
 UNIVERSIDADE TÉCNICA DE LISBOA

 INSTITUTO SUPERIOR TÉCNICO

Espaço reservado a Imagens/Gráficos
Space Reserved to Images/Graphics

(caso exista/if available)

Título da Tese
Thesis Title

Nome completo do autor
Author full name

Orientador (Supervisor): Doutor (Doctor) ……………..…(Nome completo/full name)……………….....…..…………..

Co-Orientador(es) (Co-Supervisor) (se aplicável/ if applicable):
 Doutor (Doctor) …………………(Nome completo/full name)……………………..…..………

Tese especialmente elaborada para obtenção do Grau de Doutor em
………..…. ramo do conhecimento……………..…..

Thesis specifically prepared to obtain the PhD Degree in
 ……………..….scientific area……….……

Tese Provisória

Draft

Mês e Ano
Month and Year

Espaço reservado ao
logótipo da
Instituição exterior -
caso o
Doutoramento tenha
sido realizado em
co-tutela.

Space reserved to the
logo of the institution -
if the PhD has been
carried out in co-
tutelle

Nome da Instituição exterior – caso o Doutoramento
tenha sido realizado em co-tutela
Name ofoutside Institution - if the PhD has been carried out
in co-tutelle

UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

New Environments for Parallel Execution
and Simulations

João Nuno de Oliveira e Silva

Supervisor: Doctor Luís Manuel Antunes Veiga

Co-Supervisor: Doctor Paulo Jorge Pires Ferreira

Thesis specially prepared to obtain the PhD Degree in
Computer Science and Engineering

Draft

July 2011

Resumo

Uma nova classe de utilizadores tem emergido na área da computação paralela,

tendo, no entanto, requisitos diferentes daqueles dos utilizadores tradicionais de

sistemas de computação de alto desempenho. A maioria dos projectos destes

novos utilizadores enquadram-se no paradigma Bag-of-Tasks (problemas compos-

tos por tarefas independentes). As semelhanças entre o software e hardware (no

que se refere a instalações especializadas e computadores pessoais), somado ao el-

evado desempenho dos computadores pessoais actuais, pode levar a concluir-se

que estes novos utilizadores têm acesso aos recursos computacionais necessários.

Apesar de existirem, a disponibilidade destes recursos é baixa, devido à inexis-

tência de ferramentas e mecanismos adaptados a estes novos utilizadores.

Esta dissertação tenta encurtar esta barreira, tendo-se desenvolvido trabalho

em três áreas relevantes: Submissão e criação de trabalhos, ambientes para exe-

cução de tarefas, e descoberta e avaliação de recursos.

No que respeita à criação de trabalhos, nenhum dos sistemas existentes é ad-

equados à nova classe de utilizadores com poucos ou nenhum conhecimentos de

programação. Assim, foi desenvolvida uma nova interface para criação de Bag-of-

Tasks e uma plataforma para paralelização automática de código.

Também novos ambientes de execução de tarefas foram desenvolvidos. A

plataforma BOINC foi estendida de modo a tornar-se verdadeiramente um sis-

tema de Computação Distribuída Pública, uma plataforma que permita qualquer

utilizador submeter trabalhos para serem executados. Outra fonte de poder com-

putacional contemplada neste trabalho foi a Nuvem, com o desenvolvimento de

uma nova heurística para a optimização da execução de Bag-of-Tasks em sistemas

de computação utilitária (Utility computing).

Finalmente, de modo a garantir eficiente alocação de recursos e execução de

tarefas, foi desenvolvida uma nova álgebra. Esta álgebra é extensível (ao nível

dos recursos avaliados) e permite uma mais precisa e flexível avaliação e em-

parelhamento de recursos. Aos utilizadores é permitida a definição de funções

de utilidade não lineares, mas intuitivas, podendo o próprio sistema, avaliar um

mesmo requisito de modo diferente dependendo da classe do utilizador.

Abstract

A new class of users is emerging in parallel programming area, having differ-

ent requirements from the traditional high performance computing users, since

most projects deployed by the new users classes fit into the Bag-of-Tasks prob-

lems (mainly composed of independent tasks, thus embarrassingly parallel). The

similarity of software and hardware (in specialized infrastructures and desktop

home computers), added to the high performance of today’s personal computers,

may lead to the notion that these new common users (hobbyists or those with

few computational requirements) may have easy access to the necessary compu-

tational power. Although there are new sources of computational power, their

availability to common users is still low, due to the inexistent tools and mecha-

nisms adapted to this new user class.

This thesis tries to address these gaps, with developed work in the three rele-

vant layers: Job submission; Job deployment computational infrastructures, and

Resource Integration and discovery.

With respect to job submission, the available systems and programming method-

ologies do not offer solutions to the new user classes with low (or even none)

programming knowledge. So a new user interface for Bag-of-tasks’ creation and

a platform for automatic code parallelization were developed and evaluated.

New environments for the execution of Bag-of-Tasks were also envisioned and

developed. BOINC was extended in order to make it a truly public Distributed

Computing system (one that allows any user to submit work and execute other

users’ tasks). Another source of computing power targeted was the Cloud, with

the development of an heuristic for the efficient execution of Bag-of-Tasks on util-

ity computing infrastructures.

Finally, in order to guarantee an efficient allocation of resources and execution

of tasks, a new resource evaluation algebra was developed. A more precise, flex-

ible, and extensible resource evaluation and requirement matching mechanisms

was developed. Users are now allowed to define non linear, yet intuitive, util-

ity functions for the resources being evaluated, while the middleware can assign

different resource evaluation rules, depending on the user class.

Palavras Chave
• Computação Paralela

• Computação Distribuída

• Computação na Nuvem

• Partilha de Ciclos

• Bag-of-Tasks

• Escalonamento de Tarefas

• Descoberta de Recursos

Keywords
• Parallel Computing

• Distributed Computing

• Cloud and Utility Computing

• Cycle Sharing

• Bag-of-Tasks

• Task Scheduling

• Resource Discovery

Publications

The work and results presented in this dissertation are partially described in the

following peer-reviewed scientific publications:

International Journals

1. A2HA - Automatic and Adaptive Host Allocation in Utility Computing for

Bag-of-Tasks. João Nuno Silva, Paulo Ferreira, and Luís Veiga. Journal

of Internet Services and Applications (JISA), 2(2), pp. 171-185, Sep. 2011,

Springer. (Ranked in the IST CCAD1 A Journals list)

International Conferences ranked by IST CCAD

1. Service and resource discovery in cycle-sharing environments with a util-

ity algebra. João Nuno Silva, Paulo Ferreira and Luís Veiga. 2010. In

2010 IEEE International Symposium on Parallel & Distributed Processing

(IPDPS). IEEE. (Ranked in the IST CCAD1 B Conferences list, ranked A in the

CORE2 Conference Ranking)

Book Chapters

1. Peer4Peer: E-science Communities for Overlay Network and Grid Comput-

ing Research. Luís Veiga, João Nuno Silva, João Coelho Garcia. Chapter on

1Conselho Coordenador de Avaliação dos Docentes, https://fenix.ist.utl.pt/ccad/
2Computing Research and Education Association of Australasia, http://core.edu.au/

the book "Guide to e-Science: Next Generation Scientific Research and Dis-

covery", Springer. 2011. ISBN-10: 0857294385.

International Conferences / Workshops

1. Mercury: a reflective middleware for automatic parallelization of Bags-of-

Tasks. João Nuno Silva, Luís Veiga, and Paulo Ferreira. In Proceedings

of the 8th International Workshop on Adaptive and Reflective Middleware

(ARM ’09), collocated with ACM/IFIP/Usenix Middleware 2009. ACM.

2009.

2. SPADE: scheduler for parallel and distributed execution from mobile de-

vices. João Nuno Silva, Luís Veiga, and Paulo Ferreira. In Proceedings of

the 6th international workshop on Middleware for pervasive and ad-hoc

computing (MPAC ’08), collocated with ACM/IFIP/Usenix Middleware

2008. ACM. 2008.

3. Heuristic for resources allocation on utility computing infrastructures. João

Nuno Silva, Luís Veiga, and Paulo Ferreira. In Proceedings of the 6th in-

ternational workshop on Middleware for grid computing (MGC ’08), collo-

cated with ACM/IFIP/Usenix Middleware 2008. ACM. 2008. (ranked C in

the CORE2 Conference Ranking)

4. nuBOINC: BOINC Extensions for Community Cycle Sharing. João Nuno

Silva, Luís Veiga, and Paulo Ferreira. In Second IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems Workshops. IEEE.

2008

Other publications related to this thesis

Although not described in this document, because of the scope of this thesis, one

more publication was produced during the course of this PhD.:

• Transparent Adaptation of e-Science Applications for Parallel and Cycle-

Sharing Infrastructures. João Morais, João Nuno Silva, Paulo Ferreira and

Luís Veiga.

11th IFIP International Conference in Distributed Applications and Interop-

erable Systems, DAIS 2011, LNCS, Springer. 2011.(ranked B in the CORE2

Conference Ranking)

Acknowledgments

First I would like to thank my advisers, for all the support given during the length

of this PhD. To Professor Luís Veiga, the adviser, for all the energy and enthusi-

asm and encouragement given during the development and writing process of

this thesis. To Professor Paulo Ferreira, my co-adviser for the initial support and

for believing in the work being carried out.

To all the members of the Distributed Systems Group of INESC-ID, for the

dynamic and fruitful work environment provided.

To the member of the DEEC Management Bodies, for caring about the progress

of my work.

To all the colleagues of DEEC with whom I taught, with whom I learnt how

to teach.

To João Garcia, for putting up with me all these years as an office mate and

friend, and David Matos, for the offered friendship.

To all my friends, for being around and patiently waiting for the conclusion

of this thesis.

To my Parents and Brothers. To Xana.

Lisboa, October 28, 2011

João Nuno Silva

To my parents and brothers

Y

Because of my students

Contents

1 Introduction 1

1.1 User classes . 3

1.2 Current tasks execution environments 6

1.3 Current parallel programming paradigms 9

1.3.1 Work organization . 9

1.3.2 Programming model . 11

1.4 Target population characterization 13

1.5 Objectives . 17

1.5.1 Contributions . 18

1.5.2 Scientific Publications . 20

1.6 Document Roadmap . 22

2 Distributed Computing Systems 23

2.1 Introduction . 23

2.2 A Taxonomy for Cycle-Sharing Systems 26

2.2.1 Architecture . 29

2.2.2 Security and reliability . 45

2.2.3 User interaction . 56

2.3 Related Work . 76

2.4 Evaluation . 76

2.5 Conclusions . 80

3 Graphical Bag-of-Tasks Definition 81

3.1 Introduction . 81

i

3.2 Related Work . 85

3.2.1 Task launching mechanisms 86

3.3 Requirements . 90

3.3.1 Applications . 91

3.3.2 Input Data Definition . 93

3.3.3 Architecture . 94

3.4 Architecture . 94

3.4.1 Implementation . 96

3.5 Job Submission . 97

3.5.1 Job Execution . 103

3.6 Evaluation . 105

3.7 Conclusions . 108

4 Bag-of-Tasks Automatic Parallelization 111

4.1 Introduction . 112

4.1.1 Objectives . 115

4.2 Related work . 117

4.3 Architecture . 121

4.3.1 Code loading and transformation 123

4.4 Implementation . 125

4.4.1 Class loading interception . 125

4.4.2 Class transformation . 126

4.4.3 Object creation . 127

4.4.4 Adapter implementation . 128

4.4.5 Execution environment . 134

4.5 Evaluation . 135

4.6 Conclusion . 138

5 Off the Shelf Distributed Computing 141

5.1 Introduction . 142

ii

5.2 Related work . 145

5.3 Usage . 147

5.3.1 Cycles Donation . 147

5.3.2 Job Creation . 148

5.4 BOINC Extensions . 149

5.4.1 Application registrar . 152

5.4.2 Job submission user interface 152

5.4.3 Database Tables . 153

5.4.4 nuBOINC Client . 154

5.4.5 Scheduler and Feeder . 155

5.4.6 nuBOINC Project application 156

5.4.7 Commodity applications . 156

5.5 Evaluation . 157

5.6 Conclusions . 160

6 Task Scheduling on the Cloud 163

6.1 Introduction . 164

6.2 Related Work . 169

6.3 Resource / Application Model . 174

6.4 Heuristic for task scheduling . 180

6.4.1 Virtual machine allocation . 181

6.4.2 Task selection criteria . 182

6.4.3 Overallocation prevention . 185

6.4.4 Periodic update . 187

6.4.5 Host termination . 188

6.4.6 Handling of long tasks . 190

6.5 Evaluation . 191

6.5.1 Impact of creationRatio and increaseRatio 192

6.5.2 Speedup and Allocated Hosts 196

6.5.3 Long-Running Tasks . 198

iii

6.6 Conclusion . 199

7 Utility Algebra for Resource Discovery 201

7.1 Introduction . 202

7.2 Related Work . 204

7.2.1 Cycle sharing systems . 204

7.2.2 P2P based resource discovery 205

7.2.3 Grid Resource Management 206

7.2.4 Service Discovery Protocols 208

7.2.5 Utility-based Scheduling . 209

7.2.6 Network Management Protocols 209

7.3 STARC architecture . 211

7.3.1 Probbing Classes . 212

7.4 Requirement Specification and Evaluation 213

7.4.1 Partial utility resource evaluation 215

7.4.2 Non-linear Partial-Utility Criteria 217

7.4.3 Policies for Combined Satisfaction Evaluation 219

7.5 Implementation . 226

7.5.1 Remote Host Discovery . 227

7.5.2 Security . 228

7.6 Evaluation . 229

7.7 Conclusions . 233

8 Conclusion 235

8.1 Future Work . 239

8.1.1 Complementary evaluation 239

8.1.2 Complementary development 240

8.1.3 New research topics . 240

Bibliography 240

iv

List of Figures

1.1 Overall architecture . 18

1.2 Overall architecture with highlighted contributions 19

3.1 SPADE System Architecture . 95

3.2 SPADE UML class diagram . 96

3.3 SPADE application registration . 98

3.4 SPADE job submission user interface, execution environment setup 98

3.5 SPADE job submission user interface, parameters definition 99

3.6 SPADE value range splitting: a) user interface, b) result division . . 100

3.7 SPADE job submission user interface, Command line 101

3.8 SPADE job execution UML sequence diagram 104

3.9 SPADE based film rendering parallelization execution times 105

3.10 SPADE based film rendering parallelization speedup 106

4.1 Mercury Architecture . 121

4.2 Mercury transformed classes organization 122

4.3 Mercury application start flowchart 124

4.4 Mercury based function integration parallelization execution times 136

4.5 Mercury based ray tracing application parallelization execution times138

5.1 Extended BOINC (nuBOINC) usage 144

5.2 nuBOINC Application Registrar user interface 147

5.3 nuBOINC User project submission interface 149

5.4 nuBoinc architecture: Detailed server view 150

5.5 nuBoinc architecture: Detailed client view 151

v

5.6 BOINC database aditional information 153

5.7 Movie rendering times . 158

5.8 Jobs finishing instants . 159

5.9 Computations start delay times . 160

6.1 Evaluation of cost and speedups . 166

6.2 POV-RAy rendered example images 175

6.3 Image partitions rendering executing times 176

6.4 Difference between distinct example 1 rendering: a) time differ-

ence depending on the Partition ID, b) time difference depending

on original partition rendering time 177

6.5 Unit testing executing times . 178

6.6 Difference between executions two batches of the Outsystems Plat-

form test . 179

6.7 Image partitions rendering executing times and average of com-

pleted partitions execution time . 183

6.8 Example of random selection of partitions: executing times and

average of completed partitions execution time 184

6.9 Example of random selection of partitions: executing times and

average of completed partitions execution time 185

6.10 Unit testing executing times . 186

6.11 Result of creationRatio usage: calculated number of hosts and

actually created hosts . 187

6.12 Tasks’s execution time distribution 191

6.13 Evaluation of the impact of creationRatio and increaseRatio

on the job completion time, and number of hosts created for the

synthetic job with a normal distribution of tasks processing time. . 193

6.14 Evaluation of the impact of creationRatio and increaseRatio

on the job completion time and number of hosts created for the im-

age rendering job (Example 1). 193

vi

6.15 Evaluation of the impact of creationRatio and increaseRatio

on the job completion time and number of hosts created for the

software testing job from OutSystems. 194

6.16 Speedup evolution with the number of created hosts for two sce-

narios. 196

7.1 STARC Middleware Architecture . 211

7.2 Resource evaluation (examples from from Listing 7.2) 216

7.3 Increasing Utility Function definition 218

7.4 Decreasing Utility Function definition 218

7.5 Zadeh Logical operators . 220

7.6 Evaluation of a conjunction of two resources (A and B) using mul-

tiple Policies (Resource B evaluated with 0.5) 222

7.7 Concurrent requirements evaluation overload 232

vii

viii

List of Tables

1.1 Usual work organization by user class 14

1.2 User access to the available infrastructures 15

1.3 Ease of use of various programming models and tools 16

2.1 Internet Distributed Computing systems architectural decisions . . 42

2.2 Internet Distributed Computing systems security concerns 53

2.3 Internet Distributed Computing systems user roles 70

2.4 Internet Distributed Computing systems programming and usage . 74

3.1 SPADE task definition placeholders 102

3.2 SPADE configuration examples . 108

6.1 Evaluation of scheduling with long running tasks 198

7.1 STARC aggregate utility evaluation policies 221

7.2 STARC evaluation policies for distinct resources 225

7.3 STARC local resource evaluation comparison (ms) 231

7.4 STARC performance comparison (ms) 231

ix

x

Listings

3.1 XGrid command line utility manual (fragment) 87

3.2 Condor Configuration files . 88

3.3 Condor Configuration files . 88

4.1 Typical serial Bag-of-Tasks pseudo-code 112

4.2 Typical Parallelization of a Bag-of-Tasks 113

4.3 Typical Parallelization of a Bag-of-Tasks using objects 114

4.4 Mercury custom file import . 125

4.5 Mercury metaclass pseudo-code . 126

4.6 Mercury transformedClass object factory 127

4.7 Mercury Thread Adapter - initialization and method selection 129

4.8 Mercury Thread Adapter - method execution 130

4.9 Mercury Cluster Adapter - remote object creation 133

4.10 Mercury Cluster Adapter - remote object creator server 134

4.11 Original x2 − 3x integration code . 135

4.12 Modified x2 − 3x integration code 135

6.1 Heuristic pseudocode executed when a tasks conclude 181

6.2 Heuristic pseudocode executed when a task concludes 186

6.3 Heuristic pseudocode executed periodically (partial) 188

7.1 XML requirement DTD . 213

7.2 Prototypical example of XML requirements description 214

7.3 XML requirement DTD . 217

7.4 XML requirements description . 219

7.5 STARC micro-benchmark XML requirements description 230

xi

xii

11111111111111111
Introduction

In recent years there has been a trend on the upper scale supercomputers: instead

of dedicated, specialized hardware, these new supercomputers use (close to) off-

the-shelf hardware in their construction [BG02, MSDS10]. The more powerful su-

percomputers are built as a collection of independent computers, linked by high

speed network connections. Although these computers are much more powerful

than desktop personal computers (in terms of processing power, storage capacity

and reliability), their architecture and running software are essentially the same.

This similarity between commodity hardware and specialized high perfor-

mance computing nodes, and its wide availability, has lead to the idea of using

available personal computers as processing nodes, either locally or on a larger,

more diffuse, distributed computing infrastructure.

On the user level, it can also be seen a higher demand for computational

power. In the areas traditionally demanding computational power (e.g. physics

and mechanics), scientists still require numerical simulation, but new areas are

emerging also requiring the simulation of processes (such as economy, computa-

tional biology).

In emergent research areas, tools to process data are being developed, and

users are increasingly generating more data to be processed. Furthermore, users

with some programming knowledge are now able to develop, and efficiently ex-

ecute, their simulations and data analysis.

Besides these new knowledgeable users, also on the commoner side there are

new requirements for high levels of processing power to solve some of their prob-

lems. Domestic and professional users now have more digital data to be pro-

1

2 CHAPTER 1. INTRODUCTION

cessed. For instance, designers have digital models that need to rendered, hob-

byists want to generate animation films, and even common users have batches of

photos to process for enhancement.

Most of these users’ work fits into the Bag-of-Tasks programming model, where

a computational job is composed only of independent tasks. Researchers from

the statistical or economy areas may require to perform batches of simulations

without strict requirements, as the simulations are independent and decoupled

among themselves. The rendering of frames of films can also be easily paral-

lelized as independent tasks. Domestic or graphical industry users’ needs also fit

into this model: the rendering of an image or processing of batches of images can

be easily decomposed in independent tasks.

The tools used by this new user class are mostly off-the-self applications (such

as statistical analysis software or image renders). Although most of such tools

are not designed to take advantage of the the available parallel execution en-

vironments, a task decomposition of the problems can take advantage of these

unmodified applications.

These new users have different requirements from the traditional high per-

formance computing users. While traditional users require a dedicated com-

putational infrastructures (due to the necessary synchronization between tasks)

and have easy access to such infrastructures, other users do not. Although, most

projects created by the new users classes fit into the Bag-of-Tasks problems (mainly

composed of independent tasks, thus embarrassingly parallel), they can neither

afford nor access existing parallel computing infrastructures.

The similarity of software and hardware (in specialized infrastructures and

desktop home computers) added to the high performance of personal computers

may lead to the idea that common users (hobbyists or those with few computa-

tional requirements) may have easy access to the necessary computational power.

Although there are new sources of computational power, their availability to

common users is still low, due to the inexistence of tools and mechanisms adapted

1.1. USER CLASSES 3

to this new user class.

The most accessible sources of computing power are the desktop computers

owned by each user. In some cases, when connected by a local area network, it is

possible to use them as a cluster capable of speeding up existing computations.

The ubiquitous connection of these computers to the Internet also makes them

a good source of computing cycles to remote users, as demonstrated by the vari-

ous successful Distributed Computing projects [BOI11].

Recently, a new source for computing power has appeared. Different from

other cloud services, Amazon offers the possibility to dynamically switch on or

off computer instances on their cluster. The user can install any operating system

and run on those machines any service, also allowing the execution of computing

intensive tasks.

In the remaining of this chapter, it is presented in detail the available solutions

for the execution of Bag-of-Tasks problems, with respect to available infrastruc-

tures, tools, and programming methodologies. Next, the deficiencies of the avail-

able solutions are presented when applied to the focus populations (i.e. user with

limited or null programming knowledge), and the objectives and contributions of

the developed work are listed.

Although the concepts to be presented next are related to the current tax-

onomies [Fly72, Ski88, Fos95, Bar10], in this section a higher level approach is

taken, presenting a view of parallel computing resources closer to the end user or

programmer, and to the problems being solved.

1.1 User classes

The increase of the execution speed of the Personal Computer has lead to the idea

of using it as a data processing platform. Added to the wide availability of Per-

sonal Computers, more users have started to develop their computing intensive

code, and take off-the-shelf application to their performance limits.

4 CHAPTER 1. INTRODUCTION

Up until a few years ago the only users that could take advantage of parallel

computing infrastructures where those performing numerical simulations. These

users were required to have knowledge of parallel programming, as they had to

develop the jobs completely: processing code, task creation, and communication

between tasks.

Today, new classes of users requiring fast processing of data emerged. Some

actually have limited programming knowledge (but not necessarily with profi-

ciency on parallel programming) but most do not. These only know how to work

with a limited set of tools, mostly by invoking them with command line argu-

ments.

These changes can be related to the phenomenon that occurs since the 70’s:

end-user computing [RF83, SK86, RH88, Pan88, CK89, MK03b, Gov03]. The re-

placement of dumb main-frame terminal by personal computers has lead to the

rise of computer related training and formation: users have become partially re-

sponsible for the maintenance of the computers, and some of the now generic

applications (such as word processing, spread-sheets) require extensive training

plans.

In parallel with this evolution, also the application development area has been

changing. End-users can now develop some applications, allowing them to im-

mediately solve some of their problems without the intervention of the IT depart-

ment personnel.

The level of computer literacy varies from users without any computing knowl-

edge to the IT personnel, but with a finer distribution in between.

MCleans [McL74] originally proposed a simple characterization of computer

users existing in a organization:

• Data Processing professionals

• Data Processing amateurs

• non Data Processing trained users

While it is possible to match these classes to users currently using and requir-

1.1. USER CLASSES 5

ing computing cycles to execute data processing and simulations, Rockart [RF83]

provides a finer grained, more useful classification of end-users:

• Non-programming end-users

• Command level users

• End-user programmers

• Functional support personnel

• End-user computing support personnel

• Data processing programmers

For the purposes of the developed work presented in this Thesis, such a fine-

grained classification is not required. A broader classification, that can still be

matched to the one developed by Rockart, should be used:

• Expert HPC1 users (with parallel programming knowledge)

• Programmers (without specific parallel programming knowledge)

• Tool users and Hobbyists

Non-programming users and end-user computing support personnel are of no in-

terest to this work. The former do not have computing needs, and the latter only

develop applications to help support the operation, not to process data.

In this classification Expert HPC users encompass data processing programmers

and Functional support personnel. These are users having extensive programming

knowledge, and have a deep understanding of the available infrastructure. All

these users are researchers or engineers requiring large infrastructures to execute

their simulations. The codes developed simulate physical phenomena, namely

on the physics, chemistry or mechanical engineering area. The developed code

runs on hundreds of nodes and, due to their nature, requires communication

among them. These users, when developing their simulation code, have to take

into account the inter-process communication and the synchronization between

processes.

1High Performance Computing

6 CHAPTER 1. INTRODUCTION

These programmers are considered end-users as their primary field of knowl-

edge and study is not computer science or programming. They are engineers

or scientist that, due to the environment, have to program the solutions to their

problems.

Another class of users (programmers) knows how to program and can develop

sequential applications. This class matches the characteristics of end-user pro-

grammers proposed by Rockart. However, they can only develop, albeit often

sophisticated, single threaded simulation or analysis code, that nowadays can be

executed efficiently on personal computers. Some of the problems being solved

require the execution of the same code with different parameters. These users

can be found in research laboratories working in the area of biology, statistics, or

even computer science (e.g. network protocols simulation).

Nowadays, tool users can also be a target population for parallel execution en-

vironments. These users know how to parametrize a limited set of tools (such as

image rendering software, or data analysis), thus fitting into Rockart’s command

level users. Nonetheless, at some points of their work, these users need to execute

repetitive tasks over a large set of data. These users usually have access to per-

sonal computers, and their computer knowledge is often limited. Hobbyists also

fit in this category of users, in case of processing batches of images or rendering

images.

1.2 Current tasks execution environments

Up until a few years ago, the only source for usable cycles for the execution of

timely simulations or other data processing was found in datacenters. The avail-

able computers were either mainframes, or supercomputers, depending on the

target population. Today most of the techniques developed for supercomputers

are available in the most ordinary desktop computers, such as floating point and

vector processing units, and even dedicated processors. Furthermore the perfor-

1.2. CURRENT TASKS EXECUTION ENVIRONMENTS 7

mance of the currently available systems is on par with the supercomputers of

the past at a much lower cost [AB08].

The sources for computing cycles are now more diverse and closer to the com-

mon user present at the edges of the Internet. In this section, the available sources

(from the classics to the most recent ones) are presented along with a evaluation

of their target population and possibility to be used by a common user (program-

mer or tool user). The list of available processing powers sources is as follows:

• Institutional HPC infrastructures (Cluster/Supercomputer)

• Grids

• Personal Clusters

• Shared Memory Multiprocessors

• Internet Distributed Computing systems,

• Cloud / Utility computing

High Performance Computing (HPC) infrastructures [Ste09, MSDS10] are com-

posed of hundreds of computing nodes and several TBytes of storage space, all

connected with dedicated high speed network links. This allows the fast execu-

tion of any demanding computing jobs. These systems are usually owned and

managed by an entity the enforces strict access and usages polices: only users

belonging to that organization are allowed to run jobs, or the access requires a

previous contract or grant. So, the access to these systems is restricted to users

with a continuous and high demand for computing cycles.

Grid [FK99, FKT01, Fos02] infrastructures ease the remote access to HPC com-

puting infrastructures to users outside the owner organization (e.g. in the context

of a virtual organization). Furthermore, Grid initiatives and infrastructures allow

the aggregation of scattered resources. In the same manner as with classical HPC

infrastructures, it is necessary for a user, in order to use it, to have an institutional

relationship with a grid initiative participant.

8 CHAPTER 1. INTRODUCTION

The construction of a small scale computing cluster [SSBS99, BB99] is nowa-

days easy. The available commodity-off-the-shelf (COTS) hardware is power-

ful enough to be used in complex computations, and the speeds attained with

a simple Ethernet Gigabit switch are sufficient to the user needs. Although the

hardware is available, the existing tools are not targeted at all the user classes. In-

tensive computing applications may also take advantage of multicore machines,

but the integrated execution of multiple distributed computers is not easy to the

common user.

The current development of microprocessor technology has lead to the devel-

opment of multi-core processors [cor08, SCS+08, Dev10, Int11]. These fit into the

same package distinct processing cores connected to the external memory and de-

vices by a shared bus. In most multi-core architectures, each core fits a individual

Arithmetic, Logic Unit and Register Sets. Depending on their implementation,

caches and Control Units can be private or shared among cores. In commodity

processors (from Intel and AMD), each core fits a different and private Control

Unit rendering that multicore processor similar to a shared memory multiprocessor

implementation. On these systems, the operating systems see them as multipro-

cessors, employing multiprocessor thread and process scheduling. Also on the

parallel application level, most existing programming methodologies can be ap-

plied as if a multiprocessor was being used.

The processing power of desktop personal computers has increased in the

last years. Adding to this fact, these personal computers, besides being idle

a large part of the time, have increasingly faster Internet network connections.

Taking advantage of these facts, a new infrastructure for parallel computing has

emerged: Internet Distributed computing [ACK+02, And04]. Nowadays several re-

search projects and organizations [Pea11] take advantage of this novel computing

environment: researchers develop applications that perform a certain simulation

to be executed on the personal computers owned by the the users at the edges

of the Internet. Data is transferred to the donor computer when the user is con-

1.3. CURRENT PARALLEL PROGRAMMING PARADIGMS 9

nected to the Internet, allowing later execution of the simulation (when, other-

wise, the computer would be idle).

Recently, private data center owners with a presence in the Internet have be-

gun to offer computing services to remote users, promoting the emergence of the

Cloud [Wei07, AFG+09, AFG+10, WvLY+10]. One of such services, coined Util-

ity Computing allows computer resources such as virtual machines, disk space to

be rented by the end-user. Amazon is one of the the most successful providers of

Utility Computing, offering in its portfolio the Elastic Computing Cloud [Ama11]

service. Such services allow users to install ordinary versions of regular operat-

ing systems and, on demand, launch instances of those operating systems. The

charged value depends on the execution time and on the hardware characteris-

tics (number of processors, memory). The access to these computer instances is

straightforward, as the user only has to sign a simple contract and provide a valid

credit card to be later charged. Other cloud services allow the run-time upload

of code to a remote infrastructure for later parallel execution of locally invoked

functions [PiC10, Lon11].

1.3 Current parallel programming paradigms

Depending on the problems being solved, different programming paradigms,

work organization and decomposition fit them better. Next, the main program-

ming paradigms for the development of parallel jobs, and the various ways to

organize the tasks comprising a job are presented.

1.3.1 Work organization

The kind of problem being solved determines the best suited work organization

to be used, being one of the following:

• Bag-of-Tasks

• Master-slave

10 CHAPTER 1. INTRODUCTION

• Recursive

• Decomposition with inter-task communication

These different work organizations are tightly related to the way data can be

partitioned and the way that data is to be processed: i) if it can be processed in a

single or multiple stages, ii) if it can be split a priory or dynamically split by each

of executing tasks, or iii) if each task needs data and results from other tasks.

Bag-of-Tasks problems are composed of independent tasks [CBS+03]. These

tasks can be launched independently of each other. Before execution, each com-

puting node receives the code and the data to be processed and, after the exe-

cution of the code, the results are returned. In this kind of jobs, there is no in-

teraction between the launching code and each task, furthermore after each task

execution (data processing) the launching code (job management) does not fur-

ther process any results. At the end of the execution of all the tasks, the user has

a set of data that must be later processed in other tools.

When using the master slave paradigm [SV96], there is some interaction be-

tween the main process (master) and the tasks (slaves), but still there is not any

communication among tasks. The master, besides launching each task, also per-

forms some data pre-processing and results aggregation. In the simplest form,

the master only interacts with the slaves at the beginning of each task (to invoke

them and send data) and when tasks finish, to retrieve results. More complex in-

teractions involve the master to wait for the slaves (using barriers) in the middle

of their execution, in order to retrieve partial results, process them and distribute

new versions of data.

If tasks can spawn themselves in order to further distribute work, a recursive

work distribution [BJK+95, RR99] is present. The data assigned to a task is split

and part of it is assigned to the newly created child task. A task can only ter-

minate (and return its result) after completion of all its children and aggregation

of their partial results. Although of a simple implementation, due to the natural

recursion in data, a high level of parallelism is easily attained.

1.3. CURRENT PARALLEL PROGRAMMING PARADIGMS 11

The most complex problems require data to be decomposed and distributed

among processes and, during execution, communication between the various

tasks, such as in Particle-in-Cell [Daw83] or Finite Elements [FWP87] simulations.

When, in order for a task to make progress in its computation, it needs data from

another tasks (i.e. a sibling or neighbour task, w.r.t data being processed), com-

munication between computing nodes needs to be carried out. When developing

tasks’ code, it is necessary to guarantee the correct synchronization so that dead

locks or inconsistencies do not happen. Although a master-slave solution is al-

ways possible, where a single process centralizes all communication, the number

of tasks, and the amount of transmitted data may render such solution unus-

able. The decentralized communication between tasks eliminates a bottleneck

(the master) and reduces communication delays.

1.3.2 Programming model

In order to implement a parallel project and its tasks, some sort of programming

tools and libraries must be used; these are mainly used to initiate computation

and to perform communication between intervening components.

These libraries or tools must allow the implementation and deployment of the

previously described work organization, follow some known model, and fit into

at least one of the following classes:

• Message passing communication

• Shared memory communication

• Explicit programmed task creation

• Declarative task definition

Of the previous list, the first two items state how communication between

components is programmed and carried out [GL95]. The other two define how

tasks are created by the programmer/end user.

