necessary while during the second
and the third hour, the provider could take 20% of the
computation power. So, because a VM can be hibernated
or destroyed by their owners, and new VMs can be
requested, Df must also depend on time. To take this
into account, Dfh(vm, i) is the inth degradation period of
hour h. Jin et al. [11] also discusses a fine grained pricing
schema although they focus on the partial usage waste
problem, which is complementary to the work discussed
in this paper.

Internally, providers will want to control the maxi-
mum overcommitment which, in average, is applied to
the VMs allocated to a given client and, by extension,
to the all datacenter. Equation 2 is able to measure this
using the Aggregated Degradation Index (ADI) for a
generic set of VMs. This metric can range from 0 (non
degraded) to 1 (fully degraded).

ADI(VMSet) =

1−

∑
vm ∈ V MSet

(1−Df(vm)) · V irtualPower(vm)∑
vm ∈ V MSet

V irtualPower(vm)
(2)

3.2 Classes for prices and partial utility
Clients can rent several types of VMs and choose the
class associated to each one. Classes have two purposes.
The first is to establish a partial utility based on the
overcommit factor. The second is to set the base price
for each VM type. Clients, and the VMs they rent, are
organized into classes which are represented as a set
C = {C1, C2, C3, . . . , Cn}. Elements of this set have
a transitive less-than order (<) where C1 < C2 iff
base-price(C1) < base-price(C2). The function base-price
represents the base price for each VM type. The class of a
given virtual machine instance vm is represented by the
function class(vm), while the owner (i.e. the client who
is renting the VM) can be determined by owner(vm).

Each class determines, for each overcommit
factor, the partial utility degradation. Because
the overcommit factor can have several
values we define R as a set of ranges:
R = {]0..0.2[, [0.2..0.4[, [0.4..0.6[, [0.6..0.8[, [0.8..1]}.
As a result of theses classes of SLAs, the Pu function
must be replaced by one that also takes into account
the class of the VM, along with the interval of the
overcommit factor, as presented in definition 3. Doing
so, Puclass is a matrix of partial utilities. Each provider
can have a different matrix which it advertises so that
clients can choose the best option.

Puclass : C ×R→ [0..1] (3)

Note that, currently, our model assumes that the par-
tial utility matrix is defined regarding the total virtual
power of a VM, namely, CPU, memory and storage ca-
pacity. If some overcommitment must be done in any of
these dimensions, we consider them equal or do a simple
average of them. This value is then used to determine
the overall partial utility of the VM’s new allocation.
However, a more generic (and complex) model could be
used, where a matrix like the one defined in Equation 3
could be specified for each of the dimensions of the VM.
This would result in a vector of partial-utility matrices,
whose final value would have to be aggregated to be
used in Equation 1. This is seen as future work.

The Pr function for each VM must also be extended to
take into account the VM’s class, in addition to the VM’s
type. We define a new function, Prclass, as presented in
Equation 4. Similarly to the matrix of partial utilities,
each provider can have a different price matrix.

Prclass : C × VMtypes → R (4)

In summary, the proposed partial utility model and
the associated cost structure is based on three elements:
i) the base price of each VM type, ii) the overcommit
factor, iii) the partial utility degradation class associated
to each VM.

3.3 Total costs
For a given client, the total sum cost of renting is simply
determined by the total cost of renting each VM, as
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Fig. 2: A practical scenario of using flexible SLAs in a market-
oriented environment

presented in Equation 5, where RentVMs(c) represent
the VMs rented by client c.

RentingCost(c) =
∑

vm ∈ RentV Ms(c)

VMCost(vm) (5)

The cost of each VM is presented in Equation 6 where
N is the number of hours the VM was running, and P the
number of overcommitment periods in hour h. If after
allocation the VM’s degradation factor remains constant,
then P equals 1.

