
OBIWAN: Design and Implementation of a
Middleware Platform

Paulo Ferreira, Member, IEEE, Luı́s Veiga, and Carlos Ribeiro

Abstract—Programming distributed applications supporting data sharing is very hard. In most middleware platforms, programmers

must deal with system-level issues for which they do not have the adequate knowledge, e.g., object replication, abusive resource

consumption by mobile agents, and distributed garbage collection. As a result, programmers are diverted from their main task: the

application logic. In addition, given that such system-level issues are extremely error-prone, programmers spend innumerous hours

debugging. We designed, implemented, and evaluated a middleware platform called OBIWAN that releases the programmer from the

above mentioned system-level issues. OBIWAN has the following distinctive characteristics: 1) allows the programmer to develop

applications using either remote object invocation, object replication, or mobile agents, according to the specific needs of applications,

2) supports automatic object replication (e.g., incremental on-demand replication, transparent object faulting and serving, etc.),

3) supports distributed garbage collection of useless replicas, and 4) supports the specification and enforcement of history-based

security policies well adapted to mobile agents needs (e.g., preventing abusive resource consumption).

Index Terms—Middleware, replication, distributed garbage collection, security policies, mobile agents.

�

1 INTRODUCTION

THE need for sharing is well-known in a large number of
distributed applications. These applications are difficult

to develop for wide area (possibly mobile) networks because
of slow and unreliable connections and, most of all, because
programmers are forced todealwith system-level issues (e.g.,
distributed garbage collection, replication, etc.).

In addition, when using a middleware platform, pro-
grammers are often forced to use a particular programming
paradigmwhichmay not be the most suited to the particular
application being developed. For example, there are circum-
stances in which, instead of invoking an object remotely, it
would be more adequate, in terms of performance and
network usage, to create a replica of the object and invoke it
locally. There are also situations in which an application
would be preferably developed using mobile agents instead
of traditional remote object invocation (RMI).

As an example, consider a shopping (client) program
running in a PDA. The client interacts with servers to get
information about the products in their catalogs. However,
catalogs are too big to fit in the PDA’s memory and, most
importantly, the client program is aware of the shopping
profile and needs of its owner. In addition, as the user
browses the existing products related to his needs, lots of
invocations take place. Thus, even while connected to the
network (via GPRS/craddle/etc.) it is advantageous (in
terms of performance and cost) to replicate only those
products whose category the user is interested in. Even
when the PDA is not connected, the user can still fill his
shopping cart as most of the data he needs (according to his
profile) is replicated in his PDA. Once the user has filled his
shopping cart, the buying phase may start; this implies

accessing different shopping servers in the network (so that

products are bought at the most advantageous server).

Thus, the client program opens a connection and sends a

mobile agent to the network; then, the connection is closed.

The agent interacts with the shopping servers as needed.

Obviously, this interaction has to be controlled according to

some security policy. Later, the client program opens a

network connection and invokes the agent via RMI in order

to provide final payment authorization and delivery details.
Currently, dealing with such programming paradigm

diversity implies: 1) either using different middleware

platforms, with obvious inconveniencies such as integration

problems, security loopholes, and learning costs, or 2) when

using a single middleware platform, programmers are

forced to deal with system-level issues such as handling

the creation of replicas and the corresponding consequences

in terms of object faulting, among other details.
For these reasons, we designed, implemented, and

evaluated a platform called OBIWAN,1 which has the

following distinctive characteristics:

1. Paradigm Flexibility: allows programmers to devel-
op applications using either RMI, object replication,
or mobile agents,2 according to the specific needs of
applications.

2. Automatic Replication: supports distributed mem-
ory management capable of dealing with object
replicas automatically (e.g., incremental on-demand
replication, transparent object faulting and serving,
etc.).

3. Distributed Garbage Collection (DGC): supports
the automatic reclamation of useless replicas.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003 1

. The authors are with INESC ID/IST, Rua Alves Redol No. 9-6 Andar,
1000-029 Lisboa, Portugal.
E-mail: {paulo.ferreira, luis.veiga, carlos.ribeiro}@inesc-id.pt.

Manuscript received 8 Dec. 2002; revised 3 July 2003; accepted 3 Aug. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118747.

1. OBIWAN stands for Object Broker Infrastructure for Wide Area
Networks.

2. We will hereafter refer to mobile agent, or simply agent, as a program
that travels across a network, possibly acting autonomously and on behalf
of his owner.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

4. Security Policies: supports the definition and
enforcement of history-based security policies well
adapted to agents needs (e.g., preventing abusive
resource consumption, enforcing a Chinese-wall
policy, etc.).

No other middleware platform provides all the char-
acteristics mentioned above. In particular, the support for
replication raises the problem of DGC more seriously than
with traditional RMI; garbage collection algorithms for
distributed systems based on RMI are not safe when
applied to a distributed system with replicas [10]. In
addition, it is equally important to note that the use of
mobile agents brings the problem of abusive resource
consumption on hosting computers. OBIWAN solves this
problem by means of a security language and a monitor that
enforces the security policies thus defined (not necessarily
by the programmer, i.e., they can be defined by the policy
administrator).

Finally, OBIWAN runs both on top of Java [1] and .Net
[25] and does not require any modification of the under-
lying Java Virtual Machine (JVM) or Common Language
Runtime (CLR), respectively.

1.1 Replication

The replication module in OBIWAN is responsible for
dealing with all aspects of replica creation so that: 1) it
allows the application to decide, at runtime, the mechanism
by which objects should be invoked, either via RMI or
invocation on a local replica, 2) it allows incremental
replication of large object graphs, and 3) it allows the
creation of dynamic clusters of objects. These mechanisms
allow an application to deal with situations that frequently
occur in a mobile or wide-area network, such as disconnec-
tions and slow links: 1) as long as objects needed by an
application (or by an mobile agent) are colocated, there is no
need to be connected to the network, and 2) it is possible to
replace, at runtime, remote by local invocations on replicas,
thus improving the performance and adaptability of
applications.

1.2 Distributed Garbage Collection

Concerning DGC, most algorithms [24] are not well-suited
for systems supporting object replication because: either
1) they do not consider the existence of replication or 2) they
impose severe constraints on scalability by requiring causal
delivery to be provided by the underlying communication
layer. (More details are given in Section 2.2).

In OBIWAN, the DGC algorithm solves both these
problems. The result is an algorithm that, besides being
correct in the presence of replicated objects and independent
of the protocol that maintains such replicas coherent among
processes, it does not require causal delivery to be ensured by
the underlying communications support. In addition, it has
minimal performance impact on applications.

1.3 Mobile Agents Security

The mobile agent paradigm [16], [36] has introduced some
new concerns on the security area, in particular, in
information flow control and authorization. A major issue
with such agent-based applications is the definition of what
operations the agent should be authorized to perform and
what operations the agent should be prohibited from doing

or obliged to do. This can be accomplished with the use of
history-based security policies [8], [28].

OBIWAN supports the definition and enforcement of
history-based security policies. The support for these
policies is extremely important in order to implement real
organization security policies, where an agent’s behavior
influences its permissions; we can define some useful and
complex history-based security policies applied to the
mobile agent paradigm, such as Chinese-wall [3] and
history-based separation of duty [33]. Thus, an agent’s host
is able to allow or deny an agent’s request to access a
protected resource based on the agent’s past behavior,
whether on that host or on previous hosts.