When the work organization requires communication between components

12 CHAPTER 1. INTRODUCTION

(master-slave or decomposition with inter-task communication), the programmer ei-

ther uses an explicit Message Passing API or uses Shared Memory paradigm.

With Message Passing [GBD+94, Mes94], the programmer explicitly invokes

functions to send and receive data. During execution, the executing processes

(tasks or master) synchronize at these communication points, with the receiver

of the message waiting for the sender to transmit the data. In a master-slave

problem, usually the master waits for messages from all the tasks, processes the

received data and transmits back a new set of data for a new parallel interaction.

When there is inter-task communication, tasks must know the identification of

those others where some data must be sent to, in order to periodically communi-

cate with them.

Another way to transmit information among tasks or between a master and

its slaves is using variables residing in a shared memory space. These variables

are shared among the participant processes, and its access is performed as if it

was a simple global variable, by using the common programming language as-

signments, accesses and expressions. As this data can be concurrently accessed

by various processes, it is necessary to guard these accesses: synchronization rou-

tines must be explicitly used when reading or writing values on the shared mem-

ory. The underlying hardware or system software must guarantee some level of

consistency when accessing shared data [AG96, Gha96].

Shared memory [Ste99, Boa08] is mostly used when executing the concurrent

tasks in a computing infrastructure offering shared memory hardware support,

since the available memory space is naturally shared among all the processes

or threads, and transparently accessed by the application. If a central physical

memory is accessed by all processors, the use of a shared memory programming

model, incurs no additional performance penalty when performing communica-

tion, because there is no data transmission between private memory spaces.

When the tasks are to be executed on a cluster of computers connected by a

System Area Network (SAN) (such as Gigabit Ethernet [IEE11], Myrinet [Myr09]

1.4. TARGET POPULATION CHARACTERIZATION 13

or Infiniband [Ass10]), a Software Distributed Shared Memory [LH89] (DSM) library

can be used. Although not all of the data can or should be shared among tasks,

a communication buffer can be shared and accessed as a local variable. In order

to reduce data transfer these DSM systems implement relaxed data consistency

protocols that guarantee that: from all the shared data, only the necessary one

(the one recently modified) is transmitted [GLL+90, KCZ92]. This data selection

is performed without the user knowledge or intervention and transparently re-

duces the overall communication [SG00, Sil03].

In terms of task creation, the user either creates them explicitly (in inter-task

communication, master-slave or recursive problems) or relies on the infrastruc-

ture to create them. Using a task creation API (Explicit programmed task creation),

the programmer must define when tasks are to be created: in the beginning of the

program or during the execution of jobs.

If the problem fits into the Bag-of-Tasks category, it is only necessary for the

programmer to define the code to be executed by each task, possibly by means of

declarative task definition mechanisms. The underlying system will be responsible

for launching the tasks (transmitting the code and the input data of each task) and

retrieve the partial results after each task completion. The code to be executed can

be enclosed in either a function (or class method) or a self-contained application.

In both scenarios the underlying system is responsible for the execution of that

code.

1.4 Target population characterization

The following tables systematize the relations between each class of users and the

infrastructures, tools and methodologies previously presented. These relations

are important in order to know and understand the focus and target population

of available systems, and what are the requirements common users have.

Table 1.1 shows the types of computational work the different classes of users

14 CHAPTER 1. INTRODUCTION

usually have to perform.

Experts Programmers Tool users

Bag-of-Tasks 3 3 3

Master-slave 3 3 7

Recursive 3 3 7

Inter-task communication 3 7 7

Table 1.1: Usual work organization by user class

When referring to scientific parallel computing, expert users are usually tied

to to development and execution of inter-task communication problems, as their

problems are usually best solved this way. All other types of work, is also possible

to be deployed by a expert user, depending on the problem being solved.

Master-slave work division can be performed when the problem being solved

requires several iterations of the same code, with a global state being evaluated,

but without communication between the concurrent tasks. Depending on the

supplied infrastructure, both expert users or programmers can implement and de-

ploy jobs with such work organization.

Both programmers and tool users can develop solutions to problems fitting the

Bag-of-Tasks category. All the problems dealing with the independent processing

of batches of data or files fit into this category. These users, due to the unavailabil-

ity of resources, may solve this kind of problems executing sequentially several

instances of serial applications (or use pre-existing tools).

Recursive work organization naturally arises from a recursively organized data.

As both expert users and programmers may need to handle such data, these user

classes may encounter problems that can be easily partitioned in a recursive man-

ner.

This evaluation only states the possibility for a user to encounter a specific

work organization model. The possibility to implement it and efficiently execute

such solutions is presented in the following tables.

The next table (Table 1.2) presents the possibility for a particular user to access

1.4. TARGET POPULATION CHARACTERIZATION 15

and use the currently existing computing resources. Here, only the access to such

infrastructures is evaluated, not taking into account the knowledge needed to

configure and use such resources.

Experts Programmers Tool users

HPC Clusters / Supercomputer 3 7 7

Grid 3 7 7

Shared Memory Multiprocessors 3 3 3

Personal Cluster 3 3 3

Distributed Computing 3 3 7

Cloud / Utility Computing 3 3 3

Table 1.2: User access to the available infrastructures

As expected, expert users usually have access to any of the presented infras-

tructures. If the institution he is working at has a HPC Cluster or Supercomputer

or belongs to one of the existing Grid initiatives, the access to those resources is

possible. The other two classes of users, because they do not have the necessary

institutional links, are deprived of these resources.

Today any kind of user, independently of his programming skills can build,

with off-the-shelf components (computing and network hardware), a small per-

sonal cluster. This cluster can also aggregate old and slower hardware. Although

small, these can speed some of the usually lengthy jobs.

Shared memory multiprocessors are also widely available, as most entry level

personal computers nowadays can fit a multi-core processor. At least two cores

are available on most desktop computers currently sold.

The access to utility computing is also possible to any of the presented user

classes, as it is only necessary to sign a simple contract with the service provided,

and provide a valid payment method.

Distributed Computing may seem a solution usable by any kind of users, but

that is actually not the case. Any user with a personal computer and an Internet

connection can donate cycles for solving others’ problems, but not everybody can

16 CHAPTER 1. INTRODUCTION

take advantage of them. Today it is necessary to have programming knowledge

to write the code to be remotely executed. Furthermore it is necessary to be well

known and to have some media coverage to gather enough donors. These issues

are further detailed in Chapter 2.

Another relevant issue is how well a user is proficient in the required tools to

execute parallel jobs, Table 1.3 shows this relation.

Experts Programmers Tool users

Message Passing 3 7 7

Shared Memory 3 7 7

Task creation 3 3 7

Task definition 3 3 3

Table 1.3: Ease of use of various programming models and tools

As expected expert users are able and can use any kind of tool or API to develop

their jobs.

Users with limited programming skills may not be able to use message passing

(such as MPI) or shared memory APIs to develop their jobs, but are able to design

and develop self contained tasks that are created using a simple task creation API

or using task definition tools. Message passing or shared memory require an architec-

tural knowledge that a non expert programmer may not have.

On the other end of the spectrum, lie tool users that can not use any system

requiring programming knowledge. These users are limited to the declarative

task definition.

Observing the previous tables a conclusion can be drawn: although expert

users can take advantage of the full spectrum of systems, work organizations and

resources, this is not true to the other two classes of users.

Programmers with limited parallel programming knowledge can only solve

bag-of-tasks and simple master-slave problems, execute their jobs on personal clus-

ters, Distributed computing infrastructures and utility computing systems, and de-

velop them using simple task creation APIs or task definition tools.

1.5. OBJECTIVES 17

Ordinary tool users are further limited: the resources are limited to personal

clusters and utility computing, and they can only develop their Bag-of-Tasks jobs

using task definition tools.

Besides these natural restrictions, these two user classes face further limita-

tions due to the inadequacy of the available tools to these new users and their

usage.

Although it is possible to easily build personal clusters and use multiproces-

sors, the tools to deploy work on them are still the same as the ones available to

HPC infrastructures, making them impractical to low knowledge users. With util-

ity computing the same happens: it is possible to create on-demand clusters but

the tools to easily deploy work on them do not exist. Furthermore, nowadays it

is impossible to know exactly how many machines should be allocated for the

intended performance, so that the execution cost is minimal.

The Internet distributed computing may seem the optimal source for resources,

but users with short term jobs, or with small visibility, can not take advantage

of this cycles source. The following chapter (Chapter 2) presents a taxonomy for

Internet based Distributed Computing and applies it to existing systems in order

to infer the reasons for success of such systems.

1.5 Objectives

The main objective of the developed work is to allow non HPC experts to eas-

ily and efficiently use available computing resources for the parallel execution

of tasks. The target population of this work belongs to the programmers and tool

users, presented in Section 1.1. Due to their limited knowledge, these users are

not capable of creating and deploying their processing tasks on the available in-

frastructures (Section 1.2).

The developed work focuses on solutions for the execution of bag-of-Tasks

problems, created by users with limited or no knowledge on parallel program-

18 CHAPTER 1. INTRODUCTION

ming, and without access to conventional parallel execution environments.

In order to increase resource availability and ease of access, three specific lines

of work were explored, addressing different aspects, and ranging from high level

task creation to lower level resource discovery:

• job submission methods

• resource integration and discovery

• job deployment environments

These lines of work can be easily matched to different layers of the overall

generic architecture, presented in Figure 1.1.

!"#$%&'()"*+',-

!"#$%$.#+/$$/",

0'$".12'$%/,-'314-/",%4,&%&/$2"5'1*

6"24)%7).$-'1 8-/)/-*%2"+(.-/,3%0'+"-'%9''1$

Figure 1.1: Overall architecture

On par with the work line presented, also the main objectives can be further

detailed:

• allow a simple, more efficient job definition to the proposed target popula-

tion

• allow an efficient resource usage

• allow the use of more diverse and widely available execution environments

1.5.1 Contributions

As expected each of the individual contributions also lies in at least one of the

layers presented.

1.5. OBJECTIVES 19

!"#$%&'%()*+, -*.%.*/&#"01(*.23&

45678 9+,#(,/

45678 2(:;<='

4>6?'

?+0"*+&5++,)

@+(,.)*.#

A
"
B
)
&

4
(
B
0
.)
)
."
2

?
+
)
"
(
,#
+

<2
*C
&D
&7
.)
#
C

A
"
B
)
&

7
+
1
%"
/
0
+
2
*

Figure 1.2: Overall architecture with highlighted contributions

Figure 1.2 clearly presents the developed work and its division, and where

its contributions fit in the overall architecture. The following paragraphs present

briefly the developed work, along with its main contributions and results.

Jobs submission Although the Bag-of-Tasks are the easiest problems to de-

velop, the existing tools are not the best suited to the target population. Users

are required to either write complete scripts or applications, from where tasks are

created. This fact limits the users able to use available resources, not due to the

access difficulties, but due to complexity of job creation.

The developed work and mechanisms target efficiency (in terms of tasks defi-

nition/development time) and expressiveness in task creation, allowing the sub-

mission of jobs and their tasks based on independent method invocations (Mer-

cury [SVF09]) or independent applications (SPADE [SVF08c]).

Jobs deployment As the target population does not have access to HPC infras-

tructures, the use of more accessible resources is fundamental. It is necessary to

develop job deployment mechanisms that allow less knowledgeable users to use

existing infrastructures, and to provide them with access to novel resources.

Two new execution environments are addressed: utility computing infrastruc-

tures (Heuristic [SVF08a, SFV11]) and Internet distributed computing environ-

ments (nuBOINC [SVF08b]). Furthermore part of this work allows easier em-

ployment of available personal clusters (SPADE [SVF08c]) in the execution of

20 CHAPTER 1. INTRODUCTION

Bag-of-Tasks.

Resources integration and discovery With new users having jobs to be exe-

cuted, with more resources being available for use, the resources integration is

fundamental for efficient usage. Without these efficient mechanisms for resource

discovery, aggregation, integration and usage, any work related to job submis-

sion or deployment is of no use.

To tackle this issue, a new algebras for a more flexible and precise evalua-

tion of Internet scattered resources was developed (STARC [SFV10]). The heuris-

tic [SVF08a, SFV11] also allows an efficient use of an Utility Computing infras-

tructures as a source of processors for the execution of Bag-of-Tasks.

1.5.2 Scientific Publications

All the developed work was published and presented in the context of peer re-

viewed international scientific journals, conferences and workshops, and par-

tially described in a book chapter. The list of these publications is as follows:

• A2HA - Automatic and Adaptive Host Allocation in Utility Computing for

Bag-of-Tasks. [SFV11]

João Nuno Silva, Paulo Ferreira, and Luís Veiga.

Accepted for publication on JISA - Journal of Internet Services and Appli-

cations, Springer.(Ranked in the IST CCAD2 A Journals list)

• Service and resource discovery in cycle-sharing environments with a utility

algebra. [SFV10]

João Nuno Silva, Paulo Ferreira and Luís Veiga. 2010.

In 2010 IEEE International Symposium on Parallel & Distributed Processing

(IPDPS). IEEE. (Ranked in the IST CCAD2 B Conferences list)

Object Identifier: 10.1109/IPDPS.2010.5470410

• Peer4Peer: E-science Communities for Overlay Network and Grid Comput-

ing Research. [VSG11]
2Conselho Coordenador de Avaliação dos Docentes, https://fenix.ist.utl.pt/ccad/

1.5. OBJECTIVES 21

Luís Veiga, João Nuno Silva, João Coelho Garcia. 2011.

Chapter on the book "Guide to e-Science: Next Generation Scientific Re-

search and Discovery", Springer.

ISBN: 0857294385

• Mercury: a reflective middleware for automatic parallelization of Bags-of-

Tasks. [SVF09]

João Nuno Silva, Luís Veiga, and Paulo Ferreira. 2009.

In Proceedings of the 8th International Workshop on Adaptive and Reflec-

tive MIddleware (ARM ’09), , collocated with ACM/IFIP/Usenix Middle-

ware 2009. ACM.

Object Identifier: 10.1145/1658185.1658186.

• SPADE: scheduler for parallel and distributed execution from mobile de-

vices. [SVF08c]

João Nuno Silva, Luís Veiga, and Paulo Ferreira. 2008.

In Proceedings of the 6th international workshop on Middleware for perva-

sive and ad-hoc computing (MPAC ’08),collocated with ACM/IFIP/Usenix

Middleware 2008. ACM.

Object Identifier: 10.1145/1462789.1462794

• Heuristic for resources allocation on utility computing infrastructures. [SVF08a]

João Nuno Silva, Luís Veiga, and Paulo Ferreira. 2008.

In Proceedings of the 6th international workshop on Middleware for grid

computing (MGC ’08), collocated with ACM/IFIP/Usenix Middleware 2008.

ACM.

Object Identifier: 10.1145/1462704.1462713

• nuBOINC: BOINC Extensions for Community Cycle Sharing. [SVF08b]

João Nuno Silva, Luís Veiga, and Paulo Ferreira. 2008

In Second IEEE International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, Colocated with SASO 2008. IEEE.

Object Identifier: 10.1109/SASOW.2008.66

22 CHAPTER 1. INTRODUCTION

• Transparent Adaptation of e-Science Applications for Parallel and Cycle-

Sharing Infrastructures.

João Morais, João Nuno Silva, Paulo Ferreira and Luís Veiga.

In 11th IFIP International Conference in Distributed Applications and Inter-

operable Systems, DAIS 2011, LNCS, Springer. 2011.

1.6 Document Roadmap

The rest of the document is organized as follows.

In the next chapter the developed taxonomy is presented, along with its use in

the discovery of the requirements for a successful Distributed Computing system:

usable by users of all conditions, and providing efficient and correct results.

The following chapters substantiates the developed work, presenting its rel-

evance, contributions and results. The novel job definition mechanisms are pre-

sented in chapters 3 and 4.

Chapters 5 and 6 deal with the job deployment layer. The former allows the

use of Internet scattered resources, while the latter presents work related to the

use of Utility computing infrastructures. Chapter 7 presents an algebra for the

evaluation of the available resources.

The document concludes with Chapter 8 discussing the proposed solutions,

and where an overview of the possible integration of the envisioned solutions

and future work is presented.

22222222222222222
Distributed Computing Systems

The use of a Internet based Distributed Computing infrastructure may seem the

panacea for common users with computational needs. The true fact is that there

are several systems that, in theory, could be used by common users scattered

over the Internet, but in fact they are not. This reality was briefly motivated in

the previous chapter, but must be further detailed.

This chapter presents a new taxonomy for the characterization of Distributed

Computing Systems. For each relevant characteristic identified, the possible al-

ternative approaches are highlighted and presented how existing systems imple-

ment it. This taxonomy includes the more usual architectural characteristics but

also those more tied with the user experience and often overlooked: efficiency of

job execution, security, and the availability and nature of the mechanisms for de-

velopment and creation of jobs. Using the presented taxonomy, the most relevant

systems developed up to date are also characterized.

With the detailed characterizations, made following this new taxonomy, it will

be possible to understand the deficiencies of current approaches, what makes a

system successful, and the directions a Distributed Computing system must take

to be widely used.

2.1 Introduction

The Internet is a good source of computational power for the execution of parallel

tasks: most of the connected computers are idle some of the time and, even when

busy, are perfectly capable of executing most available jobs.

23

24 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Taking this into account, in recent years there has been a significant devel-

opment and research on Distributed Computing Systems to allow the public ex-

ecution of Bag-of-Tasks jobs on the Internet. Existing systems present and em-

ploy novel mechanisms, ranging from the definition of adequate programming

techniques, to new network architectures, or even to more efficient scheduling

techniques.

In general, the goals of these systems are twofold: i) to allow anyone with

parallel jobs to deploy them to be executed on remote computers, and ii) to attract

owners of connected computers to donate processing time to those jobs that need

it.

The presented goals are to be achieved with minimal burden to those that

take part in the process (client programmers and donors), and should allow any

user (independently of their computing knowledge) to take advantage of existing

resources.

Programmers should have minimal work parallelizing the applications to be

executed on the Internet, and should gain from the parallel execution of their

tasks. Issues such reliability of the returned values and security of data and code

should also be handled by the system. Furthermore, after submitting the work, it

is expected that the tasks execute with a certain speedup.

On the other hand, the donor should be disturbed to a minimum, when in-

stalling the system, and executing the parallel code: i) the installation should be

straightforward, ii) the security should not be compromised, and iii) the overhead

incurred from downloading and executing the code should be minimal.

The way each system handles and solves the previous issues is fundamental

to its widespread adoption as a valid solution to the execution of lengthy Bag-

of-Tasks problems. In order to define or find the best design and architectural

decisions, it is necessary to study and characterize existing systems.

In the previous chapter, Internet Distributed Computing Systems were pre-

sented as a possible and viable source of computing cycles, but it was also stated

2.1. INTRODUCTION 25

that they were essentially unusable by the target population of this work: com-

mon users, or programmers with infrequent computational needs. To demon-

strate this statement, an evaluation of the available systems must be performed.

Although currently various systems exist, and employing different technolo-

gies, few are able to attract a suitable user base. The only Distributed Computing

platform with widespread use is BOINC [And04] and its derivatives. All other

systems are in effect not widely used.

To study this phenomenon and determine the reasons behind it, it is necessary

to define a suitable taxonomy. Some taxonomies already exist, but are focused on

architectural characteristics, not dealing with those more more tied with the user

experience: efficiency of job execution, security and mechanisms for development

and creation of jobs.

The main focus of this chapter are systems that are public, in the sense that

they are generic enough to allow any Internet connected computer owner to cre-

ate projects or jobs, and that do not require complex administrative donor admis-

sion. Such systems are generic, not being tied to a specific problem, and should

allow users to create jobs (by providing the processing code and data), or just cre-

ate tasks (by submitting the data to be processed by previously developed and/or

deployed code).

In the systems targeted in this chapter, users can be either clients or donors.

Donors are gathered from the Internet, not being required to belong to an organi-

zation (as seen in Enterprise Desktop Grids). These donor users are only required

to install some simple software module that will execute the code submitted by

the clients. The client users must have lengthy problems easily parallelizable:

preferably using the Bag-of-tasks paradigm.

The following section (Section 2.2) describes the developed taxonomy. Its pre-

sentation and description is split in three distinct sets of characteristics: architec-

ture, security and reliability, and user interaction. For each of these sets, each

characteristic is explained and analysed on how it is implemented by the cur-

26 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

rently available systems.

Section 2.3 describes some previous works that tried to systematize the char-

acteristics of distributed and parallel computing systems. Some of this work also

presents taxonomies for the characterization of Desktop Grid systems that, only

at some points, intersects with the study here presented. These intersection areas

are also highlighted.

Section 2.4 presents the characteristics more relevant to user adhesion and de-

scribes the optimal design and implementation decisions. In this chapter, BOINC

is presented along with its design, architecture and implementation decisions and

how they affect the installed user base.

This chapter closes with a summary of the conclusions that rose from the de-

velopment and use of the taxonomy.

2.2 A Taxonomy for Cycle-Sharing Systems

Three important factors have impact on the user experience one can have while

using a Distributed Computing System, either when submitting work or execut-

ing it: i) the architecture, ii) the security and reliability, and iii) how the user

interacts with the systems.

The first class of factors limits the overall performance of the systems when the

number of users (providing and using resources) scales to hundreds, thousands,

or more, and how efficiently the executing hosts are selected (taking into account

the jobs’ requirements). Delays before the start of each task should be minimum

and fairness should be pursued when tasks from different users compete for the

same resource.

Security is an important feature, as those donating resources do not want to

become vulnerable to attacks, and all of the participants require minimal levels

of privacy. The implementation of reliability mechanisms is fundamental to pro-

mote both liveness and correctness.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 27

The last class affects how users create jobs and what kind of work can be

submitted. A system difficult to configure will not attract donors nor the clients

will be able to efficiently deploy and execute their jobs.

As all these factors directly affect users (either as a work creator or donor),

they are fundamental to ensure that a system gathers a large user base to be useful

to those submitting work to be executed.

This section is split in three parts, each dealing with one class of character-

istics. There, the different characteristics are presented and then applied to the

various Distributed Computing Systems considered in this study.

The use of non dedicated remote network connected machines for the execu-

tion of parallel jobs has been initiated with Condor [LLM88]. This infrastructure

allows the execution of independent tasks on remote computers scattered on a

LAN. As the original target computing environment was composed of commod-

ity workstations, Condor only scheduled work when these computers were idle.

Due to the homogeneity of the environment (all aggregated workstations shared

a similar architecture and operating system) compiled applications could be di-

rectly used.

The applicability of the concept inaugurated by Condor to the Internet was

limited by the natural heterogeneity of this new environment. There was no guar-

antee that the available workstations shared the same architecture, or operating

systems, and no widely available portable language existed. The development

and success of the JAVA language and Virtual Machine partially solved these

problems.

This new language was ported to most existing architectures, allowing the

execution of a single application version on distinct and heterogeneous devices,

thus allowing the development of the first generic Distributed Computing Sys-

tems [BBB96]. The second half of the nineties witnessed an increased develop-

ment rate, with the application of novel techniques to solve the presented prob-

lems. This evolution can be seen in the following illustrative yearly work distri-

28 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

butio of papers and their related systems:

• 1995 : ATLAS [BJK+95]

• 1996 : ATLAS [BBB96] and ParaWeb [BSST96]

• 1997 : IceT [GS97], SuperWeb [SSP+97], JET [PSS97, SPS97], Javelin [CCI+97,

CCNS97] and Charlotte/KnittingFactory [BKKK97],

• 1998 : Java Market [AAB98b, AAB98a], POPCORN [NLRC98] and Charlot-

te/KnittingFactory [Kar98, BKKK98],

• 1999 : Javelin [NBK+99], Bayanihan [SH99, Sar01] and Charlotte/Knitting-

Factory [BKKW99]

In the 21st century the development and research on Internet Distributed

Computing continued, seeing the advent of the peer-to-peer architectures for re-

sources discovery and work distribution:

• 2000 : Javelin [NPRC00], MoBiDiCK [DH00] and XtremWeb[GNFC00]

• 2001 : Bayanihan [Sar01] and XtremWeb[FGNC01]

• 2002 : JXTA-JNGI [VNRS02, Mik05], P3 [OLS02] and CX [CM02]

• 2003 : G2-P2P [MK03a, MK05]

• 2004 : CCOF [ZL04b]

• 2005 : Personal Power Plant [STS05], CompuP2P [Sek05], G2DGA [Ber05],

Alchemi [LBRV05b, LBRV05a] and BOINC [AKW05]

• 2006 : YA [CA06] CompuP2P [GS06], and BOINC [AF06]

• 2007 : Leiden[Som07, Lei], Ginger [VRF07b], and BOINC [And07]

• 2008 : NuBoinc [SVF08b]

• 2010 : Ginger [RRV10, EVF10]

• 2011 : Ginger [MSFV11, OFV11]

As stated before, this list only presents Internet based Distributed comput-

ing systems. Although having some similar problems, Enterprise Desktop Grids

(such as Entropia [CCEB03]) were not addressed, because their are not free.

Also in the area of institutional clusters and the Grid, there has been some

work on gathering remote donors. For instance, in Albatross [BPK+99, KBM+00]

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 29

most work has been done in the development of an infrastructure for the consol-

idated use of distributed clusters. Albatross optimizes work distribution taking

into account communication latency between clusters. LiveWN [KG06] allows

ordinary users to donate cycles to a Grid, by executing Grid middleware inside

a virtual machine. Although users can easily donate cycles, a pre-existent Grid

infrastructure (with all complex security configurations) must be set-up.

These systems are of no interest to this study since some sort of prior orga-

nized and administered infrastructure should exist (clusters in Albatross and a

Grid in LiveWN), making them impractical, or otherwise inaccessible and/or un-

usable to a regular home user.

Although SETI@home [ACK+02] was a predecessor of BOINC, it is not listed

due to the fact that it is tied to a single specific problem, not being generic and

not allowing the creation of different projects.

2.2.1 Architecture

Although the CPU speed of the donating hosts is the most important factor to

determine individual task execution time, other architectural decisions have a

fundamental impact on the overall system performance, such as jobs speedups,

fairness on the selection of tasks, improvement or optimization of resource uti-

lization.

With respect to architectural characteristics, it is necessary to include different

implemented network topology and organizations, how resources are evaluated,

what scheduling policies are used and how work distribution is performed.

2.2.1.1 Network Topology

Different systems employ different network topologies, with different organiza-

tion of the various involved entities (donors, clients, or servers).

This architectural decision affects the kind of participating entities, their inter-

action, the overall complexity and the system efficiency. These can be, in order of

30 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

increasing flexibility and decoupling:

• Point-to-point

• Single server

• Directory server

• Hierarchical servers

• Replicated servers

• Peer-to-peer

Point-to-point In a point-to-point topology: the user having work to be exe-

cuted must own and operate his own server. The creation of jobs must be per-

formed in that server. At a later instant, computers owned by the donors contact

directly the servers owned by the clients (those needing processing time and cre-

ating work to be done).

As it is the responsibility of the user submitting the jobs to install and main-

tain all the hardware and software necessary to provide work to the donors, this

simple solution adds burden to the client user. Furthermore, there is no reuse of

previously installed infrastructures.

On the donor side, this solution is not very flexible. This user has to exactly

know the identification of the server where certain jobs are hosted, and it is im-

possible to load balance the requests to distinct computers.

Single Server By decoupling the place where jobs are created (client computer)

and the server where they are stored, it becomes possible for a single server to

hosts projects and jobs from users geographically dispersed. This solution allows

the reuse of the infrastructure, and the reuse of the processing code. Users can

now submit different data to be processed by previously developed code.

This architecture requires the existence of remote job creation mechanisms.

The existence of a simple user interface is enough.

This architectural solution still requires, as in a point-to-point architecture,

the donor to exactly know the identification of the server hosting the jobs to be

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 31

executed. Furthermore, both these architectures have a single point of load and

failure.

Directory Server With the addition of a directory server, the problems with the

point-to-point and single server approaches, with respect to server identification

and location, are solved. The donors contact a directory server that redirects re-

quests to one of the servers supplying jobs. Although the donor still has to know

the identification of a computer (the directory server), this server will act as an

access point to various work sources.

The architecture of the underlying server may follow the patterns presented

earlier (single server or point-to-point). Either the servers are shared among dif-

ferent clients by allowing the creation of jobs from a remote location, or a server

can only be used by its owner. Furthermore, all communication is still performed

directly between the donor computer and the server where jobs are stored.

Even with a directory server, scalability and availability problems continue

to exist. For each job, there is still only one server hosting its tasks. All donors

wanting to execute such tasks contact the same server, that may not have enough

resources to serve all requests, in particular to transfer all data efficiently. Also,

in case of failure there are no recovery options, being impossible for any donor to

execute tasks from jobs hosted on failed servers.

Hierarchical Servers In order to tackle scalability issues, the simplest way is

to partition data among several servers. In the case of Distributed Computing

systems, this division can be made at different granularity levels: at the job level

(different jobs hosted on different servers) or at the task level (different tasks on

different hosts).

In order to manage a set of systems, the simplest solution is to organize them

in a tree structure. This hierarchical structure can range from the simple two tier

architecture (with one coordinator and a set of servers), to a deeper organization.

The most evident use of a hierarchical infrastructure is to balance server load.

32 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Taking this into account, when jobs (or tasks) are created, the server responsible

for them can be the one least loaded. In this case, a job (and all its tasks) can be

hosted on a server or have its tasks distributed among several servers.

Systems that allow the creation of recursive tasks (allowing tasks themselves

to spawn new tasks) also fit well in a hierarchical architecture. When tasks are

created, a server to host the tasks is selected. In order to maintain information

about dependencies, it is necessary that each server maintains a list of the servers

hosting the sub-tasks. This requires a tree-based architecture, reflecting the task

dependencies.

Since each server stores parts of the jobs, some level of load balancing is pos-

sible and scalability is attained. Nonetheless, even with this solution, availability

is still an issue, since, if a server crashes, the work stored there becomes unreach-

able.

Replicated Servers The replication of task data among several servers addresses

both availability and scalability issues.

In systems with replicated servers, the information about a single task is stored

in more than one server. When submitting work, the client contacts one of the

available servers. The way the storage of the data is performed is transparent

to the user, without having any hint about what server will host his tasks. Later,

when donors contact the system in search of work, one copy of a task is retrieved.

Replication can be performed on two different levels: server and task. In the

first case, all the data stored in a server is replicated on other servers. If the

replication is at the task level, there is no strict mapping between the information

stored on the server: replicas of tasks from the same jobs can be stored on different

servers.

In the case of failure of a server, as replicas of that data are stored elsewhere,

the system continues operational, maintaining all task information accessible.

Furthermore, with this solution, donors do not have to contact the same set of

servers to retrieve tasks from a given job, which also tends to balance load across

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 33

servers.

The algorithm to distribute tasks among servers is not the only issue this new

topology raises: the management of the correct execution of those tasks is also a

complex issue. Since multiple copies of the same task exist in different servers,

the multiple execution may raise global issues of inconsistency of jobs state.

If tasks are idempotent, the multiple execution of the same task causes no

harm; thus if the system only allows such type of tasks the replication implemen-

tation is straightforward. On the other hand, if tasks are not idempotent, it is

necessary to guarantee that before starting a task, no replica of it was previously

started. These verification mechanisms and the communication overhead may

hinder the gains from replication, in the case of shorter tasks.

There is no strict relation between replicated storage and replicated execution

of tasks. In section 2.2.2 it is presented how replicated execution of tasks is per-

formed and its uses, an what problems it solves.

Peer-to-peer The most distinct characteristic of a peer-to-peer architecture is

that any intervening computer (peer) can perform at least two simultaneously,

yet distinct roles: i) a peer is a donor, by executing tasks submitted by others, and

ii) acts as a server because it stores data, results, and helps on work distribution.

Furthermore, an intervening computer can also act as a client, from where jobs

and tasks are created.

While on other architectures, dedicated servers are used to store data, in a

peer-to-peer system, the data is on the edge of the Internet on often insecure,

unreliable computers. This problem requires more resilient solutions than on

other systems: i) the distribution of job data into different nodes is essential not

to overload a single computer, and ii) replication of data should be implemented

to guarantee that the (highly probable) failure of a peer does not compromise the

execution of a job.

With respect to donors’ high volatility, the problems on a peer-to-peer infras-

tructure are similar to those observed in systems relying on dedicated servers.

34 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Also, in this architecture, there are often no guarantees about the offered quality-

of service. These issues will be described in Section 2.2.2.

The entry point for a peer-to-peer network can be any of the already partici-

pating nodes. Furthermore, any peer may only know (and contact with) a limited

number of peers. These issues affect normal operation of the system: the way dis-

covery and selection of tasks is performed, how remote resources are discovered,

and how information is exchanged between the peer acting as client and the one

acting as donor. These issues will be detailed in the following sub-sections.

2.2.1.2 Resource Evaluation

Tasks require various kinds of resources to be efficiently executed. Due to the

heterogeneity of the donors, it is necessary to keep track of the characteristics of

the donors to perform resource usage efficiently, and to optimize individual tasks

and global jobs execution.

The way the characteristics of available resources are monitored, evaluated,

and information about them is kept, is also an important factor for the overall

system performance. There are three different approaches:

• Centralized database

• Decentralized database

• Polling

Centralized Database The use of a centralized database is the simplest of the

resource evaluation methods. When a donor registers for the first time on the

system, information about the available resources is stored in a database.

This solution has a few important drawbacks: only a single server is allowed,

and the rate with which resource availability changes may not be too high.

Even if several servers are used to store task information, the use of a central-

ized database overrides any gain from the use of multiple servers (as described

previously). There is one central failure point, reducing both availability and

scalability.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 35

If the resources available on the donor change with a high frequency, the rate

at which the database has to be updated may not scale to large number of donors.

If none of the previous issues are problematic, the use of a single database is

effective and offers efficient resource discovery, and subsequently more efficient

job execution and resource usage.

Decentralized Database In the same way as data can be split among several

computers to increase availability and scalability, so the information about donors

(characteristics and available resources) can be stored in decentralized database.

The use of a decentralized database for storing the available resources infor-

mation, not only solves some of above problems but also fits nicely on peer-to-

peer systems, or those using multiple servers. When using a distributed database,

the burden of selecting a donor is distributed, and the failure of a server does not

become catastrophic.