VMCost(vm) =

N∑
h=1

P∑
p=1

Prclass(class(vm), V MType(vm))

P
·

·(1−Dfh(vm, p)) ·
·Puclass(class(vm), Dfh(vm, p)) (6)

The provider’s revenue is given by how much all
clients pay for the VMs they rent. The provider wants to
maximize the revenue by minimizing the degradation
factor imposed to each virtual machine. Because there
are several classes of VMs, each with a particular partial
utility for a given degradation factor, the provider’s
scheduler must find the allocation that maximizes (6).
There are different ways to do so which we analyze in
Section 4.

3.4 Practical scenario
As a practical scenario we consider that the partial utility
model has three classes of users (High, Medium, Low)
according to their willingness to relinquish resources in
exchange for a lower payment. More classes could be
added but these three illustrate:

• High users that represent those with more stringent
requirements, deadlines, and that are willing to pay
more for a higher performance assurance but, in ex-
change, demand to be compensated if those are not
met. Compensation may include not simply refund
but also some level of significant penalization;

• Medium users who are willing to pay but will
accept running their workloads in VMs with less
resources for the sake of lesser payment, and other
externalities, such as reduced carbon footprint im-
pact, but have some level of expectation on execu-
tion time, and;

• careless Low users who do not mind waiting for
their workloads to complete if they pay less;

Partial utility profiles could also be organized around
cloud providers, and assume that each provider would
be specialized in a given profile. For example, flexible
would represent shared infrastructures with no obli-
gations, and many well dimensioned private clouds;
business public clouds or high-load private or hybrid
clouds; critical clouds where budgets and deadlines of
workloads are of high relevance, and penalties are rele-
vant; SLA-Oriented top scenario where penalties should
be avoided at all cost. For simplicity we focus on a single
cloud provider that supports several classes of partial
utility which clients can choose when renting VMs, as
illustrated in Fig. 2.

For the three classes of our example, the cloud
provider can define a partial utility matrix, represented
by M in (7). This matrix defines a profile of partial
utility for each level of resource degradation (resources
released) that can be used to compare strictness or
flexibility of the resource management proposed.

M =


High Medium Low

[0..0.2[ 1.0 1.0 1.0
[0.2..0.4[ 0.8 1.0 1.0
[0.4..0.6[ 0.6 0.8 0.9
[0.6..0.8[ 0.2 0.6 0.8
[0.8..1[ 0.0 0.4 0.6

 (7)

The provider must also advertise the base price for
each type of VM. We assume there are four types of vir-
tual machines with increasing virtual power, for example,
micro, small, regular and extra. The matrix presented in
(8) determines the base price ($/hour) for these types of
VMs.

P =


High Medium Low

micro 0.40 0.32 0.26
small 0.80 0.64 0.51
regular 1.60 1.28 1.02
extra 2.40 1.92 1.54

 (8)

3.5 Comparing flexible pricing profiles in a cloud
market

In a market of cloud providers that are nearer the client,
such as the cloud communities that start to emerge [39],
clients will be more mobile and independent of each
provider. In this way, clients will more frequently have to
look for best prices and partial utilities distributions. To
this end, based on matrices P and M , Equation 9 defines
a new set of matrices for each VM type. In this set, the
matrices represent, for each VM type, the multiplication
of a price’s vector (a line in the P matrix) by the matrix
of partial utilities of the provider. Note that C is the
ordered set of user’s classes.

PMtype = ∀classes ∈ C : Ptype,classes ·M (9)

Figure 3 illustrates an instance of this new set for
the VM types previously described. The differences are
increasingly significant as we increase the capacity (and
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Fig. 3: Matrices combining price and utility for the different VM types and partial utilities.

consequently the prices) of the VMs. While these matri-
ces represent related pricing profiles, they can be used
by costumers to compare and arbitrate over different
providers, either for a given user class and VM size,
or for global aggregate assessment. This further allows
users to graphically navigate through the providers’
pricing profiles. In particular, this make it possible to
explore the pricing profile of a given provider, and
determine the reallocation of resources a user is willingly
to have, in order to fulfill a given level of cost constrains.