This paper is organized as follows: In Section 2, we
describe the architecture of OBIWAN focusing on its most
relevant components: support for incremental replication,
DGC, and mobile agents security. Section 3 presents the
most important aspects of the implementation. Then, in
Section 4, we show some relevant performance results. In
Sections 5 and 6, we compare our work with others’ and
draw some conclusions, respectively.

2 ARCHITECTURE

OBIWAN is a peer-to-peer middleware platform in the
sense that any process may behave either as a client or as a
server at any moment. Thus, with regard to replication, a
process P can either request the local creation of replicas of
remote objects (P acting as a client), or be asked by another
process to provide objects to be replicated (P acting as a
server).

OBIWAN gives to the application programmer the view
of a network of computers in which one or more processes
run; objects and agents exist inside processes (with regard
to agents, we call such processes hosts). An object can be
invoked locally (after being replicated) or remotely. Mobile
agents can be created and then freely migrated as long as
the security policy allows. The specification and enforce-
ment of security policies defines a sandbox in which
application code, agents in particular, execute. The specifi-
cation of security policies is done through a language called
SPL (Security Policy Language) [26]. SPL is then auto-
matically translated into code that enforces that policy.

The most important OBIWAN data structures are
illustrated in Fig. 1:

1. Proxy-out/proxy-in pairs [31]. A proxy-out stands in
for an object that is not yet locally replicated (e.g.,
BproxyOut stands for B’ in P1). For each proxy-out,
there is a corresponding proxy-in. In Section 2.1, we
describe how these proxies help in supporting object
replication.

2. Interfaces. The interfaces implemented by each
object and proxy-out/proxy-in pairs are presented
now: IA, IB, and IC: these are the interfaces of
objects A, B, and C, respectively, designed by the
programmer; they define the methods that can be
remotely invoked on these objects. IProvider: inter-
face with methods get and put that supports the
creation and update of replicas; method get results
in the creation of a replica and method put is
invoked to send a replica is sent back to the process

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

where it came from (in order to update its master
replica). IDemander and IDemandee: interfaces that
support the incremental replication of an object
graph (as described in Section 2.1.1). IProviderRe-
mote: remote interface that inherits from IProvider
so that its methods can be invoked remotely.

3. Agent’s home/mobile proxies. An agent’s home
proxy offers, among other facilities, agent location
independence to the application. So, to interact with
agents, an application is not obliged to know where
they reside. It only needs to interact with the
corresponding home proxy, which will then forward
the requested operations to the appropriate agent.
So, an agent’s home proxy is similar to a stub used
for RMI.

Cooperating with an agent’s home proxy, there is
a mobile proxy residing in the same host where the
agent is being executed. The mobile proxy can be
viewed as an extension of the home proxy in the
remote host. As opposed to the home proxy, the

remote one is mobile and travels between hosts,
permanently accompanying the corresponding
agent.

4. GC-stubs and GC-scions. A GC-stub describes an
outgoing interprocess reference, from a source
process to a target process (e.g., from object A in
P2 to object Z in P3). A GC-scion describes an
incoming interprocess reference, from a source
process to a target process (e.g., to object Z in P3
from object A in P2).

It is important to note that GC-stubs andGC-scions

do not impose any indirection on the native reference

mechanism. In other words, they do not interfere

either with the structure of references or the invoca-

tion mechanism. They are simply GC specific aux-

iliary data structures. Thus, GC-stubs and GC-scions

should not be confused with stubs and scions (or

skeletons) used for RMI (also represented in Fig. 1)

that are managed by the underlying virtual machine.

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 3

Fig. 1. OBIWAN data structures.

5. inPropList and outPropList. These lists indicate the
process from which each object has been replicated,
and the processes to which each object has been
replicated, respectively. Thus, each entry of the
inPropList/outPropList contains the following in-
formation: propObj is the reference of the object that
has been replicated into/to a process, propProc is
the process from/to which the object propObj has
been replicated, and sentUmess/recUmess is a bit
indicating if a unreachable message (for DGC
purposes) has been sent/received (more details are
given in Section 2.2.1).

6. Security module. This module includes the event
interceptor through which all relevant events are
filtered (e.g., object invocation, agents’ migration,
etc.). Those events that are important for the
enforcement of history-based policies are logged in
the event log module. Events that require an
authorization, before being effectively performed,
are directed to the security monitor. The input for
this last module is the specification of the policy
being enforced and some context information that
may be relevant to determine if the event should be
authorized on not.

2.1 Replication

The application programmer, if he wants to, can control,

both at compile-time and at runtime, which objects should
be invoked remotely or locally. So, at any time, both
replicas, the master and the local, can be freely invoked; the

programmer decides what the best option is.
A local replica A’ can be updated from its master A, or

update it, whenever the programmer wants. Obviously, due
to replication, the issue of replicas’ consistency arises. We

leave the responsibility of maintaining (or not) the consis-
tency of replicas to the programmer.3

The incremental replication of an object graph has two

clear advantages with regard to the replication of the whole

reachability graph in one step: 1) the latency imposed on the

application is smaller because the application can invoke

immediately the new replica without waiting for the whole

graph to be available, and 2) only those objects that are

really needed become replicated.
Thus, the situations in which an application does not

need to invoke every object of a graph, or the computer

where the application is running has limited memory

available, are those in which incremental replication is

useful. On the other hand, there are situations in which it

may be better to replicate the whole graph; for example, if

all objects are really required for the application to work

and the network connection will not be available in the

future, it is better to replicate the transitive closure of the

graph. The application can easily make this decision at

runtime, between incremental or transitive closure replica-

tion mode, by means of the mode argument of the method

IProvideRemote::get(mode,depth).4

2.1.1 Incremental Replication

Without loss of generality, we describe how OBIWAN

supports replication, taking into account the scenario

illustrated in Figs. 1 and 2. There are two processes, P1

and P2, in two different sites, and the initial situation is the

following:

1. P2 holds a graph of objects A, B, and C,
2. object A has been replicated from P2 to P1, thus we

have A’ in P1,
3. A’ holds a reference to AproxyIn (for reasons that

will be made clear afterward), and
4. given that B has not been replicated yet, A’ points to

BproxyOut instead.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 2. Replication of B from P2 to P1 (numbers corresponding to enumerated items in Section 2.1.1).

3. Note that the application programmer is not forced to deal with
consistency; he may simply use a library of specific consistency protocols
[12], [17], [18], [20]. We plan to integrate such libraries in OBIWAN.

4. The runtime parameter “depth” specifies the depth of the graph to be
replicated.

Note that A’ was replicated the same way that B will be, as
explained afterward.

The stub-scion pairs for RMI support are created by the
underlying virtual machine. Objects A, B, and C are created
by the programmer; their replicas (A’, B’, etc.) are created
either upon the programmer’s request or automatically (i.e.,

as a result from object invocation). Proxies-in and proxies-
out, as well as references pointing to them, are part of the
OBIWAN platform and are transparent to the programmer.

Starting with the initial situation, the code in A’ may
invoke anymethod that is part of the interface IB, exported by
B, on BProxyOut (that A’ sees as being B’). For transparency,
this requires the system to support a kind of “object faulting”
mechanism as described now. All IB methods in BProxyOut

simply invoke its demand method BProxyOut.demand
(interface IDemandee) that runs as follows:

1. It invokes method BProxyIn.get in P2 (BProxyIn is
BProxyOut’s provider).

2. BProxyIn.get invokes B.get (interface IProvider) that
will proceed as follows: It creates B’, CProxyOut,
CProxyIn and sets the references between them;
once this method terminates, B’, BProxyOut, and
CProxyOut are all in P1, CProxyIn is in P2; note that
A’ and BProxyOut still point to each other (Fig. 2
illustrates this situation and the following two, by
enumerating the corresponding arrows).