On systems with a single database, update frequency can become a problem

due to the network traffic it may generate. With a distributed database, although

information still needs to be transferred, it can be done to a server closer to the

donor: the bottleneck of having a single server is avoided, and the messages have

to transverse fewer network links.

The information stored in the distributed database, can be either replicated or

partitioned. If the information is replicated, some inconsistency among replicas

must be tolerated: one drawback is the possible selection of non-optimal hosts

to execute a task; another one is the need to contact a second server to retrieve

information about a suitable donor.

Polling If it is impossible to maintain a database (either centralized or decen-

tralized) the only solution to discover the resource characteristics at a given mo-

ment, is by directly polling donors to gather information about their available

resources.

With an efficient donor discovery infrastructure, polling those computers is a

36 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

straightforward step, but requiring extra care to guarantee close to optimal an-

swers without too much network bandwidth consumption. To select the optimal

donor for a task it would be necessary to poll every donor available, a solution

that is impractical.

While with a database, it is possible to have an overall vision of the available

resources, allowing the selection of the best donors; with polling that becomes

difficult. A complete vision of available resources requires a full depth search,

impossible for large systems. Thus, only a partial view of the system is possible

at a given moment, and the selection of the donors may not yield the optimal

answer.

So, the use of polling to evaluate remote resources guarantees that the infor-

mation about contacted hosts is up-to-date (when donors can be contacted), but

does not guarantee that the best available host is used to execute every task. The

use of firewalls may limit the connection to donors, requiring different strategies

to overcome this fact (for instance piggybacking of requests).

2.2.1.3 Scheduling Policies

Along with the resource discovery and evaluation, the way jobs are scheduled

is also important to the performance of the system. The available policies range

from the simpler one (eager) to a complete heuristic matchmaking between avail-

able resources and tasks requirements:

• Eager

• Resource aware

• Heuristic

• Market oriented

• User priority

Eager When an eager scheduling policy is used, the selection of hosts to exe-

cute available tasks is blind, neither taking into account the characteristics of the

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 37

computer nor the possible task execution requirements. This is only possible if

a uniform execution environment exists: either all hosts have the same architec-

ture and operating systems, or the applications execute inside a common virtual

machine.

Whenever a donor host is idle and requests some work, the system assigns it

a task: randomly selecting it or using a FIFO policy.

Some level of fairness can be guaranteed (by first assigning previously created

tasks) but this offers no guarantee about the optimal resource usage. This solution

is the simpler to implement since no global information about available resources

is needed.

Resource Aware In order to optimize the execution of tasks, a resource aware

scheduling policy assigns tasks to the more capable machines before assigning

tasks to other less capable.

This solution still picks tasks to be executed either randomly or in a FIFO man-

ner, but then, for the task in question, it selects a machine with enough resources

(e.g. memory or CPU speed). This selection is made taking into account task

requirement information.

To implement this solution, it is required the existence of a database (where

servers query for the best donor), or polling donors to discover their resources.

This donor selection method guarantees that every task’s requirements are

met and that each task is executed close to minimum possible execution time. On

the other hand, this method does not minimize the overall makespan of a set of

tasks or job, since different donor assignments (with delay on a task starting), and

task execution orders, could lead to a best overall performance.

Heuristic When selecting execution hosts, previous policies select tasks by a

predefined order (or randomly) and just take into account each task’s individual

resource requirements.

With a complete knowledge of tasks requirements and available resources it

38 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

would be possible to schedule tasks to the best hosts in order to minimize every

job makespan. In a highly dynamic environment, this feat is impossible: i) it is

difficult and costly to maintain updated information about all available resources,

and ii) the exact execution times for each task is often impossible to predict.

To reduce a job’s makespan it is necessary to use heuristics. These empirical

rules, although not providing the optimal solution, allow better job execution

times than blind or just resource-aware scheduling.

Market-Oriented Previous scheduling policies resort to the information about

available computational resources for assigning tasks to donors. This limits any

user intervention on the selection of the hosts to execute tasks.

This host and task matching can be changed and manipulated by both clients

and donors if a resource market exists.

In this new market-driven environment, the selection of the tasks to be exe-

cuted is made taking into account some bidding mechanism and using some sort

of currency earned by executing other peoples’ jobs.

Clients state how much they are willing to pay for the execution of their tasks,

donors decide the cost of their resources, and a matching algorithm (implement-

ing available bidding mechanisms) matches the tasks with the donors.

Buya et al [BAV05] present an overview of market oriented mechanisms pre-

sented on current Grid systems. In this document, the presented auction types

are those currently in use: i) English auction, ii) Dutch auction, and iii) Double

auction. The efficiency of each one of the auction mechanisms is also evaluated

and presented.

While the English auction method is the mostly 0used mechanism (where

buyers increase the value they are willing to pay), its straightforward implemen-

tation in a wide area distributed system has a high communication overhead. The

Vickrey [LR00] method is an efficient auction methodology that can replace the

English auction, thus reducing the communication overhead. In a Vickrey auc-

tion, buyers bid the product by stating the highest value they are willing to pay,

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 39

the winner of the auction is the one that bid with the highest value, but only pays

the value of the second highest bid plus one monetary unit.

When using a Dutch auction mechanism it is the responsibility of the seller to

try to match the price of the resource to the buyer’s expectation. In this case, the

seller decreases the price until a buyer is willing to accept it. Although still re-

quiring communication between the buyer and the seller, it has a lower overhead

than the English auction method. This iterative method can be replaced by sealed

first-price auction [MW82], where the buyer places a sealed bid and the one with

the highest value is chosen.

In a Double auction [PMNP06, WWW98], both buyer and seller "bargain" the

price of the resource: the seller asks for a price and the buyer bids for it. This

can be a single step or repeated until the asked price is equal or lower than the

bid one. This is the equilibrium price that is reached when, after a few iterations,

supply equals demand.

User Priority Although the selection of the hosts to run a task is important, an-

other fundamental issue to scheduling efficiency is task selection. Besides match-

ing tasks to suitable hosts, on the server side, it is necessary to select which users

will have their tasks executed first.

Several users can have tasks that compete for the same resources and the sys-

tem should have means to prioritize those tasks. Heuristic policies can decide

what task is to execute next, but this selection can be dependent only on the user

that submitted the work, assigning each user a different priority. This priority

mechanisms can be static, where each user has a predefined priority, or they can

vary with time. Furthermore, users can be grouped in classes according to, for

instance, resources donated or reputation.

2.2.1.4 Work Distribution

Both the network architecture and scheduling policies affect the way work distri-

bution (from servers to donors) is performed. Work distribution can be charac-

40 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

terized in two independent axes: i) who initiates the process, and ii) whether it is

brokered by a third party:

• Direct pull

• Direct push

• Brokered pull

• Brokered push

Pull vs Push If it is the donor that initiates the request for a new task, the system

uses a pull mechanism. After completion of a task, the donor contacts one server

in order to be assigned more work.

In the case of push, it is the initiative of the server storing information about a

task to initiate it. A donor is selected, contacted, and the task’s data is transferred.

The pull mechanism is more efficient when the donor also performs some

sort of local scheduling: by selecting the servers to contact and projects to exe-

cute. Depending on the execution time spent on the various jobs, it is the donor

that selects where the new tasks come from. Furthermore, there is no need for

a database to store resource information: the donor, when requesting for work,

may inform the server about its available resources.

If there is a centralized database with the resources available on the various

donors, the push mechanism can be easily implemented. The server hosting the

resource information database knows the characteristics of the donors and with

that information, it can easily assign them new tasks.

Direct vs Brokered If the system only has one server, the distribution mecha-

nism is necessarily direct, independently of the direction (pull or push). When

starting a task, the donor contacts (or is contacted by) a server that can provide

task data without the intervention of any other server.

In the case of a peer-to-peer architecture, or when using several servers, the

donor may not contact directly the machine storing the task’s data.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 41

In the case of a brokered pull, if the job or project is not owned by the server (or

peer) contacted, or has no tasks capable of being executed, it is the responsibility

of that server (or peer) to discover a suitable task. The server (or peer) forwards

the request and, after receiving suitable data, delivers it to the donor.

The brokered push mechanism is mostly used in peer-to-peer architectures.

The peer storing a task contacts neighbouring peers trying to find a suitable host

to execute it. If these contacted peers are incapable (because they are unsuitable

or are not idle), they forward the request to other peers.

2.2.1.5 Analysis

Table 2.1 summarizes the various combinations of architectural characteristics of

the available Distributed Computing systems described in this section. Some

classifications are not present due to the unavailability of information and their

description in the scientific literature.

Network Resource Scheduling Work
Topology Evaluation Policies Distribution

ATLAS Hierarchical servers - Eager Direct pull
ParaWeb Multiple servers Polling - Direct push

Directory server
Charlotte Single server Centralized DB Eager Direct pull

KnittingFactory Directory server - - Brokered pull
SuperWeb Single server Centralized DB - Direct push

Ice T - - - -
JET Hierarquical servers - Eager Direct pull

Javelin Hierarquical servers Decentralized DB Eager Brokered pull
Java Market Single server Centralized DB Market oriented -

popcorn Single server Centralized DB Market oriented -
Bayanihan Hierarchical servers Decentralized DB - -
MoBiDiCK Single server Centralized DB Resource aware -
XtremWeb Single server Centralized DB Resource aware Brokered pull
JXTA-JNGI Replicated servers Decentralized DB Eager Brokered pull

P3 Peer to Peer Decentralized DB - Brokered pull
CX Multiple servers Decentralized DB Eager Direct pull

G2-P2 Peer to Peer Polling Eager -
CCOF Peer to Peer Decentralized DB Resource aware Brokered push

Personal Peer to Peer Polling Eager Direct pull
Power Plant

Table 2.1 (Continues on next page)

42 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Network Resource Scheduling Work
Topology Evaluation Policies Distribution

CompuP2P Peer to Peer Polling Market oriented Brokered push
Alchemi Single server Polling Eager -

YA Peer to Peer Decentralized DB Resource aware Brokered push
BOINC Point to Point Centralized DB Eager Direct pull

Resource aware
Leiden Point to Point Centralized DB Eager Direct pull
Ginger Peer to Peer Decentralized DB Resource Aware Brokered pull

NuBoinc Point to Point Centralized DB Eager Direct pull

Table 2.1: Internet Distributed Computing systems architectural decisions

Network Topology The late nineties saw the development of many systems,

each one with a different approach to its architecture. While on some systems the

architecture was not a fundamental issue (using simply point-to-point or a single

server), for others the architecture was fundamental (due to efficiency issues and

due to the proposed programming model).

The simpler point-to-point architecture was initially implemented by Para-

Web, while the use of a different server from the client computer was imple-

mented by Charlotte, SuperWeb, Java Market, POPCORN and MoBiDiCK.

In order to balance load across servers, JET uses a two layer hierarchical archi-

tecture, where there is a single JET server and a layer of JET Masters, that interact

with the donors. Bayanihan uses a similar approach to tackle network limitations,

taking advantage of communication parallelism and locality of data.

In Atlas and Javelin, any task information is stored in one of the available

servers. Each of these servers also manages a set of clients. Furthermore, as will

be presented in section 2.2.3.10, these systems allow any task to create and launch

new ones.

These two characteristics allow a simple load balancing mechanism. When-

ever a new task is created, its data is stored in the least loaded server. Since

previously executing tasks depend on new ones, it is necessary to maintain con-

nections between the several servers hosting related (child and parent) tasks, cre-

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 43

ating a tree-based structure.

Furthermore, both ATLAS and Javelin allow work stealing as a mean to dis-

tribute work. Whenever a donor is free to do some work, it contacts a server. If

that server has available work, it assigns it immediately to a donor. In the op-

posite case, the initially contacted server needs to finds a server with available

work. This way, a hierarchical and recursive architecture also emerges.

Most of the later projects present a peer-to-peer architecture, where donors

also act as servers with management tasks (storage of work and results, distribu-

tion of work, . . .) and clients: XtremWeb, P3, G2-P2, CCOF, Personal Power Plant,

CompuP2P and YA.

JXTA-JNGI clearly makes a distinction between donors, clients and servers but

uses a peer-to-peer infrastructure to manage communication between replicated

servers.

Ginger implements a peer-to-peer network topology, with distinction between

regular and Super Nodes. These special nodes store information about the repu-

tation of a set of regular nodes.

Other recent projects implement simpler architectures: CX, Alchemy, BOINC,

Leiden, and nuBOINC. CX allows the existence of multiple servers (each manag-

ing distinct sets of work), Alchemi uses onlys a single server, and BOINC, Leiden

and nuBOINC rely on the simple point-to-point architecture for the distribution

of work.

Resource Evaluation The systems that require up-to-date knowledge of the

donors characteristics perform polling whenever work is sent to the donor. In

the case of G2-P2, Personal Power Plant, and CompuP2P, whose architecture is

peer-to-peer, it is natural that polling is required to know the exact characteris-

tics of the donors. In the case of ParaWeb and Alchemi, no information about

donors is stored in the server, so it is necessary to poll them whenever work is to

be executed.

All other systems, independently of their architecture, use some sort of databa-

44 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

se. If the architecture relies on multiple servers (hierarchical, replicated or peer-

to-peer) the database is decentralized.

Scheduling Policies The simplest of the scheduling policies (Eager) is also the

most adopted. In systems using the eager scheduling policy, users do not have

to specify any execution requirement. This, not only eases job creation, but also

reduces task scheduling implementation. In these systems, the architecture of

the donor is not an issue, since these systems require clients to use particular in-

terpreted languages for the development of the task’s code (as will be seen in

Section 2.2.3.7). The only requirement is the availability of a uniform execution

environment (such as Java). Although donors have different execution power

(available memory and execution speed), on systems using eager scheduling,

these characteristics are not taken into account when selecting the host to run

a task.

The systems that are resource-aware assign tasks taking into account donors’

characteristics (such as processor, operating systems) or availability. For instance,

MoBiDiCK donors specify the time slot when their computers can donate cycles:

this information is used when scheduling tasks. CCOF uses the same idea of op-

timal resource availability and automates the execution and migration of tasks.

Here, users do not have to specify the availability slots, since CCOF uses current

time and assumes computers are only available during the night. Tasks are sched-

uled taking into account donors’ current time, selecting donors that are avail-

able, and also imposing the migration of executing tasks at dawn. In XtremWeb,

BOINC, and Leiden, clients must develop one executable for every architecture,

so it is necessary to match the donor’s architecture (processor and operating sys-

tem) with the suitable executable. Ginger goes one step further, as the matching

of clients with donors also takes into account the reputation, and historic data, of

the donors.

Java Market, CompuP2P, and POPCORN use a market-oriented approach, by

matching a value offered by the client with the one required by the donor. In

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 45

Java Market, this matching is performed automatically, after the client submits

the required resources, and the value it is willing to pay back for the execution of

the task in certain amount of time. In the case of concurrent execution of tasks,

those that maximize benefits for the donors are chosen, this solution is close to

a sealed first-price auction. CompuP2P uses Vickrey auctions to assign tasks to

the less expensive donor, after donors state the cost of the resources. POPCORN

offers three different auction types: Vickrey, a sealed-bid double auction (where

both parties define a lower and higher bound for the price of the resource), and a

repeated double auction.

Work Distribution The way work distribution is performed is partly depen-

dent on the system’s architecture. Systems that rely on a single server necessarily

perform direct task distribution, either pulling or pushing work.

In systems with more complex architectures, the distribution can be brokered

so that the donor does not have to know, and contact, directly the server or

peer owning the task (KnittingFactory, Javelin, XtremWeb, JXTA-JNGI, P3, CCOF

CompuP2P YA and Ginger). In other systems, the various servers (or peers) are

used to find the interlocutor, but task transfer is performed directly between the

donor and the server that stores the task information (JET, CX and Personal Power

Plant).

The work distribution method (pull or push) is also related to the scheduling

policies. Systems that have an eager scheduling policy use a pull mechanism:

when idle, the donor contacts a server or another peer and receives the work

to be processed. The distribution can be both direct or indirect, as previously

explained.

2.2.2 Security and reliability

The second class of relevant characteristics of Distributed Computing systems

are those related to security and reliability, either on the donor side and on the

46 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

client side: i) privacy of the data, code, and client identity, ii) result integrity

against malicious donors, iii) reliability against donor and network failure, and

iv) protection of the donor computer against attacks.

2.2.2.1 Privacy

Some of the work that can be deployed and executed on the Internet can have

sensitive information: the data being processed or even the code to be executed.

The identity of the user submitting the work should, in some cases, be kept secret.

So, on the client side, these Distributed Computing systems should guarantee

the following kinds of privacy:

• Code

• Data

• Anonymity

Code / Data The developer of the code to be executed can have concerns about

privacy guarantees of both the code and the data. The algorithms used can be

proprietary as well as the data.

The mechanisms to guarantee code privacy are similar to those of data.

By encrypting the communication between the server and the donor it is pos-

sible to enssure that, from an external computer, it is not possible to access the

downloaded information.

During the execution of the tasks, on the donor’s computer, the privacy of the

data and code should also be preserved. Executing the task inside a sandbox and

not storing any information in files outside it can promote the guarantee that no

external malicious process running in the donor can access the code. This solution

does not fully prevent the access to the information, as as compromised/modified

execution environment (sandbox or virtual machine) has access to whole task

state.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 47

Anonymity Another information that can be hidden from the donor is the iden-

tity of the client, guaranteeing some sort of anonymity. Guaranteeing anonymity

is important since, with information about the owner of the tasks, it is possible to

infer the the purpose of the work.

On the other hand, donors may also want to guard its identity, not allowing

others to know what work they are executing.

In any architecture employing servers, it is their responsibility to enforce and

guarantee this two-way anonymity. Although the server must know who cre-

ated and executed each task, it may not disclose it to third parties. In a peer-

to-peer architecture, the distributed architecture may ease the implementation of

anonymity mechanisms.

2.2.2.2 Result Integrity

Since most machines that execute tasks on Distributed Computing systems are

not under the control of the user submitting jobs, it is fundamental to verify result

correctness after the conclusion of a task. Only if that happens, is it possible to

guarantee that those results are the same as the ones that would be obtained in a

controlled and trusted environment.

There are several techniques to verify if the results are not tampered with nor

forged:

• Executable verification

• Spot-checking

• Redundancy

• Reputation

Executable Verification The simplest and less intrusive method to verify if the

results were produced by a non-tampered application is to perform some sort of

executable verification.

48 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

The middleware installed at the donor computer calculates the checksum of

the executable being executed and compares it with checksum of the correct pro-

gram (a value previously calculated and stored in the server or obtained from a

trustable source).

This method just guarantees that the executed code is the one provided by the

client, and that the output produced is correct. On the other hand, this method

does not guarantee that the result received by the client is the one obtained: it is

still possible to tamper with and modify the result transmitted by the donor.

Spot-checking With spot-checking, what is verified is not the correctness of the

results, or the executable producing them, but the reliability of the donor.

Systems that use spot-checking generate quizzes enclosed in dummy tasks,

whose results are previously known. These tasks are periodically sent to donor

computers, that treat them as regular tasks. Comparing the returned result with

the expected one, it is possible to know if results returned by that host are to be

trusted.

This method still does not guarantee that the results transmitted from the

donors are correct: only that the dummy tasks were executed correctly, and that,

with a high probably, the donors are reliable, provided that they cannot identify

dummy tasks among normal ones.

In the case of discovery of a donor with incorrect behavior, the server can take

the appropriate measures about the results previously returned by that donor, or

about future work to be sent to it.

Redundancy With redundancy, several instances of the same task are executed

on different hosts. The results returned by each execution are then compared

and used to decide which result is considered correct. Usually, a simple voting

is performed and the result obtained by the majority of the executions is the one

considered correct (quorum). If a decision is not reached, more instances of that

task are launched.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 49

Redundancy can only be used if tasks are idempotent; only in this case is it

safe to execute several times the same task. Furthermore, special care should be

taken if the system is market driven, since the execution of multiple instances of

the same task has a higher cost to the client.

If a compromised donor executes several replicas of the same task, the result

can be forged. Thus, the execution of replicas of the same task must be performed

by distinct donors, and, sometimes, a task replica (a sample) can be executed by

the client itself to screen donors.

Reputation In addition to the use of any of the previous techniques, it is possi-

ble to implement a reputation scheme, where information about incorrect results

is used on the calculation of a donor’s reputation.

This reputation value can then be used when scheduling tasks, by assigning

tasks to the most reliable donors, or after receiving the result, to know whether

some additional result verification is necessary.

Although a reputation scheme may not fully guarantee the result integrity,

it may help increase system performance by allowing the execution of tasks on

more reliable, and non-compromised donors.

2.2.2.3 Reliability

Even if donors are not malicious and execute all tasks correctly, they can fail or

get disconnected from the Internet. It is still necessary to guarantee that, in case

of failure, the job gets executed and results produced. This can be accomplished

using one of the following techniques:

• Redundancy

• Restarting

• Checkpointing

Redundancy Besides result integrity checking, redundancy can also be used in

order to increase the reliability of a system.

50 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

By launching several instances of the same task, the probability that at least

one task concludes increases (even in the case of donor failure). With redundancy,

the number of tasks to launch is fixed. Even if the first task concludes in the

expected time frame, redundant tasks (in this case, unnecessary) were still created

and partially executed. This drawback is overridden if redundancy is also used

to guarantee result integrity.

When using redundancy, slower computers may not be rewarded for the exe-

cution of tasks, since before these slower computers can return the results, a faster

machine has already done so.

Restarting To solve the problem of blind execution of replicas of the same task,

a small modification to the replica launch decision mechanism can be made.

Only after all tasks have been launched at least once, and when some results

are still due, the system decides to relaunch tasks: those not finished are to be

restarted.

Again, as in redundancy, either the previously started instance or the new

one will eventually finish, yielding the expected result: either the first task was

executed on a slow computer, or that donor went off line or failed.

Checkpointing Both redundancy and restarting have problems when tasks are

not idempotent or there is some form of payment for the execution of tasks, or in

the case of long-running tasks: i) non-idempotent tasks can not be executed mul-

tiple times, and ii) users may not be willing to pay more than the real execution

time (improbable feat if tasks are restarted or replicated).

To solve these issues, it is necessary to guarantee that no piece of a task is

executed twice. So, if a donor crashes, the tasks need to be restarted from the last

correctly executed instruction. To do so, some sort of checkpointing should be

periodically performed.

Besides the idempotence and payment concerns, by using checkpointing, the

conclusion of restarted tasks is faster, since restarting a task does no require it to

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 51

be executed from its first instruction.

This method requires periodic saving of each tasks’ state and recording of

executed instructions since that point. The use of the donor’s local non-volatile

memory to store the checkpoint reduces checkpointing time, but does not allow

the efficient restart in case of complete donor failure. This event requires the state

to be saved in a remote non-volatile medium.

2.2.2.4 Execution Host Security

On the donor’s side, some security precautions should be taken into account in

order to prevent malicious code from executing and cause any harm. To avoid

such threats a few solutions are possible:

• User trust

• Executable inspection

• Sandboxing

User Trust The more lax mechanism is the simple trust on the users submitting

the tasks. No external verification mechanisms re needed, as donors believe in

the integrity of the programmers that developed the downloaded code, and that

no harm comes from executing it.

This requires that owner of the server, the task creator, and also the purpose

of the code to be well know by the potential donors.

Executable inspection In order to execute tasks in a non modified environment,

the code must be inspected and audited to guarantee that it does not contain

harmful instructions.

This can be performed off-line in a trusted server that performs an executable

verification, and signs the application to prove that it was verified and considered

harmless.

This technique allows the safe execution of applications on a non-modified

environment, but requires the extensive study and analysis of the tasks’ code.

52 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Sandboxing If it is impossible to guarantee the correctness of the downloaded

code, it is necessary to isolate its execution. In the case of the execution of a

malicious instruction, no harm should come to the host computer.

With sandboxing, the downloaded code is executed in a restricted environ-

ment or virtual machine, not allowing harmful operations to interfere with the

host operating system. The execution environment also intercepts accesses to the

host file system, preventing access to system files. The execution environments

can be either application-level or system-level virtual machines.

High-level languages language (such as Java, or .NET) execution environ-

ments fall in the category of application-level virtual machines. Although these

environments allow the execution of applications with full OS access, it is possi-

ble to define security policies to restrict access to some resources.

System-level virtual machines mimic a fully functional computer, but isolate

the host operating system. Any application executing inside such environments

will see and execute within a fully functional guest operating system without

affecting, modifying, or compromising the host computer.

Adding to this advantage, the use of a virtual machine eases the development

of portable code providing an uniform execution environment. As long as users

can install the virtual machine, the virtualized execution environment (hardware

characteristics and software versions) is similar in all donors.

2.2.2.5 Analysis

The following table (Table 2.2) briefly presents how each system solves the secu-

rity and reliability issues.

Privacy Result Integrity Reliability Execution Host
Security

ATLAS Anonymity - Checkpointing User trust
Sandboxing

ParaWeb - - - -
Charlotte - - Redundancy Sandboxing

KnittingFactory

Table 2.2 (Continues on next page)

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 53

Privacy Result Integrity Reliability Execution Host
Security

SuperWeb - - - Sandboxing
Ice T - - - User trust

Sandboxing
JET - - Checkpointing Sandboxing

Javelin - - Redundancy Sandboxing
Java Market - - - Sandboxing

popcorn - - - Sandboxing
Bayanihan Redundancy Redundancy Sandboxing

Spot-checking
MoBiDiCK - - Redundancy -
XtremWeb - Executable verification Restarting User trust
JXTA-JNGI - - - -

P3 - - Checkpointing -
CX - - Redundancy -

G2-P2 - - Checkpointing -
CCOF - Spot-checking

Reputation - Sandboxing
Personal Redundancy - -

Power Plant Voting
CompuP2P - - Checkpointing -

Alchemi - - - Sandboxing
YA - - - -

BOINC - Redundancy Restarting User trust
Reputation Checkpointing

Leiden - Redundancy - User trust
Reputation

Ginger - Spot-checking - Sandboxing
Reputation

nuBOINC - Redundancy - User trust
Reputation

Table 2.2: Internet Distributed Computing systems security concerns

Privacy Privacy of the code and data are difficult to guarantee, thus almost

never being referred to in the literature. Although some systems use virtual ma-

chines (mostly Java or .Net virtual machines) to execute the code, after the data

and code have been downloaded, malicious processes running on the donor can

access that information.

Although anonymity could be enforced by most of the available systems, only

54 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

the papers describing ATLAS explicitly refer client anonymity. The authors state

that a donor cannot obtain the identity of the client that submitted the work.

Although not stated by other systems’ authors, any of those not having a point-

to-point architecture (with distinctions between server and client computers) can

easily guarantee anonymity.

Other systems (BOINC, ParaWeb, Charlotte/KnittingFactory, POPCORN) rely

on the knowledge of the identity of the client. In these systems the user donat-

ing resources explicitly chooses the jobs and projects to be allowed to run on the

donor computer.

Result Integrity Most of the studied systems do not present any solution to

guarantee result integrity in the presence of malfunction or malicious donors.

From those systems that implement a solution to prevent result corruption, re-

dundancy is the one adopted by the majority (Bayanihan, Personal Power Plant,

BOINC, Leiden, and nuBOINC). These systems launch several identical tasks

and, after receiving the results, decide about the correct answer. Most of the sys-

tems resort to a vote counting mechanism on the server side: a result is considered

valid if a majority of computers returned that value. Personal Power Plant, due

to its peer-to-peer architecture, must use a distributed voting algorithm.

Bayanihan, CCOF, and Ginger use spot-checking to verify the correctness and

trustiness of a donor, issuing dummy tasks with previously known results.

XtremeWeb donor software calculates the checksum of the downloaded exe-

cutable before starting the tasks. By comparing it with the checksum calculated

on the server it confirms that there was no tampering with the executable. Be-

sides executable verification, XtremeWeb offers no other mechanism to verify if

the results transmitted from the donor were the ones calculated by the verified

executable.

CCOF, BOINC, Leinden, Ginger and nuBOINC implement reputation mecha-

nisms to guarantee that non-trusted donors do not interfere with the normal ac-

tivity of the system. CCOF resorts to the results of spot-checking while BOINC,

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 55

Leiden, and nuBOINC use previously submitted results to classify donors in dif-

ferent trust levels. Ginger uses both results from spot-checking and real tasks to

calculate the reputation of a donor.

Reliability Reliability, guaranteeing that a task eventually completes, is not

tackled by all of the studied systems.

As expected, CompuP2P (a system that is market-oriented) implements check-

pointing. For a market-oriented system, any other method would increase the

value to pay for the execution of a task: redundancy requires the launch of sev-

eral similar tasks, even if there is no need, and with task restarting the work done

until the donors failure would be wasted. For the other market-oriented systems

(Java Market and POPCORN), there is no information about the mechanisms to

ensure some level of reliability.

Five more systems implement checkpointing with recovery of the tasks on

a different donor: ATLAS, JET, P3, G2-P2 and BOINC, with different levels of

abstraction.

G2-P2 periodically saves the state of the application and records all posterior

messages. These checkpoints can either be saved on the donor local disk or on

another peer. The first method is more efficient, but requires the faulty donor to

recover to restart the task.

Checkpointing is the only method that can be used with tasks that have side

effects. The other methods, which are also the simplest, require all tasks to be

both independent and idempotent. Three systems implement the restarting of

tasks when only some results are missing to complete a job: XtremWeb, BOINC,

and Leiden.

In systems where resources are truly free, redundancy can be used without

further cost to the client. Although redundancy can be used to guarantee re-

sult integrity and system reliability, there are some systems that do not take ad-

vantage of redundancy to tackle both issues. As a means to guarantee result

integrity, BOINC only uses redundancy when requested by the user, while Char-

56 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

lotte, Javelin, Bayanihan, MoBiDiCK and CX do not perform any result verifica-

tion.

Execution Host Security Although systems that use an high-level language to

implement tasks execute the code within a virtual machine, not all of these are

capable of guaranteeing donor host integrity against malicious code.

In the case of systems that use Java, only those that have tasks implemented

as applets (ATLAS, Charlotte, SuperWeb, IceT, JET, Javelin, Java Market, POP-

CORN, Bayanihan, CCOF) execute the code inside a sandbox. Ginger also exe-

cutes its tasks inside a virtual machine. Alchemi uses the .NET virtual machine

that allows the definition of sandboxes.

In ATLAS, IceT, XtremWeb, BOINC, Leiden and nuBOINC donors simply

trust the developers of the tasks, believing that the code will not harm the com-

puter.

2.2.3 User interaction

The way users interact with the available Distributed Computing Systems may

also be relevant to the popularity of such systems. This section presents issues

related with the user interaction: how work is organized, the possible user roles,

the mechanisms to create jobs and tasks, and the incentives for donating cycles to

the community.

2.2.3.1 Work Organization

Independently of the terminology used by each author, the work submitted to a

Distributed Computing System follows a predetermined pattern, with a common

set of entities and corresponding layers.

The work can be organized around the following entities, of increasing com-

plexity:

• Task

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 57

• Job

• Project

Systems organizing work in different layers use more complex entities, not

only to encase other simpler entities, but also to reduce the effort to create work.

Task Tasks are the smallest work unit in a cycle sharing system. Each is com-

posed of the code to be executed and the data to be processed.

Although some systems allow tasks to spawn themselves in order to split their

work among their children, in most systems tasks are simple entities: the code is

usually single threaded, running on a single processor, and tasks do not inter-

act with each other (neither for synchronization nor message passing). In these

simple cases, tasks have similar code, but process different data.

When submitting tasks, users have to define what code will be executed on

the donor and the data that will be processed. The methods to define the code

and the data differ between systems, as will be seen later in this section.

Job Tasks executed to solve a common problem are grouped in jobs. These

tasks, belonging to the same job, execute similar code, but have different input

parameters.

A job must encase all the code necessary for its tasks’ execution: initialization

code, task launch, tasks’ code, and result retrieval. Furthermore, when creating a

job, the user must define the input data for each task.

When defining a job, the user must supply the code that will be executed by

each task, and how the overall data will be split among different tasks. The cre-

ation of tasks can be automatically handled by the middleware, or programmed

by the user.

Project Some jobs share the same code, only differing on the data sets pro-

cessed. Without a higher level entity, every user would always have to submit

the same processing code, whenever he wanted to submit a job.

58 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

A project can be seen as a job template, where a user only defines the process-

ing code. Later, the project is instantiated to create a job.

In systems with the concept of project, when creating jobs, the user only has

to supply the dataset to be processed and the tasks’ input parameters. The job’s

code has been previously defined when creating the project.

2.2.3.2 User Roles

A regular user located at the edge of the Internet can have several roles in a Dis-

tributed Computing System:

• Donor

• Client Job creator

• Client Project creator

A user, with enough computer and network administration knowledge, can

install any of the available systems, being capable of creating and submitting

work to be executed. In this classification there is a distinction between the ad-

ministrator of the computer hosting the work and the user submitting it. If it is

necessary for a user to be the administrator (because of the inexistence of user

level tools) to create jobs, it is not considered possible for a regular user to create

them.

Some systems allow a single user to have several of the presented roles.

Donor A donor is the owner of a computer where tasks from others are exe-

cuted. The donor must install the necessary software to execute tasks, and con-

figure it. Before the execution of other users’ work, the donor must select either

the server where tasks will come from or select what kind of work he is willing

to execute.

Client Project Creator If a system support projects, someone has to create them:

develop the processing code, and register it in the system.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 59

If there are tools for the easy creation of projects, then any client user can

be a project creator. Later, the same user (or others) can create jobs that will be

executed within the same project.

Other systems require administrators to create projects. In such cases client

users are limited to being Job Creators.

Client Job Creator Job creators are those users that submit work to be executed.

Although the simplest work unit is the task, clients merge their work into jobs

(even with only one task). If the user is allowed to submit data and code, he acts

as a Job creator.

Using the tools provided by the system, these users only submit the informa-

tion about the job: tasks’ code and input data. If the system supports projects

they just need to select the project and prepare the data.

2.2.3.3 Job Creation Model

Job creation is always composed of two steps: definition of the processing code,

and definition of each task’s input parameters and data. In systems with projects,

these two steps are independent.

The definition of processing code can be performed in three different ways.

Users can take advantage of off-the-shelf applications or develop their own pro-

cessing code:

• (COTS) Executable assignment

• Module development

• Application development

The way job code is defined or developed affects the way tasks are created.

This relationship will be further described later in the analysis.