4 PARTIAL UTILITY BASED SCHEDULING FOR
IAAS DEPLOYMENTS

In general, the problem we have described is equivalent
to a bin packing problem [40]. So, the scheduling process
must impose constraints, on what would be a heavy
search problem, and be guided by heuristics for celerity.
We consider as relevant resources of a host, and require-
ments for a virtual machine, the following: number of
cores, the processing capability of each core (expressed
as millions of instructions per second - MIPS, MFLOPS,
or any other comparative reference), and memory (in
MB). The following algorithms focus on the first two
requirements but a similar strategy could be used for
memory. They allocate new requested VMs to these
resources, taking into account the partial utility model
described in the previous section.

Algorithm 1 presents what is hereafter identified as
the base allocation algorithm. It takes a list of hosts and
a virtual machine (with its resource requirements) that
needs to be allocated to physical hardware or otherwise
fail. It will search for the host with either more or less
available cores, depending on the order criterion (Φ).
When a greater-than (>) criterion is used, we call it First-
Fit Increasing (FFI) since the host with more available
cores will be selected. When a less-than (<) criterion is
used we call it First-Fit Decreasing (FFD), since the host
with less cores still available will be selected. This base
allocation will eventually fail if no host is found with
the number of requested MIPS, regardless of the class of
each VM. In this situation a classic provider cannot fulfill
further requests without using extra hardware, which
may simple not be available.

Function ALLOCATE checks if a VM can be allocated in
a given host (h). Current allocation strategies either i) try
to find the host where there are still more physical cores
than the sum of virtual ones, and each individually has

Algorithm 1 Generic base allocation: First-Fit Increas-
ing/Decreasing
Require: hosts list of available hosts
Require: vm VM to be allocated
Require: Φ order criterion

1: function BASESCHEDULING(hosts,vm)
2: currCores← 0 or +∞ depending on criterion
3: selectedHost← null
4: for all h ∈ hosts do
5: if AVAILABLECORES(h) Φ currCores then
6: if ISCOMPATIBLE(h, vm) then
7: currCores← AVAILABLECORES(h)
8: selectedHost← h
9: end if

10: end if
11: end for
12: if selectedHost 6= null then
13: ALLOCATE(selectHost, vm)
14: return true
15: end if
16: return false
17: end function

enough capacity to hold the VM; ii) try to find the host
with a core where the VM can fit even if shared with
others; iii) degradate all the VMs in the host to fit the
new VM until no more computational power is available
in the host. In the first two cases, if the conditions are
not met the allocation will fail. In this case, unused cores
is used in the sense that they are still available to allocate
without incurring in overcommit. All the physical cores
will be in use, as usual, but they will not be used to 100%
capacity. So if, for example, 4 cores have an average of
25% CPU ocupation, we consider it equivalent to saying
there are 3 unused cores (i.e. still available to allocate
without overcommit).

In the last case, the allocation will succeed but not
taking the best choices for the new utility model pro-
posed in Section 3. Function ISCOMPATIBLE uses the same
strategies but only determines whether the conditions
hold, leaving the effective allocation to the ALLOCATE

function.

4.1 Analysis of the scheduling cost of the utility-
oblivious scheduling

Algorithm 1 iterates over M hosts looking for the one
with minimum or maximum available cores. In either
case this algorithm determines a compatible host in O(M)
iterations. The ISCOMPATIBLE function depends on the
total number of cores, C, to determine, in case i) if there
is any unused core and, in case ii) if any core still has
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Algorithm 2 Partial utility allocation strategies
Require: hosts hosts ordered by available resources
Require: vm new VM to be allocated
Require: maxADI maximum aggregated degradation index

1: function VMUTILITYALLOCATION(hosts,vm)
2: if BASESCHEDULING(hosts, vm) = true then
3: return true . No need to overcommit VM(s)
4: end if
5: selection← null
6: hosts← sort hosts in ascending order of available resources
7: for all h ∈ hosts do
8: needed← REQUESTED(vm)− AVAILABLE(h)
9: vmList← ALLOCATEDVMS(h)

10: selection← SELECTVMS(vmList, needed)
11: if ADINDEX(hosts, selection) < maxADI then
12: for all (vm, df) ∈ selection do
13: CHANGEALLOCATION(vm, df)
14: end for
15: return true
16: end if
17: end for
18: return false
19: end function

available MIPS. After determining the host where to
allocate the requested VM, function ALLOCATE, can also
complete with the same asymptotic cost. So, in summary,
Algorithm 1 has a cost of O(M · C).