3. BProxyOut invokes B’.setProvider(this.provider) so
that B’ also points to BProxyIn; this is needed
because the application can decide to update the
master replica B (by invoking method B’.put that in
turn will invoke BProxyIn.put) or to refresh replica
B’ (method BProxyIn.get).

4. BProxyOut invokes A’.updateMember(B’,this) so
that A’ replaces its reference to BProxyOut with a
reference to B’.

5. Finally, BProxyOut invokes the same method on B’
that was invoked initially by A’ (that triggered this
whole process) and returns accordingly to the
application code.

6. From this moment on, BProxyOut is no longer
reachable in P1 and will be reclaimed by the garbage
collector of the underlying virtual machine.

It is important to note that, once B gets replicated in P1,
as described above, further invocations from A’ on B’ will
be normal direct invocations with no indirection at all.
Later, when B’ invokes a method on CProxyOut (standing
in for C’ that is not yet replicated in P1), an object fault

occurs; this fault will be solved with a set of steps similar to
those previously described. In addition, note that this
mechanism does not imply the modification of the under-
lying virtual machine. This fact is key for OBIWAN
portability.

The replication mechanism just described is very flexible
in the sense that it allows each object to be individually
replicated. However, this has a cost that results from the

creation and transfer of the associated data structures (i.e.,
proxies). To minimize this cost, OBIWAN allows an
application to replicate a set of objects as a whole, i.e., a
cluster, for which there is only proxy-out/proxy-in pair.

A cluster is a set of objects that are part of a reachability
graph. For example, if an application holds a list of
1,000 objects, it is possible to replicate a part of the list so
that only 100 objects are replicated and a single proxy-out/
proxy-in pair is effectively created. Thus, the amount of
objects in the cluster can be determined at runtime by the
application. The application specifies the depth of the
partial reachability graph that it wants to replicate as a
whole. So, these clusters are highly dynamic. This is an
intermediate solution between: 1) having the possibility of
incrementally replicating each object or 2) replicating the
whole graph. (See Section 4 for performance results of both
approaches.)

2.2 Distributed Garbage Collection

Consider a scenario inwhich the initial situation is illustrated
in Fig. 1. Now, suppose that, due to application execution in
P1, A’ becomes locally unreachable5 and, due to application
execution in P2,Ano longer points to Z. Then, the question is:
Should Z be considered unreachable, i.e., garbage? As a
matter of fact, Zmust be considered to be reachable because it
is possible for an application in P2 to update A from
process P1 (recall that outPropList in P2 stores all the
processes holding replicas of A). Thus, the fact that A’ is
locallyunreachable in process P1, andAno longer points to Z,
does not mean that Z is globally unreachable. Therefore, a
target object Z is considered unreachable only if the union of
all the replicas of the source object, A in this example, do not
refer to it. We call this the Union Rule (more details are given
in Section 2.2.1).

Classical DGC algorithms (i.e., those designed for RMI-
based systems) erroneously consider that Z is effectively
garbage, i.e., that it can be deleted. Larchant [11] does
handle this situation; however, it imposes severe constraints
on scalability because it requires the underlying commu-
nication layer to support causal delivery [14]. In OBIWAN,
we provide an algorithm for DGC that, while being correct
in presence of replicas (as Larchant), is more scalable
because it does not require causal delivery to be provided
by the underlying communication layer.

2.2.1 Algorithm

The DGC algorithm is a hybrid of tracing and reference-
listing [23], [24], [32]. Thus, each process has two compo-
nents: a local tracing collector and a distributed collector.
Each process does its local tracing independently from any
other process. The local tracing can be done by any mark-
and-sweep based collector. The distributed collectors, based
on reference-listing, work together by exchanging asyn-
chronous messages.

The local and distributed collectors depend on each
other to perform their job in the following way: A local
collector running inside a process traces the local object
graph starting from that process’s local root and set of
GC-scions. A local tracing generates a new set of GC-
stubs, i.e., for each outgoing interprocess reference, it
creates a GC-stub in the new set of GC-stubs. From time
to time, possibly after a local collection, the distributed
collector sends a message called newSetStubs; this
message contains the new set of GC-stubs that resulted

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 5

5. Locally (un)reachability means (un)accessibility from the enclosing
process’s local root (i.e., stack and static variables).

from the local collection; this message is sent to the
processes holding the GC-scions corresponding to the
GC-stubs in the previous GC-stub set. In each of the
receiving processes, the distributed collector matches the
just received set of GC-stubs with its set of GC-scions;
those GC-scions that no longer have the corresponding
GC-stub, are deleted.

Once a local tracing is completed, every locally reachable
object has been found (e.g., marked, if a mark-and-sweep
algorithm is used); objects not yet found are locally
unreachable; however, they can still be reachable from
some other process holding a replica of, at least, one of such
objects. To prevent the erroneous deletion of such objects,
the local collector traces the objects graph from the lists
inPropList and outPropList. Thus, the local and distributed
collectors perform as follows:

1. When a locally reachable object (already discovered
by the local collector) is found, the tracing along that
reference path ends.

2. When an outgoing interprocess reference is found,
the corresponding GC-stub is created in the new set
of GC-stubs.

3. For an object that is reachable only from the
inPropList, a message unreachable is sent to the
process from where that object has been replicated;
this sending event is registered by changing a
sentUmess bit in the corresponding inPropList
entry from 0 to 1. When a unreachable message
reaches a process, this delivery event is registered by
changing a recUmess bit in the corresponding
outPropList entry from 0 to 1.

4. For an object that is reachable only from the
outPropList, and the enclosing process has already
received a unreachable message from all the
processes to which that object has been previously
replicated, a reclaim message is sent to all those
processes and the corresponding entries in the
outPropList are deleted; otherwise, nothing is done.
When a process receives a reclaim message it
deletes the corresponding entry in the inPropList.

As already mentioned, an object can be reclaimed only
when all its replicas are no longer reachable. This is ensured
by tracing the objects graph from the lists inPropList and
outPropList; objects that are reachable only from these lists
are not locally reachable; however, they cannot be re-
claimed without ensuring their global unreachability, i.e.,
that none of their replicas are accessible. (This is the basis
for the Union Rule.)

Concerning the interaction between applications and the
DGC algorithm, we have the following: 1) immediately
before a message containing a replica is sent, the references
being exported (contained in the replicated object)6 must be
found in order to create the corresponding GC-scions, and
2) immediately before a message containing a replica is
delivered, the outgoing interprocess references being im-
ported must be found in order to create the corresponding
local GC-stubs.7

It is worthy to note that the DGC algorithm does not
require the underlying communication layer to support
causal delivery (which is an improvement with regard to
Larchant). This clearly contributes to its scalability and is
ensured because the DGC algorithm creates the correspond-
ing GC-scions and GC-stubs immediately before a replica is
sent and delivered, respectively.

Thus, the DGC algorithm can be summarized by the
following safety rules:

1. Clean Before Send Replica. Before sending a
message containing a replica of an object X from a
process P, X must be scanned for references and the
corresponding GC-scions created in P.

2. Clean Before Deliver Replica. Before delivering a
message containing a replica of an object X in a
process P, X must be scanned for outgoing inter-
process references and the corresponding GC-stubs
created in P.

3. Union Rule. A target object Z is considered
unreachable only if the union of all the replicas of
the source objects do not refer to it.