(COTS) Executable Assignment If the system allows external commodity-off-

the-shelf (COTS) executable assignment, to create a job the user has only to pro-

vide that application, either uploading it to the server or copying it to a suitable

60 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

directory. In this step the user should also provide information about the exe-

cutable: type of input/output data or the format of the data.

In the development of the executable, normally no use of special API is neces-

sary. The application should only follow simple interface requirements imposed

by the underlying system. Although a regular application can be used, to take

advantage of some services (e.g. checkpointing) it may be necessary to use a sup-

plied API, or link with special libraries.

In systems accepting executable assignment in the job definition step, the se-

lected application just contains the code executed by every task. This application,

being generic, can not contain any task creation code, and is simply invoked on

donor computers.

Module Development Some other systems require users to explicitly develop

the processing code. In these systems, the task’s code should be encased in a

module (or class if using some object-oriented language).

The developed modules should comply with a pre-defined interface and can

use a helper API in order to take advantage of available services.

The user is freed from developing task launching code, since this step is trans-

parently handled by the systems.

Application Development Other systems require the explicit programming of

the task launching step. Here, this step must be inside a complete application,

that can also contain the data splitting among tasks. It is responsibility of the

client user to develop any pre and post-processing steps.

A system that requires the complete application development must also sup-

ply the API for task launching and any other offered services. Using that, the user

develops a complete application containing:

• environment initialization

• pre-processing code

• data partition code

• tasks’ execution code (in a function or method)

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 61

• tasks’ launch invocation

• result retrieval

• post-processing code

Although setting up a job this way is a complex feat, the set of problems solv-

able in such ways is vaster.

2.2.3.4 Task Creation Model

To create a job, it is necessary to define the various independent tasks that will

compose it. Depending on the system, the development and definition of those

tasks can be made in different ways:

• Data definition

• Data partitioning

• Code partitioning

Data Definition The easiest mode to define a task is by simply performing data

definition. The user only states (declaratively, in a configuration file or with a

user interface) what data each task is to process. These systems offer no auxiliary

means to split the data, they just offer simple assignment mechanisms.

Data definition is used on systems where job creation relies on either exe-

cutable assignment or module development. Then, the midleware just executes

the executable (or module) on the donor computer, with the supplied input data.

Data Partitioning With data partitioning, a script, or even the master code,

splits the data that will later be implicitly assigned to tasks. The system offers

both the means to split the data and to add the partial data to a pool. This ad-

dition can be performed programatically (by means of a API) or declaratively

(trough a user interface or configuration file). In this case, the underlying system

is responsible for the creation and invocation of the various independent tasks,

and to assign each task its arguments and input data.

62 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Code Partition With data partition, as no explicit launch of tasks is performed,

the user does not have the possibility to control task execution. On the other

hand, when job creation resorts to code partition, the user must explicitly launch

each task by using a specific API. The user must develop a complete application,

as explained in the previous section, with all the necessary components.

Since each task must process different data, the main program must also per-

form data partition, and data assignment (when creating a task). With code par-

titioning the parallelism arises, not from independent data, but from the explicit

creation of tasks.

2.2.3.5 Task Execution Model

During the execution of a job, there are different ways to start and execute the

various tasks, leading to different organizations of these tasks:

• Bag-of-tasks

• Master-slave

• Recursive

Bag-of-tasks In a Bag-of-Tasks job all tasks are created simultaneously and ex-

ecute the same code.

The main process only splits the data, creates the tasks, waits for their conclu-

sion, and performs minimal processing of the results. Being the simplest parallel

programming model, this reduces the programming effort to create such jobs.

The user only has to develop the processing code, and rely on the middleware

for launching each task and execute that code.

Further data processing (of the input and results) must be performed off-line

with external tools.

Master-slave In a master-slave execution model, the main process creates the

various tasks in a computational loop and blocks its own execution until the end

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 63

of all of them. The tasks may be different (in terms of input data and code), started

at different times, and have data dependencies between them.

In this kind of computation, where there is a main program from where all

tasks are launched, the user can either create Bag-of-tasks or more complex work-

flows. The main loop creates tasks, waits for the results, that can be used as input

of following tasks.

Recursive In a master-slave computation, only the main program can create

tasks. Some problems, however, require that running tasks can themselves create

and launch others. Naturally recursive problems fit in this model, as well as

problems where tasks also generate new or intermediate data to be processed.

In a recursive execution, the main application creates the first level of tasks (as

in the master-slave model). These running tasks can also create other tasks when

needed.

The programmer must develop the whole application: the main program,

data splitting, and the tasks. In this model, task creation is explicit, requiring

the use of a supplied API.

2.2.3.6 Offered Services

Although the programmer must always develop the code that is to be executed

on the remote hosts, the available systems can provide different support tools or

services. For the definition and deployment of parallel jobs, the offered services

can fit into:

• Launching Infrastructure

• Monitoring Infrastructure

• Programming API

Some sort of software layer (middleware) must always exist in order to coor-

dinate all available resources, independently of the offered support services. The

infrastructure referred to in this section does not deal with this concern, but solely

with the launching and definition of jobs and tasks.

64 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Launching Infrastructure For Bag-of-Tasks problems, the simplest launching

mechanism is by means of a launch infrastructure. The user supplies the applica-

tion or module corresponding to tasks, defines the data to be processed, and the

middleware becomes responsible for launching the necessary tasks.

The use of a launching infrastructure fits well and is the obvious solution to:

i) Bag-of-Tasks problems, ii) task creation based on data definition, and iii) job

creation based on executable assignment and module development.

Even when the application development job creation model is used, a launch-

ing infrastructure is convenient. In these cases, the middleware configuration

can be performed programatically (inside the main application) or declaratively

(outside the application and through a user interface). In such cases, a launch-

ing infrastructure can be used to define the job application, and configure the

middleware.

Monitoring Infrastructure Independently of the way jobs are created and tasks

launched, a status monitoring infrastructure can be provided. The user can mon-

itor the execution of the job and the status of the running tasks by means of a user

interface. These monitoring infrastructures interact with the middleware to pro-

vide a global view of the system: available resources and status of the submitted

work. In addiction, they can include the following: tasks not yet launched, tasks

currently executing, terminated tasks, and results received (validated, not yet val-

idated, or corrupted). Based on this information, the client can easily decide to

abort executing jobs, or predict termination times.

Programming API In order to take advantage of some offered services, it is

necessary to use some programming API, for instance, when programming the

tasks, an API can be offered to provide checkpointing.

When the user needs to develop a complete application, the use of an API

to define tasks is fundamental. These APIs are needed to register the data to be

processed by each task or to explicitly create the tasks.

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 65

The existence of an API for code development is orthogonal to the existence

of any kind of infrastructure.

Existing API are normally used to launch new tasks, control their termination,

or provide checkpointing to the code.

2.2.3.7 Programming Languages

The programming languages used for the development of projects and tasks, not

only limits the type of problems one can solve, but also affects how easily devel-

opment is carried out.

In the different phases of the development and execution of tasks several kind

of languages, can be used:

• Declarative

• Compiled

• Interpreted

• Graphical

Some of the presented systems used different languages for the development

of projects and definition of tasks.

Problems needing more complex execution models (such as recursive, or Mas-

ter-Slave) require the use of compiled or interpreted languages, since all others

languages do not have enough expressiveness. On the other hand, the less ex-

pressive languages require less expertise and are easier to learn.

Declarative When using a declarative task creation paradigm, the user can only

state the input data of each task, either using a supplied user interface or by cre-

ating a configuration file.

This is mostly applicable when the user only needs to make an executable

assignment and data definition when creating jobs and tasks.

Compiled To develop the processing code, it is necessary to use an interpreted

or compiled language.

66 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

The use of a compiled language allows full flexibility on the development of

task code. The systems can even provide some APIs so that tasks can use some

offered services.

Due to difficulties in making compiled code mobile, systems that use com-

piled languages require tasks to be complete applications (with the main func-

tion) instead of being simple modules. The middleware uploads one complete

application to the donor computer and starts it there. This architectural charac-

teristic limits theses languages to, mostly, Bag-of-Tasks problems.

In order to have tasks running on different architectures, it is required that the

user compiles the developed code to those architectures.

Despite these difficulties, languages targeting high-performance computing

can be used (Fortran, for instance) allowing tasks to execute at full speed (much

faster than if using a interpreted language).

Interpreted The use of interpreted or JIT-ed languages overcomes some of the

issues raised with compiled languages.

The development of tasks as modules is straightforward and the deployment

of that code becomes more practical. Most interpreted or JIT-ed languages (Java,

C#, python) allow introspection, mobility and dynamic code loading, easing the

development of a Distributed Computing infrastructure. Even from a complete

application it becomes easy to isolate tasks’ code (usually a function or class), and

upload and invoke it on remote donors.

The use of a high-level byte-code language, along with its execution environ-

ment, increases the portability of the code, and donor availability. The client only

needs to develop one version of the code, and the donors are only required to

have the language execution environment installed. All required libraries can be

uploaded to the donor along with the task. The added ease of setting up a donor

can also increase the number of users willing to donate cycles.

The only drawback of using an interpreted language is its possible lower exe-

cution speed, that can be overcome by the gains of having a large donor base and

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 67

ease of development.

Graphical Graphical languages should be used in conjunction with a more tra-

ditional programming language (either interpreted or compiled). In a Distributed

Computing system, graphical languages can be used on the definition of jobs, in

the following aspects:

• Task code selection

• Data splitting

• Workflow creation

This may increase the number of users submitting work, making these sys-

tems more visible to the common computer user.

2.2.3.8 Project Selection

Some of the available systems can host several projects, so there is a need for

donors to select the projects they want to donate cycles to. Independently of

the mechanisms to select the projects, the selection process fits into one of these

classes:

• Explicit

• Implicit

• Restricted (topic-based)

Explicit The user is obliged to contact the server and make an explicit selection

of the projects or jobs he will donate cycles to.

Even on systems where a server just hosts a single well known project, the

user, when connecting, is explicitly selecting a project.

This explicit selection can be in the form of choosing a URL (of the server

or the project/job) or by means of a user interface. The explicit selection of the

project requires the identity of the client creating the job, or the focus of the work,

to be disclosed to the donors.

68 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Implicit With an implicit job selection scheme, the donor does not have the

means or possibility to select the jobs that will be executed. The donor just con-

nects to a server hosting various jobs, or to the peer-to-peer network, and the

selection of the work is made transparently by the system.

Restricted (topic-based) In a intermediate level, users may be able to choose

the subjects of the work they are willing to execute. In this case, the donor de-

fines interest topics or a set of keywords allowing the servers (or the peer-to-peer

network) to select the work to deliver to each donor.

This type of work selection does not require the donor to know the identity

of the work creator, nor the precise purpose of the work, in order to match tasks

with donors.

2.2.3.9 Donation Incentives

To gather donors, each system must give back some reward for the donated time.

Available systems, after the completion of task assigned the donor, may reward

the donor with one of the following:

• User ranking

• Processing time

• Currency

In any of the presented incentives, for the complete execution of a task some

reward is awarded. This reward can be just a point/credit, the right to use an-

other CPU, or a virtual monetary value (currency) to use in other services.

In either of the three cases, the reward should take into account the processing

power employed in the execution of each task. In these scenarios, the processing

time is not a good measure, as a slow machine takes longer to process a task.

User Ranking The easiest incentive to implement is user rankings. The order-

ing of donors depends on the quantity of donated resources to the community.

When the donor correctly finishes a task the systems assigns points to it. To add a

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 69

sense of accomplishment and boost the competitiveness between users, a ranking

of the more meritorious users is publicly posted.

Processing Time On the other hand, after successful completion of a task, the

donor can be rewarded with the right to use available resources to execute his

tasks (by means of processing time).

In this case, when a donor becomes a client, the rewarded time can be used

to his benefit. Later, when scheduling tasks to be executed, the system should be

able to use the rewarded execution time in a fair manner.

Currency In a similar way, a virtual currency can be awarded after the comple-

tion of a task. In systems with a market-oriented scheduling policy, the collected

values can be used to buy the processing time.

The awarded value can be used to bid for the latter execution of tasks on

remote computers.

2.2.3.10 Analysis

The way the various systems implement and handle the user interaction issues is

presented in two distinct tables: Table 2.3 (specifying the various possible user

roles) and Table 2.4 (presenting programming and usage alternatives).

Work User Job creation Task creat. Task exec.
organization Roles Model Model Model

ATLAS Job Donor Application dev. Code part. Recursive
Task Job creator

ParaWeb Job Job creator Application dev. Code part. Bag-of-Tasks
Task

Charlotte Job Donor Application dev. Code part. Master-slave
KnittingFactory Task Job creator

SuperWeb Task Donor Module dev. Data def. Bag-of-Tasks
Task creator

Ice T Job Donor Application dev. Code part. Master-slave
Task Job creator

JET Job Donor Module dev. Data part. Bag-of-Tasks
Task Job creator

Javelin Job Donor Application dev. Code part. Recursive
Task Project creator

Table 2.3 (Continues on next page)

70 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Work User Job creation Task creat. Task exec.
organization Roles Model Model Model

Java Market Task Donor - Data def. Bag-of-Tasks
Task creator

popcorn Job Donor Application dev. Code part. Bag-of-Tasks
Task Job creator

Bayanihan Project Donor Application dev. Data part. Master-slave
Job Project creator

Task Job creator
MoBiDiCK Project Donor Application dev. Data part. Bag-of-Tasks

Job
Task

XtremWeb Project Donor Application dev. Data part. Bag-of-Tasks
Job

Task
JXTA-JNGI Project Job creator Application dev. Code part. Master-slave

Job Donor
Task

P3 Job Donor Module dev. Data part. Bag-of-Tasks
Task Job creator

CX Job Donor Application dev. Code part. Recursive
Task Job creator

G2-P2 Job Donor Application dev. Code part. Master-slave
Task Job creator

CCOF - - - - Bag-of-Tasks
Personal Job Donor Application dev. Code part. Master-slave

Power Plant Task Job creator
CompuP2P Job Donor Executable def. Data part. Bag-of-Tasks

Task Job creator
Alchemi Job Donor Application dev. Code part. Master-slave

Task Job creator Executable def. Data def. Bag-of-Tasks
YA - - -

BOINC Project Donor Application dev. Data part. Bag-of-Tasks
Job Executable def.

Task
Leiden Task Donor Application dev. Data def. Bag-of-Tasks

Task creator
Ginger Job Donor Executable def. Data def. Bag-of-Tasks

Task Job creator
nuBOINC Job Donor Executable def. Data part. Bag-of-Tasks

Task Job creator

Table 2.3: Internet Distributed Computing systems user roles

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 71

Work Organization Most of the evaluated systems divide the work in both jobs

and tasks. In these systems, the work submission unit is a job composed of tasks

with similar code but different input data.

SuperWeb, Java Market, and Leiden do not have the job concept. User can

only submit individual tasks that have no relation between them.

On the other hand, Bayanihan, MoBiDiCK, XtremWeb, JXTA-JNGI and BOINC

have the project entity. Before any job creation, it is necessary to define a project.

The responsibility for the project creation differs in these systems, as will pre-

sented later.

User Roles As expected, all systems allow users scattered on the Internet to

donate their cycles on a simple, and some times anonymous, way. What distin-

guishes most systems is the ability of ordinary users (those that can also donate

cycles) to also create work requests (tasks, jobs) and make them available to be

executed.

On BOINC, XtremeWeb, and MoBiDiCK, only the administrator can create

work. On all other systems, the creation of jobs (and tasks) is straightforward

without requiring any special privileges.

Job Creation Model and Task Creation Model The way jobs and tasks are cre-

ated is tightly linked in Distributed Computing systems.

In three systems, the user that has work to be done has to explicitly assign

the data to each task: SuperWeb, Java Market, and Leiden. These are also the

systems that do not have the concept of job, here every task is truly independent

of the others. In SuperWeb, the programmer develops a module whose code will

be executed by each task, while in Leiden, the tasks correspond to a independent

application that is executed on the remote host.

It is possible to observe that the other systems (JET and P3) that require the sole

development of a module (the code of the tasks), only require data partitioning

when creating tasks. Although the user is required to develop the code to split

72 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

the data, no explicit creation of tasks is necessary.

In MoBiDiCK, XtremWeb, CompuP2P, Alchemi, and BOINC each task is en-

cased in a complete application that executes on the remote hosts. This applica-

tion must be specially developed.

In Ginger and nuBOINC the user also assigns a executable to the job, but does

not have to implement it. These are commodity-off-the-self applications that are

widely available (or installed) on the donor computers.

As in these systems, each task corresponds to the execution of a complete

application, the creation of tasks is simply made by assigning to each one its input

data. In these systems, with the exception of Alchemi, the user must program the

data partition. In Alchemi the user defines each task input data by means of XML

file. In BOINC and Alchemi it is also possible to use a pre-existing application as

task code (close to the concept present on nuBOINC and Ginger).

In Bayanihan, the user develops the main application that is responsible for

data partition. In this system, tasks are not created explicitly. The data to be

processed is programatically stored in a pool, by means of a supplied API. The

system then picks data from that pool and assigns it to the tasks, without pro-

grammer intervention. In Ginger the data is transparently split, before tasks are

initiated. Ginger includes a data partition engine that automatically created task’s

input with a XML data description.

In all other systems, the developed application must contain, as a function or

class, each task’s code. Data partitioning and task creation are performed explic-

itly and internally in the developed application.

Task Execution Model With the exception of Bayanihan, in all systems whose

tasks are created by means of data partitioning, the parallel jobs fall in the Bag-of-

Tasks category. In these systems, it is impossible to have some sort of workflow

(where results are used as input of other tasks) and there can only be some mini-

mal pre-processing of the data and post-processing of the results.

Although in Bayanihan tasks are created by data partition, the programmer

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 73

can both control and interact with the running tasks and chain them to get com-

plex data computations and workflows. Bayanihan main application, after parti-

tioning data and storing it in the data pool, waits for the availability of the results.

This application can assign the results of a previous step to new tasks, allowing

complex workflows.

In the two systems that require the explicit declarative definition of data (Java

Market and Leiden), the solvable problems obviously fall in the Bag-of-Tasks cat-

egory.

All other systems can be used to solve master-slave problems, and conse-

quently also Bags-of-Tasks.

ATLAS, Javelin, and CX also allow the execution of recursive problems, by

allowing tasks to spawn themselves to create new tasks.

Offered Services Programming Project Donation
Language Selection Incentives

ATLAS Programming API Interpreted Implicit -
ParaWeb Programming API Interpreted Implicit -
Charlotte Programming API Interpreted Explicit -

KnittingFactory
SuperWeb Infrastructure Interpreted Implicit Processing time

Ice T Programming API Interpreted - -
JET Monitor infrastructure Interpreted - -

Programing API
Javelin Launch infrastructure Interpreted Implicit -

Programming API
Java Market Infrastructure Interpreted - Currency

popcorn Programming API Interpreted Explicit Currency
Bayanihan Monitor infrastructure Interpreted Implicit -
MoBiDiCK Launch infrastructure Compiled Explicit -

Programming API
XtremWeb Infrastructure Interpreted Implicit -
JXTA-JNGI Programming API Interpreted Implicit -

P3 Programming API Interpreted - -
CX Programming API Interpreted Implicit -

G2-P2 Programming API Interpreted Implicit -
CCOF - - - -

Personal Launch infrastructure Interpreted Explicit -
Power Plant Programming API

Table 2.4 (Continues on next page)

74 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Offered Services Programming Project Donation
Language Selection incentives

CompuP2P Infrastructure Interpreted Explicit Currency
Declarative

Alchemi Infrastructure Interpreted Implicit -
Programming API Declarative

YA - - Implicit
BOINC Monitor infrastructure Compiled Explicit User ranking

Programming API
Leiden Infrastructure Declarative Explicit User ranking
Ginger Launch Infrastructure Declarative Explicit Currency

User ranking
nuBOINC Infrastructure Declarative Explicit User ranking

Table 2.4: Internet Distributed Computing systems programming and usage

Offered Services Some of the analyzed systems only provide a programming

API for the development and launching of applications. Programmers write one

application, launch it and wait for the resulting tasks to finish. In such systems,

there is no way for the owner of the work to control the various tasks: i) terminate

the tasks, ii) check for their status, or iii) observe the intermediate results.

SuperWeb, Java Market, XtremeWeb, CompuP2P, Alchemi, and Leiden, on the

other hand, offer a full infrastructure for the deployment and launching of jobs

and for observing tasks’ execution status.

Other systems also have some sort of infrastructure either for launching jobs

(Javelin, MoBiDiCK and Personal Power Plant, Ginger, Leiden and nuBOINC) or

for monitoring tasks (JET, Bayanihan, BOINC, Leiden and nuBOINC).

Of the available systems, some require the programmer to use a programming

API to develop the application, and use the infrastructure to launch the jobs or

monitor the task. Examples of such systems are JET and BOINC (with a program-

ming API and monitoring infrastructure), and Javelin, MoBiDiCK, and Personal

Power Plant (with a programming API and launching infrastructure).

Programming Language The large majority of the available systems use inter-

preted languages for the development and execution of tasks, namely Java. Mo-

2.2. A TAXONOMY FOR CYCLE-SHARING SYSTEMS 75

BiDiCK and BOINC require the development of a compiled application.

In CompuP2P, Alchemi, Leiden, Ginger, and nuBOINC, the creation of tasks

resorts to the declaration of their arguments. In Alchemi, the client defines them

in a XML file, while in the other systems (CompuP2P, Leiden, Ginger and nuBOINC)

the user uses a supplied user interface.

Project Selection In most systems the user has no way to select which projects

he will donate cycles to. In these systems, it is the server that selects what tasks

to send to the clients, and, since each server hosts several projects, the donor does

not know to which job or project the task belongs to.

In systems where a server only hosts one project, the project selection is ex-

plicit. The donor contacts a pre-determined server, knowing exactly what is the

purpose of the tasks being run.

In BOINC, the donor contacts one particular server, but can select the projects

that he wants to donate cycle to. From the various hosted projects, the server

selects tasks from the ones the user has previously registered.

In Ginger and nuBOINC, the selection is also explicit as the donor selects what

off-the-self application can be used to execute remote tasks.

Donation Incentives Most of the studied systems do not have any sort of re-

ward to users donating cycles. In the market-oriented systems (Java Market,

POPCORN and CompuP2P), the reward for executing correctly a task is a cur-

rency value that can later be used to get work done remotely. In SuperWeb,

instead of using a generic currency, the donor is rewarded a certain amount of

processing time to be spent later. In Ginger, the user is rewarded a generic cur-

rency, that can be later used to exchange for processing time, but his reputation

(user ranking in the table) is also modified. The overall user ranking is used when

assigning work to donors.

The donors in BOINC, Leiden, and nuBOINC are only rewarded execution

points, that serve no other purpose than to rank the donors. These points cannot

76 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

be exchanged for work and are only used for sorting the users and the groups

they belong to.

2.3 Related Work

Although there is some work trying to systematize the characteristics of dis-

tributed computing infrastructures [CKBH06, CKB+07, CBK+08], the main fo-

cus has been on network and software architectural decisions, not including the

various security aspects and user level interaction models. Furthermore, these

surveys also describe systems not usable in a public infrastructure (with admis-

sion of donors or clients), while this chapter has focused the Internet based free

access systems. The range of systems presented here is much broader (presenting

more systems, and from a wider temporal range) than those presented in existing

documents.

Other documents also describe some of the characteristics dealt with in this

survey. Marcelo Lobosco et al. [LdAL02] present a series of systems and libraries

that allow the use of Java in High Performance Computing scenarios. The docu-

ment is mostly focused on the description of programming paradigms available

for the development of parallel applications in Java. The described systems are,

however, mostly targeted to cluster environments.

Koen Vanthournout et al. [VDB05] describe currently available resource dis-

covery mechanisms. This work describes the different available peer-to-peer net-

work topologies and service discovery frameworks. While the presented mech-

anisms can be targeted to distributed computing systems, the presented applica-

tion examples are mostly restricted to the file sharing category.

2.4 Evaluation

The previous section, not only presented a new taxonomy for Distributed Com-

puting systems, but also characterized them in the light of it. A more profound

2.4. EVALUATION 77

study can be made to find out what are the characteristics that have a greater im-

pact on user adhesion to systems and the donation of cycles to other users. First,

the characteristics that seem more relevant are presented and then evaluated on

how are implemented by the more successful systems.

A system that optimizes (by using the most efficient technique) these charac-

teristics should be the most capable of gathering donors. These characteristics

will fall under the previously presented classes:

• Security - Execution host security

• Architecture - Network topology and scheduling policies

• User interaction - User roles, project selection and donation incentives

One of the fundamental issues that may prevent users from donating cycles

to others is the security of their machines. There should be some sort of guar-

antee that the downloaded code will not harm the donor’s machine. The use of

some sort of sandbox (either application or system-level) is the best approach to

guarantee this. By isolating the downloaded code, even if it is malicious, the host

computer cannot be compromised.

Of the proposed Network Topologies, peer-to-peer is the one that more easily

allows users to adhere to a system, continue using it, and donate cycles to oth-

ers. In a peer-to-peer infrastructure, no complex configurations are needed. The

peer configuration (usually stating a network access point) is much simpler than

configuring a client to connect do different servers. After this initial configura-

tion the donor automatically is in position to donate cycles to any client, making

resources (in this case, cycles) more available than on client-server systems.

Besides simplicity of configuration, current peer-to-peer systems (mostly on

file sharing) offer other highly appreciated characteristics. In these systems, anonymity

is usually preserved, but still allowing the aggregation of users around common

interests. Furthermore, the inexistence of central servers (even if more than one)

would increase the reliability and scalability of the system. The preservation of

these characteristics should also increase user adhesion.

78 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

Another factor that can increase user participation (by donating cycles), is the

possibility for donors to take advantage of the system by becoming clients. If

users are able to execute their work (having the role of job creators) they are more

willing to donate cycles later. Furthermore, there should be some fairness on the

access to the available cycles. The selection of tasks to be executed must take into

account the amount of work the task owner has donated to others. This issue can

be handled by the scheduling algorithm when selecting the tasks to be executed.

The use of a market-oriented approach can also introduce a level of fairness.

Users receive a payment for the execution of work, and use that amount to pay

for the execution of their own tasks.

Necessary for fair task execution are the rewards given for the execution of

work. If, when scheduling tasks, user sorting or market mechanisms are used, it

is necessary to use some differentiating values (either points or some currency).

These reward points or currency are given after each task’s completion and can

later be used to sort the tasks or for bidding for resources.

If users know the available projects, and what problems are being solved by

the tasks, they may be more inclined to donate cycles. By knowing what the tasks

do, users can create some sort of empathy, and donate cycles to that particular

project. To guarantee this, it is necessary that job selection is explicit.

BOINC is undoubtedly the only successful (in terms or user base) Distributed

Computing system. Most of the existing public computing infrastructures rely of

this infrastructure [Sch07] and with more than two million [BOI11] aggregated

donors.

Because of these facts it is relevant to study and know how BOINC imple-

ments the more important characteristics. The following presents how BOINC

implements the most relevant characteristics:

• Execution host security - User trust

• Network Topology - Point-to-point

• Scheduling Policies - Eager / Resource aware

2.4. EVALUATION 79

• User Roles - Donor

• Project Selection - Explicit

• Donation Incentives - User ranking

The first two issues, those more related with the system architecture, present

sub-optimal solutions. There is no automatic mechanism to guarantee the secu-

rity of the donor, and the network topology may not efficiently handle a large

amount of users.

In order to host a single project BOINC uses a single server. The experiments

carried out [AKW05] prove that a single computer can handle more requests than

those possible in a real usage environment. The absence of any security guarantee

mechanism is much more difficult to justify. Users just trust the code they are

downloading from a server, because they know who developed it and what is

the purpose of the work being executed. This is only possible because project

selection is explicit.

In BOINC, users donating cycles cannot submit their own work. Their sole

function is to execute tasks created by the project managers. With such usage, the

scheduling policies are not relevant to the satisfaction of the users. To promote

cycle donation, BOINC employs user ranking: one of the rewards is to be seen as

the better donor, the one executing more tasks.

The two fundamental decisions for the success of BOINC as an infrastructure

for Distributed Computing are: the explicit selection of projects and user rank-

ings.

The explicit selection of projects allows user to donate cycles to those projects

they think are more useful, thus leveraging the altruistic feelings users may have.

As most projects have results with great impact to society, e.g. medicine, it is easy

for them to gather donors and become successful.

On the other hand, the ranking of users based on the work executed promotes

competitive instincts. Although donating cycles to useful causes, the ranking (of

users and teams) increases the computing power a user is willing to donate to a

80 CHAPTER 2. DISTRIBUTED COMPUTING SYSTEMS

cause.

These two factors greatly overcome the deficiencies of BOINC (security, and

user roles) and make BOINC arguably the most successful Distributed Comput-

ing system.

2.5 Conclusions

This chapter presented a taxonomy to evaluate and describe the various charac-

teristics of Distributed Computing platforms. This taxonomy is split in three dif-

ferent classes of aspects: i) Architecture, ii) Security and reliability, and iii) User

interaction.

This taxonomy was also applied to Distributed Computing systems devel-

oped up to now, presenting the design decisions taken by each system.

Although all presented characteristics are relevant to the global and local per-

formance of the system, some of those seem fundamental for the system success

in gathering users: i) Execution host security, ii) Network topology, iii) Schedul-

ing policies, iv) User roles, v) Project Selection, and vi) Donation incentives. For

each characteristic, the optimal and most efficient solution are presented: those

that would make a system successful and widely used.

Finally, these optimal solutions were compared with those implemented in

BOINC and conclude that BOINC does not implemented most of them. The great

success of BOINC does not come from the use of optimal solutions but from the

use of two natural human reactions: empathy with the problem being solved,

and competitiveness among users.

33333333333333333
Graphical Bag-of-Tasks Definition

Of the previously presented task creation methods (Chapter 2), the easiest one

to use is the declarative definition of tasks. This method only requires the user

to assign the code to be executed and to define the data to be processed by each

task. Although some graphical tools exist to do that, they are not suitable to

the tool users or hobbyists (defined in Section 1.1) that require the processing of

several files using an available application. The existence of suitable tools, not

only reduces the user burden, but can also leverage the use of available Internet

based Distributed Computing systems, and allow the efficient use of personal

computers and clusters.

This chapter presents SPADE, a system that allows the easy definition of tasks,

simply by declaratively stating the processing code to be used, and how the data

is to be split among tasks. The developed system will resort to an user interface,

where the user assigns each task a piece of the data to be processed. In order to

define the requirements a task definition method must comply to, it is necessary

to evaluate the user needs in terms of possible data splitting ways.

In order to leverage existing personal clusters, the work here presented is also

composed of a simple LAN based efficient task scheduling infrastructure.

3.1 Introduction

Even the less knowledgeable users have computational jobs that can be executed

in pools of computers. Most of these jobs are lengthy, and composed of inde-

pendent similar tasks, thus fitting into the Bag-of-Task model and being easy to

81

82 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

parallelize. The typical jobs, usually require the processing of sets of files, or the

execution of a program several times, each time with with different parameters.

Furthermore these users can not use existing tools, either to take advantage

of existing resources, or to parallelize their work. These tools were designed for

users with some system administration expertise and programming knowledge.

So, in order to take advantage of any of the existing resources presented in

Section 1.2, it is necessary to develop mechanisms to easily allow the creation of

jobs composed of multiple tasks and tools to deploy them on pools of computers.

Due to the target user group, and in order to increase usability, the most ef-

ficient mechanism to create these jobs is declaratively and by means of suitable

user interfaces.

The development of a user interface for job submission targeted at users with-

out large computing experience, requires a previous study of the possible prob-

lems to be solved. These fit, obviously, into the Bag-of-Tasks problems, where the

differences between each task fall into one of the following:

• each task processes a different input file;

• each tasks receives different values as arguments;

• each task processes a different part of a (uni or bidimensional) set.

Most of the usual jobs will fit into one of these classes. The batch processing of

photos or data file analysis requires each task to get as input a file with a different

name. The user should be able to easily state how many tasks to create and what

file is to be processed by each task.

If what distinguishes tasks is a numerical scalar argument or a set of such ar-

guments, the user should define the tasks arguments based on the task identifier,

either directly or by means of a simple transformation function. Jobs such as im-

age rendering, that can be split assigning to each task, a part of a bidimensional

area, are also usual. In this case, the user should only be required to state the

limits of the set and how many tasks to create.

3.1. INTRODUCTION 83

In parallel to this need to execute lengthy repetitive tasks by common users,

there is also a somehow high availability of wasted resources, since most of these

users own multiple computers (although with different processing power) or

computers with multiple cores (equivalent to multiprocessors). Although these

users have enough resources at their reach, task scheduling infrastructures (de-

signed for enterprise clusters), either require complex configuration or do not

have suitable job creation mechanisms. The installation of available task schedul-

ing tools requires system administration knowledge, and administrative right

along with the edition of multiple configuration files, and in order to launch par-

allel jobs, the user is required to edit some scripts.

In SPADE, jobs are composed of simple tasks that will be executed on remote

computers. The user states what files should be processed by each task, what

application will be launched and defines the application arguments. By using

SPADE any user can, for instance, accelerate a batch image manipulation by us-

ing otherwise idle remote computers, while releasing the mobile device for other

tasks.

In order to make SPADE usable by a wide set of computer users, three ideas

were carried out: i) the execution code is a commodity piece of software already

installed on the remote computers (such as image processing applications), ii)

the definition of the data sets to be remotely processed is done in a simple and

intuitive way, and iii) easy maintenance and use of LAN connected cluster.

SPADE is a tool that allows the remote execution of common computing tasks

on several remote computers, otherwise executed sequentially on a single com-

puter. Users should be able to speed the execution of tasks such as image ma-

nipulation by taking advantage of idle computers. SPADE is also composed of

a low-level layer responsible for the scheduling and deployment of tasks on a

personal cluster.

To accomplish this, techniques similar to the ones used in Grid and cluster

computing are used and extended, while taking into account the particularities

84 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

of home users, and those with low computing knowledge.

On the area of scientific computing, the offloading of computations to more

powerful remote computers is a good and proven solution to speed lengthy jobs.

Users either develop their own parallel application or use specific applications

previously developed and installed. To enable access to these systems, cluster

and Grid technologies have emerged.

On a desktop environment, a user owning several computers can connect

them using a high speed switch, and install any of the available job scheduling

software. As these systems were developed to specific target populations (sys-

tem administrators and programmers), these are not suitable for different user

classes. Even systems targeted at personal home clusters (such a XGrid) required

a high proficiency.