4.2 Partial utility-aware scheduling strategies

When there are no hosts that can be used to allocate
the requested VM, some redistribution strategy must be
used, while maximizing the renting cost as defined in
Section 3. This means that the provider can use different
strategies to do so, by giving priority to larger or smaller
VMs (regarding their virtual power) or to classes with
higher or lower base price.

We have extended the base algorithm so that, when
a VM fails to be allocated, we then have to find a
combination of degradation factors that makes it possible
to fit the new VM. Four strategies/heuristics were im-
plemented to guide our partial utility-driven algorithm.
They differ in the way a host and victim VM is selected
for degradation. They all start by taking the host with
more resources available, that is, with more unitary
available cores and with more total computation power
(MIPS).

Algorithm 2 presents the modifications to the base
algorithm to enable partial utility allocation strategies.
After a host is selected, a set of VMs must be chosen
from the list of allocated VMs in that host, i.e. operation
SELECTVMS presented in Algorithm 3. These VMs are
selected either by choosing the ones from the smallest
size type (which we call min strategy) or the ones with
the biggest size (which we call max strategy). This is
controlled by using VMtypes sorted in ascending or
descending order. In both cases there are variants that
combine with the lowest partial utility class (w.r.t. the
definition of Section 3), either in ascending or descend-
ing order regarding its partial utility class, i.e. min-class
and max-class.

Algorithm 3 Partial utility allocation by min/max VM
type and minimum class price
Require: VMtypes ascending/descending list of VM’s types
Require: vmList list of VMs allocated in host
Require: target virtual power needed to fit all VMs

1: function SELECTVMS(vmList, target)
2: selection← null
3: sum← 0
4: vmList← sort vmList in ascending order of price’s class
5: while sum < target do
6: for all t ∈ VMtypes do
7: for all vm ∈ vmList : VMTYPE(vm) = t do
8: rvm ← NEXTRANGE(vm)
9: selection← selection ∪ (vm, rvm)

10: sum← sum + VIRTUALPOWER(vm) ∗ (1− rvm)
11: if sum ≥ target then
12: break
13: end if
14: end for
15: end for
16: end while
17: return selection
18: end function

4.3 Analysis of the partial-utility scheduling cost
Algorithm 2 goes through the list of hosts trying to
find a combination of VMs whose resources can be
reallocated. For each host, VMs are selected based on
Algorithm 3. The cost of this procedure depends on a
sort operation of N VMs, O(N lg(N)), and a search in the
space of minimum degradations to reach a target amount
of resources. This search depends on r intervals in matrix
(7) and t classes for prices (currently, three, as presented
in Section 3.4), with a cost of O(rtN). This results in
an asymptotic cost of O(rtN + N lg(N)) = O(N lg(N)).
Overall, the host and VMs selection algorithm cost be-
longs to O(M lgM + MN lgN). Because there will be
more VMs (N ), across the datacenter, than hosts (M ),
the asymptotic cost is O(MN lg(N)). In the next section,
we briefly present the more relevant details of extending
the CloudSim [8] simulator to evaluate these strategies.

5 IMPLEMENTATION DETAILS

We have implemented and evaluated our partial utility
model on a state of the art simulator, CloudSim [16].
CloudSim is a simulation framework that must be
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Fig. 4: Highlighted extensions to the CloudSim simulation environ-
ment
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programmatically configured, or extended, to reflect
the characteristics and scheduling strategies of a cloud
provider.