2.3 Mobile Agents Security

For the definition of security policies in OBIWAN, we
developed SPL [26]. This language is sufficiently expressive
to define a vast group of authorization and obligation
policies, is very efficient, and is enforceable by a security
monitor. This expressiveness and efficiency allows its use in
a wide variety of systems, particularly, in OBIWAN.
Although flexible enough to express numerous complex
security models [30], such as role-based access control
(RBAC), discretionary access control (DAC), or obligation-
based policies, we focus on its ability to express history-
based security policies.

The SPL language is based on four essential entities:
objects, groups, rules, and policies. The rules establish
constraints through the relations among objects and groups.
Policies result from the composition of multiple rules and
groups, and are the main building blocks of SPL. This
language is therefore policy-oriented and constraint-based.

SPL objects are typified with an explicit interface,
through which their properties can be obtained and
modified. These objects may represent not only internal
authorization model objects, but also external platform
resident objects. Although there are some internal objects
and groups, the vast majority are external, such as mobile
agents, hosts, or system resources (e.g., files). Each external
object has an associated type. That type is used to define its
interface and subsequent properties. As an example, each
mobile agent is an object of the type mobileAgent, which
has specific mobility properties.

The type definition in SPL is similar to the interface
definition in Java. There are six basic types that can be used:
number, string, Boolean, rule, policy, and object. The
definition of types object and mobileAgent is presented in
Fig. 3. Besides the definition of types by inheritance, it is
also possible to define types based on the composition of
groups and previously existing types. Such an example may
be the definition of an agent society type as an alias for a
group of agents: alias agent group agentSociety;.

Groups, in this platform, are fundamental since they allow
the association of entities with similar properties, leading to

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

6. When an object is replicated to a process, we say that its enclosed
references are exported from the sending process to the receiving process;
on the receiving process, i.e., the one receiving the replicated object, we
say that the object references are imported.

7. Note that this may result in the creation of chains of GC-stub/GC-
scion pairs, as it happens with SSP Chains [32].

the ease of policy definition and to the increased expressive-
ness and scalability of the language. SPL supports two
different kinds of groups: sets and categories. Sets are groups
that result from insertions and removals of individual
elements. Categories are groups defined by their elements’
properties. For example, a category expressed in terms of the
agents that have process P1 as home host is expressed as
follows: mobileAgent group homeAgents = AllAgents

@ {.homeHost = P1};.
Another important SPL entity is the rule. Rules are

entities that establish constraints on the authorized opera-
tions. An authorization policy may therefore be expressed
in terms of a set of rules. SPL rules are three-value logical
expressions. They may assume the following values: allow,
deny, and not apply. These values decide the acceptability
of the events that are generated by the OBIWAN platform.

There are two classes of special events that deserve to be
mentioned: 1) the current event and 2) past events. The first
one is the event that is being checked and over which
approval is requested. The second type of events are
already approved or refused events that constitute the
knowledge base for history-based security policies.

A rule is composed by two logical expressions. The first
one defines the applicability domain of the rule, while the
second expression sets the acceptability domain. For
example, the rule in Fig. 3c is applicable to all migration
requests to host P1 that are generated by the mobile agent
John. The acceptability domain is always true, so the event
is always allowed if the rule is applicable.

A policy is a set of rules and groups that determines the
authorization and prohibition of a given domain of events.
In each policy, there is a special rule, designated Query Rule
(QR), identified by a question mark before the name of the
rule, which is responsible for the policy’s behavior and
decisions. This rule may, in turn, call other rules in order to
enforce the desired security policy.

2.3.1 Agents’ History-Based Policies

OBIWAN supports the definition and enforcement of
security policies on mobile agents and hosts. As our
platform focuses on common and frequent security threats

for mobile agent systems, such as denial-of-service by
means of illegal resource usage, or undesired information
flows, we need to offer protection mechanisms to both
agents and hosts, in order to prevent that sort of attacks.

Thus, we support not only 1) mobile agent policies,
which protect agents from potentially harmful operations,
either due to careless agent programming, or due to
interactions with nonreliable entities, such as hosts or other
agents, but also 2) host policies that protect processes from
undesired operations perpetrated by mobile agents.

Consider the situation where it is necessary to implement
a Chinese-wall policy [3].8 For this situation, suppose we
have a single class of interest that contains multiple hosts. In
this scenario, any agent that has already been executed in a
given process, will be denied access to any other process in
that class of interest. In Fig. 4a, we show the specification of
this policy for OBIWAN.

Mobile agents must also be protected from interactions
with other agents. Consider the simple scenario where
mobile agent Joe offers two services, provided by methods
M1 and M2. Joe is very cautious and, therefore, does not
allow some agents, such as agent Bill, to access the service
provided by M2 if it has already accessed service M1. This
policy could be specified in OBIWAN as shown in Fig. 4b.

As stated before, OBIWAN policies may be defined not
only for mobile agents, but also for hosts. Actually, these
policies may be used to control the acceptability of agent’s
requested operations in those hosts. In particular, these
policies may accept or refuse the arrival of a specific mobile
agent to the host that enforces such policies. They can,
additionally, control agent’s access to host’s protected
system resources, such as files or network connections.

As an example, consider a history-based duty coopera-
tion policy in which two hosts cooperate in some task with
basic and advanced operations; the latter can only be
performed once the basic operation has been performed.
For that matter, suppose we have two different hosts, P1
and P2, that cooperate. In host P1, the mobile agent

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 7

Fig. 3. SPL examples: (a) definition of type object, (b) definition of type mobileAgent, and (c) rule applicable to all migration requests to host P1 that

are generated by the mobile agent John.

Fig. 4. Specification of history-based policies with SPL: (a) Chinese-wall and (b) interaction between two agents.

8. In a Chinese-wall policy, every resource belonging to one class of
interest can only be accessed by a user that has not previously accessed
another resource of that same class of interest.

performs the basic operation of that task. After that, the
mobile agent must migrate to host P2 in order to execute the
advanced operation of the same task. However, the agent
should not migrate to host P2 before having executed the
basic operation.

This policy is specified as shown in Fig. 5a. In this policy,
host P2 searches host P1 past events for any event that
corresponds to the basic operation performed by this agent,
which is expressed by the constraint e.source = ce.

source. Note that the constraint e.target = ce.target

guarantees that the basic and the advanced operations refer
to the same task.

Finally, to illustrate a denial of service attack, consider
the policy definition in Fig. 5b; it prevents an agent to
consume, without limitation, the resources associated with
the creation of windows in the host process. As a matter of
fact, this policy defines that an agent cannot perform an
“OpenWindow” operation if the number of windows
already created is equal to “MaxOpenWin.”

3 IMPLEMENTATION

We developed two prototypes of OBIWAN: 1) one runs on
top of the JVM and is written in Java, and 2) the other runs
on top of the .Net CLR and is written in C#.9 The differences
between the two prototypes are minimal. Both JVM and the
CLR support the basic functionality required, i.e., RMI,
dynamic code loading and reflection. OBIWAN does not

require any modification of either JVM or CLR internals.

This fact is key for OBIWAN portability.