Remote execution of generic software packages may seem infeasible and with-

out practical use, but there are several applications whose data can be easily par-

titioned and several instances of the application executed in parallel. The scope

of commodity software that can be executed in a more powerful remote environ-

ment (single computer or cluster) ranges from ray tracing systems to video or

image processing, or even data processing packages target at more specialized

populations.

For instance, batch image manipulations using available software packages

can be executed concurrently on multiple computers, as long as each computer

has the same software installed. The user defines the arguments to apply to each

image conversion, SPADE uploads the images to a remote computer and invokes

the installed application there, conveying the arguments defined by the user. The

resulting files are downloaded after the conversion is complete.

In the remaining of this chapter, SPADE, a system that facilitates the execution

of commodity software on remote idle computers in order to jobs completion, is

presented. These jobs should be executed by commodity applications, invoked

from a command line. They can be composed by multiple tasks whose param-

3.2. RELATED WORK 85

eters differ on only numerical values or input file. The owner of the personal

cluster registers their applications (such as R, or POV-Ray) on the SPADE system,

so that later, it can be transparently executed. When there is a job to be executed

on remote computers, the user supplies SPADE with the different input files and

the parameters that should be provided to each task.

SPADE is responsible for uploading the necessary input files to the remote

hosts, executing the selected application and downloading the result file. The

user only needs to supply a generic command line that is parameterized to each

task. Such command lines can differ on the input file or on a numerical value.

The definition of usable applications and jobs, and how they are possibly di-

vided, is made using a simple user interface, allowing any user with minimum

computer knowledge to do it. The selection of the available hosts, where remote

tasks are executed, is performed in a easy transparent way.

The next section presents currently available systems that allow the execution

of jobs composed of independently tasks (Bag-of-Tasks) in pools (or clusters) of

computers, describing their characteristics and limitations to the target popula-

tion. In section 3.3 the requirements a system such a SPADE must comply to

are enumerated. SPADE architecture, its implementation and execution are pre-

sented in Section 3.4, while in the last ones, SPADE is evaluated and conclusions

presented.

3.2 Related Work

In the area of cluster computing, some developments have been made on mid-

dleware to allow easy deployment of applications over several computers. One

of those tools is XGrid [App05, App07]. XGrid allows the use of several comput-

ers as a cluster, providing a tool to launch and distribute parallel computations.

The main characteristic of XGrid is its integration with the Mac OS X operating

system, making it easier to create a cluster of computers. Even though XGrid al-

86 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

lows an easy creation of clusters there is no easy to use user interface to create

and launch jobs. Users are required to use command line tools to launch individ-

ual tasks or define configuration files that define the arguments of each task. On

the other hand Apple supplies a set of API [App07] that allows the development

of applications that programmatically interact with the XGrid, in order to create

tasks and retrieve results.

On a Grid, schedulers like Condor [LLM88] or GLOBUS [Fos05] allow launch-

ing of lengthy jobs on remote computers, but users have to write a launching def-

inition file, while the middleware is responsible for selecting the best available

hosts to execute the tasks. Furthermore, in order to use remote infrastructures

users are required to have the necessary authorizations and credentials.

Grid infrastructures have strong authentication mechanisms that are required

on a public conventional installation, having users with different requirements

and roles. In a simple environment, where all computers are owned and admin-

istered by the same user, and are located on the same LAN, such a heavy solution

is over demanding. Implementing a simpler authentication method instead, se-

curity would still be guaranteed with limited overhead.

When dealing with clusters of computers, besides Condor, the most used task

creation mechanisms are the ones provided by message passing programming

libraries, such as MPI [Mes94] or PVM [GBD+94]. The use of such mechanisms

requires users to develop their own tasks, or write a task launching application,

which is out of reach for the target population.

Most existing solutions for cluster management and task launching require

either programming or system administration knowledge, that most of the target

users of this work do not have.

3.2.1 Task launching mechanisms

Although existing systems are not suitable, some complementary tools have been

developed to tackle these systems’ limitations. It is relevant not only to study

3.2. RELATED WORK 87

such task launching tools, but also to evaluate more complex task launching

mechanisms, in order to extract some requirements for a fully usable job defi-

nition user interface.

As stated earlier, in order to use XGrid or Condor, it is necessary to invoke

command line utilities responsible for launching tasks. Part of the XGrid com-

mand line utility is as follows (Listing 3.1):

1 xgrid −job run [−gid grid−i d e n t i f i e r] [− s i s t d i n] [− in i n d i r]

2 [−so stdout] [−se s t d e r r] [−out outdir] [−email email−address]

3 [− a r t ar t−path −a r t i d art−i d e n t i f i e r] [−a r t e q u a l ar t−value]

4 [−artmin art−value] [−artmax art−value] cmd [arg1 [. . .]]

5% xgrid −job batch [−gid grid−i d e n t i f i e r] xml−batch−f i l e

Listing 3.1: XGrid command line utility manual (fragment)

With this application, a user is capable of invoking the command cmd on a

remote computer with the suitable arguments (arg1 [...]). It is possible to define

different arguments for each task, as well as assign different input or output files

to each task. To accomplish that, the user must parametrize the arguments -so

and -si. After each argument the user must supply a file name. In the case of

-si the contents of supplied file will be used as keyboard input (stdin) of the re-

mote tasks. The output written to stdout by the task, will be redirected to the file

supplied after -so.

Although it is possible to supply different input files to each task, the executed

application must read all input from the stdin. This is limitative as applications

that read from files defined in the command line, more so if from two or more

files, are impossible to be used with XGrid.

The invocation of the previous command creates a single task. In order to

create multiple tasks, with different arguments, it is necessary to write a shell

script that invokes multiple times this application.

In Condor, task’s parameters are defined in configuration files. Examples of

such files are presented in Listings 3.2 and 3.3.

88 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

1 executab le = foo

2 input = t e s t . data

3 output = loop . out

4 e r r o r = loop . e r r o r

5 Log = loop . log

6

7 I n i t i a l d i r = run_1

8 Queue

9

10 I n i t i a l d i r = run_2

11 Queue

Listing 3.2: Condor Configuration files

1 executab le = foo

2 e r r o r = e r r . $ (Process)

3 Input = in . $ (Process)

4 Output = out . $ (Process)

5 Log = foo . log

6 arguments = $ (Process)

7

8 Queue 150

Listing 3.3: Condor Configuration files

In order to submit such jobs, the user invokes the command condor_submit

with the configuration file as argument. In the first example two tasks are created,

that will run the foo application. One of the tasks has its input and output files in

the directory run_1 and the other tasks will have those files in the run_2 directory.

In a similar way as with XGrid, Condor replaces the stdin of the task with the file

test.dat (stated in the line 2), and will redirect the stdout to the file loop.out.

The second example (Listing 3.3) will create 150 tasks, all executing the same

application (foo), but with different arguments and input/output files. The con-

dor_submit application, will replace the placeholder $(Process) with the actual

process identifier.

In these examples it is impossible to use more than one file as task input, and

it is required that the task code reads it from the stdin. In order to overcome this

limitation, it is required that there exists a networked file system serving and pro-

viding the same directory structure to all cluster nodes. In a institutional cluster

the existence of a Network File System is fundamental and easily implemented,

but on a home cluster the same does not happen.

In order to ease the submission of jobs to cluster and Grid infrastructures,

several graphical user interfaces were developed.

Nimrod [ASGH95] is composed of a set of tools to allow the the execution of

numerical simulations on multiple computers. It is composed of a configurable

3.2. RELATED WORK 89

user interface for jobs creation and a low-level layer responsible for task deploy-

ments. Although it offers an easy to use interface for job submission, it is not

generic: previously to its use, it is necessary to develop a TCL/Tk script respon-

sible for the creation of the user interface for a specific application. From this

moment on, users are presented with an interface where they can parameterize

their simulations using check boxes or sliders. The user can also define their own

experiments writing a plan [NIM00] of the experiment. This plan file includes

a parameter part, where the user states what parameters exist, their range, and

how they vary between each task.

Ganga [EKJ+05, MBE+09] is a Python application that allows the definition

of the tasks to be executed on remote clusters. Although Ganga was primarily

developed to allow the data analysis within the ATLAS [A+08] and LHCb [C+08]

experiments in High Energy Physics, its modular architecture allows its integra-

tion with other simulation and execution environments. This system allows the

development of modules to interact with different back-end execution environ-

ments. Besides the programmatically definition of jobs, it is also possible to use a

Graphical User Interface to parametrize jobs. These user interfaces are also mod-

ular, and specific to each simulation experiment. When using Ganga, the user is

only allowed to either define a single lengthy task (processing application and

parameters), or to define all tasks that compose the jobs. When defining several

tasks, users must supply different parameters to each one, since there is no way

to define a generic set of arguments and parameterize them for each task.

Although there are tools providing easy means to create parametric execution

of jobs, none is generic, all requiring previous programming of the GUI.

Distributed Computing systems (presented in Section 2) were developed to

take advantage of Internet scattered resources, and, in part, to allow those users

to take advantage of the available remote computers to execute their tasks. The

last assumptions may lead to the conclusion that these systems provide easy to

use job definition mechanisms.

90 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

However, of the presented systems, only three offer the possibility to declar-

atively define jobs: CompuP2P, Alchemy and Leiden. All other systems require

the client user (the one submitting work) to program, both the processing and

tasks launching code.

Leiden [Lei, Som07] is the only system to offer a graphical user interface, for

the launching of jobs, and retrieval of the results. As each job is only composed of

a task, this submitting interface does note provide any data splitting mechanism:

users simply supply a configuration file, that will be processed.

CompuP2P [Sek05] and Alchemy [LBRV05a] allow the creation of jobs in a

declarative manner, but using a configuration file. CompuP2P configuration files

includes for each task a XML element. This element describes the input and out-

put files, along with the executable arguments. In Alchemy, the user must write

explicitly the copy commands necessary to guarantee that the required files exist

at the donor, but in order to define the number of tasks and their arguments, it

employs a strategy similar to Nimrod. The user states what are the tasks’ param-

eters, their limits and how they are split among tasks.

In face of available systems for job creation and deployment on remote hosts,

presently, users with low computing and programming knowledge have no means

to efficiently user their LAN connected computer to execute parametrized jobs.

Proper installation of the execution environment is difficult and requires high lev-

els of expertise, added to the fact that it is difficult for them to define the jobs to

execute.

3.3 Requirements

As a tool to offload computations to remote computers, SPADE is most useful to

those who have lengthy tasks to perform: lengthy single task jobs, repetitive data

analysis, or long processing of large batches of files. Users with such require-

ments range from scientists who need to process batches of data, to the hobbyist

3.3. REQUIREMENTS 91

who needs to create thumbnails for his collection of photos, or to designers who

need to generate a detailed image using ray tracing tools. All these users have in

common the fact that they are literate in some sort of tool (statistical package, im-

age manipulation tool or image generator) but are not proficient in programming

parallel or distributed applications or even system administration.

The problems to be accelerated, by executing them on remote machines, should

have data easily partitionable, to which does not need extra processing and trans-

formation: for instance, the scientist and the hobbyist have their data or images

in different files, while the artist knows how to tell the ray tracer to generate only

a small sub-set of the picture, or to generate a few frames of an animation.

With minimal effort, users should be able to deploy the execution infrastruc-

ture over their LAN connected computer. There should be neither complex con-

figuration files to edit nor complementary services (such as distributed file sys-

tems) to install and configure.

3.3.1 Applications

One of the most relevant factors for the success of a system like SPADE is the

amount of applications that can be executed on it, and the number of users that

can use them. These applications are typically used to process batches of data and

exist in distinct areas: statistical analysis, simulation, image processing, image or

video generation. In order to allow an easy integration with a execution environ-

ment, it is required that such applications can be configured using command line

arguments.

In the area of statistical analysis, existing systems resort to scripts written in a

proprietary language, that, either process different data sets (located in multiple

files), or process the same data with different parameters. One example of such

systems is R [R F11]. It is composed of a execution environment for statistical

computing and graphics generation, executing scripts written in the R language.

SPADE is useful in situations where a user has several scripts to execute in

92 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

the R environment or has a script that must evaluate several data sets. In the R

command line interface, a user can define the input and output files as well as

other R variables, allowing the easy interaction of the SPADE system with the R

program.

ImageMagick [Ima11] packages is a set of image manipulation tools that run

with the same interface (command line arguments) on most desktop operating

systems. When a user wants to apply the same transformation (for instance, color

correction, or border generation) to a batch of images, one of the ImageMagick

applications would have to be executed for each file. A non-expert user would

sequentially process every image while SPADE would execute each image trans-

formation on different hosts in parallel.

POV-Ray [Per08] is a ray tracing image generator that processes text files de-

scribing 3D scenes and generates the corresponding image. POV-Ray may also

generate a sequence of images that can be used to create a movie. It runs on a

variety of operating systems delivering the same results on every one and has

shell commands for the definition of the viewport of an image or the timestep of

an animation to be rendered. Image rendering may take advantage of a system

such as SPADE, by distributing the rendering of small parts of the final image

on different computers, while a movie generation could also be accelerated by

rendering each frame in parallel. Obviously, other tools such as audio or video

processing tools can also be safely used with SPADE.

Although Commodity-Off-The-Shelf applications are good candidates to be

executed in personal clusters, also sequential custom built applications can be

executed in a personal clusters as well. Any application developed in an inter-

preted language (JAVA or Python, for instance) can take advantage of SPADE. In

this case the application to be executed would be the virtual machine, while part

of the data would be the code to be executed.

3.3. REQUIREMENTS 93

3.3.2 Input Data Definition

Besides the definition of jobs with only one task, SPADE user interface allows the

definition of jobs with multiple tasks, each one possibly processing different data.

In order to define these simpler jobs, the user should select one of the available

applications, select the input files, and define the command line arguments to

use when invoking the application. All other steps should be transparent: hosts

selection, transmission of the data and files, and invocation of the application.

In order to allow the execution of jobs comprising multiple tasks, SPADE

should allow the easy partition of available data (files and parameters):

• Each task processes a different input file, also generating a different output

file. The name of this file should contain a numerical prefix that should

match the task identifier. This category includes batch image processing or

statistical analysis of different data sets.

• Each task has a numerical argument ranging from 0 to N. This numerical

value can be a task identifier or its transformation. In the case of a film gen-

eration with POV-Ray, this numerical argument may represent the timestep

of the frame being generated within the film.

• Each task processes a range of an input data set or output space, receiving as

arguments the limits of the assigned partition. The rendering of a complex

image can be parallelized giving to each task the responsibility to generate

a piece of the output image. For instance, a task would render a view from

(0, 0) to (1023, 511) while another task would generate the view from (0, 512)

to (1023, 1023). This example represents a two-dimensional space sweep but

a one-dimensional space sweep should also be possible.

Any combination of these examples could be used to define a job task.

Besides these simple, but expressive data partition mechanisms, SPADE should

also allow the traditional redirection of the stdin/stdout to predefined files.

94 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

3.3.3 Architecture

Independently of the underlying technologies deployed, SPADE should hide from

the user most of the details related to configuration of cluster:

• The file transmission should not rely on distributed file systems, since it

would require its configuration.

• The creation of the pool of available computers should be transparent. As

long as a computer has the SPADE system running it should be able to dis-

cover and be discovered by others.

• The configuration of the available application and how to use it should be

simple, resorting only to the identification of the application location on the

disk.

• The selection of computers where to run tasks should be hidden from the

user.

3.4 Architecture

In order to comply with the previously presented architectural requirements,

SPADE should be modular, allowing easy development of the necessary func-

tionalities, and future integration with existing systems. The overall SPADE ar-

chitecture is presented in Figure 3.1.

SPADE is composed of a Client application, where the user creates and sub-

mits the jobs to be executed and Daemons, running on remote computers. Al-

though logically separated, a computer running the Client module, also executes

the Daemon code.

As stated earlier, SPADE relies on commodity software installed on the cycle

providing computers. It is the responsibility of the Application Manager to keep

a record of the software accessible by remote SPADE clients. This information

is registered locally in each Daemon, but transferred transparently to each Client.

3.4. ARCHITECTURE 95

����������	
��

�
�����
����

�����
�
���

��������� �
�
�
��
�
��
�
�
�
�
��

����������	
��

������
������
�
���

����������
�
�
��
�
��
�
�
�
�
��

���
�����
� ��!��"

�
����#�����

$

%

&

'

(

)

*

Figure 3.1: SPADE System Architecture

The registration step (step 1 in Figure 3.1) must be performed before any job is

created. The user should only provide the path to the application and its well

know identifier (povray, or povray2.5, for instance). Whenever there is a task to

be executed, this module is contacted to provide the path to the executable.

During normal operation, Clients maintain updated information about what

Daemons are running and what applications are available there (step 2). Clients

only need to know the well known identifier of the remotely installed applica-

tions.

When submitting a job, the user provides the Job Manager module with all

information regarding the job and tasks to be executed over the network (step 3).

This information includes the application’s well-known name, its arguments and

the files (input or output) that should be transmitted over the network. The user

must also state how many tasks comprise the complete job. Then, this module

submits each task to the Task Execution module and keeps track of their state (not

started, started or finished). The Task Execution module chooses where to execute

each task from the information provided by the Host Discovery module (step 4).

After receiving information about a task to be executed (step 5) The Daemon,

contacts the Application Manager, retrieves the exact location of the application

to be executed (step 6), and executes it in a directory containing the input files

96 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

(step 7). Result files are then transmitted back to the client.

3.4.1 Implementation

Although it wold be possible to implement in part the described architecture by

combining already existing systems (service discovery, task scheduling on clus-

ters) the resulting system would not comply with the requirements the target

users pose: users would have to configure the required systems, and submit tasks

using complex languages.

In order to make SPADE compatible with the largest number of hardware ar-

chitectures and operating systems, it was developed in Python. The use of Python

also reduced development time. Communication between Client and Daemons

was implemented using a XML-RPC and the user interface uses the wxPython

framework [wxp]. Any other programming language that provides some sort

of RPC mechanism could have been used, and any module implemented can be

replaced or complemented with any existing system.

Figure 3.2, presents the UML class diagram of an executing daemon.

!"#$%&#'"()*+

!"#$,)-"$)./#0.1*)/2

34

./#0

567%8%)/-"9.1*)/2

:

:

: :

;

;

)<)'=$),)-"$)>+

#">()#

7??>&'/$&"9 ;
:

567%8@/'0)92
;

; ;
; ;

A"B
: :

;;

Figure 3.2: SPADE UML class diagram

SPADEBackend is the class that encapsulates all SPADE daemon behaviour.

It receives requests from the user interface module to register new applications

3.5. JOB SUBMISSION 97

and new jobs. SPADEBackend has a list of Applications containing the well known

name of each application and the path to the corresponding executable.

Each Job object stores the corresponding application and the set of tasks that

make it. Each Task object contains all the information necessary to its local or

remote execution: arguments, input files data and output file name.

The UI class handles all user interaction, its implementation and use will be

presented in Section 3.5.

On every participating computer, the Host Discovery module is responsible for

the maintenance of the list of available computers (and the application installed

there) located on the same network. In order for a Daemon to announce its ex-

istence, it sends periodically an broadcast message containing its identification,

along with the list of installed and registered applications. Clients listen to that

broadcast port and, when receiving an announcement, store the identity of the

daemons (and the software installed there) for latter deployment of tasks.

In order to allow parallel execution of several tasks and control the interaction

with several remote Daemons, for every Daemon that has the required applica-

tion, a remote RemoteTaskThread thread is created. Each RemoteTaskThread contacts

the corresponding SPADE daemon, delivering the input files and the shell com-

mand and receiving the result file.

3.5 Job Submission

One of the requirements of SPADE is to allow the execution and creation of jobs

without complex configurations. To accomplish that, the user interface should

allow the creation of tasks in a simple and straightforward manner.

Before the creation of any task, the only configuration step is the registration

of available applications. At each remote computer, the user should provide the

path to the application and its well know identifier, as presented in Figure 3.3.

The name given to the application should be uniform among all configured

98 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

Figure 3.3: SPADE application registration

computers, otherwise it would not be possible to assign tasks to all available com-

puters.

In order to define the jobs that will be executed, the user must first select

the necessary application, the location of the input files and what files should be

transmitted to the remote hosts, and define the command line arguments of each

task. All these steps are performed using a graphical user interface, split in three

different areas: i) execution environment setup, ii) parameters definition, and iii)

command line definition.

Figure 3.4 shows the fields necessary to the definition of the execution envi-

ronment.

Figure 3.4: SPADE job submission user interface, execution environment setup

The user must choose, from the available processing applications, the one to

use, define the directory where input files are presented and where results are

copied to, and select what files are to be read by every task. All information is

constant and similar to every task.

In order to define different input or output files, or different parameters for

3.5. JOB SUBMISSION 99

each task, the user must fill the parameters definition part of the user interface

(shown in Figure 3.5).

Figure 3.5: SPADE job submission user interface, parameters definition

The upper fields allow the definition of the input and output of the tasks. In

the fields Stdin File and Stdout File the user defines the name of the files to emulate

the keyboard and console. The file which name is inside the Stdin File field will

be used as the keyboard input of each task, while the output written in the screen

will be redirected to the Stdout File.

The fields Task Input File and Task Output File allow the user to specify, to each

task, the individual files to be copied to/from the remote host. The file referred

in the Task Input File will be copied to the remote computer along with those

specified in the Job files list. At the end of each task, the Task Output File is copied

back from the remote computer.

In order to allow different tasks to process, read, generate, and write file with

different name, the user should use the $(ID)d placeholder in their definition.

When generating the actual file names, SPADE will replace that placeholder with

the actual task identifier (integer higher or equal than zero). %(ID)d is similar in

meaning and function to the $(Process) placeholder from Condor.

Although in Figure 3.5, the %(ID)d placeholder is only used in the Task Out-

100 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

put File field, it can be used in the other three if necessary: each task processes

different input files, reads different information from the keyboard, or writes dif-

ferent information to the screen.

In the previews example, every task receives as input the files test.ini

(shown on Figure 3.4) and test.pov, while generating different output files:

• output0.png, by task 0

• output1.png, by task 1

• ...

Although the use of the the %(ID)d placeholder allows some differentiation

between tasks, it is still too limitative. The only value that varies between tasks is

their identifier and the input/output files.

In order to allow more complex task differentiation, the user can fill the Pa-

rameter Substitution and Parameter Sweep areas.

In the Parameter Sweep area, the user defines how a uni or bidimensional range

of values can be split among tasks. The user defines the limits of the set (setting

the minimal and maximal values) and selects the number of partitions to be cre-

ated from that set. For each task, SPADE assigns one of the produced partitions.

a)

!""#$$ #$%""$&& $&#""'%' '%(""&!#)

!""#$$ #$%""$&& $&#""'%' '%(""&!#)

$
&
#
""
&
!
#
)

$
&
#
""
&
!
#
)

$
&
#
""
&
!
#
)

$
&
#
""
&
!
#
)

!
""
$
&
&

!
""
$
&
&

!
""
$
&
&

!
""
$
&
&

b)

Figure 3.6: SPADE value range splitting: a) user interface, b) result division

Figure 3.6 presents the fields needed to be filled in order to define the subsets

3.5. JOB SUBMISSION 101

to be processed by each task. The user defines the minimum and maximum of

the X and Y sets, along with the number of divisions to be performed at each axis.

The resulting partitioning is presented in Figure 3.6.b). For each task, SPADE

generates four boundary values that can be used in the definition of the input/out-

put files names or on the command line arguments. Each of the produced lim-

its is assigned to a specific placeholder: %(MINX)s, %(MAXX)s, %(MINY)s and

%(MAXY)s. These placeholders can be used in the definition of the input/output

files in the same manner as the %(ID)d placeholder.

In the Parameter Substitution field, the user can write in Python a simple func-

tion with a transFunc(i, nTasks) header, where the parameter i will be

replaced by the actual task identifier and the nTasks is the total number of

tasks. Also in this case, the calculated value can be used in the definition of

file names and command line arguments, by means of its specific placeholder

(%(NEWPARAM)).

Up until now the user only defined the files to be processed, and how the

data set can be split. Now it is still necessary to define the command line to be

used when executing each task. This is performed filling the Command Line field

(presented in Figure 3.7).

Figure 3.7: SPADE job submission user interface, Command line

When defining the command line arguments for each task, the user can and

should use the values defined earlier: task identifier, name of files (input and

output), and limits of the input data set. Besides the already presented $(ID)d

placeholder, all other calculated values (including the names of the input/output

files) are also available by means of their specific placeholders.

All the available placeholders are presented in Table 3.1.

102 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

Placeholder Data Type Description

$(ID)d Integer Numeric identifier of current task.

Value ranging from 0 to number of tasks minus one.

%(MINX)s Real / Limits of the X data set of a partition.

%(MAXX)s Integer Calculated from the values inserted in the Parameter

sweep fields.

%(MINY)s Real / Limits of the Y data set of a partition.

%(MAXY)s Integer Calculated from the values inserted in the Parameter

sweep fields.

%(NEWPARAM)s any Value calculated for each task in the function trans-

func.

$(INFILE)s String Actual name of the input file.

Calculated expanding the expression written in

field Input File.

$(OUTFILE)s String Actual name of the output file.

Calculated expanding the expression written in

field Output File.

Table 3.1: SPADE task definition placeholders

When using these placeholders, the user is modifying the actual command

line argument used in the creation of tasks, since each placeholder is replaced by

a valued calculated taking into account the actual task identifier.

Using the configuration stated in Figures 3.5 and 3.6.a), the user can write the

following command line:

%(INFILE)s -O%(OUTFILE)s -SC%(MINX)s -EC%(MAXX)s -SR%(MINY)s -ER%(MAXY)s

This example would render 8 tasks each one with one of the following com-

mand lines arguments:

• test.pov -Ooutput0.png -SC0 -EC255 -SR0 -ER511

• test.pov -Ooutput1.png -SC256 -EC511 -SR0 -ER511

• test.pov -Ooutput2.png -SC512 -EC767 -SR0 -ER511

• test.pov -Ooutput3.png -SC768 -EC1023 -SR0 -ER511

• test.pov -Ooutput4.png -SC0 -EC255 -SR512 -ER1023

• test.pov -Ooutput5.png -SC256 -EC511 -SR512 -ER1023

• test.pov -Ooutput6.png -SC512 -EC767 -SR512 -ER1023

3.5. JOB SUBMISSION 103

• test.pov -Ooutput7.png -SC768 -EC1023 -SR512 -ER1023

In the generation of the actual command line, SPADE first calculates results

s returned from the invocation of transFunc, and the data set partition. With

these values and the task identifier, the input files are defined next.

After building the file names, it is possible to replace all placeholders present

in the command line.

The user can define the total number of tasks to create, by setting the correct

value in the Number of Tasks field (figure 3.7). If the user performs data sets par-

tition using the Parameter Sweep fields (Figure 3.6) this value is automatically set

with the correct number of tasks.

3.5.1 Job Execution

When a job is created by means of the form presented in Figures 3.4, 3.5 and

3.7, an object of class Job is created and populated with all its tasks’ information.

When creating this Job object, all the values defined by the user (except the Com-

mand Line) are expanded by replacing the placeholders with their actual values.

This newly created Job object will contain the execution information for each of

the composing tasks.

Figure 3.8 presents a Job execution UML sequence diagram, of the steps nec-

essary for the execution of a Job, after its creation.

After the Job object creation and initialization, a thread is created. This thread

will get a list of hosts (gethosts()) that have SPADE installed and the corre-

sponding job application . Then, for each host discovered, a RemoteHostThread is

created. Each one of these threads will fetch tasks (getNextTask()) and send

the necessary data to the remote host (executeRemotely()).

In order to execute the task, the remote host must receive the following infor-

mation: the name of the input and output files, the actual content of the input

files, the task identification and the command line without the placeholders re-

104 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

!"#$%&
'()*+,-

!./01
%20)/3+45

!6/7

+8+)91+:;

<+1
./010:;

!=+>/1+
?(0*?@4+(-

<+1A+81
?(0*:; &8+)91+

=+>/1+B5:;

C/4D+()@D1(0*

C/4D+()@D@/01

!"#$%&
%+(>/,?@4+(-

Figure 3.8: SPADE job execution UML sequence diagram

placed. Besides this, the actual contents of the input file should also be transferred

to the remote host.

After receiving all information and data, the SPADEDeamonThread creates a

temporary directory and copies the input file there. The actual command line

is built taking into account the executable location and the temporary directory

where the input file is. The placeholders %(INFILE)s and %(OUTFILE)s are

replaced with the concatenation of the temporary directory and the files names.

After the generation of the actual command line the task is executed, the result

output file is read and its contents returned to the cycle consumer host.

Every task may be in one of three possible states: not started, started and

finished. When a task is executed, its state changes from not started to started.

Until receiving the result of its execution, the state of a task remains in the started

state, changing to finished after the reception of its results. In order to guarantee

that all tasks are executed, after all tasks are initiated (no more tasks in the not

started state) the previously started tasks are sent to available remote hosts. This

way, duplicate results may be received, but there is the added guarantee that all

3.6. EVALUATION 105

tasks will finish.

3.6 Evaluation

SPADE is mainly composed of two components, a user interface and LAN task

scheduler. So, it is necessary to evaluate the speedups attained from its use and

study what classes of problems and jobs can be created using it.

In order to evaluate SPADE performance and the possible speedups, SPADE

was used to deploy large jobs composed of multiple tasks and execute them on

various hardware configurations. The experiment was composed of the render-

ing of 120 frames to create a computer-generated film. POVRay was used to

render each frame.

The first original execution was performed on a desktop computer with a

3.06GHs Intel(R) Core(TM) 2 Duo processor running Mac OS X. Using a single

core and rendering each frame sequentially, it took 4400 seconds (about 72 min-

utes) to generate the movie. This result in presented in the first column (Original

1/1) in Figure 3.9. ������

����	�

�
� �
� �
� �
� �

 �
� �
� �
� �
� �
� �
��

�

���

����

����

����

����

����

����

���

���
��������

�����	��������

�����

��� ��!������	"#�$%!���&	
	�����	#���&'

�
(
�
#
!
��
�
�
)

�$
�
&
	"

&
�

#
�
�
�
'

Figure 3.9: SPADE based film rendering parallelization execution times

The second column presents the time taken to execute the same job, on the

same computer, but from within SPADE. Due to the SPADE additional steps (task

deployment, execution and result retrieval) it presents some overhead. For this

106 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

experiment, the total overhead time is 75 seconds (less than 2% of the total execu-

tion time). On average, each task incurs less than 1 second from being deployed

by SPADE.

The following experiment deployed tasks concurrently on multiple processors

or cores. The experiment SPADE 1/2 executed all tasks on the same computer,

but took advantage of the two available processing cores. Since no processor

affinity was defined, and these cores were also shared with the operating systems,

a suboptimal speedup was observed. Nonetheless the speedups are evident.

The experiments with more than one computer resorted to additional com-

puters with a 2.40GHz Intel(R) Core(TM)2 Quad processors running Ubuntu 9.04

Linux. As expected, the total execution times decrease with the addition process-

ing cores.

In order to evaluate if there are considerable gains even from using additional

slower computers, the previous experiment was executed concurrently on the

original computer (3.06GHs Intel(R) Core(TM) 2 Duo) and on a Netbook with a

1.6GHz Intel(R) Atom(TM) processor and running Windows(R) XP. These results

are presented in Figure 3.10.
������

����	�

�
 �
����
���

�

��

��

��

��

��

��

��

��
��������

�����

�� ��!������

�
"
�
#
!
��
�
�
	$

�%
�
&
	'

%
��

!
��

&
(

Figure 3.10: SPADE based film rendering parallelization speedup

The first column represents the time to execute the movie rendering on the

original computer (with only one core participating), while in the second column

the Netbook also takes part in the computation. As expected there are gains that,

3.6. EVALUATION 107

in this example, are higher than 10 minutes: a job taking 72 minutes was executed

in 60. The presented gains are high enough to justify the time necessary to setup

the jobs using SPADE.

With respect to usability factors, SPADE should be capable to fulfil the require-

ments presented in Sections 3.3.3 and 3.3.2.

Although simple, the job creation interface is expressive enough to allow the

creation of most jobs a common user may have. The user is capable of defining

jobs, where each task receives as parameter the task identifier, and where different

files are processed by each task, as well as easily define a one or two-dimensional

space partitioning. The writing of the Parameter substitution function requires

some programming knowledge, but by providing some sample transformation

function, any user can adapt them to its needs.

As an example, Table 3.2 ilustrates the configurations necessary to fulfil each

of the classes of jobs described in Section 3.2:

• different arguments for each task

• different input and output files for each task

• different partitions of a data set for each task

Task differentiator UI field Assigned Value

6= arguments

Task Input test.pov

Task Output result%(ID)d.png

application povray

Command Line %(INFILE)s -Initial_Frame=%(ID)d -O%(OUTFILE)s

6= arguments

Task Input simulation.class

Task Output result%(ID)d.txt

Parameter def trans(i,n):

Substitution return 1.0*i/1000

application java

Command Line simulation %(NEWPARAM)s

Table 3.2 (Continues on next page)

108 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

Task differentiator UI field Assigned Value

6= files

Task Input image%(ID)d.png

Task Output result%(ID)d.png

application convert

Command Line %(INFILE)s -resize 102x76 %(OUTFILE)s

6= data sets

Task Input test.pov

Task Output output%(MINX)s-%(MAXX)s-%(MINY)s.png

Min X 0

Pieces 4

Max X 1023

Min Y 0

Pieces 120

Max Y 8

application povray

Command Line
%(INFILE)s -K%(MINY)s -O%(OUTFILE)s

%-SC%(MINX)s -EC%(MAXX)s

Table 3.2: SPADE configuration examples

Any user with jobs similar to the ones presented in the table, and already

capable of executing them in a serial manner, will be able to fill correctly the

required fields.

After being installed, the only necessary configuration is to state where pro-

cessing applications are located on each computer. This straightforward step is

performed by means of the dialogue box presented in Figure 3.3. Furthermore

SPADE executes unmodified and with a similar user interface in any Desktop

computer running Windows, Linux or Mac OS X.

3.7 Conclusions

This section presents a possible solution for the creation of Bags-of-Tasks. As pre-

sented earlier, none of the available systems allows an easy creation of tasks by

users without extensive programming knowledge: users were required to pro-

gram all steps of any parallel job wanting to execute.