The framework has an object domain representing the
elements of a data center (physical hosts, virtual ma-
chines and execution tasks). Extensibility points include
the strategy to allocate physical resources to VMs and
allocation of workloads to resources available at each
VM. Furthermore, at the data center level, it is possible to
define how VMs are allocated to hosts (including energy-
aware policies) and how execution tasks are assigned
to VMs. Figure 4 highlights the new classes added to
the simulation environment, which range from exploring
extension points, like the virtual machine allocation to
hosts, to enrichments of the object model to include
partial utility related types (e.g. VM type, specification
tables).

Regarding the CloudSim’s base object model we have
the PUVm type which incorporates information regard-
ing its partial utility class. The scheduling algorithms
were implemented as extensions of two main types:
VmAllocationPolicy and VmScheduler. The former
determines how a VM is assigned to a host while the lat-
ter determines how the virtual machine monitor (VMM)
of each host allocates the available resources to each
VM. It can use and re-use different matrices of partial
utility classes and VM base prices, defined in the type
that represents the partial utility-driven datacenter.

The type in CloudSim that represents the dynamic use
of the available (virtual) CPU is the Cloudlet type. Be-
cause cloudlets represent work being done, each cloudlet
must run in a VM with the appropriate type, simulating
work being done on several VMs with different compu-
tational power. So, regarding the Cloudlet class, we
added information about which VM type must be used
to run the task. To ensure that each cloudlet is executed
in the correct VM (degraded or not), we also created a
new broker (extended from DatacenterBroker).2

6 EVALUATION

In this section we evaluate the proposed scheduling
based on partial utility. To do so, we first describe the
datacenters used in the simulation and the VM types
whose base price was already presented in Section 3.4.
The datacenters are characterized by the number and
type of hosts as described in Table 1. We used three
types of datacenters hereafter known as Size-1, Size-2
and Size-3. Each datacenter configuration is represen-
tative of a specific scenario we want to evaluate. The
configuration Size-1 represents a typical configuration
of a cloud community datacenter [41], where low-end
processors are used. Configuration Size-2 represents a
set of clusters owned by our research labs where raw
computational capacity is around 300 cores. The simula-
tion uses quad-core processes with hyper-threading and

2. Source code available at https://code.google.com/p/partial-
utility-cloudsim/

DC size Hosts Cores HT MHz Mem (Gbytes)

Size-1 10 2 no 1860 4
10 2 no 2660 4

Size-2 20 4 yes 1860 8
20 4 yes 2660 8

Size-3 40 4 yes 1860 8
40 4 yes 2660 8

TABLE 1: Hosts configured in the simulation. Number of hosts
per configuration, number of cores per host, computational capacity,
hyper-threading, Memory capacity

micro small regular extra

Virtual CPU Power (×103 MIPS) 0.5 1 2 2.5
Memory (Gbytes) 1 1.7 2.4 3.5

TABLE 2: Characteristics of each VM type used in the simulation

a computational capacity per core in the range used by
Xeon processors with this number of cores. Configura-
tion Size-3 doubles the number of hosts, keeping their
computational configuration.

Available VM types are presented in Table 2. To enrich
the simulation scenario VMs have different sizes, simulat-
ing the request of heterogeneous virtual hardware. This
is a common practice in the literature [23], [8], [16], [31].
The configurations chosen for each VM type will put our
strategies to the test when a new VM request can not
be fulfilled. The number of cores depends on the size of
the datacenter. We simulate different scenarios where the
number of cores per VM will increase as more physical
resources are available. Configuration Size-1 uses VMs
with 1 core. Configuration Size-2 and Size-3 were simu-
lated with VMs having 2 and 4 cores respectively. Each
virtual core, of each VM type, will have the CPU power
presented in Table 2.

We used an increasing number of VMs trying to be
allocated. Each requested VM has a type (e.g. micro).
We considered VM’s types to be uniformly distributed
(realistic assumption) and requested one type at a time.
The following sections highlight the differences between
the current allocation strategies and the ones that can
cope with the proposed flexible SLAs.