3.1 Classes and Interfaces

The most relevant interfaces and classes concerning

replication are illustrated in Fig. 6 (recall Fig. 1 for the

corresponding methods). The differences between Java and

C# are minimal. Thus, hereafter, we will consider only the

Java interfaces.
The “rectangular” interface and class are part of the

regular Java distribution. The “rounded rectangles” repre-

sent OBIWAN platform interfaces that are constant and,

therefore, precompiled. The “dashed ellipses” represent

classes and interfaces automatically generated by obi-

comp.10 Finally, the solid “ellipse” represents the class that

the programmer writes.
The implementation of interfaces IDemander, IProvider

and, if desired, IRestartable, is automatic through source

code augmentation of class A. The programmer only has to

write class A (note that the corresponding interface IA can

be derived from it) and, obviously, the code of the client

that invokes an instance of A. The interfaces IProvider and

IProviderRemote are constant, thus they do not have to be

generated each time an application is written. The interface

IARemote and classes AProxyOut and AProxyIn are

generated automatically.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 5. Specification of history-based policies with SPL: (a) duty cooperation policy and (b) preventing a denial of service attack (abusive windows

creation).

Fig. 6. Interfaces and classes in Java. Inheritance is represented with a solid line; implementation is represented with a dashed line.

9. Except the part that, from the security specification, generates the
corresponding security monitor; this code is only written in Java, but can
generate either Java or C#.

10. Obicomp is the OBIWAN tool that generates the code needed for
replication, DGC, and security (from the policy specification).

OBIWAN provides support for the migration of
execution flow through the interface IRestartable that is
automatically implemented by obicomp. Programmers
just need to implement the run method of the java.

lang.Runnable interface.
Since threads’ stacks are not first class objects (both in

.Net and Java), the programmer must provide synchroniza-
tion points in which the agent execution can be frozen, its
state serialized and transferred for ulterior reactivation
upon arrival on another process. Thus, at certain points of
execution, the programmer must invoke the checkpoint
method of the IRestartable interface (recall that all methods
of this interface are automatically implemented). The
checkpoint method implements a synchronization point
where it is safe to freeze the execution flow on an object,
serialize its data, transmit it, and reactivate it in another
process through the creation of a new dedicated object
thread. Prior to invoking the checkpoint method, it is the
programmer’s responsibility to set the object in a stable
state that does not rely on stack frame information, i.e., the
object can be restarted correctly (from an application’s
semantic point of view) in another process.

To summarize, when a new application is developed the
programmer does the following steps: 1) write the interface
IA, 2) write the class A, and 3) run obicomp. The last step
automatically generates the other interfaces and classes
needed, and extends class A implementing interfaces
IProvider and IDemander. Additionally, the support for
the migration of execution flow, i.e., agents, is achieved
simply by having class A implement the interfaces
Runnable (provided by Java) and IRestartable (provided
by OBIWAN); OBIWAN automatically generates the code
that implements IRestartable. (Obviously, the programmer
has to write method run.)

Currently, obicomp uses a mix of: 1) reflection to analyze
classes and generate the corresponding proxies, and
2) source code insertion to augment the classes written by
the programmer with the methods that implement inter-
faces IDemander, IProvider, and IRestartable.

3.2 Distributed Garbage Collection

Basically, the code of the distributed garbage collector
implements the safety rules (recall Section 2.2.1). The
implementation of these rules consists mostly on scanning
the objects being replicated and creating the corresponding
GC-scions and GC-stubs.

An important aspect concerning the implementationof the
distributed garbage collector is the data structures support-
ing the GC-stubs and GC-scions. These were conceived
taking into account their use, in particular, to optimize the
kindof information exchangedbetweenprocesses that occurs
when a message with a new set of GC-stubs is sent. This
messagecarries thenewsetofGC-stubs, resulting froma local
collection; it is sent to the processes holding the GC-scions
corresponding to the GC-stubs in the previous GC-stub set.
Then, in each of the receiving processes, the distributed
collectormatches the just received set of GC-stubswith its set
of GC-scions; those GC-scions that no longer have the
corresponding GC-stub are deleted.

Thus, GC-stubs are grouped by processes, i.e., there is
one hash table for each process holding GC-scions
corresponding to the GC-stubs in that table. Sending a
new set of GC-stubs to a particular process is just a matter

of sending the new hash table. The same reasoning applies
to GC-scions: they are stored in hash tables, each table
grouping the GC-scions whose corresponding GC-stubs are
in the same process.

3.3 SPL

Given the resemblance of SPL and Java/C# structure,most of
the compiler actions are simple translations: Each SPL policy
is directly translated into a Java/C# class; each rule is
translated into a trivalue function without parameters (with
the exception of the query rule which has one parameter: the
current event); each entity is translated into a Java/C#
interface; and each group variable is translated into a Java/
C# variable of type “SplGroup,”which defines an interface to
access several kinds of groups (external groups, subgroups of
external groups, and internal groups).

Wherever a policy instance is used in place of a rule, the
obicomp executes an automatic cast operation consisting of
making explicit the call to the query rule of the policy. Thus,
the overall structure of the generated code can be seen as a
tree of trivalue functions calling other functions, in which
the root is the function resulting from the translation of the
query rule of the master policy and the leaves are the
functions resulting from simple rules.

4 EVALUATION

We evaluated the OBIWAN middleware platform by
developing new applications, porting existing ones, and
measuring its performance. However, for lack of space, we
only show some relevant performance results of OBIWAN
concerning its core functionality: 1) the cost of incremental
object replication with and without clustering, 2) the
performance penalty due to DGC safety rules, and 3) the
cost of evaluating a large number of SPL rules.

All the results were obtained in a 100 Mb/sec local area
network, connecting several PCs with Pentium II and
Pentium III processors, either with 64 Mb or 128 Mb of
main memory each, running JDK 1.3 on top of Windows
2000.

4.1 Incremental Replication

We present the performance of incremental replication for
objects with 64 bytes and 1,024 bytes (more results in [37]).
We use a list with 1,000 objects (all with the same size) that
is created in process P2. This list is then replicated into
another process P1, in several steps, each step replicating 1,
25, 100, 250, 500, or 750 objects. Then, the application
running in P1 invokes a dummy method on each object of
the list. When the object being invoked is not yet replicated
the system automatically replicates the next 1, 25, 100, 250,
500, or 750 objects.

The results are presented in Fig. 7a. Note that, the time
values include the creation and transfer of the replicas along
with the corresponding proxy-out/proxy-in pairs for each
object being replicated. So, in this case, i.e., without cluster-
ing, each object still can be individually updated in P2.

From Fig. 7a, we can conclude that:

1. the steps observed are due to the creation and
transfer of several replicas along with the corre-
sponding proxy-out/proxy-in pairs,

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 9

2. the incremental replication of one object individually
at each time is the most flexible alternative, but is the
least efficient for large number of invocations,

3. the incremental replication of 25 to 100 objects at
each time is the most efficient alternative,

4. the incremental replication of 500 or 750 objects at
each time is not efficient because of the high cost of
creation and transfer of the corresponding replicas
and proxy-out/proxy-in pairs, and

5. for computers with a small amount of free memory,
when only a part of the objects are effectively
needed, it is clearly advantageous to incrementally
replicate a small number of objects (but, more than
one at each time).

To obtain the performance of incremental replication with
object clustering, we used the same approach; the list and
object sizes are those previously mentioned. The application
running in process P1 invokes a method on each object of the
list. When the object being invoked is not yet replicated, the
system automatically replicates the next 25, 100, 250, 500, or
750 objects. The difference is that objects are replicated in
groups, i.e., clusters with several sizes: 25, 100, 250, 500, or
750 objects. This means that, for each one of these clusters, all
objects are replicated as awhole, thus there is only one proxy-
out/proxy-in pair being created. Consequently, each object
cannot be individually updated in P2.

The results are presented in Fig. 7b. Note that, in each
case, the time values include the creation and transfer of all
the replicas along with the single corresponding proxy-out/
proxy-in pair.