3.7. CONCLUSIONS 109

SPADE offers a simple, yet expressive mechanism to partition data and de-

ploy parallel tasks on any execution environment. The User Interface allows the

submission of jobs where each task processes a different file, or the creation of

more complex data partitioning: parameter sweep or data sets splitting. Most

of the jobs the target users of the work presented in this dissertation will fit into

these classes of jobs.

SPADE can be used to create jobs to be executed on a cluster or on the In-

ternet. Although many Internet Based Distributed Computing systems exist (as

presented in Chapter 2), none provided suitable means for the creation of jobs by

the majority of their users. These systems could have been be envisioned to be

used by common users, but nonetheless are unsuited to them.

SPADE can also be used as a User Interface for a job scheduler on a cluster

of computers. The experiments shown were attained on a small scale cluster

composed of four desktop computers with a total of ten processing cores. The

experiments showed that even with a small number of computers it is possible to

observe speedups.

Besides the data creation User Interface, another contribution to the ease of

execution of parallel jobs, was the creation of a cluster-based task scheduler. The

underling execution environment requires no configuration. It is only necessary

to have a Daemon running on the computer where tasks are to be executed. As

it is to be executed on privately owned home LAN, security requirements can be

relaxed. Furthermore, the user explicitly defines what application (those that can

not cause harmful side effects) are to be remotely executed.

With these two contributions (a User Interface and an underlying task exe-

cution systems) users with parallel lengthy tasks, but without the knowledge to

use existing systems, can take advantage of idle computers to speed their tasks

execution.

110 CHAPTER 3. GRAPHICAL BAG-OF-TASKS DEFINITION

44444444444444444
Bag-of-Tasks Automatic Parallelization

The previous chapter shown mechanisms to simplify the creation of Bag-of-Tasks

where the processing code is a complete application, and the data splitting is

external. Although useful, it does not address all Bag-of-Tasks creation possibili-

ties. If the data splitting needs to be performed inside the developed application,

SPADE is of no use.

Today, the development of Bag-of-Tasks, i.e. embarrassingly parallel applica-

tions, for execution on multiprocessors or clusters requires the use of APIs. The

user modifies a serial version by including the task creation calls. Besides the ob-

vious need to change source code (with the possible creation of error), users are

required to learn a new API, and after transformation, the code becomes tied to a

single architecture.

So, in order to address presented issues, it is necessary to provide tools to

automatically create tasks from a serial application.

Mercury provides a platform for the transformation of serial applications into

parallel Bag-of-Tasks. It simply reads a configuration file stating what methods

and classes should be parallelized, loads the application and, in run-time, trans-

forms it so that the specified methods are executed concurrently. This transfor-

mation is performed without user intervention. Its modular design allows the

integration of Mercury with different parallel execution environments.

The experiments done show that the overhead is minimal, and that it is possi-

ble to take advantage of parallel processing environments (such as multiproces-

sors/multicores, or clusters) without the use of complex APIs.

111

112 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

4.1 Introduction

Besides the repetitive invocation of an application with different command line

arguments, it is also possible to develop serial applications that internally and in-

dependently process different arguments. In order to take advantage of available

multi-processors it is necessary to use specialized libraries, either with parallel

implementation of lengthy functions (for instance BLAS1 parallel implementa-

tions [FC00]), or to create parallel tasks to be executed concurrently.

Even if the problems fit into the Bag-of-Tasks category, for such applications

to be parallelized the user is required to modify the application and use some sort

of API to create tasks.

For instance, the use of MPI [Mes94] to create tasks is possible, but may be an

overkill, since the user is required to learn a new API. In general, for the execu-

tion of a pure Bag-of-Tasks, the use of the above mentioned approaches should

be avoided, as it requires the use of specialized APIs to perform explicit paral-

lelization, synchronization and data transmission.

As a matter of fact, the gains achieved may not be enough to justify the extra

complexity the programmer has to manage to parallelize his application. More-

over, a user with limited coding skills may not be able to handle such complexity.

Furthermore the transformed application is tied to a particular API and system,

and requires extensive and complex debugging in order to guarantee its correct-

ness, and extra effort to port it to different API of another system.

As an example, consider the effort of parallelizing the application shown in

Listing 4.1 (allowing all processData() methods to execute concurrently).

1 for i in range (1 0 0 0) :

2 inputData = g e t I t e r a t i o n I n p u t (i)

3 o b j L i s t [i] = process inOb jec t ()

4 o b j L i s t [i] . processData (inputData)

5 outputResult = o b j L i s t [i] . ge tResu l t ()

1Basic Linear Algebra Subprograms

4.1. INTRODUCTION 113

6 process (outputResult)

Listing 4.1: Typical serial Bag-of-Tasks pseudo-code

Using MPI, or any other parallel execution middleware; the following modi-

fications have to be done: i) identification of master and slave tasks, ii) transmis-

sion of data to slaves, and iii) receiving the results.

A possible parallelization of the previous application would be the presented

in Listing 4.2. In this example each of the iterations of the original application is

transformed in a distinct task.

1 i f i s_master :

2 for i in range (1 0 0 0) :

3 inputData = generateTaskInput (i)

4 t a s k s [i] = CreateTask (taskCode)

5 sendData (t a s k s [i] , inputData)

6 waitForCompletion (t a s k s)

7 for t in t a s k s :

8 outputResult = ReceiveData (t)

9 process (outputResult)

10 i f i s _ s l a v e :

11 inputData = ReceiveData (master)

12 outputdata = processData (inputData)

13 sendData (master , outputData)

Listing 4.2: Typical Parallelization of a Bag-of-Tasks

Since a message passing was used to communicate among tasks, it was nec-

essary to explicitly include communication primitives on the master process and

on all tasks: the transmission of the input data is performed in lines 5 and 11,

and the reception of the results in lines 13 and 8. Furthermore, it is necessary to

include the creation of all tasks (line 4).

This direct transformation of a loop iteration in tasks may not be viable: it is

necessary to have proficiency on the used parallel programming API, and it is

necessary to guarantee correctness of the new code. As already stated, the new

code is tied to a single API, and to a limited set of parallel execution environ-

ments.

114 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

With respect to computational efficiency, the number of created tasks may be

excessive, leading the system to thrashing. It is still necessary to enforce a limited

number of tasks (related to the number of available processors), being each task

responsible for a series of iterations.

In order to solve previews issues, a more generic approach could be as follows

(Listing 4.3).

1 c l a s s Task :

2 def i n i t (i n f _ l i m i t , sup_l imi t) :

3 . . .

4 def executeTask () :

5 for i in range (s e l f . i n f _ l i m i t , s e l f . sup_l imi t) :

6 processData (i)

7 . . .

8 for n in (nTasks) :

9 task [n] = Task (1000/ nTasks ∗ n , 1000/ nTasks ∗ (n+1)−1)

10 task [n] . executeTask ()

11 waitForCompletion (t a s k s)

12 for n in (nTasks) :

13 outputResult = task [n] . g e t R e s u l t s (t)

14 process (outputResult)

Listing 4.3: Typical Parallelization of a Bag-of-Tasks using objects

In this example, task creation is explicit, but communication is not. Input data

is transmitted when creating the task and results should be coded in the method

getResults. Nonetheless the presented code is neither tied to any specific API

nor architecture, and can easily be transformed to include parallel primitives, but

is close to a serial version.

In this example each task would execute part of the iterations (each one with a

parameter between inf_limit and sup_limit). Each task partial result would

contain the results of several iterations. Although the task code is encased in a

class, it could have been simply stated as a function, that would receive as argu-

ments the limits of the data set to be processed and return the result. This model

is presented by Jon Nilsen et al [NCHL10], along with possible parallelization

using pypar [Nie11] MPI implementation.

4.1. INTRODUCTION 115

The code structure modification generates a small impact on the complexity

of the development of a parallel version. It is the integration with a parallel exe-

cution runtime that requires the largest programming effort, as a new API must

be used, and new error-prone code is introduced, thus reducing programmer’s

productivity, as well as applications robustness. Furthermore, from the moment

additional calls are inserted, debugging the application requires a parallel envi-

ronment (even with a single processor), becoming more difficult to debug than

the serial version.

4.1.1 Objectives

Thus, the goal of the work here presented is to minimize the programmer’s mod-

ification effort necessary to transform a sequential application, as the example

presented in Listing 4.1, into a parallel Bag-of-Tasks. For that purpose, Mercury

was developed. Mercury is a middleware that allows the parallelization of in-

dependent object methods, allowing their concurrent execution on different local

threads or different remote computers.

This solution transparently transforms and parallelizes sequential applica-

tions containing long independent iterations. This transformation and execution

on a parallel environment are done with no user intervention.

These lengthy tasks are executed on different threads, either locally, in the case

of a multiprocessor (or multicore) computer, or on remote computers.

In order to use Mercury, the programmer still has to adhere to very simple

coding requirements: the sequential application must follow the structure and

form presented in Listing 4.3, and state in a XML configuration file the class and

methods that can be executed concurrently.

The code to parellelize must be composed of a worker class (Task class in

Listing 4.3) and an initialization code following this structure:

• loop with creation of worker class instances and invocation of the process-

ing code (lines 8 to 10)

116 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

• loop with the retrieval and processing of the results (lines 12 to 14)

The primitive from line 11 is not necessary.

The Mercury middleware is responsible for spawning the necessary threads,

and synchronize the invocation of the methods. In the previous example, only

after the conclusion of processdata, the corresponding getResult() method

can be executed.

Mercury also allows different execution environments for the parallelized meth-

ods. A set of adaptation classes allows the execution of the methods on different

threads on the same multiprocessor/multicore computer or the remote execution

of faster computers. The indication of what parallel execution environments are

available is also made in a declarative way. The selection of the best location to

execute the parallel code is made during run-time, and takes into account both

the code requirements and the computing resources availability.

With run-time code adaptation, the programmer only needs to develop a se-

quential application, test it and verify that the results are as expected. In order

to take advantage of available parallel resources, all the code to perform task

creation and work distribution is automatically and transparently weaved in the

correct places during application execution. Besides requiring only one version

of the application, the sequential one, it does not become tied to any specific exe-

cution environment.

The proposed solution uses metaclasses, allowing the modification of the code

to be done in run-time, without any need to transform or recompile the source

code. The developed metaclass intercepts all class creations and modifies the

implementation of those that are to be made parallel, without any user coding

intervention: the user must only state what classes have methods that can be

executed concurrently with the rest of the code.

The next section presents some technologies and systems that address simi-

lar issues as work here presented (parallel execution and reflection). Sections 4.3

and 4.4 describe the architecture and implementation (respectively) of Mercury.

4.2. RELATED WORK 117

Finally performance and functional evaluations are presented along with the con-

clusions.

4.2 Related work

The most evident way to transform a sequential application into a parallel one is

using some sort of task creation and data communication API. These API depend

mostly on the programming model used (Section 1.3.2).

The most widely used API is MPI [Mes94], which independently of the un-

derlying architecture (shared or distributed memory), allows the programmer to

define the synchronization and communication points between tasks. Any par-

allel application developed with this API, is dependent of its availability in the

target architecture and operating system, and requires programming proficiency.

To solve this dependency of the code on a specific programming API, it is

possible to delegate the responsibility of modifying the code (by inserting the

communication, and synchronization primitives) to a special compiler.

OpenMP [Boa08] requires the user to annotate the code to be parallelized with

special comments. These comments are processed by a special compiler gener-

ating a new executable, with the required and suitable calls. The way data is

transferred between tasks and how synchronization is performed depends on

the target execution architecture.

Using a similar idea, aspect oriented [KLM+97] systems allow the separation

of the functionality of the application, from complementary aspects or concerns

such as distribution or concurrency.

With respect to concurrency [SCM07], it is possible for the programmer to

state what methods can and should be executed concurrently and delegate all

code changes to a specific code transformation tool. This tool is responsible for

the insertion of task creation, synchronization and data transmission function

calls.

118 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

Later developments [CS07] allowed mixing of code annotation (as seen in

openMP) with the use of aspect oriented programming. The classes and meth-

ods to be parallelized are annotated (inside comments), which are later treated

by special compilers. These special compilers transform the application insert-

ing the necessary code to guarantee that the final application version delivers the

required behaviour.

Although reducing the programmer’s generated code and programming ef-

fort, these systems still required the execution of a transforming tool (or special

compiler) and the maintenance of multiple versions of the application: the se-

quential one, and the parallel ones targeted at distinct execution environments.

In order to avoid the existence of multiple executables for multiple architec-

tures, and reduce the programming burden, a suitable middleware is to be used.

Middleware overcomes non-functional concerns related to system issues (e.g.,

distribution, communication, parallelism) and frees developers from repetitive

and/or intricate code (unproductive and error-prone), in the application execu-

tion phase.

To improve middleware and application behaviour, the former provides in-

spection and reconfiguration abilities (reflective middleware [KCBC02]) that may

be invoked by applications, or configured by declarative policies. This configu-

ration capability is only available with the use of special compilers or off-line

application transformers.

Thus, middleware may even be monitored and triggered automatically, ac-

cording to surrounding environment and execution context [BCD+97], and by

autonomic systems (e.g., cluster and cloud computing management). Other non-

functional concerns can be addressed using techniques similar to aspect-oriented

programming for clean software design and reuse, but handled by the underlying

execution middleware [GTLJ07].

Nonetheless, middleware should not impose new or heterodox programming

models, languages, APIs as it reduces developers’ productivity and applications

4.2. RELATED WORK 119

portability, and increases error proneness. Thus, meta-object protocol approaches

should be preferred instead [BK88].

The research work more related to the one presented here includes middle-

ware projects that attempt to improve application performance by providing sup-

port for object distribution, deployment, remote execution, or thread parallelism

(and parallelization). This entails that process/thread enrolment, synchroniza-

tion, scheduling and resource management must be also addressed by the mid-

dleware and execution environment, or left for the programmer to resolve.

A natural direction for a middleware development is to extend the built-in dis-

tributed invocation mechanism in Java VM (RMI) via middleware with enhanced

semantics. In the middleware described by Laurent Baduel [BBC02], group com-

munication services are provided as a new set of Java classes and methods with

multicast and parallel execution with wait-by-necessity semantics (futures). Sven

De Labey proposes another type system extension [LS07] but employs commu-

nication qualifiers as attributes associated to objects to be invoked with different

strategies. Such approaches either lack transparency as they impose new APIs or

are unable to allow automatic parallel method execution. Furthermore, both are

unable to dynamically configure the number of participating processes.

The work described in [TS02] and [JS05] treats applications as bundles of com-

ponents that may be dynamically deployed in different processes of a distributed

system. In [TS02], application byte-codes (and comprising class types) are trans-

formed to allow application partition and component distribution following hints

by the developer. In [JS05], the Java Isolate API is employed. Although able to

deploy code using native types and allowing lazy creation of distributed objects,

they do not provide transparency since a component-based application architec-

ture is implied. Thus, automatic parallelization, as proposed, is not allowed.

A different approach is to transparently join multiple virtual machines run-

ning on a cluster or distributed infrastructure, in a larger JVM. This allows the in-

crease of resources available to existing applications. This is acomplished using a

120 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

single system image with a shared global object space [AFT99, AFT+00], and with

global thread scheduling. A minimal implementation just ensures global identi-

ties for distributed threads, offering safe synchronization semantics [HMRT03],

and supporting thread migration [ZWL02]. Although providing transparency

and code portability, these approaches do not extract parallelism automatically

as they only manage threads explicitly created by developer’s code.

The work in [Kam07] aims at supporting parallelism and distribution in Java

by offering a new API fusing the semantics of shared memory (OpenMP) and

message-passing (MPI). Parallel code is defined inside lambda constructs passed

as arguments to API methods. Synchronization is explicitly defined in code and

scheduling is based on a task queue. Transparency to the programmer is not

intended, and the number of processes involved must be known a priori by par-

ticipants.

In Map-Reduce [DG04], programmers develop large parallel applications by

providing functions to split input and aggregate results, tailoring it to a specific

API and programming model. For efficiency, a distributed shared storage (e.g.,

distributed file system, table, tuple-space) is assumed, which requires some form

of coordination and membership management among participating nodes. Ex-

isting applications cannot be parallelized transparently on Map-Reduce. Data

splitting and task creation are also defined programmatically, not automatically

handled by middleware.

The ProActive [AG03, BBC+06, BCHM07] offers multicast invocation seman-

tics and futures for Java, task distribution, and deal with distributed synchroniza-

tion and cooperation semantics. It does not aim at transparency, initially impos-

ing a specific API and type hierarchy, then evolving for a component model com-

bining a set interfaces, active objects, introspection and byte-code enhancement.

No adaptability nor transparency is sought for scheduling and parallelization.

Globally addressed and analysed, none of the proposed approaches in the

literature combines the necessary transparency (do not impose new class hierar-

4.3. ARCHITECTURE 121

chy, API or programming model, using reflective approach instead), paralleliza-

tion for performance improvement (transform local method invocations into dis-

tributed ones and execute sequential method invocations in parallel with auto-

matic synchronization enforcement), and flexibility (able to adapt and configure

middleware behavior w.r.t. scheduling, and being able to dynamically spawn

one or more parallel tasks to processes currently available with no need for prior

knowledge on group membership).

4.3 Architecture

The architecture of Mercury is closely mapped to its main functionality: class

adapters loading, classes information loading, classes transformation, and trans-

formed classes adaptation to the available execution environments.

The modules that compose Mercury and the way they interact are shown in

Figure 4.1.

!""#$%&'$()*+,&)-.(,/0,

!""#$%&'$()
1(&20,

30'&%#&--
1(&20,

!2&"'0,
1(&20,

!""#$%&'$()
4(20

!""#$%&'$()
4().$56,&'$()

!2&"'0,
1$-'

!2&"'0,-

7)/(2$.$02*!""#$%&'$()*4(20

+,&)-.(,/02*4#&--0-

4#&--+,&)-.(,/0,*30'&4#&--

4#6-'0,
!89

:4
3$22#0;&,0

+<,0&2*
!89

4#6-'0,
!2&"'0,

:4
!2&"'0,

+<,0&2
!2&"'0,

Figure 4.1: Mercury Architecture

The Application Transformer module replaces the entry point of the program

being transformed, loads the transformation code and initiates the transforma-

tion of the original application. This module starts by loading and creating the

122 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

Adapter Loader, Metaclass Loader modules, then initializes the necessary data struc-

tures and starts the Application Loader.

The Adapter Loader reads a configuration file (the Adapters List in Figure 4.1)

stating the available Adapters, loads all necessary code, and creates and regis-

ters the corresponding class. For each available computational resource (threads

and other parallel execution environments with suitable middleware) there is one

Adapter. Each of these Adapters are responsible for the creation and termination

of the concurrent tasks on one infrastructure.

The Metaclass Loader loads the ClassTransformer Metaclass code, instatiates it

and registers it for use when the Aplication Loader starts loading and process-

ing the Application Code, taking into account the name of the parallel classes and

methods stated on the Application Configuration.

During application execution, the organization of classes and objects is the

one shown in Figure 4.2.

!"#$%&'"()*
+,#%%

-*#./)"
+,#%%

0"121$#,
034)5/%

-
*
#
.
/)
"

+
'
*
)

6
#
"#
,,)
,7

8
9
)
5
:
/1
'
$

8
$
;
1"
'
$
(
)
$
/

<1**,)=#")

-*#./)"7034)5/%

0"121$#,7
+,#%%

Figure 4.2: Mercury transformed classes organization

After loading the application, besides the original classes (and their objects),

all auxiliary classes are created and instantiated, as described next.

The Transformed Class is a wrapper for the Original Class, to which it has one

reference. When an instance of the Original Class is about to be created, it is re-

sponsibility of the Transformed Class to decide what kind of Adaptation Object to

4.3. ARCHITECTURE 123

create. No instances of this Transformed Class exist during execution as it serves as

an object factory: only instances of the Original Class (locally or on remote com-

puters) and instances of the Adaptation Classes exist.

The Adapter Objects serves the purpose of handling all particularities of the

underlying middleware parallel execution mechanisms: threads, or processes on

remote computers. These objects act as proxies, being responsible for redirecting

all calls to the original objects (instances of the Original Classes), and handling all

synchronization issues.

During execution, other unmodified application objects only know the Origi-

nal Class and its interface, but interact with Adapter Objects as if they were Original

Objects.

4.3.1 Code loading and transformation

The code loading process and initialization of a transformed application is per-

formed as shown in Figure 4.3.

Before any code is loaded, it is necessary to set up the execution environment.

First the supplied metaclass is loaded and registered for later use (when the infor-

mation about the parallel classes is read). The supplied Application Configuration

files must contain the name of the classes to be transformed, and what methods

can be executed concurrently. This information is stored and will be used when

loading the application classes, and when invoking their different methods, as

will be shown in the next section.

The Adapter Loader module is responsible for loading the Adapter List file and

create the Adaptation classes referred in that file. This configuration file contains

the list of externally available classes. From those names, the Adapter Loader ob-

tains the name of the file with the class implementation and imports it. From this

moment forward, the corresponding class is available for use. The names of all

Adaptation Classes are stored in a list.

The last step before the application starts executing is the loading of the appli-

124 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

!
"
#
$
%&
'(
)
*
#
"
&
'

!
$
$
+,-
#
%,
*
.
()
*
#
"
&
'

/0(1%#'%

0&%#-+#22
3&4,2%'#%,*.

5#'#++&+(6+#22&2
7.8*(3&#",.4

0*'&
!"#$%&'2

!"#$%&'(6*"&
3&#",.4

!"#$%&'(6+#22(
3&4,2%'#%,*.

!$$+,-#%,*.(
)*#",.4(1%#'%

0*'&
6+#22&2

6+#22(6*"&(
3&#",.4

6+#22(72
5#'#++&+

6+#22(
9'#.28*':,.4

!$$+,-#%,*.
)*#",.4(;."

<&2

.*

<&2

.*

<&2

.*

Figure 4.3: Mercury application start flowchart

cation bytecode from disk and its transformation. Inside the Application Loader,

whenever a class is loaded from disk it is verified if its name was present in the

Application Configuration file. If the name was present in the configuration file, a

class transformation should occur, on the other hand the original classes (whose

code was read) is created normally.

The code loading interception, and later transformation, either requires an

intermediate step (as in Aspect Oriented Programming), or requires an execution

environment that allows introspection and run-line code modification.

Due to its architectural characteristics, availability, and wide use in the area of

scientific computing [CLM05, LD07, SSRP09, MB11, SCI11], Python was chosen

as the language (and environment) to be used in the implementation of Mercury.

The Python mechanisms used in the interception of the class loading and the class

transformations are presented in the next section.

4.4. IMPLEMENTATION 125

4.4 Implementation

The previous section presented an overview of how the application transforma-

tion is made. The implementation details and how the presented steps are carried

out are now presented: i) interception of class loading, ii) class transformation

and iii) adapter implementation.

All this transformation is performed when the application is executed, not

requiring previous steps or multiple executables.

4.4.1 Class loading interception

Python allows the installation of a custom metaclass that intercepts every class

loading, but due to the fact that some Python libraries require and install their

own metaclasses, it is not possible to use a global metaclass. So for every loaded

class, it is necessary to check if it is going to be transformed requiring the inter-

vention of the custom metaclass. To perform this step, it is necessary to intercept,

not the class creation (responsibility of the metaclass) but the code importing. Be-

fore starting reading the application code a custom import function is installed

and executed.

Whenever a Python file is included, it is this modified import function that is

executed. Its pseudo-code is shown in Listing 4.4.

1 def new__import__ (fileName) :

2 mod = __old__import__ (fileName)

3 for name , o b j e c t in mod:

4 i f i s C l a s s (o b j e c t) and name in p a r a l e l C l a s s e s :

5 o b j e c t . ass ign_metac lass (c lassTransformer)

6 return mod

Listing 4.4: Mercury custom file import

On line 2, the original import function loads the file code , which is stored in

the mod variable.

Then, in line 4, for every loaded object (constants, function, and classes),

Mercury checks if it is a class and if that class was referred to in the Applica-

126 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

tion Configuration file (its name is stored in paralelClasses). In a affirmative

case, the metaclass responsible for the actual creation of that class is replaced by

classTransformer metaclass (line 5).

After all code being verified, and assigned a new metaclass, the list is returned

(line 6). The returned object (mod) contains all loaded code, that will later be used

to create the actual objects (variables, classes or methods).

4.4.2 Class transformation

As stated earlier, the transformation of the Original Classes is performed by a

metaclass. In Python, both classes and metaclasses are first-class objects, and, as

such, have the ordinary class methods: __new__ where the instances are actually

allocated, and __init__ used to initialize the state of its instances.

As it is necessary to intervene on the actual creation of the classes, the classTrans-

former metaclass must inherit from type (to become a metaclass) and have the

__new__ method defined (to intercept actual classes creation).

The actual implementation of the classTransformer metaclass is shown in List-

ing 4.5.

1 c l a s s c lassTransformer (type) :

2 def __new__ (c l s , name , bases , dct) :

3 o l d c l a s s = newClass (name+" old " , c l s)

4 proxyc lass = newClass (name , transformedClass)

5 proxyc lass . o r i g i n a l C l a s s = o l d c l a s s

6 return proxyc lass

Listing 4.5: Mercury metaclass pseudo-code

In line 3, a copy of the original class is created but assigned a different name.

This is necessary, since later, instances of this class will be created. From this point

forward, the original class can be accessed globally by its new name (the original

name followed by the old suffix, or locally through the oldclass variable.

In the following lines, a copy of the transformedClass pre-existent class is

made (line 4), this new class stores in it the Original Class (line 5). The __new__

4.4. IMPLEMENTATION 127

method concludes returning a reference to a copy of the transformedClass class.

In the original code, although the original class was supposed to be created,

the retuned class is a copy of the transformedClass. Now, whenever the program-

mer wants to create an instance of the original class, the object creation will be

handled by the newly created copy of the transformedClass class.

4.4.3 Object creation

After all code was loaded and all classes created, the application state consists of

unmodified classes, the original classes (with different names) and copies of the

transfomedClass replacing the original classes.

The transformedClass is an object factory, as actually no instances of this class

will ever exist. When trying to create an instance of this class, the returned objects

will belong to one of the Adaptation Classes. In this case, its is also the method

__new__ (shown in Listing 4.6) that is executed.

1 c l a s s transformedClass (o b j e c t) :

2 def __new__ (c l s , ∗args) :

3 adapterClass = se lec tAdapterClass ()

4 proxyObj =

5 adapterClass (c l s . o r i g i n a l C l a s s , p a r a l e l C l a s s e s [originalClassName] , ∗args)

6 return proxyObj

Listing 4.6: Mercury transformedClass object factory

On line 3, the most suitable Adapter is selected. This has to be done to take into

account the various resources available and optimize the allocation of available

resources (such as processors, memory), taking into account the object’s compu-

tational requirements. A possible mechanism and algebra to evaluate the avail-

able resources will be presented in Chapter 7. There is also a need of different

Adapters depending on the available compuitng resources due to the different

mechanisms to create tasks (such as local vs remote threads, mutiple task cre-

ation API).

On the next lines (4 and 5), an instance of the selected Adaptation Class is cre-

128 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

ated. The constructor receives as parameters the Original Class, the list of Parallel

Methods (those from the Original Class that can be executed concurrently) and the

original arguments that are to be passed to the Original Class constructor.

This method returns a proxy class (instance of Adaptation Class), that will be-

come responsible for the creation of the actual Original Objects and forwarding of

all method calls to them.

During normal program operation, different instances of the same Adaptation

Class exist concurrently, each one responsible for a synchronization and parel-

lelization of the execution of single Original object.

4.4.4 Adapter implementation

Each adapter class is responsible for handling different computational resources

(such as shared memory multiprocessors or clusters). As such, each Adapter class

is responsible for a series of management activities:

• selection of the execution target;

• creation of Original Objects on the target platform;

• interception and proxying of the method invocation;

• synchronization of invoked methods.

The fundamental Adaptation Class is the one that takes advantage of local

multiprocessors/multicores to allow the efficient concurrent execution of several

Original Classes, each on a differnte thread: a ThreadAdapter. Besides allowing the

concurrent execution of parallel methods, this Adaptation Class must also block

other method invocations until parallel methods terminate.

Other Adaptation Classes can extend this class to accomplish the same objec-

tives, but creating the Original Objects on different computing infrastructures.

Listing 4.7 presents the generic code common to any Adapter. This listing

shows the constructor (__init__) of the Adapter Object and the method calls

interception code (__getattr__).

4.4. IMPLEMENTATION 129

1 c l a s s ThreadAdapter :

2 _lock = threading . Lock ()

3 def _ _ i n i t _ _ (s e l f , o r i g i n a l C l a s s , _paralelMethods , ∗args) :

4 s e l f . _proxiedObject= o r i g i n a l C l a s s (∗ args)

5 s e l f . _paralelMethods = _paralelMethods

6 def _ _ g e t a t t r _ _ (s e l f , a t t r) :

7 i f type (a t t r) i s MethodType :

8 s e l f . _name . append (a t t r)

9 i f a t t r in s e l f . _paralelMethods :

10 return s e l f . __ invokePara le l__

11 e lse :

12 return s e l f . __ invokeSer ia l__

13 e lse :

14 ThreadAdapter . _ lock . acquire () ;

15 r e t = g e t a t t r (s e l f . _proxiedObject , a t t r)

16 ThreadAdapter . _ lock . r e l e a s e () ;

17 return r e t

18 . . .

Listing 4.7: Mercury Thread Adapter - initialization and method selection

Since each parallel method is to be executed on a different thread, it is necessary

to guarantee that other methods (executing on the main thread) do not execute

until all parallel methods have finished. This barrier is accomplished using a sin-

gle lock that is stored in a class attribute (created on line 2, at class loading and

creation).

When creating instances of this class it is necessary to generate the actual in-

stance on the Original Class that contains all functional code. These objects are

created in line 4 and will be responsible for actually executing all functional code,

althoug all interactions are perfomed via the Adapter. In this example the prox-

iedObject is created locally.

The _parallelmethods attribute is necessary, in order to store which methods

should be executed in separate private thread.

From the moment of their creation, instances of this Adapter replace and en-

capsulate the original objects. Instances of the Adapters will not have any functional

code, delegating its responsibility to the actual Original objects.

130 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

In order to parallelize original objects method calls and synchronize its execu-

tion, it is necessary for the adapter objects to intercept those calls and inject the

necessary code. The method __gettattr__ is allays and transparently exe-

cuted when invoking methods or accessing attributes from this class’s instances.

Since this method selects and returns the methods or attributes to be later exe-

cuted or accessed, it is necessary to modify this method to perform the required

interception.

If the access is to an attribute (the condition in line 7 is false), the access is

forwarded to the original object: the code in line 15 retrieves the value from the

original object to be returned right after (line 17). The access to the original object

is guarded with a lock, to guarantee that this access is only performed after the

completion of all the parallel methods.

If it is a method call, two cases are possible: execution of a parallelizable

method or not. This is evaluated in line 8. In both cases, the returned method

object does not belong to the Original Object but to the Adapter (lines 10 and

11). These methods still belong to the Adapter object and invoke the original

methods along with all the complementary code: thread creation and synchro-

nization. Before returning the references to these methods (__invokeSerial__

or __invokeParallel__), the name of the called method is pushed to a stack

(line 8).

The code of these methods is presented in Listing 4.8, along with the actual

execution of the original methods.

1 c l a s s ThreadAdapter :

2 . . .

3 def __ invokeSer ia l__ (s e l f , ∗vargs) :

4 methodName = s e l f . _name . pop ()

5 meth = g e t a t t r (s e l f . _proxiedObject , methodName)

6 ThreadAdapter . _ lock . acquire () ;

7 r e t = meth (∗ vargs)

8 ThreadAdapter . _ lock . r e l e a s e ()

9 return r e t

10 def _ _ i n v o k e P a r a l l e l _ _ (s e l f , ∗vargs) :

11 i f ThreadAdapter . nThread == 0 :

4.4. IMPLEMENTATION 131

12 ThreadAdapter . _ lock . acquire ()

13 ThreadAdapter . nThread ++

14 s e l f . _thread = threading . Thread (s e l f . __paralelCode__ , vargs)

15 s e l f . _thread . s t a r t ()

16 def __paral le lCode__ (s e l f , ∗args) :

17 methodName = s e l f . _name . pop ()

18 meth = g e t a t t r (s e l f . _proxiedObject , methodName)

19 meth (∗ vargs)

20 ThreadAdapter . nThreads −−

21 i f ThreadAdapter . nThread == 0 :

22 ThreadAdapter . _ lock . r e l e a s e ()

Listing 4.8: Mercury Thread Adapter - method execution

After __getattr__ method returning, the program execution continues in-

side either __invokeSerial__ or __invokeParallel__ methods.

The __invokeSerial__ method first retrieves the name of the method be-

ing called (line 4) and then obtains the actual method to be executed from the

Original Object (line 5). In order to guarantee that no there is no other concur-

rent method invocation, the invocation of the actual method (line 7) is guarded

by a lock.

Since all parallel methods must execute in different threads, it is the responsi-

bility of the __invokeParallel__ method to to start them. This is performed

in lines 14 and 15.

In order to guarantee correct method calls synchronization, it is necessary to

acquire the lock before starting the thread (lines 11..13) (first lines of the __invoke

Parallel__ methods) and release it before the thread completion (last lines of

the __parallelCode__ methods).

The thread code can not be solely the original object method, due to the need to

insert the correct synchronization code. The method __parallelCode__ exe-

cutes on its own thread, gets the name of the method (line 17), retrieves the actual

method (line 18) and executes it (line 19). The code in lines 20 to 22 releases the

lock.

132 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

The lock initialized when creating the Adapter class is used to guarantee that

only parallel methods execute concurrently. To accomplish that, this lock is ac-

quired and released in the following events:

• acquired before accessing attributes and released right after (lines 14 and 15

in Listing 4.7

• acquired before executing non parallel methods and released right after

(lines 6 and 8 in Listing 4.8

• aquired before the execution of the first parallel method (lines 11 to 13 in

Listing 4.8

• released after the execution of the last parallel method (lines 20 to 22 in

Listing 4.8

The various acquires and releases of the lock guarantee that the resulting exe-

cution of a transformed objects is similar to the unmodified serial version execu-

tion.

For simplicity, the presented code lacks mechanisms for efficient function-

ing when there are less processors than parallel objects. If more threads are cre-

ated than the number of processors, their concurrent execution can be penalized.