6.1 Utility Unaware Allocation

Figures 5 and 6 show the effects of using two different
allocation strategies for host selection, and other two
regarding the use of cores, but still without taking into
account each client’s partial utility. Each x-axis value
represents a total number of VMs requested, r, and the
value in the corresponding left y-axis is the datacenter
occupation (MIPS and Memory) obtained when r − f
number of VMs are able to run, with f ≥ 0 being
the number of not allocated VMs. The host selection
is based on the First-Fit Increasing (FFI) and First-Fit
Decreasing (FFD) algorithms, described in Section 4. In
each of these approaches we present the total percentage
of MIPS and memory allocated, in the left y-axis, for each
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Fig. 5: Base algorithm with no core sharing
between different VMs.
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Fig. 7: Over subscription, equal degradation
and unaware of client’s classes.

set of requested VMs. Regarding the 6th series, FFI/FFD
Failed MIPS, its results are plotted in the right y-axis.

In Figure 5 each VMM (one for each host) allocates
one or more cores to each VM and does not allow any
sharing of cores by different VMs. In Figure 6 each VMM
(one for each host) allocates one or more cores to each
VM and, if necessary, allocates a share of the same core
to a different VM.

In both cases, the datacenter starts rejecting the allo-
cation of new VMs when it is about at 66% of its raw
processing capacity (i.e. MIPS) and at aproximatly 53%
of its memory capacity. Although there are still resources
available (cores and memory) they are not able to fit
100% the QoS of the requested VM. As expected, the core
sharing algorithm promotes better resource utilization
because the maximum effective allocation is 73% of the
datacenter, regarding raw processing capacity, and 59%,
regarding memory capacity. The effective allocation of
core-based sharing still continues to increase, at a slower
rate, because there are smaller VMs that can be allocated.

Figure 8 shows the counting of VM failures grouped
by the VM type and VMM scheduling strategy. The
simulation uses hosts with different capacities and het-
erogeneous VMs, for realism, as workloads are varied
and resources not fully symmetric, as it happens in many
real deployments in practice. The allocation strategy that
enables sharing of resources is naturally the one with
fewer failed requests. In the configured Size-1 datacenter,
the no-core sharing strategy starts rejecting VMs when
a total of 40 is requested. In both cases, the bigger VMs
(i.e. the ones requesting more computing power) are the
ones with a higher rejection rate.

Table 3 (with results for an added number of VM
requests) also shows, in the “Hosts” column, the number
of extra hosts that would be necessary to fit the rejected
VMs. These extra hosts are determined by summing all
the resources not allocated and dividing by the resources
of the type of host with more capacity (i.e., assuming a
perfect fit and ignoring the computational cost of deter-
mining such a fit). The solution proposed in this paper
avoids these extra hosts by readjusting the allocation of
new and accepted VMs, following the utility and price
matrices negotiated with the client.

Figure 9 shows the evolution of hosts’ utilization.
This figure presents the result of allocating a total of
76 VMs. It shows that when using FFD with a core
sharing approach, the number of unused hosts drops
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Base No Core Sharing Base Core Sharing

# VMs Failed E R S M Hosts Failed E R S M Hosts

38 0 (0%) 0 0 0 0 +0 0 (0%) 0 0 0 0 +0
42 2 (5%) 1 1 0 0 +1 2 (5%) 1 1 0 0 +1
60 20 (33%) 5 5 5 5 +10 10 (17%) 5 5 0 0 +5
76 36 (47%) 9 9 9 9 +18 18 (24%) 9 9 0 0 +8

TABLE 3: Summary of VMs requested but not allocated and the
number of additional hosts when cores are not shared

more slowly, while with the FFI approach all hosts start
being used with less VMs allocated. If the datacenter is
running a number and type of VMs below its rejection
point, the FFD scheduling is better because hosts can be
turned off or put into an idle state.

6.2 Over subscription

Looking again to Figures 5-6, at the time when 58 VMs
are requested, both strategies leave a significant part of
the datacenter unused.