We can conclude that, with regard to the results without
clustering, these results are: 1) much better because there is
only one proxy-out/proxy-in pair being created for each
cluster; in addition, we observed that the most significant
performance cost remaining in the cluster replication
mechanism is due to data serialization (done by the JVM)
and network communication,11 and 2) not that sensitive to
the amount of objects being replicated at each time (i.e., the
curves are closer); the reason is the same as in 1).

4.2 Distributed Garbage Collection

We exercised the OBIWAN platform with several applica-
tions. In one of them, News Gathering (NG), Web pages are
treated as objects (instances of classes), i.e., a given Web
page written in HTML can be freely replicated. (More
details of NG and DGC are in [27], [38].) When compared to
applications in which an object is an instance of a Java/C#
class, the relevant difference is that references are, in fact,
URLs.

The critical performance results are those related to the
implementation of safety rules 1 and2. Thus,wedownloaded
a part of the graph of objects of a well-known Web site
(cnn.com) and, for each one, ran the code implementing the
safety rules;12 more precisely, we downloaded 155 HTML
files and obtained for each one the time it takes to: scan it,
create the corresponding GC-stubs, and serialize the hash

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 7. Performance results for replication. (a) Incremental replication without clustering and (b) incremental replication with clustering.

11. For example, with clustering, the cost of creating 500 replicas in P2,
1,024 bytes each, is about 10 ms.

12. We used a depth of 5 (equivalent to the second argument of method
IProviderRemote::get(mode,depth)) because it provides a large number of
files without getting all the site.

table containing the GC-stubs (includingwriting to disk). For
clarity, we only present the time it takes to create GC-stubs
and their size because the same values apply to GC-scions.

For the 155 files, we obtained the following results: the

mean file size (43,563 bytes), the mean number of URLs

enclosed in each file (326), the mean time to scan a file

(38 ms), the mean time it takes to create a GC-stub in the

corresponding hash table (3 ms), the mean size of the hash

table containing all the GC-stubs corresponding to all the

URLs enclosed in a file (19,252 bytes),13 and the mean time

it takes to serialize a hash table with all the GC-stubs

corresponding to a single file (67 ms).
However, in a real situation, we expect that only some

objects get replicated. A possible user would access a few

top-level pages and then pick one or more branches of the

hierarchy and follow them down. Some of these files would

be replicated into the user’s computer. So, in order to obtain

more realistic numbers, we performed the following: We

picked 10 files from the top of the cnn.com hierarchy. These

files are mostly entry points to the others with more specific

contents. We call this set of files the top-set. We also picked

other 10 files representing a branch of the cnn.com

hierarchy, world/Europe. We call this set of files the

branch-set. In Figs. 8a and 8b, we present, for each file of

the two considered sets, the time spent in each relevant
operation. In Figs. 8c and 8d, we present, for the same files
in the same two sets, the space occupied by: the files
themselves, the URLs enclosed in them, and the hash table
containing the corresponding GC-stubs.

These performance results are worst-case because they
assume all the URLs enclosed in a file refer to a file in another
site,which is not the usual case.However, they give us a good
notion of the performance limits of the current implementa-
tion. In particular, we see that themost relevant performance
costs are due to file scanning and hash table serialization.
However, we believe that these values are acceptable, taking
intoaccount the functionality of the system, i.e., it ensures that
no distributed broken links or memory leaks occur. In
addition, when a user runs the NG browser and accesses
anyWebpagewithoutmaking a local replica of any file, there
is no performance overhead due to DGC.

4.3 Security

One of the problems of expressive security frameworks
such as ours is the low efficiency of their implementations.
While, in common access control list (ACL) based systems
[13], only the access control entries (ACE) belonging to the
ACL of each target object are evaluated on each access, in
OBIWAN, potentially every rule has to be evaluated for
every access. This is a problem in systems with thousands
of rules, users, and objects. However, in common security

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 11

Fig. 8. Performance results for DGC. (a) Time spent for the top group, (b) time spent for the branch group, (c) space occupied for the top group, and

(d) space occupied for the branch group.

13. This value depends mostly of the size of the corresponding URLs.

policies, for each event, only a small number of rules is
applicable (i.e., the applicability domain is false for that
event); thus, most of the rules are not applicable and do not
need to be evaluated.

In OBIWAN, we have designed a simple target-based
index for rules, which is able to decide, based on the target
of each event, which rules are applicable and which are not.
This index technique has proven to be efficient. In
particular, for a policy with 4,120 rules, 12,000 targets, and
5,000 users, the time to evaluate the rules, for authorization
purposes of an event, is 40�s, which is about 6 percent of
the time to open a file (for reading).

Although the index technique proved its efficiency, even
to large security policies, it is not enough to ensure
efficiency of history-based policies. History-based policies
need to record and query recorded information about past
activities. Some security services record events implicitly in
their own data structures [29] (mostly using labels), others
record them explicitly into an event log [2]. The former
solution lacks the flexibility necessary to the SPL history-
based expressiveness, and the latter suffers from the
common log-size problem.

In OBIWAN, we solved this problem by having one log
for each history-based rule instead of having one single
global log for every rule. Therefore, each log is specially
tuned for the rule it serves, by keeping only the information
required by that rule; this information is kept inside a log
structure specifically crafted for the type of search required.
In particular, repeated events are accounted by simply
incrementing the corresponding counter. Thus, most his-
tory-based policies have bounded logs because only a few
events needs to be logged. However, currently, history-
based policies comparing event’s instance times may still be
unbounded.

These logs are automatically created by obicomp when
generating the code for the specified policy; thus, they are
completely transparent to the programmer (or to the policy
administrator). This solution proved to be efficient for
several history-based policies. Namely, for a Chinese-wall
policy with 10 classes of interest, the time to evaluate the
policy, for authorization purposes of an event, is 43�s (in
the worst possible scenario, where every access is allowed);
this value is independent of the number of events recorded,
and the log entry number is bound to the number of users
accessing targets in the classes of interest.

5 RELATED WORK

The OBIWAN platform can be related to several other
systems that support remote invocation, replication, DGC,
mobile agents, and security. An important difference is that
such systems do not provide an integrated platform
supporting all the mechanisms as OBIWAN does: paradigm
flexibility (RMI, replication, mobile agents), automatic
replication, DGC (correct in the presence of replicas), and
security policies. This integration is an advantage to the
programmer as he may decide what functionality is best
adapted to his application scenario.

Javanaise [5], [15] is a platform that aims at providing
support for cooperative distributed applications on the
Internet. In this system, the application programmer
develops his application as if it were for a centralized

environment, i.e., with no concern about distribution.
Then, the programmer configures the application to a
distributed setting; this may imply minor source code
modifications. A proxy generator is then used to generate
indirection objects and a few system classes supporting a
consistency protocol. Javanaise does not provide support
for incremental replication; clusters are defined by the
programmer and are less dynamic than in OBIWAN. In
addition, Javanaise provides no support for security
policy definition, mobile agents, or DGC.

There has been some effort in the context of CORBA to
provide support for replicated objects [9] as well as in the
context of the World Wide Web [5]. However, most of this
work addresses other specific issues such as group
communication, replication for fault-tolerance, protocols
evolution, etc.

Thor [21] is a distributed object oriented database
(OODB) that provides a hybrid and adaptive caching
mechanism handling both pages and objects; it provides
its own programming language and DGC (which does not
consider object replicas).