When creating the Thread Adapter, it is possible to state how many processors are

available. Later, it is possible to guard the execution of parallel methods with a

semaphore, initialized with the number of processors or cores. The semaphore

is acquired before starting the execution threads (leading to a optimal number of

simultaneous threads) and released at their completion.

4.4.4.1 Adapter extensions

The development of Adapters to allow the use of other parallel execution archi-

tectures can be made taking as base the Thread Adapter. The synchronization

mechanisms are the same, only differing in the Original Object creation mecha-

nism.

4.4. IMPLEMENTATION 133

In order to allow the creation and execution of objects in different computers,

the work previously developed and described in [SF04] was used. The described

system allows the transparent creation of objects in remote hosts, resorting to sim-

ilar code transformation mechanisms as the ones presented early in this chapter,

but always creating objects in remote hosts.

The new Adapter class only differs in one line of code and has one more method.

When creating the actual Original object (line 4 in Listing 4.7) the Cluster Adapter

invokes the method that creates the object in a remote host, named newRemoteObject

and shown in Listing 4.9.

1 c l a s s ClusterAdapter :

2 . . .

3 def newRemoteObject (s e l f , o r i g i n a l C l a s s , ∗args) :

4 URI = getURI ()

5 proxy = Pyro . core . getAttrProxyForURI (URI)

6 cdURI = proxy . c r e a t e O b j e c t (package (o r i g i n a l C l a s s) , s t r (o r i g i n a l C l a s s) , args)

7 proxyObj = Pyro . core . getProxyForURI (cdURI)

8 return cdProxy

Listing 4.9: Mercury Cluster Adapter - remote object creation

The PYRO [Jon11] (PYthon Remote Objects) system was used in order to allow

an easy interaction with remote servers and creation of the remote objects. Each of

the remote computers executes a server that accepts remote method invocations,

creates objects and exposes them as new services.

In order to create an original object on a remote host, the adapter just finds a

suitable object creation server (identified by an URI [BFM05]), creates a proxy for

it and invokes the remote method (lines 4 to 6). The remote method is called

along with the name of the package containg the original class, the name of class

and the constructor arguments.

The createObject method (executed on the remote host) creates an original

object and returns the URI of the newly created object. The proxy created in line 7

will intercept all method calls and redirect them to the original object living in a

remote computer.

134 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

Part of the code of the ObjectGenerator, running in the remote comput-

ers and responsible for the actual creation of the original objects, is presented in

Listing 4.10.

1 c l a s s ob jec tGenera tor (Pyro . core . ObjBase) :

2 . . .

3 def c r e a t e O b j e c t (s e l f , c lassPackage , className , ∗args) :

4 import (c lassPackage)

5 exec (" c l a s s "+className+" ("+classPackage+" . "+className+" , Pyro . core . ObjBase) : pass ")

6 newObject = eval (className+ s t r (args [0]))

7 Pyro . core . ObjBase . _ _ i n i t _ _ (newObject)

8 u r i = s e l f . daemon . connect (newObject)

9 return u r i

Listing 4.10: Mercury Cluster Adapter - remote object creator server

The first step is the import of the Original class code. When detecting that the

imported code is not locally available, PYRO automatically downloads it from

the host where the remote call was initiated.

The next step is the creation of a new class that inherits from Original class and

from Pyro.core.ObjBase (line 5). This will allow the creation of objects whose

methods can be remotely invoked.

The following instructions (lines 6 to 7) create the actual object and execute

the PYRO initialization. Finally a daemon is created and its URI returned.

4.4.5 Execution environment

The Mercury code should be injected into the Python virtual machine before the

loading of the application. As a last resort, the source code of the virtual machine

could have to be changed. The code manipulations performed by Mercury do not

oblige that.

The transformation code just needs to be loaded before the application code.

For instance if, in order to start one application, the user would invoke it by writ-

ing the command python app.py, to take advantage of Mercury the command

would be replace by python mercury.py app.py. Alternatively the Python

4.5. EVALUATION 135

virtual machine configuration file could be edited, so that with every execution

the mercury.py would be loaded.

This mercury.py file contains the code responsible for loading the configura-

tion files, loading and creating the metaclasses, changing the include function,

and executing the modified code as described in this section.

4.5 Evaluation

The evaluation of Mercury is twofold: i) quantitative, where the overhead in-

curred by using Mercury is shown, and ii) functional, developing sample appli-

cations and executing on different environments.

The first evaluation consisted on executing the function integration code pre-

sented in Listings 4.11 and 4.12, sequentially (the original and modified versions)

and within Mercury (the modified version).

1 sum = 0 . 0 ;

2 i = 0

3 print i ;

4 while i < t r i a l s :

5 xr = random . uniform (x1 , x2)

6 sum = sum + xr ∗ xr − 3 ∗ xr

7 i +=1

Listing 4.11: Original x2−3x integra-

tion code

1 sum = 0 . 0 ;

2 nTasks = t r i a l s / t r i a l s P e r O b j

3 for t r i a l in range (nTasks) :

4 o b j s [t r i a l] = p a r a l l e l O b j (x1 , x2)

5 o b j s [t r i a l] . execCode (t r i a l s P e r O b j)

6 for t r i a l in range (nTasks) :

7 sum += o b j s [t r i a l] . ge tResu l t ()

Listing 4.12: Modified x2 − 3x inte-

gration code

The modified version presents and outer extra loop, used to partition data,

and allow the same number of parallelObjects and number of used threads.

The method (execCode is equivalent to the loop in the original code.

This evaluation was performed on 3.06GHs Intel(R) Core(TM) 2 Duo proces-

sor running Mac OS X. In all experiments the total number of iteration (trials) was

50 million, but on the modified version multiple quantities of parallelObjects

were used. The results can be observed in Figure 4.4.

The time to execute the serial original version of the code (about 55 seconds)

136 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION
�������

���	
�

��
���	
 �	������� �	������� �	������� �	�������

�

��

��

��

��

��

�� �

�

�

�

��

���

��������

��������������
��

�� !	�
��
"��#���
�$�	�
%

&
'
	
�
�
��
�
�

(
�
	

)
%
	
�
�
�

*

Figure 4.4: Mercury based function integration parallelization execution times

is represented as a black line, while each of the coloured columns present the

execution times with different number of threads (x axis) and different number

of parallelObjects (from 1 to 160).

When executing the modified version outside Mercury (Modified), only with

160 parallelObjects the increase on the execution time is noticeable. This

is due to the fact that more instructions are actually executed: more objects are

created, and more calls (to execCode andgetResult) are performed.

When executing the code within Mercury with only one available thread (set

of columns labelled Mercury_1), there is an added overhead. The reason is in

the code transformation and objects synchronization: the code had to be rewrit-

ten, new objects were created, new method calls invoked, and getresult meth-

ods had to be synchronized. Nonetheless the overhead is minimum. When 160

parallelObjects were created, the total overhead was about 3 seconds, ren-

dering and overhead of about 20ms per parallelObjects.

With two available threads (Mercury_2), the gains are, as expected, close to

optimal. With the number of threads higher than the number of processing core

there is a degradation of the execution times. In this case the contention and

synchronization on the access to the CPU adds some overhead.

Using Mercury, it was possible to parallelize a Monte-Carlo computation to

integrate one function. Instead of treating each random value in a serial way, each

4.5. EVALUATION 137

task was responsible for obtaining part of the solution. In order to use Mercury,

the definition of a class was necessary. Although a simpler serial version could

be developed (as presented in Listing 4.11) Mercury could not parallelize it.

In order to evaluate the modifications necessary to parallelize a pre-existent

application, a simple ray-tracer was executed inside Mercury. The original ray

tracer (yopypar2) was executed inside Mercury with minimal code modification.

The original application (with 390 source code lines, 9 classes and 3 functions)

suffered the following modifications:

• modification of 2 functions’ headers, since these functions access a global

variable and no shared memory space exist among tasks;

• modification of previous functions calls, to receive as argument the removed

global variable;

• addiction of a parallel class, responsible for the rendering of part of the im-

age;

• modification of the main function, to allow the creation of the parallel objects,

invocation of the parallel code and retrieving of results.

The total number of modified code lines was 9 plus the transformation of the

main function similar to the transformation presented in Listings 4.11 and 4.12.

With the new modified code, it was possible to execute it in a correct sequen-

tial way, and take advantage of the multiple cores existing in the test platform.

The same code base is used to execute the sequential version, the one using local

cores, and another one taking advantage of remote computers.

Using the ClusterAdapter earlier described, it was possible to execute the pre-

sented ray-tracer in multiple processors distributed in various hosts. The results

of these executions (sequential, on local cores and on remote computers) is shown

in Figure 4.5.

The first executions (Original, Modified, Mercury_1 and Mercury_2) were

all executed on the computer with a 3.06GHs Intel(R) Core(TM) 2 Duo processor

2http://code.google.com/p/shedskin/source/browse/trunk/examples/yopyra.py?r=1320

138 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION���

�����	

����
�� �������� ��������	 ��������� ��������� ��������� ��������� ���������

�

	��

���

���

���

���

���

���
�����
 ���

!��"���

�������

#�
������ ��
��
��
�$%������&����''��'

(
)
�
�
�
 �
�

�*

�$
�
�+

'
�
�
�

�
,

Figure 4.5: Mercury based ray tracing application parallelization execution times

and running Mac OS X, while the last four also resorted to a computer having a

2.40GHz Intel(R) Core(TM)2 Quad CPU, running Ubunt 9.04.

The overhead for using Mercury is low: the execution time difference between

the Original and Modified versions is imperceptible, while the overhead for ex-

ecuting the modified version within Mercury (Mercury_1) is only 15 seconds on

a job longer than 11 minutes.

With one thread, the overhead is due to the amount of data to transmit at task

creation (4 Kbyte) and at task completion (700 Kbyte). These values correspond

to the transmission of the scene file and reception of the resulting image.

With more processors, the speedups attained are in line with the expected

ones.

4.6 Conclusion

With Mercury it is now possible to automatically and transparently produce par-

allel Bag-of-Tasks. The user needs only to program a serial version of its job (fol-

lowing simple restrictions), define what objects and methods should be executed

concurrently and execute that application within Mercury.

The developed application must have objects that are responsible for the ex-

ecution of lengthy tasks. The serial version must have one initialization part

4.6. CONCLUSION 139

(where objects are created and data partitioned), one or more execution parts

(where interactively and independently each object executes its task) and a data

recollection phase. This structure matches most of Bag-of-Tasks problems. Mer-

cury will transparently execute each of the parallel methods on a different pro-

cessor or computer.

From the experiments made, it is possible to conclude that Mercury can han-

dle most Bag-of-Tasks. The presented experiments shown the parallelization of

a simple implementation of a Monte-Carlo simulation as well as the execution

of an externally developed ray-tracer. The overhead incurred by Mercury is low

and easily overdue by the gains on programming ease and speedups.

It was possible to parallelize applications allowing the execution of concurrent

threads on two different environments: i) multicore computers, executing each

concurrent thread on a different core, and ii) cluster of computers, using an object

distribution systems to leverage different computers scattered on a local network.

140 CHAPTER 4. BAG-OF-TASKS AUTOMATIC PARALLELIZATION

55555555555555555
Off the Shelf Distributed Computing

With suitable tools, the Internet offers close to unlimited processing power us-

able to solve users’ problems. Chapter 2 presented an overview of the available

solutions to access Internet scattered computational resources, along with an as-

sessment of their real use.

From the presented evaluation, it is possible to conclude that currently, cycle

sharing over the Internet is a one-way deal. Computer owners only have one

role in the process: to donate their computers’ idle time. This is a consequence of

being difficult for an ordinary user to install the required infrastructure, develop

the processing applications, or even gather enough computer cycle donors.

These three reasons must be overcome in order to allow a system to be fully

successful.

This chapter presents mechanisms to allow users to create and submit jobs

that are executed on remote computers taking advantage of donated cycles.

The best class of jobs to be executed in a Distributed Computing infrastruc-

ture is Bag-of-tasks, since it does not require communication between intervening

computers, nor complex scheduling algorithms.

To allow an easy task development, these jobs must be processed by com-

monly available software (e.g. programming language interpreters or virtual ma-

chines, statistical software, signal/video processing tools, ray-tracers) that is in-

stalled on the remote donating computers, resorting to task creation mechanisms

similar to those presented in Chapter 3.

In order to submit their jobs, users only have to provide the input files, select

the processing application and define the command line to provide to that appli-

141

142 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

cation. Later, users of the same software packages will contact the server, receive

a set of jobs, and process them using the already installed commodity application.

These users can later take advantage of other people’s computer cycles.

It is still necessary to gather enough donors in order to obtain representa-

tive gains. This is accomplished by allowing users to donate cycles to causes or

projects they are aware of: the donors select the applications that are authorized

to execute on their computers.

5.1 Introduction

Chapter 2 presented currently available systems allowing the use of Internet scat-

tered resources. Of these, the most successfully and widely deployed infrastruc-

ture is BOINC [AF06] While lacking features that would allow an efficient use

by a broader user base, of the available systems, it is the one that more closely

matches the requirements presented earlier in this document.

BOINC is a successful platform for distribution of parallel jobs to be executed

on remote computers. Researchers create and publicize projects that require solv-

ing a complex problem, by installing a BOINC server, developing the data pro-

cessing applications and creating the data sets to be processed. Later, users will-

ing to donate their personal computers’ idle cycles register themselves and start

processing data with the applications downloaded from the server and previ-

ously developed for such projects.

This greatly limits the scope of users that can create projects to be remotely

executed. Projects must have large visibility in order to attract enough donors

and be composed of hundreds of individual tasks. Project creators must also

have extensive knowledge on C++ or Fortran programming.

Projects from users that do not satisfy the previous characteristics can not take

advantage of available remote cycles. Even if the user has enough programming

knowledge to create a project, if the project is of short length, or not capable of

5.1. INTRODUCTION 143

attracting enough donors, the gains will be low.

Some computer user communities can take advantage of remote idle cycles to

speed their jobs, but do not have the skills to efficiently use BOINC. These users

range from hobbyists or designers, that use ray tracing software to render movies

or complex images, to researchers that use statistical software packages to process

very large data sets. Researchers who develop applications in Java or Python can

also take advantage of remote cycles to speed up their jobs.

To allow these new users to create jobs in a cycle-sharing system, they should

be allowed to use the applications or programming languages they are literate

on, and there should be enough cycle donors to speed even short spanning jobs.

The use of commodity software as a job execution environment reduces the

code development cost, as users do not have to learn a new programming lan-

guage (C, or Java), being allowed to use the most efficient of the existing tools

for the task. It would be infeasible to install all these commodity applications

remotely, but allowing the use of widely available software would increase the

potential number of users that already had them installed. Furthermore, the use

of previously installed software, creates a sense of community among users, as

each user is willing to donate his computer’s idle cycles to solve a job similar to

the ones he will later submit.

The sense of usefulness that comes from the use of the same software as other

users may increase the participation on such projects. After donating cycles, a

computer owner will also take advantage of remote cycles to speed his jobs. This

compels users to provide more and more cycles to others.

This can be promoted if, instead of just donating them, users can actually

lend them and expect to employ them later in return. When needed, the credits

received by executing tasks from others, will be exchanged by processing time

on remote computers. This new relationship within the system will increase the

number of users and the amount of time each user is able to share resources with

remote users.

144 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

The remaining of this chapter presents a set of BOINC extensions that allow

efficient execution of user submitted jobs and allowing any user to have two com-

plementary roles: owner of the jobs that are executed on remote computers and

owner of the computers where jobs will be executed. Any user that lends his idle

cycles to the execution of other users’ jobs, will also be able to take advantage of

their remote computing resources.

In order to accomplish this, it was necessary to modify both the BOINC client

and server software, and developed a custom BOINC project application. The

data processing code used by these jobs comprises commodity applications that

are installed in the remote computers, only after their owners have allowed their

use.

!"#$%&'#()$$)"*
+",-%./012

!"#%,/$'30%$'#()$$)"*

!"#$%,/$'30$%

4"5*3"64

7,"8/10$

9*.",(60)"*:%

;<<3)160)"*$

=>0/*4/4

?@9AB%

&/,C/,

9*
<
'
0%
D
)3/
$

B
"
(
(
"
4
)0E
%

;
<
<
3)1
6
0)"
*
$

*'?@9AB%13)/*0
F

;<<3)160)"*%G/H)$0,6,
I$/,

Figure 5.1: Extended BOINC (nuBOINC) usage

As shown in Figure 5.1 there are two roles while interacting with the extended

BOINC server: BOINC clients that execute the jobs and users that submit them.

To submit and create new jobs, users must: i) select the commodity application

that should be used to process the data, ii) provide the input files (data or code, as

scripts), and iii) define the number of jobs to create, the name of the output files

and the arguments that should be used to invoke the commodity application.

Then, the server waits for requests from BOINC clients to distribute each job.

When contacting the server, the extended BOINC client sends the identifiers of

the commodity applications the client owner has already installed. The server

then selects the jobs to send according to this information. After receiving each

job information (input files and arguments), the BOINC client invokes the correct

commodity application to process the input files. After each job completion, the

5.2. RELATED WORK 145

BOINC client submits the output to the server.

The next section presents existing cycle-sharing platforms and how they relate

to the proposed solutions, following with the presentation of how the job submis-

sion is to be made (section 5.3). Section 5.4 will present the extensions made to

BOINC, and their evaluation is presented in Section 5.5. Finally, the conclusions

are presented.

5.2 Related work

BOINC is the best known platform for the creation and execution of distributed

computing projects, providing all the data storage, communication and client

management infrastructure. The project manager has to develop a C++ or Fortran

application that will be executed on the client computers to process data. Even

though it is straightforward to install a hosting infrastructure, two issues arise:

it is necessary knowledge on C++ or Fortran to program the applications and, in

order to have some speedup gains, it is necessary to publicize the project in order

to attract clients.

BOINC wrappers [oC07] allow the use of legacy applications as processing

code in a BOINC project. Project developers implement a simple wrapper and

define the configuration file where it is stated how the legacy application will

be executed. Both the wrapper and the legacy application are downloaded by

the client, and when executed, the wrapper only invokes the legacy application.

Even with this solution, short length projects, or without the ability to raise cycle

donors, can not take advantage of BOINC.

XtremWeb [GNFC00] and the Leiden Grid Infrastructure [Som07] (LGI) are

distributed computing projects that allow registered users to submit their jobs,

as opposed to plain BOINC installations where only the system administrator

creates jobs. These systems allow the execution of jobs on institutional clusters

and on BOINC based Internet scattered clients.

146 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

In XtremWeb users provide the input files and define the command line argu-

ments used to invoke the application, while in LGI users are required to define a

configuration file that is used when submitting work. In neither case, users are

allowed to install a new data processing application to solve their problems.

The first project to use LGI was Leiden Classical [Lei]. Leiden classic is a

regular BOINC project (with custom built processing code, but featuring a task

creation user interface). Users can submit a single input file (with the simulated

experiment configuration), that is processed in a donor computer.

Existing P2P cycle sharing infrastructures still do not allow an easy and ef-

ficient job submission by users, as shown in Chapter 2. For instance, JXTA-

JNGI [VNRS02] provides an API for the development of distributed cycle sharing

systems. It is possible for any one to develop of a proprietary cycle sharing sys-

tem, where the owner defines all the code and data communication, but to make

it efficient over the Internet it is necessary to publicize and gather cycle donors.

Currently, other generic infrastructures (such as POPCORN [NLRC98] or P2P-

G2 [MK05]) exist but they still require the explicit development of the code to be

remotely executed. These solutions free the user from programming the distri-

bution and communication protocols, but still require writing (in Java or C#) the

code to be executed remotely. Furthermore, these solutions would still require a

lot of publicity to get enough donors.

The use of commodity data processing applications as a remote processing

environment has also been proposed in NetSolve [SYAD05], but it requires the

commodity application (e.g. Mathematica, Matlab, Octave) to be extended in

order to allow work distribution. Furthermore, users should also adapt their

scripts or applications to distribute lengthy functions.

The required user interface is closer to Nimrod [ASGH95], in the way the data

distribution is defined: the user defines the input files, the type of parameters

and how they vary. Nimrod then generates all parameter combinations and as-

signs each parameter combination to a task. Even though Nimrod helps with

5.3. USAGE 147

the combination of all parameters, the user must still have some programming

knowledge, because the processing application must be coded and the data type

of each parameter must be defined.

The mechanisms to submit work and define tasks’ input and output should

be close to those presented in Chapter 3.

5.3 Usage

With the modifications to BOINC presented in this chapter, users are now capable

of executing tasks, but also to create their own tasks.

5.3.1 Cycles Donation

To share his computer idle processing cycles, a user only has to download the

nuBOINC client and the commodity application registrar. The first step is simi-

lar to the donation of cycles to any regular BOINC project: the user downloads

the regular BOINC client, creates an account on a nuBOINC server, and declares

willingness to donate cycles to nuBOINC projects.

After installing the BOINC client, it is necessary to define which commodity

applications are authorized to be executed. This step also defines what class of

work is to be executed.

Figure 5.2: nuBOINC Application Registrar user interface

148 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

Figure 5.2 shows the user interface. Both the user interface and the registration

steps are similar to those presented in Chapter 3, Figure 3.3.

Before defining what applications are available, the user must connect to the

nuBOINC server, stating its URL, and inserting the user name and password. A list

of available applications is fetched from the nuBOINC server and displayed. This

list contains all commodity applications that other users have registered.

The user can either Subscribe to a previously registered application or define a

new one. In either case, the user selects the executable (that can be executed from

the command line) to be used to execute tasks. This file location can be assigned

to a previously registered application, such as povray in the previous figure, or

to a new application.

When assigning an executable to a new application, the user must define a

well known name and insert its version number, as shown in the New Application

dialogue box.

From this moment on, the computer where the Application Registrar was exe-

cuted is authorized and configured to execute jobs requiring the defined applica-

tions.

5.3.2 Job Creation

In order to create a job comprised of multiple tasks it is necessary to use a sim-

ple user interface. Chapter 3 describes such user interface requirements (Sec-

tion 3.3.2) and a possible user interface implementation (Section 3.5).

Although the user interface presented in Chapter 3 could have been integrated

with BOINC, for the sake of simplicity, a simple prototypical web form was de-

veloped (Figure 5.3).

Here, the user connects to the server hosting nuBOINC, identifies himself and

is presented with the previous user interface. The mechanisms to create a job

and its tasks, and to define input/output file and parameters is similar to those

presented in Chapter 3.

5.4. BOINC EXTENSIONS 149

Figure 5.3: nuBOINC User project submission interface

Nonetheless, the user must name its project/jobs and select the application

to process the data. The list of available commodity application only includes

those previously registered (using the steps described in Section 5.3.1) by the user

creating a job.

In the example, the user wants to process a file (anim.pov) with the POVray

ray tracer and generate a movie with 100 frames. For each frame (corresponding

to one time instant), one different image will be generated. One hundred jobs will

be created and, on each one, the POVray executable will be invoked with the fol-

lowing command line: +w1024 +h768 anim.pov +k0.%(ID)02d; anim.pov

is the input file and %(ID)02d will be replaced with the job identifier (00, 01, . . . ,

98, 99).

5.4 BOINC Extensions

In order to handle these new user interactions, the BOINC server and client must

suffer some modifications. Of these modifications, the one with more impact is

the possibility for any user to create jobs: a suitable user interface is needed, and

the creation and storage of tasks is different from the original BOINC.

The architecture of the developed infrastructure (shown in Figure 5.4) closely

matches the one of a regular BOINC installation [AKW05]. This figure also shows

the ordered interactions between the different components (circled numbers).

150 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

The Application registrar and RPC Interface components do not exist on regular

BOINC installations, while all others maintain the same functionality. The web

interface was modified to allow the creation of tasks and the retrieval of results.

!""#"$%&'"#()"$
%'*$"#+

,"-.$/

0$*12343.1"$

5*)3#*4.$

6223-3)*4.$

1(7.31&+8)3"14

9
:
4"
1
#
"
#
+7
;
<=
8
+%
"
$>
"
$

?*4*+@+A3)"2

+24.$*B"

C

D

EF8+<14"$A*&"6GGH E"B324$*$
I

J"K+<14"$A*&"

J.$L+B"1"$*4.$

!3)"+#")"4"$

?7+F($B"$

M

8)3"14+8.-G(4"$2

Figure 5.4: nuBoinc architecture: Detailed server view

In order to allow the execution of user submitted jobs, modifications to BOINC

(server and client) were required.

To allow users to register the applications (those allowed to be executed on the

donor computer), an auxiliary application (Application Registrar) was developed.

This application interacts with the server by means of XML-RPC calls. On the

server side, these calls are handled by a specially developed service.

The original BOINC web interface was modified in order to allow job submis-

sion and result retrieval. The modules responsible for job creation and deletion

(Work Generator, File Deleter and DB Purger) are now invoked by the users by

means of the web interface. The modules that verify the validity and correction of

job execution (Validator), and that replicate or change job state in case of erroneous

or successful execution (Transitioner and Validator), were not modified. The feeder

and scheduler modules (responsible for delivering work to clients) were modified

in order to allow the matching between the required commodity applications, and

the those installed on the remote computers.

With respect to job information organization within the BOINC server, only

one modification was made. In regular BOINC installations, work is grouped

into projects, and all jobs from the same project are executed by the same applica-

tion. With the presented extensions, all user submitted jobs are processed within

5.4. BOINC EXTENSIONS 151

the same BOINC project (nuBOINC project) but belong to different user projects:

sets of jobs, submitted by one user, that are to be processed by a given com-

modity application. This new work division had to be mapped to the database

structure. All other internal data organization remains unchanged. For each job

there is one workunit (input files and execution parameters) and several replicas

of each workunit, called results. As in any BOINC installation, results are sent to

remote clients to be processed; after the processing of all results associated to a

workunit, the valid or erroneous execution outcome, and output are stored in the

corresponding workunit.

!"#$%"&'()*"+,-.(/00%1-&.1"$
$234567(7%1,$.

-"834567

)*"+,-.(/00%1-&.1"$

7"88"'1.9(

/00%1-&.1"$

/00%1-&.1"$(

:,;1<.*&*

5$02.(=1%,<

>0'&.,(:,;1<.,*,'(/00%1-&.1"$<

!"#$%"&'(?(>0%"&'(:,<2%.<

:,;1<.,*,'(

/00%1-&.1"$<

!3

7
%1,
$
.(
7
"
8
0
2
.,
*

:)7(5$.,*@&-,

A-B,'2%,*

C,D(5$.,*@&-,

C"*E(;,$,*&."*

=1%,(',%,.,*

!3()2*;,*

F
G
.,
$
'
,
'
(3
4
56
7
(A
,
*H
,
*

I

J

K

K
L

M

N
IO

P

Q

Figure 5.5: nuBoinc architecture: Detailed client view

On the client side some modifications were also made. The new client archi-

tecture is shown in Figure 5.5. Besides the inclusion of the new Application Regis-

trar, the processing of the data received from the server is not performed directly

by the downloaded Project Application, but by a previously installed Commodity

Application.

Some of the interactions between the client computers and the BOINC server

are also different:

• All Application Registrars must inform the server about the registered appli-

cations;

• Users can submit jobs;

• BOINC clients must inform the server about available commodity applications

The architectural modifications and the new interactions are presented in the

remaining of this section.

152 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

5.4.1 Application registrar

After signing in at the BOINC server, the user must define what applications he

allows to be used by remote users. The user must execute the supplied applica-

tion registrar tool on every owned computer. Only after registering commodity

applications with the application registrar, such applications are made available

for execution on behalf of other users. Furthermore, each user is only allowed to

create tasks that use commodity applications previously registered by him.

After filling the nuBOINC project and user information (Figure 5.2), this tool

fetches from the BOINC server a list of applications (name and version) that other

users made available, and presents it (step 1 in Figure 5.4). If any of the presented

applications is the one the user wants to register, it is only necessary to insert

the corresponding executable disk location (screen shot not shown). If the user

wants to register a new application, he must fill in the New Application form. The

user will supply the path of the executable, and the name and version of the

application. This information will later be presented to other users wishing to

register their applications.

The information about the path of the executable is stored locally on each

client (step 2 in Figure 5.5), on its local Registered Application DB. This information

will later be necessary when fetching and executing the jobs.

5.4.2 Job submission user interface

The submission of the jobs to be executed on remote computers is also made in

a straightforward way. A web browser is used to supply the input files and to

define each job’s parameters.

After logging in (at the ComBOINC project), a web page is supplied with a user

interface similar to the one presented in Figure 5.3. Here, the user must define the

total number of jobs, the name of the output file and the command line to supply

to each job. There are also means to supply the input files. The user can upload

5.4. BOINC EXTENSIONS 153

files that will be accessed by every job or provide an URL pointing to a directory

containing several files. Each one of the files present in that URL will be fed to a

different job. The information submitted by the browser (step 3 in Figure 5.5) is

handled by a PHP script: for each defined job a workunit is created, containing

the information about input files, output files, commodity application to be used

and command line parameters. After the input files have been uploaded to the

server and the workunit templates created, the Work generator is invoked in order

to store relevant information in the database.

The workunit creation process is similar to the one presented developed in

SPADE (Chapter 3). With suitable modifications to SPADE and nuBOINC, both

could be integrated.

After the processing of a workunit, its output files are made available to the

user who created it, also by means of PHP scripts. These scripts allow each user

to inspect their workunit state (waiting to be processed, valid, erroneous) and to

download completed results.

5.4.3 Database Tables

The relational model of the new information to be stored is presented in Fig-

ure 5.6. Shaded entities were already present in the original data model.

!"#$ %#&'"(#$

)*$+!,'(
-*..*/'(0

1223'45('*,

!"#$

6$*7#4(

89,

:

!"#
: ;

;

<5"
: ;

=====:

;

Figure 5.6: BOINC database aditional information

In order to accommodate the new information related to the registered appli-

cations and user submitted jobs, it was necessary to modify the original BOINC

database.

154 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

The fundamental entity is user Project. This entity is related to the workunits

that compose a project, to the application used to process its data, and to the

owner.

The Commodity Application entity and Register relationship were added to ac-

commodate the names and versions of the commodity applications available on

remote hosts. This way, it is possible to know and store what applications are

needed by certain Projects (Use relationship) and what application a user has reg-

istered on the client computers.

In order to restrict user access to workunits, results and their execution infor-

mation, it was also necessary to store the workunits ownership information on

the database.

5.4.4 nuBOINC Client

Besides all the information regular BOINC clients send to the server, the modified

client (nuBOINC client) also sends the identification of the commodity applica-

tions allowed to be used. This information is required for the selection of the

suitable jobs to be executed on that client.

Before sending any request to any BOINC server, the nuBOINC client tries to

find information about the previously registered commodity applications (step 4

in Figure 5.5), stored by the application registrar on the local Registered Applications

DB. If the information regarding registered commodity applications is found, a list

of those applications is sent to the server along with a regular work request. The

answer to this request contains the input files to be processed (step 5).

Apart from the commodity applications list attached to the work requests, the

interaction between the nuBOINC client and the BOINC servers is unchanged.

After receiving a workunit to be processed (step 5) the client verifies if the re-

quired comBOINC application exists. If this comBOINC application is not present

on the client computer, it is downloaded from the server (step 6), and executes it

(step 7).

5.4. BOINC EXTENSIONS 155

The comBOINC application performs the following steps:

• retrieves the location of the commodity application (previously registerd by

the user), step 8

• sets up the commodity application execution environments, by copying the

downloaded input files, step 9

• executes the commodity application, step 10

After completion of the workunit processing, the output is sent to the server.

With the exception of the work request (that includes a list of commodity ap-

plications) all other steps are common to any other BOINC client. The similarities

between the modified client and a regular one make it compatible with any reg-

ular server. This way the nuBOINC client can process work from any nuBOINC

project or from regular BOINC projects. The registration to these projects is the

same as with regular BOINC clients.

In this version of the client, the time slicing between regular jobs and user jobs

follows the original BOINC scheduling rules.

5.4.5 Scheduler and Feeder

When contacted by an extended nuBOINC client, the extended BOINC server

should be able to return a workunit suitable to any of the commodity applica-

tions installed on the client. In order to accomplish this, the scheduler and feeder

modules had to be modified.

When requesting more jobs, the client can include the identification of the

installed commodity applications. In this case, the scheduler selects workunits

that can be handled by any one of those applications. This way, work is sent only

to hosts that can handle it.

As shown in Figure 5.4, the scheduler does not interact with the database, it

only accesses a shared memory segment. This shared memory segment is pop-

ulated with the not yet processed results. The feeder module had to be adapted

156 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

to handle the changes in the database and to communicate to the scheduler the

commodity application associated with the task.

If the extended BOINC server hosts several projects, all other ordinary re-

quests are handled in the same manner as in a regular server, guaranteeing the

compatibility with all clients.

5.4.6 nuBOINC Project application

If the downloaded workunit belongs to the nuBOINC project, and consequently

requiring the Project Application, the processing of the input files is different from

the regular cases. In a regular BOINC project, its project application has all the code

to process the data, while in a nuBOINC project, its project application only handles

the invocation of the correct commodity application that is needed to process the

input files.

The parameters of the nuBOINC project application invocation (step 7) include

the identifier of the commodity application, the names of the input files and the

parameters to be used when invoking the commodity application.

The nuBOINC project application first starts by finding the location of the re-

quired commodity application (step 8). Then, it creates a temporary directory, copies

the input file there (step 9) and invokes the commodity application. Upon commodity

application completion, the output files are copied from the temporary directory.

Then, the client returns them to the server in the normal way.

5.4.7 Commodity applications

Currently, the projects allowed to be solved fit either in the parameter sweep

category or in batch file processing, whose execution applications are already

installed in the remote personal computers. These applications should either be

parameterized through the command line or receive a script or configuration files

as input. They should also easily generate output files and print error to the

5.5. EVALUATION 157

standard output.

The usable applications include a large set of applications: ray tracing soft-

ware (POVray, YafRay), image or video processing (convert package, ffmpeg),

computer algebra (Maxima, Sage), statistical software and data analysis (S-PLUS,

R) or more general numerical computation applications (Matlab, Octave). Any

other interpreted/managed language execution environment (Java, Python, Lisp)

can also be used. All these packages are used by a large community and are

available on the largest families of operating systems: Windows, Unix and its

derivatives (Linux, Mac OS X).