Figure 7 shows the results for the over subscription
algorithm (hereafter known as Base+OverSub), described
in Section 4, that is oblivious to client’s classes, because
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Fig. 11: Compared resource utilization.

it releases resources from all VMs until no more com-
putational power is available in the host. Given that
this strategy looks at the host with more cores, ignoring
the total computational power, it departures immedi-
ately from the potential allocation, because resources are
released from VMs even when there is computational
power available in other hosts. However, when more
than 40 VMs are requested, it will grow more than the
previous two allocation strategies.

Differently from the previous two strategies, it will
not fail allocations, as can be seen in the right y-axis
regarding the series “Failed MIPS (sec. axis)”. Never-
theless, the effective allocation still has margin to grow.
More importantly, using this approach, there is no way
to enforce the SLA negotiated with the clients. This has
a significant impact in the provider’s revenue as we will
demonstrate next when we present the results for our
strategies that take into account the type of VMs, their
classes, and the partial utility negotiated.

6.3 Utility-driven Allocation

In utility-driven allocation, all requested VMs will even-
tually be allocated until the datacenter is overcommitted
by a factor that can be defined for each provider. Along
with the type, VMs are characterized by a partial utility
class (e.g. high), as described in Section 3. In the follow-
ing results, in each set of allocated VMs there are 20%
of class high, 50% of class medium and 30% of class low.

In this section we will show how the proposed ap-
proach behaves, regarding two important set of metrics:
a) allocation of VMs and b) execution of workloads by
the allocated VMs. The first set of metrics is mainly
important for the provider, while the second set of
metrics is primarily of interest to the client. We compare

utility-unware allocations with two heuristics presented
in Section 4 - max-class and min-class.

6.3.1 Allocation of VMs
Regarding the provider side metrics, we measure the
number of failed VM requests, the resource utiliza-
tion percentage and the revenue (per hour). In all of
the metrics, our strategies are at least as good as the
Base+OverSub strategy, while specifically regarding rev-
enue, we have average increases around 40%.

First, we compare our approaches with the base algo-
rithm described in Section 4, regarding the number of
VMs that were requested but not allocated. Figure 10.a
shows that, while the base algorithm fails to allocate
some VMs when 40 or more VMs are requested, the other
five utility-driven strategies can allocate all requests in
this configuration of the datacenter (note the collapsed
series). Figure 10.b presents similar results for a Size-2
datacenter. In this case, after 180 VMs, the Base allocation
algorithm rejects VMs of type extra and regular.

Second, we evaluate how available resources are uti-
lized. Regarding this metric, Figure 11 shows the per-
centage of resource utilization with an increasing number
of VMs being requested for allocation. Three observa-
tions are worth noting: a) although with base allocation
strategy some VMs are not scheduled, as demonstrated
in Figure 10, others can still be allocated and can use
some of the remaining resources; b) second, it is clear
that our strategies achieve better resource utilization,
while allocating all VMs; c) as the size of the datacenter
increases, the strategy Base+OverSub lags behind to use
all available resources. Our strategies can reach the peak
in a similar fashion, across all sizes of datacenters.

The third and last metric evaluated for the provider
is the revenue. Figure 12 shows how the revenue pro-
gresses with an increasing number of total VM requests.
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Fig. 14: Compared median execution time.

It clearly demonstrates the benefits of using a degrada-
tion and partial utility-driven approach, showing that
the provider’s revenue can indeed increase if the rejected
VMs (above 40 in the Size-1 datacenter and above 180
in the Size-2 datacenter) are allocated, even if only with
a fraction of their requested resources (i.e. subject to
degradation driven by partial-utility ranges).

Comparing with the utility-oblivious redistribu-
tion, which also allocates all requested VMs (i.e.
Base+OverSub), the increase of revenues in a Size-1 type
datacenter can go up to a a maximum of 65% ($35.8 to
$59.0). In the case of a Size-2 datacenter it can reach a
maximum of 53% ($294.3 to $451.2), and 54% ($580.1 to
$895.8) in a Size-3 configuration. When the comparison is
done starting from the point where VMs are rejected by
the base strategy, the medium increase in revenue is 45%,
40% and 31%, for each datacenter configuration, which
results in an average increase in revenue of 39% when
considering all revenue increases across all datacenters.