Most OODBs [39], e.g., O2 [6] and GemStone [4] are very
heavyweight, and often come with their own specialized
programming language. In addition, these systems offer the
programmer a single programming paradigm and do not
consider the security aspects.

There are a great number of Java-based mobile-agent
systems available [19]. Among these, Object Space’s
Voyager [35] is the most interesting; it was designed from
the ground to support object mobility. A Voyager’s agent is
simply a special kind of object that has the ability to move;
otherwise, it behaves exactly like any other object. Voyager
has introduced the concept of Virtual Object, which
represents a proxy of a remote object or agent. Voyager
can transform into an agent any arbitrary object using the
Virtual Code Compiler. Once the object is processed, it
exhibits some properties of an agent: it can be migrated
from host to host and accessed remotely by other virtual
objects in RMI-like fashion, and it can have its own life
cycle. Unless specifically designed to be otherwise, they are
simply passive objects that can be moved and manipulated
remotely. In conclusion, with such agent platforms, the
programmer can develop his application either with mobile
agents or RMI. However, these platforms support neither
objects to be automatically replicated nor provide DGC. In
addition, the security specification and enforcement simply
relies on native mechanisms (JVM or operating system).

Previous work in DGC such as IRC [23], SSP chains [32],
and Larchant [11] served as the starting point of the
DGC algorithm presented in this paper. Our algorithm is an
improvement over these in such a way that it combines their
advantages: no need for causal delivery support to be
provided by the underlying communicating layer (from the
first two), and capability to deal with replicated objects (from
Larchant).

A work on DGC also related to ours is Skubiszewski and
Valduriez GC-consistent cuts [34]. They consider asynchro-
nous tracing of an OODB, but with no distribution or
replication support. The collector is allowed to trace an
arbitrary database page at any time, subject to the following
ordering rule: For every transaction accessing a page traced
by the collector, if the transaction copies a pointer from one
page to another, the collector either traces the source page

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

before the write, or traces both the source and the
destination page after the write. In a certain way, these
operations are equivalent to our safety rules 1 and 2. The
authors prove that this is a sufficient condition for safety
and liveness.

Concerning agents security, Deeds [8] offers an history-
based access control mechanism that protects hosts re-
sources from mobile code. In this platform, access control
policies are written in Java. These policies can be inserted,
removed, or simply modified while the monitored pro-
grams are still executing. An important limitation of Deeds
is the way it identifies a program. It concatenates all user-
level code for a mobile program and uses a hash algorithm
to generate a name for it. This method has a major
drawback: it does not allow the execution of programs that
dynamically load new classes. This approach is not,
therefore, appropriate for a mobile agent platform, since it
does not support agent migration with code on demand.

Ponder [7] provides a general-purpose deployment
model for security and management policies. Its declarative
language is able to express and specify some generic and
complex security policies such as RBAC policies. The
obligation policies provided by Ponder are used in an
agent platform [22] to specify mobility policies of agents. In
this platform, application logic is completely separated
from migration logic. Although designed for mobile agents,
this platform still does not consider any type of support for
history-based security policies.

All these security solutions have their own merit, but
they all fail to provide an integrated middleware platform
with the flexibility of OBIWAN. In addition, and specifi-
cally with regard to the implementation of the security
modules, OBIWAN provides more functionality with good
performance.

6 CONCLUSION

We presented OBIWAN, a middleware platform that helps
programmers to develop distributed applications by allow-
ing them to focus on the application logic. System-level
issues such as object replication, preventing abusive
resource consumption by mobile agents, and DGC, are
automatically handled by the system. The performance
results concerning replication, DGC, and security are very
encouraging.

Programmers are free to use the programming paradigm
that is most suited to their applications, either classical RMI,
replication, or mobile agents. In particular, it is possible to
change at runtime how objects are invoked: RMI or local
invocation on a replica. Replicas are transparently created
and mapped into processes; the programmer can control, at
runtime, the amount of objects being replicated by creating
dynamic clusters, thus improving the performance of the
system.

OBIWAN provides a security framework (from the
specification to the enforcement by means of a security
monitor) that supports history-based policies. These can be
applied to mobile agents and, for example, prevent the
abusive resource consumption on hosts, or to enforce a
Chinese-wall policy, among others.

In addition, OBIWAN supports distributed garbage
collection that handles correctly multiple replicas of objects,

thus releasing the programmer from an extremely error-

prone task.
Concerning future work, we intend to address both

practical and more theoretical issues. Thus, we plan to

integrate the OBIWAN platform with software develop-

ment tools (e.g., VisualStudio-C#, Eclipse-Java), to use a

library of consistency and reconciliation of replicas, and we

are currently integrating our reference-listing garbage

collector within ROTOR (shared-source version of Micro-

soft .Net). Regarding the theoretical issues, we are working

toward an extension of the distributed garbage collector in

order to reclaim distributed cycles of garbage; we also

intend to address the issue of fault-tolerance, and the

specification of automatic policies adapted to the specific

context environment (e.g., network latency and cost).

ACKNOWLEDGMENTS

This work was partially funded by Microsoft Research.

REFERENCES

[1] K. Arnold and J. Gosling, The Java Programming Language.
Addison-Wesley, 1996.

[2] R. Simon and E. Zurko, “Adage: An Architecture for
Distributed Authorization,” OSF Research Inst., Cambridge,
http://www.osf.org/www.adage/adage-arch-draft/adage-arch-
draft.ps, 1997.

[3] D.F. Brewer and M.J. Nash, “The Chinese Wall Security Policy,”
Proc. Symp. Research in Security and Privacy, pp. 206-214, May 1989.

[4] P. Butterwoth, A. Otis, and J. Stein, “The GemStone Object
Database Management System,” Comm. ACM, vol. 34, no. 10,
pp. 64-77, Oct. 1991.

[5] S.J. Caughey, D. Hagimont, and D.B. Ingham, “Deploying
Distributed Objects on the Internet,” Recent Advances in Distributed
Systems, S. Krakowiak and S.K. Shrivastava, eds., Springer Verlag,
Feb. 2000.

[6] O. Deux et al., “The O2 System,” Comm. ACM, vol. 34, no. 10,
pp. 34-48, Oct. 1991.

[7] N. Dulay, E. Lupu, M. Sloman, and N. Damianou, “A Policy
Deployment Model for the Ponder Language,” Proc. Seventh IEEE/
IFIP Int’l Symp. Integrated Network Management, 2001.

[8] G. Edjlali, A. Acharya, and V. Chaudhary, “History-Based Access
Control for Mobile Code,” Proc. Fifth ACM Conf. Computer and
Comm. Security, pp. 38-48, Nov. 1998.

[9] P. Felber, R. Guerraoui, and A. Schiper, “Replication of CORBA
Objects,” Recent Advances in Distributed Systems, S. Krakowiak and
S.K. Shrivastava, eds., Springer Verlag, Feb. 2000.

[10] P. Ferreira and M. Shapiro, “Garbage Collection and DSM
Consistency,” Proc. First Symp. Operating Systems Design and
Implementation, pp. 229-241, 1994.

[11] P. Ferreira and M. Shapiro, “Modelling a Distributed Cached Store
for Garbage Collection: The Algorithm and Its Correctness Proof,”
Proc. Eighth European Conf. Object-Oriented Programming, July 1998.

[12] K. Gharachorloo, S.V. Adve, A. Gupta, J.L. Hennessy, and M.D.
Hill, “Programming for Different Memory Consistency Models,”
J. Parallel and Distributed Computing, vol. 15, no. 4, pp. 399-407,
1992.

[13] H.M. Gladney, “Access Control for Large Collections,” ACM
Trans. Information Systems, vol. 15, no. 2, pp. 154-194, Apr. 1997.

[14] R. Guerraoui and A. Schiper, “Total Order Multicast to Multiple
Groups,” Proc. 17th Int’l Conf. Distributed Computing Systems,
pp. 578-585, 1997.

[15] D. Hagimont and F. Boyer, “A Configurable RMI Mechanism for
Sharing Distributed Java Objects,” Internet Computing, vol. 5, Jan.
2001.

[16] G. Karjoth, D.B. Lange, and M. Oshima, “A Security Model for
Aglets,” Internet Computing, vol. 1, no. 4, pp. 68-77, 1997.

[17] P. Keleher, A.L. Cox, and W. Zwaenepoel, “Lazy Release
Consistency for Software Distributed Shared Memory,” Proc.
19th Int’l Symp. Computer Architecture, pp. 13-21, May 1992.

FERREIRA ET AL.: OBIWAN: DESIGN AND IMPLEMENTATION OF A MIDDLEWARE PLATFORM 13

[18] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel, “The
Icecube Approach to the Reconciliation of Divergent Replicas,”
Proc. 20th ACM Symp. Principles of Distributed Computing, Aug.
2001.

[19] D.B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[20] K. Li and P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Computer Systems, vol. 7, no. 4,
pp. 321-359, Nov. 1989.

[21] B. Liskov, M. Day, and L. Shrira, “Distributed Object Management
in Thor,” Proc. Int’l Workshop Distributed Object Management, pp. 1-
15, Aug. 1992.

[22] R. Montanari and G. Tonti, “A Policy-Based Infrastructure for the
Dynamic Control of Agent Mobility,” Proc. IEEE Third Int’l
Workshop Policies for Distributed Systems and Networks, June 2002.

[23] J.M. Piquer, “Indirect Reference-Counting—A Distributed Gar-
bage Collection Algorithm,” Proc. Conf. Parallel Architectures and
Languages Europe, pp. 150-165, June 1991.

[24] D. Plainfossé and M. Shapiro, “A Survey of Distributed Garbage
Collection Techniques,” Proc. Int’l Workshop Memory Management,
Sept. 1995.

[25] D.S. Platt, Introducing the Microsoft.NET Platform. Microsoft Press,
2001.

[26] C. Ribeiro, A. Zúquete, P. Ferreira, and P. Guedes, “SPL: An
Access Control Language for Security Policies with Complex
Constraints,” Proc. Network and Distributed System Security Symp.,
Feb. 2001.

[27] A. Sanchez, L. Veiga, and P. Ferreira, “Distributed Garbage
Collection for Wide Area Replicated Memory,” Proc. Sixth
USENIX Conf. Object-Oriented Technologies and Systems, Jan. 2001.

[28] R. Sandhu, “Separation of Duties in Computarized Information
Systems,” Proc. IFIP WG11.3 Workshop Database Security, Sept.
1990.

[29] R. Sandhu, “Lattice-Based Access Control Models,” Computer,
vol. 26, no. 11, Nov. 1993.

[30] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-
Based Access Control Models,” Computer, vol. 29, no. 2, pp. 38-47,
1996.

[31] M. Shapiro, “Structure and Encapsulation in Distributed Systems:
The Proxy Principle,” Proc. Sixth Int’l Conf. Distributed Systems,
pp. 198-204, May 1986.

[32] M. Shapiro, P. Dickman, and D. Plainfossé, “Robust Distributed
References and Acyclic Garbage Collection,” Proc. 11th ACM
SIGACT-SIGOPS Symp. Principles of Distributed Computing, 1992.

[33] R.T. Simon and M.E. Zurko, “Separation of Duty in Role-Based
Environments,” Proc. IEEE Computer Security Foundations Work-
shop, pp. 183-194, 1997.

[34] M. Skubiszewski and P. Valduriez, “Concurrent Garbage Collec-
tion in O2,” Proc. 23rd Int’l Conf. Very Large Databases, M. Jarke,
M.J. Carey, K.R. Dittrich, F.H. Lochovsky, P. Loucopoulos, and
M.A. Jeusfeld, eds. pp. 356-365, Morgan Kaufman, 1997.

[35] A. Silva, M. Mira da Silva, and J. Delgado, “An Overview of
AgentSpace: A Next-Generation Mobile Agent System,“ Proc.
Second Int’l Workshop Mobile Agents, Sept. 1998.

[36] A. Tripathi and N. Karnik, “Protected Resource Access for Mobile
Agent-Based Distributed Computing,” Proc. ICPP Workshop
Wireless Networking and Mobile Computing, 1998.

[37] L. Veiga and P. Ferreira, “Incremental Replication for Mobility
Support in OBIWAN,” Proc. 22nd Int’l Conf. Distributed Computing
Systems, pp. 249-256, July 2002.

[38] L. Veiga and P. Ferreira, “REPWEB: Replicated Web with
Referential Integrity,” Proc. 18th ACM Symp. Applied Computing,
Mar. 2003.

[39] S. Zdonik and D. Maier, Readings in Object-Oriented Database
Systems. San Mateo, Calif.: Morgan-Kaufman, 1990.

Paulo Ferreira received the PhD degree in
computer science from the Université Pierre et
Marie Curie (Paris-VI) in 1996. He received the
MSc (1992) and BsEE (1988) degrees from the
Technical University of Lisbon (IST/UTL, Institu-
to Superior Técnico), Portugal. He is a professor
in the Computer and Information Systems
Department at IST/UTL, where he has been
teaching classes in the areas of distributed
systems, operating systems, and Internet, both

at the undergraduate and postgraduate levels. He has been a
researcher at INESC since 1986, where he leads the Distributed
Systems Group (www.gsd.inesc-id.pt). His research interests include
system support for large-scale distributed data sharing, replication and
consistency protocols, distributed garbage collection, persistence by
reachability, security, operating systems, and Internet protocols. He is
the author or coauthor of more than 40 peer-reviewed scientific
communications and he has served on the program committees of
several international conferences and workshops in the area of
distributed systems. He is a member of the IEEE and IEEE Computer
Society.

Luı́s Veiga received the BsCE degree in 1998
and the MSc degree in computer engineering in
2001, both from the Technical University of
Lisbon (IST/UTL, Instituto Superior Técnico),
Portugal. He is a PhD student and teaching
assistant in the Computer and Information
Systems Department at IST/UTL. He teaches
operating systems and computer architecture
classes. He has been a researcher at INESC-ID
with the Distributed Systems Group since 1999.

He has been an active participant in government and industry funded
R&D projects such as Mnemosyne, MobileTrans, OBIWAN, and DGC-
Rotor. His research interests include distributed systems, memory
management for distributed and mobile computing, replication, dis-
tributed garbage collection, and mobility support. He has authored or
coauthored 10 peer-reviewed scientific communications in workshops,
conferences, and journals since 2000.

Carlos Ribeiro received the BsEE degree in
1989, the MSc degree in 1993, and the PhD
degree in computer science in 2002, all from he
Technical University of Lisbon (IST/UTL, Institu-
to Superior Técnico), Portugal. He is a professor
in the Computer and Information Systems
Department at IST/UTL, where he teaches
operating systems and computer architecture
classes. From 1995 to 1998, he was a security
adviser for the Portuguese National Security

Authority. He has been a researcher at INESC since 1988, where he has
participated in several European projects. His main research area is
security, although he is also interested in distributed operating systems
and mobility.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