We also compare the scheduling heuristics with a
random and an optimal allocation. The random method
chooses the server according to a random order. At a
given server it will iterate over a random number of
the available VMs (at most 50%), until it can take the

necessary resources. This strategy stays below or slightly
above Base+OverSub (which also does not rejects VMs)
but exhibits worst results than any of our heuristics.
The optimal allocation was determined by exhaustively
testing all the combinations of resource reallocation (a
very slow process) and at each step choosing the one
with better revenue. Our two main partial utility-driven
heuristics are the ones that come closer to this allocation.

6.3.2 Effects on workloads

Finally, and regarding the execution time, we have eval-
uated the scheduling of VM resources to each profile
based on the partial utility. The data used was collected
from workloads executed during 10 days by thousands
of PlanetLab VMs provisioned for multiple users [8],
[42]. Each of these workloads are represented by traces
with the percentage of CPU usage of a given VM running
in the PlanetLab network, during a day. We use n of
these workloads where n is the number of requested
VMs. In our simulation environment, each trace is as-
signed to a single VM allocated with each strategy.

The average execution time of the workloads in each
VM is presented in Figure 13, while the median execu-
tion time of the workloads in each VM is presented in
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Figure 14, for the three datacenter sizes. The CPU time
used by the workloads running on the allocated VMs is
based on the simulation clock managed by CloudSim.

In the base strategy, as some requested VMs will be
rejected because no host can be found with the complete
requirements, there will be VMs that receive more than
one PlanetLab VM trace. In the simulation, when these
PlantLab VMs are being reproduced, they receive a frac-
tion of the available CPU, proportionally to the number
of co-located PlanetLab VMs.

The results show that with more VMs allocated, even if
with less allocated resources than the ones requested, as
it is the case, both the average and the median execution
time of tasks running on VMs allocated with our partial
utility-driven scheduler is below the execution times
achieved with the base strategy.

When comparing Base+OverSub with our best strategy
(i.e. min-class), we can observe that the former has a
marginally better average execution time while the latter
has a slightly better median, rendering the differences
seemingly non-significant. Nevertheless, as shown be-
fore in Section 6.3, the Base+OverSub strategy is unable
to reach the best revenue for the provider and cannot
provide any economic benefits for the clients given its
utility unawareness.

7 CONCLUSION

There is an increasing interest in small, geo-distributed
and near-the-client datacenters, what is sometimes
known as Community Cloud Computing (C3). In these
deployments, overcommitting resources is a relevant
technique to lower environmental and operational costs.
Nevertheless, users may be just as happy, or at least
content, with slightly or even significantly reduced per-
formance if they are compensated by lower cost or
almost cost-free.

In this paper, we have proposed a cost model that
takes into account the user’s partial utility specification
when the provider needs to transfer resources between
VMs. We developed extensions to the scheduling policies
of a state of the art cloud infrastructures simulator,
CloudSim [8], [16], that are driven by this model. The
cost model and partial utility-driven strategies were ap-
plied to the oversubscription of CPU. We have measured
the provider’s revenue, resource utilization and client’s
workloads execution time. Results show that, although
our strategies partially degraded and release the compu-
tational power of VMs when resources are scarce, they
overcome the classic allocation strategy which would not
be able to allocate above a certain number of VMs.

We see an interesting path regarding future work on
this topic. From an experimental point of view we plan to
incorporate this approach in private cloud solutions such
as OpenStack3 and extend the evaluation of the model to
other resources, namely the network bandwidth. We also
want to enhance the scheduling process to incorporate

3. http://www.openstack.org/

progress information collected from workloads, eventu-
ally using historical data, such that resources can also be
taken from workloads that use them less efficiently. This
will need further extensions to the execution model of
CloudSim.
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