Some of these commodity applications (specifically the programming languages

interpreters) may be used to attack and abuse the cycles donor remote computer.

To reduce those risks, the nuBOINC client and the commodity applications should

be executed on a restricted environment: a virtual appliance, with the necessary

applications, running inside a virtualization platform (e.g. Virtual PC, VMware

or QEMU), with a lightweight operating system installation can be used [BOI09,

Rey10, Seg10].

5.5 Evaluation

In order to evaluate the usability and performance gains, the nuBOINC modified

server was deployed to allow the execution of jobs on several clients.

The first experiment performed consisted on using the povRay[Per08] ray

tracer to generate an animation with 100 frames. The times for the execution of

these jobs on several computers, shown in Figure 5.7, were measured with identi-

cal computers connected by a 100 Mbit/s local network. On a Pentium 4 running

at 3.2GHz with Linux, each frame took between 3 and 100 seconds, giving a total

rendering time of about 127 minutes.

This experiment was made on a local network but, although not represent-

ing a real usage, it allows the evaluation of maximal speedups and the adequacy

158 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

������ ��	
 ��	
 ��	

�	
 ��	
 ��	
 ��	
 ��	
 ��	
 ���	
 ���	
 ���	

�

��

�

��

��

���

���

�
�
��������

������

�������

��������������� ����!������ ����"

#
��
�
�$
�
%

Figure 5.7: Movie rendering times

of the standard BOINC scheduling policies to environments where users are al-

lowed to create jobs.

The graph presents, along with the time to execute the job on several com-

puters, the time to execute the jobs serially on one computer (both locally and by

means of the BOINC infrastructure).

As expected, the speedups are in line with the number of cycle donor hosts.

The overhead incurred by using nuBOINC job distribution platform is minimal,

only 2 minutes. This is caused by the job submission and nuBOINC client startup.

With the participation of another host, even during a small period, this overhead

is not noticeable. On an wide area network, or with larger input files, this over-

head is larger, but is easily surpassed with the contribution of another user.

With high number of participant computers, the difference between the opti-

mal and the measured times increases. Besides the expected incurred overhead,

the phenomenon presented in Figure 5.8 can also explain the difference between

the optimal and the measured execution times.

Figure 5.9 presents the instant each of the 100 taskds finished, when executed

on 6 computers.

It is possible to observe that from minute 22 on, only 3 hosts continue pro-

cessing results. This effect is a consequence of the task distribution algorithms.

5.5. EVALUATION 159

� � �� �� �� ��

�

�

�

�

�

�

�

�	
��
�
��
����������

�
���
������

�
	
�
��
��

Figure 5.8: Jobs finishing instants

In order to reduce communication overhead, BOINC delivers tasks to donors in

batches. When delivering first tasks, this has a beneficial effect, but when few

tasks remain to be executed, this task distribution policy may starve some idle

donors. As these delivered batches maintain the same size during all execution,

close to the finish one computer receives a batch whose jobs could be distributed

equally to other clients, leading to a unbalanced job distribution.

Even though task distribution in batches affects speedups, in some cases (for

instance, 2 and 9 PCs) the speedups are close to optimal.

In a system such as nuBOINC, gains from the use of remote computers are

also dependent on the amount of time a remote computer is available to process

tasks and the frequency these computers contact the server to get new work.

In order to optimize network usage, between unsuccessfully work requests,

BOINC clients introduce a delay (back-off). This delay is exponentially increased

whenever a request is not fulfilled by the server, such as in the case of not existing

more results to process, or in case of network failure.

The Figure 5.9 shows the influence of those delays. In each of the experiments,

it was measured the delay between the job creation and the first task fetch for

different client idle times. The x-axis presents the time a client was contacting the

server and not receiving any tasks.

160 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

� � �� �� �� ��

�

�

��

��

��

��

��

��
��	
���

�����������
�

��������
��������
�����

�
��
�
��
�
�

Figure 5.9: Computations start delay times

It is possible to conclude that the clients, after a high idle time, will have

a large back-off and may be idle even when some newly created projects have

data to be processed. If the projects are short termed or the back-offs large, these

projects may not take advantage of these idle clients.

Although the deployment of jobs that used different applications (Java virtual

machine and R statistical software) was experimented, the developed user inter-

face proved limitative. Its replacement or integration with SPADE (Chapter 3) is

a viable solution.

5.6 Conclusions

With the minimal modifications made to the original BOINC infrastructure it was

possible to extend it into a system that allows the efficient execution of user sub-

mitted jobs on donor computers scattered over the Internet. These jobs must fit

in the parameter-sweep or bag-of-tasks categories.

It was possible to integrate a job submission user interface into BOINC, allow-

ing the definition of each job’s input files and parameters without any program-

ming knowledge. By allowing the execution of commodity applications as the

data processing tools, users do not have to develop the BOINC applications to

5.6. CONCLUSIONS 161

be executed on remote computers. Users only have to define the parameters or

configuration files to the applications required to execute the jobs.

These commodity applications are well known to the users and are already

installed in remote computers.

As these applications have a large user base, it is very likely to get high gains

from the execution of some jobs on remote computers, as lots of remote users will

be able to donate their CPU cycles. Organized user groups or communities can

deploy a task distribution infrastructure to be used effortlessly by its members,

independently of their computer expertise.

BOINC original scheduling mechanisms may not fit for the new BOINC us-

age. The evaluation of the scheduling mechanisms shows that the batch delivery

of tasks and the back-off may reduce the obtained speedups.

Furthermore, since the owner of a client may have jobs to be executed, the

scheduling algorithm should be adapted so that a client process his jobs first. To

take this fact into account, and guaranteeing some fairness, the way scheduling

is performed, on the client and on server should be modified.

162 CHAPTER 5. OFF THE SHELF DISTRIBUTED COMPUTING

66666666666666666
Task scheduling on the cloud

The previous section presented nuBOINC, a system to allow the execution of

Bags-of-tasks over the internet on donor computers, but, for the same target pop-

ulation, another source for computing power exists. For those without access to

institutional cluster or Grid infrastructures, it is possible to create a cluster of ma-

chines on on-demand public utility computing infrastructures such as Amazon

Elastic Compute Clouds [Ama11] (EC2). With the suitable middleware (SPADE,

for instance) Bag-of-Tasks can be easily deployed over such infrastructures.

In contrast with Internet Distributed Computing Systems or privately owned

clusters, in these new infrastructures following the utility computing paradigm,

it is necessary to pay for the rented processing time, usually charged by one hour

units. In order to optimize the number of allocated machines (thus reducing pay-

ment while maximizing the speedups) it is necessary to reduce the wasted idle

processing time.

In Bag-of-tasks problems, the number of concurrent active tasks does not need

to be fixed over time, because there is no communication among them. To exe-

cute tasks on utility computing infrastructures, the number of allocated virtual

computers is relevant both for speedups and cost. If too many are created, the

speedups are high but this may not be cost-effective; if too few are created, costs

are low but speedups fall below expectations. Determining this number is dif-

ficult without prior knowledge regarding processing time of each task and job

totals. This is usually impossible to determine reliably in advance.

This chapter presents an heuristic to optimize the number of allocated com-

puters on utility computing infrastructures. This heuristic maximizes speedups

163

164 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

taking into account a given budget. This heuristic was simulated and evalu-

ated against real and theoretical workloads, w.r.t. ratios among allocated hosts,

charged times, speedups and processing times. The results show that the heuris-

tic allows speedups in line with the number of allocated computers, while being

charged approximately the predefined budget and removing from the user the

burden of deciding in advance how many machines to allocate.

6.1 Introduction

Grid and cluster infrastructures have become the most widely used architec-

tures to execute lengthy and heavy computational jobs. However, as shown in

Chapter 1, to take advantage of them, a user needs membership or institutional

relationship with the organization, possibly virtual, controlling the computing

resources. In this scenario, scientists or even home users lacking either the re-

sources or the incentives, or the institutional links to take advantage of such in-

frastructures, are left without practical and viable options.

An alternative available to these users is provided by utility computing in-

frastructures such as Amazon Elastic Compute Clouds (EC2). These computing

infrastructures provide basic mechanisms and interfaces for users to create vir-

tual computers, where operating system, middleware, and job application code

is left to be defined by users, frequently assembled in virtual appliances with as-

sociated system and disk images. With a careful setup, virtual computational

clusters can be created easily. The creation of such machine pools is performed

programmatically by means of an API, with the allocation and management of

the actual physical resources completely hidden from the user. Furthermore, al-

lied to easy creation of virtual clusters, utility computing infrastructures employ

a simple subscription and payment model, with users required only to pay for

the processing time used. Another benefit is the easy service subscription, where

each user only needs to sign a simple contract and pay for the processing time

6.1. INTRODUCTION 165

used.

By using virtual machines with the necessary operating system and software,

a computational cluster can be easily created. If these computers run a suitable

middleware (such as SPADE, presented in Chapter 3), jobs composed of inde-

pendent tasks can be easily executed on them. These virtual computers are easily

initiated and managed, allowing the creation of real clusters of virtual computers

running the operating systems and software previously provided by the users.

Bag-of-Tasks problems developed by users left out of cluster and Grid infras-

tructures may be solved by leveraging on-demand creation of virtual machines in

order to provide the necessary computing cycles. Once set-up with tasks’ execu-

tion environment and launched, each virtual machine may contribute by solving

one or more tasks. In the specific case of Bag-of-Tasks problems, orchestration of

the participating virtual computers is rather straightforward due to the absence

of requirements for inter-task communication.

To be both efficient and cost-effective, the middleware in charge of launch-

ing virtual computers (i.e., scheduling) has to be able to predict the number of

necessary computers and instruct their creation to the utility computing infras-

tructure. Naturally, this number varies among applications and data workloads.

To deal with this, determining the optimal number of machines must take into

account both the time necessary to complete the job as well as the minimum time

unit subject to payment. This optimal number obtains the best speedups possi-

ble within a defined budget. Therefore, one must be able to avoid two relevant,

because inefficient, boundary situations described next.

If the tasks are much shorter than the minimum time unit charged (normally

one hour), allocating as many computers as there are tasks, will produce a very

low ratio between processing time used and charged. This stems from the fact

that only a small fraction of the time used by the virtual computers while run-

ning was actually used to solve the problem. Thus, when a large number of com-

puters is allocated, the outcome will be the maximum possible speedup, but this

166 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

may not be financially feasible. If instead, a very low number of (or just one) vir-

tual computers are allocated, the speedup will be very small, but as each virtual

computer will have to run for a long time, there may be no additional financial

savings.

The necessary trade-off between these two extreme cases is specially difficult

to decide in those situations where the expected processing time for each task

is unknown beforehand and the unit of charge is much larger in comparison

with the former. In order to address this problem, the remaining of this chapter

presents an heuristic and scheduling algorithm capable of dynamically allocat-

ing computing resources for Bag-of-Tasks computations, maximizing speedups,

while ensuring that users pay close to an initially predefined amount.

The need for an heuristic can be further illustrated by the following example.

For instance, if in order to solve a job comprising 300 tasks (each one with a com-

pletion time of about 5 minutes), 300 computers are allocated, then, the maximal

speedup is achieved, but at the expense of very high charged time as well. If the

minimum time unit charged is one hour, the user will be charged for 300 hours

for only 25 hours (300 ∗ 3minutes) of total processing time used.

� �� ��� ����

�

��

���

����

�

��

���

����

������	
��
�

����	��

����������
��
�

��������	
��
������

�
�

�

�
�
�

�
�
�
�
	
�
�

�

�

�

� �

Figure 6.1: Evaluation of cost and speedups

Figure 6.1 shows the evolution of charged time and speedups, regarding this

example, considering different numbers of allocated remote computers. The grey

6.1. INTRODUCTION 167

horizontal line represents for how long allocated computers are executing the

tasks (in this example 25 processing hours).

The example presented in Figure 6.1 clearly shows three distinct areas, with

different relations between charged time and the speedups.

When allocating a number of machines within region A (in this example be-

tween 1 and 25) the charged time is constant: the user always pays about 25

hours. If only one machine is allocated, it will be executing for the whole 25

hours, while if 25 machines are created, each one will only execute for one hour.

It is also possible to observe that in this region, along with the increase of the

number of allocated machines, the speedup also increases.

In region B, if more machines are created and added to the cluster, the speedup

increases, along with the total payment. Although the computers are not execut-

ing for a complete hour, they are charged as if processing data for a complete

hour, since the minimum charged value for each machine is one hour. With op-

timal task scheduling all computers process data during the same time, render-

ing a speedup equal to the charged time. If the number of allocated machines

equals the number of tasks, each machine only executes one task. In this case the

speedups are maximal, with a total payment (300 hours) much higher than the

total processing time actually required (25 hours).

The third region (region C) corresponds to a setup where the number of ma-

chines is higher than the number of tasks. In this case, some machines are idle,

not processing any tasks, but are still charged for one hour. The speedups remain

constant, with only an increase of the charged value.

In the previous graphic two important points are also evident:

• X - represents the ideal number of machines to attain the maximal speedup

when aiming for paying the minimal possible amount.

• Y - represents the ideal number of machines to attain the minimal payment

when aiming for the the maximal possible speedup.

If the user needs the maximal speedup, all tasks should be executed concur-

168 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

rently. This is attained allocating as much computers as independent tasks. This

corresponds to the point Y in the graph. Although most machines will be idle for

a long time, the speedups will be maximal.

If the user is not willing to pay more than the total executing time, it is nec-

essary that none of the allocated machines present any idle time, while guaran-

teeing that the maximal number of machines execute concurrently. This value is

attained initially by simply dividing the total execution time with the charging

unit:

optimal_hosts = total_execution_time/charging_Unit

If the user is willing to pay more than the minimum possible, it is necessary

to allocate a number of machines between X and Y. The user pays more than the

minimum, but there is a linear increase on the speedups.

If the number of machines is outside this interval, there is a waste of either

processing power, or money:

• if less than X machines are allocated, it would have been possible to attain

best speedups while paying the same amount;

• if more than Y computers are allocated, it would have been possible to pay

less while attaining the same speedup.

Domestic users or even scientists without Grid or cluster access would be will-

ing to execute their jobs with substantial speedups while within constrained bud-

gets, instead of paying for the maximum speedup possible. By varying the num-

ber of allocated hosts inside the interval one can get higher or lower speedups,

depending on the available budget, but guaranteeing that one gets the maximum

performance that value could pay.

Determining the appropriate number of computers to create is made easier if

the time each task takes to complete is known beforehand (e.g., resorting to bin

packing algorithms [CJGJ78]), and elementary if this time is equal for all tasks.

Small run-time adjustments make it possible to obtain good speedups while pay-

ing the minimum amount possible.

6.2. RELATED WORK 169

However, when the time to complete each task and its variation are not known

a priori, which often occurs (e.g., ray tracing, BOINC projects, and most parameter

sweep problems), the number of participating computers should be decided and

possibly adapted during run-time. In this case, during job execution the only

available information is for how long the completed tasks have executed. This

partial information is the only one available to predict the total job execution

time, and consequently the optimal number of computers to allocate.

Another option could be considering users’ estimates of task execution times.

However, frequently these are incorrect [MF01], and it has been found that prone-

ness to estimation error is higher with less knowledgeable users [LSHS05]. There-

fore, if user estimates fall below the actual task completion times, suitable run-

time adjustments should be made. If however, estimates are above completion

times, more hosts than necessary will have been allocated already. Moreover, this

burden should be avoided by automating task running time prediction.

In the next section, other distributed computing infrastructures are presented

along with their requirements and scheduling strategies, and why they do not ap-

ply to the proposed target environment. The following sections present the target

resource and application model, intended target applications, and the heuristic

and algorithm proposed. Finally, the algorithm is evaluated against workloads,

traces and conclusions are presented.

6.2 Related Work

The scheduling of computational problems on available resources is a fundamen-

tal problem in order to optimize both program execution and infrastructure usage

and availability. In this context, scheduling algorithms and related heuristics aim

at ensuring that requests are handled with a specified quality of service, and that

underlying resources usage is optimized.

Typically, MPI [Mes94] applications require a fixed predetermined number of

170 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

hosts to cooperate in order to solve a problem, thus simplifying the decision on

the resources to allocate. The processors allocated to each process can be used

exclusively or shared with other requests. In gang scheduling [FR95], only one ap-

plication is executing on a site with all tasks executing simultaneously, while in

co-scheduling [Ous82] there is not the requirement different for tasks all tasks to

execute simultaneously, thus allowing some tasks to be idle while other make

the program progresses. Some hybrid techniques such as those presented by

Bouteiller [BBH+06] try to conciliate the best of the these approaches.

The access to Grid infrastructures usually requires the user to define the char-

acteristics of the application to execute. These characteristics must state how

many processors (or hosts) are necessary, their architecture, the operating system

and the maximum duration of each task. In order to reduce the timespan of par-

allel applications, Grid schedulers employ heuristics that try to take into account

the expected task duration, and the speed and availability of the selected hosts

[CLZB00]. In the case of workflow applications, besides host selection heuristics,

tasks are also ordered with the goal of reducing the job’s total timespan [KA99].

In the case of Bag-of-Tasks problems, the number of concurrent processes is

not previously known and may vary. Current cycle-sharing systems, such as

BOINC [AF06], use a greedy approach to allocate remote computers: all available

computers are used to solve part of the problem. BOINC clients participate in the

selection of tasks to be executed [And07]. It is the BOINC client that is responsible

for guaranteeing an even distribution of work among different projects the user

is donating cycles to. The user states the share of idle time to give to the different

projects, and after completion of tasks, it contacts different servers to retrieve

tasks. Some improvements have been made, such as in CCOF [ZL04a], in order

to add some resource efficiency to remote host selection algorithms.

Tasks comprised in Bag-of-Tasks problems are by definition data-independent,

therefore subject to parallelization and simple restart. This allows easy schedul-

ing and deployment on remote grids and clusters. Furthermore, these tasks can

6.2. RELATED WORK 171

be executed when queues are empty, to take advantage of the resource idle times.

For instance, Transparent Allocation Strategy [NCS+05] allows the allocation of

processing power to execute tasks parameterized with the number of requested

processors (p), and duration (tr). Smaller p and tr allow a better fit of the requests,

while larger tr accommodates a wider range of tasks. The cluster resource man-

ager tries to satisfy each request, but when processors are necessary for higher

priority jobs, tasks allocated using Transparent Allocation Strategy are killed to

free resources. Later, these tasks can be restarted on other available computers.

As a solution to the difficulty of determining p and tr, another strategy is pro-

posed. The Explicit Allocation Strategy [RFC+08] presents an adaptive heuristic

allowing, during run-time, the definition of both p and tr for each request, with

information gathered by a resource scheduler managing space-shared resources.

This heuristic takes into account free time slots available on the cluster and the

estimated task duration time to generate the first request. If the tasks included

in such request are successfully executed, the execution time of the longest task

will be used in subsequent requests; if the requested time is not enough, the es-

timated task execution time will be multiplied by an integer factor. Even though

some estimation is performed w.r.t. task execution time, this solution tries neither

to obtain average task processing times, nor to reduce the unused idle time by the

requests.

Existing utility computing infrastructures, (e.g. Amazon EC2 [Ama11], Eno-

malism [Eno08], or Eucalyptus [NWG+08]) provide means for the management

of pools of computers, via deployment and execution of virtual machines. Such

machines are created from disk images containing an operating system and nec-

essary applications. Images are provided by the users, employing an API to

launch and terminate the various instances of the machines.

In currently available utility computing infrastructures, resource allocation

and scheduling problems are hidden at a lower level. When a user creates a

virtual machine, the middleware managing the infrastructure is responsible for

172 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

assigning a physical computer that can deliver the contracted quality of service.

There is no need to know the total execution time for each virtual machine be-

forehand, as it is only used, after termination, to calculate the amount to charge.

Furthermore, in commercial infrastructures, the charged time unit is large, usu-

ally one hour, which requires guarantees that machines are idle for a minimum

amount of time.

The notion of computing clouds [FDF03] providing virtual clusters has been

employed before and emerged as a natural step for designers of Grid infrastruc-

tures. In the work described in [FFK+06], a number of previously configured

Xen-based [BDF+03] virtual machines, communicating via MPI, together with in-

formation regarding resource (CPU, memory) description and management, are

considered as an aggregate virtual workspace. Complete aggregate workspaces

are the basic unit of scheduling. Workspace deployment resorts to Globus Toolkit

services when enough resources are available to schedule a given workspace.

In [SKF08], the basic unit of scheduling are individual virtual machine in-

stances and their usage is compared against Grid-based scheduling for both per-

formance, overhead, flexibility and overall system utilization. VM technology

allows task deployment, activation and suspension. Resource management re-

volves also around VM instances that may be subject to leasing (best-effort ap-

proach subject to pre-emption) or advance reservation (with timing guarantees).

The study shows that despite the inherent overhead of virtualization technol-

ogy w.r.t. native execution, the ability to suspend VMs allows better overall per-

formance (shorter total execution time and job delays) and system utilization,

when compared to Grid-based schedulers without preemption. In the case of

pre-emptive Grid schedulers, performance is only slightly worse compensated

by greater flexibility and portability (neither need to modify OS, nor code target-

ing checkpointing libraries).

Computing clouds have become more and more used in thus called e-science

problems, such as scheduling workflows of astronomy applications [HMF+08]

6.2. RELATED WORK 173

comprised of large numbers of small tasks. This approach was compared, with

encouraging results regarding virtual clusters, in four different environments:

combinations of virtual machines and virtual clusters deployed on the Nimbus

science cloud versus a single local machine and a local Grid-based cluster. The

work described in [EH08] performs calculations of MPI-driven ocean climate

models on Amazon EC2 using 12 processes, each one running on a virtual ma-

chine inside a virtual cluster. They study the cost-effectiveness of the two main

classes of architectures provided at the time by EC2 w.r.t. this type of applications

(m1-standard, i.e., single-core and c1-high-cpu, i.e., multi-core virtual Opteron/X-

eon processors). They have similar price-performance ratio even though the

claims of almost five-fold performance increase in c1-high-cpu are not met ex-

perimentally. The authors conclude that it is feasible to run such applications on

EC2, despite significant overhead penalties regarding bandwidth and latency of

memory and I/O. A virtual cluster created on-demand can perform on par with

low-cost cluster systems, but comparatively with high-end supercomputers, per-

formance is much lower.

Job Scheduling can also be driven by utility functions following an economic

or market-driven model [BAGS02, BAV05, CL06, LL07]. These systems employ

utility function to analytically optimize system throughput while fulfilling user

requirements. They can also make use of pricing models that are auction-based

to achieve supply-demand equilibrium.

Taking these characteristics into account, current scheduling approaches, re-

gardlessly of targeting cluster, Grid, or cloud computing scenarios, do not ad-

dress the problem of optimizing the number of hosts to allocate in such utility

computing infrastructures, employing quantum-based pricing schemes. Most of

them do not take into account hard currency paid for the computing power used,

and some of them even apply a totally counter productive greedy approach at

machine allocation. They are mostly job-oriented and not task-oriented, which is

more fine-grained. They assume the ability to preempt jobs or to suspend virtual

174 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

machines, in order to uphold reservations; in utility computing infrastructures,

processing time is paid by the hour and the middleware must take the most of

it actually executing tasks, not suspending their execution which will not bring

any savings. Finally, these approaches consider only a fixed (pre-configured or

pre-calculated) number of participating hosts, unable to dynamically adapt the

computing power engaged. This is rather inflexible and therefore unsuitable for

many problems where task completion times are variable and unknown before-

hand.

6.3 Resource / Application Model

Recently, hardware vendors started offering solutions to create truly on-demand

providers of utility computing resources. Such providers own pools of comput-

ers and offer computing power in the form of virtual machines through simple

launching mechanisms. Users first register their virtual machines’ images, with

suitable operating systems and software, and then launch them.

These new computing infrastructures also provide means to allow virtual ma-

chines within the same pool to discover each other and communicate among

them. Moreover, it is also possible to programmatically create a new machine

from another virtual machine already running in the infrastructure. All this al-

lows the easy creation of a computational cluster and its self-management and

tuning (addition or removal of machines) during run-time.

Load distribution between available physical computers is not user’s respon-

sibility. The virtual machine management software handles the creation of virtual

machines and schedules them to suitable computers in order to guarantee a min-

imum of quality of service (e.g., virtual machine processing speed).

Users need not to reserve processing time slots. As with any other utility

provider, accounting of chargeable time is performed after termination of the vir-

tual machines using some predefined time unit (e.g., one hour per instance). The

6.3. RESOURCE / APPLICATION MODEL 175

user will then pay for the time used.

Although not dealing with the explicit allocation of the physical resources, it

still is responsibility of the user to decide how many machines to allocate.

The work here presented proposes an heuristic to dynamically decide how

many machines to allocate for a Bag-of-Tasks application, where no communi-

cation occurs between tasks and where there is no need for all tasks to run si-

multaneously. The number of tasks should be high, on the order of hundreds,

requiring several concurrent computers to process them all within an acceptable

time frame.

An heuristic to determine the optimal number of hosts to solve a Bag-of-

Tasks becomes a requirement when task execution times are neither constant nor

known in advance. This category of problems includes some scientific simula-

tions, data analysis, or even the parallel rendering of large images, where each

task renders a small view-port of the final image, or each individual frame if ren-

dering an animation.

As an example from the proposed application model, two submissions from

the Internet Ray Tracing Competition (http://www.irtc.org/) were picked, each

with different levels of complexity, in terms of graphical objects quantity and their

distribution on the scene.

a) Example 1 b) Example 2

Figure 6.2: POV-RAy rendered example images

Although the output of both images is of identical size and resolution, the

176 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

complexity of these examples is substantially different. Thus, the rendering times

are different and so are the local complexity patterns in the images.

In order to assess this complexity and their difference, each scene was parti-

tioned in a 16x16 rectangular grid, allowing each partition to be individually and

independently rendered. These partitions were rendered using POV-Ray [Per08]

on a 3.2GHz Pentium 4 PC running Windows.

! "! #!! #"! $!! $"!
!

#!!

$!!

%!!

&!!

"!!

'!!

()*+,+,-./01

2
3
4
5
6
+,
-
.
/7
,8
4
/9
:
;

a) Example 1

! "! #!! #"! $!! $"!
!

#!!

$!!

%!!

&!!

'()*+*+,-./0

1
2
3
4
5
*+
,
-
.6
+7
3
.8
9
:

b) Example 2

Figure 6.3: Image partitions rendering executing times

Figure 6.3 shows the time each partition takes to be rendered for the examples

in Figure 6.2.

If each partition is rendered in a different task, as the previous graphics show,

it is impossible to predict how long will the next task will take to execute, even if

executed in the order presented. Each task execution time depends on the local

complexity of the viewport being rendered and can change substantially from

neighbouring partitions.

On the Example 1, occasionally a few tasks take about 25 seconds to complete,

a value much lower than the average execution time (about 200 seconds), further-

more it is also possible to observe that as the rendering approaches its end, tasks

take longer to execute.

Example 2 exhibits a different pattern, middle tasks take, on average, more

time to execute than initial and final ones. The last partitions are of substantially

shorter duration than all others.

These variations depend on the problem being solved by each task and result

in different complexity (and execution time) patterns. These patterns can be dif-

6.3. RESOURCE / APPLICATION MODEL 177

ficult to predict and depend on the data being processed and the used code and

configurations.

It is also possible to observe an unpredictable variation of the execution times,

if a similar task is executed with different configuration parameters (at least to a

large extent without intricate parameter analysis). It is also clear that the times

to render the previous partitions with different output quality (different parame-

ters) render multiple execution time differences: not all partitions or tasks suffer

the same percentage variation.

Figures 6.4 shows, for each partition, the difference in execution times for the

rendering of the Example 1 with two different configuration settings.
!"#$%&!'(')*++!,!-.!/

0#1!2(

3 43 (33 (43 533 543
3

54

43

64

(33

0#,7*7*8-29:

;
"
!
.
<
7*
8
-
2)
*+
+!
,!
-
.
!
2=
>
?

a)

����������	
�����
���

������

� ��� ��� ��� ��� ���
�

��

��

��

���

����
�
�
���
	��

���
������

�
�
�
�
�
�

�

�	

�
��
��

�
�
��

�

b)

Figure 6.4: Difference between distinct example 1 rendering: a) time difference
depending on the Partition ID, b) time difference depending on original partition
rendering time

In Figure 6.4.a) one can see that most partitions suffer a difference in execution

time higher than 25% (with most partitions around the 50%) but some partitions

exhibit a drift higher than 75%. From the partition identifiers, it is also impossible

to predict how the execution time will vary.

In Figure 6.4.b) it is possible to conclude that the observed variation does not

depend on the original partition rendering time. Simpler partitions exhibit a drift

between 25 and 50%, but those suffering a higher drift (higher than 75%) had an

original rendering time between 100 and 350 seconds.

The previous figures clearly show that even knowing a previous job execution

time, it is impossible to predict future executions of the same job with different

178 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

configuration settings. It is possible (if there is special knowledge regarding the

impact of each parameter) to predict whether tasks will take longer to execute,

but the exact difference for each task is not.

Similar observations can be performed in different Bag-of-tasks classes. One

such example is software unit testing. Such jobs are composed of multiple in-

dependent tests, where each test verifies a delimited functionality, its code and

dependencies.

As expected, the time to execute each task depends only of the complexity of

the code being tested, and does not have any strict relation with the execution

time of the previous and next test.

Figure 6.5 shows the execution time for the Outsystems Agile Platform testing,

a software firm that provides a platform for rapid software development (RAD).

Each point represents the average execution time of each test across all the runs

during a week, where developers make changes to some of the platform’s code.
����������

�	
���

 �

 �

 �

 �

 �

 ��

 ��

�

�

�

�

�

�������

�
�
�
�	

�
��
�
�
�
�
��
�
�
��
��
�
��
�
�

Figure 6.5: Unit testing executing times

The conclusion drawn from the image rendering examples can also be applied

to this example. Tests (and tasks) execution times vary greatly and depend solely

on the code being tested. In some areas of the test space, it is possible to ob-

serve some similarity of the execution times between consecutive tests, but many

discontinuities also exist.

6.3. RESOURCE / APPLICATION MODEL 179

As in each test batch, new functionality, new code, and new interactions be-

tween modules are being tested, it is still more difficult to predict execution time

of future tests. Since new code is being tested, error conditions may occur, dras-

tically reducing the test execution time or, on the the other hand, longer loops

can emerge, increasing the test time. This unpredictability between multiple exe-

cutions of the same test can be observed in Figure 6.6. These graphs present the

difference between two different Outsystems Platform unit tests (performed in

consecutive days), showing how each individual test varies.����������	
�����
����

������

� �� �� �� �� ��� ���

����

����

����

����

����

����

����

����

���

�

��

���

�����������
�
��
������

�
�
�
�
�
�

�

�	

�
��
��

�
�
��

�

a) Tests with duration below 2 minutes!"#$%$#&'()*++&,&-.&(/

012&3/

4 544 644 744 844 /444 /544

(944

(5:4

(544

(/:4

(/44

(:4

4

:4

/44

/:4

;&$#3&<&."#*!-3;*'&3=$>

?
<
&
.
"
#*
!
-
3)
*+
+&
,&
-
.
&
3=
@
>

b) Tests with duration above 2 minutes

Figure 6.6: Difference between executions two batches of the Outsystems Plat-
form test

It is possible to observe that there is no evident correlation between test length

and the attained difference. In the case of shorter tests, it is possible to observe

180 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

diverse variations, both negative (with a reduction of the execution time) and

positive. It is also possible to observe that some tasks have much shorter execu-

tion times in the second batch, this is due to the possible errors in the code tested,

or new code organization that significantly modifies code execution flow.

Most of the lengthier tests have small percentage variations, but due to the

original length, they may have a great impact on the overall execution time.

While the lengthier tests change little (in relative terms), shorter ones present

a large diversity of variations. Also, in longer tasks, it is impossible to predict a

trend on the overall variation of task execution time.

From the previous examples it is possible to conclude that in a single job (batch

of independent tasks), several variation patterns exist: increase/decrease of exe-

cution time, execution time similarity between "neighbour" tasks and periodical/non-

periodical variations. These variations patterns require a generic scheduling al-

gorithm, that takes into account or handles all classes of workloads.

Furthermore, past execution times can not be used as reference of future tasks’

execution times. Modifications in the task code, data or parameters, may lead to

changes of the execution times. These time differences may be not linear, not

allowing the clear extrapolation of a task’s new execution time from others of the

same batch or job.

6.4 Heuristic for task scheduling

The proposed heuristic allows the definition of the number of machines to allo-

cate on a pool of computers, in order to ensure that the charged time fits within

a predefined budget, while obtaining the maximum speedup possible with the

allocated machines.

If a user wants to pay the minimum possible, each machine should execute

and solve tasks during the whole duration of the minimum charging unit (one

hour, for instance). If too many machines are created, each machine will have

6.4. HEURISTIC FOR TASK SCHEDULING 181

some idle time that will be charged anyway; if too few machines are allocated,

the job timespan will increase, with no extra savings.

The optimal value for the number of machines to allocate is calculated using

the simple expression:

optimal_hosts = n_tasks ∗ task_average_time/charging_Unit.

6.4.1 Virtual machine allocation

In order to define how many machines are needed, it is necessary to know how

long a task will take to be executed (or the job total execution time). As pre-

sented earlier, for the target work class it is impossible to know this beforehand.

Thus, during a job execution the only available information is the duration of the

already completed tasks.

Using this information, it is possible to calculate the average task execution

time of the concluded tasks. This value can be used to calculate an estimate for

the optimal number of necessary computers.

Taking this into account, the developed algorithm, works broadly as follows.

During normal job execution, whenever a tasks terminates, the measured execu-

tion time is stored and used to calculate the average task execution or processing

time. This value is used to predict the optimal number of hosts needed to solve

the remaining tasks.

Listing 6.1 shows the code executed whenever a task concludes.

1 remainingTasks −−

2 f in i shedTasks ++

3 to ta lProcess ingTime += concludedTask . processingTime

4 tasksAverageTime = tota lProcess ingTime/f in ishedTasks

5

6 poss ib leTasks = 0

7 for each runningComputer :

8 poss ib leTasks += runningComputer . poss ib leTasks (tasksAverageTime)

9 necessaryComputers = (remainingTasks − poss ib leTasks) ∗ tasks_Average_Time /

10 hostProcessingTime

Listing 6.1: Heuristic pseudocode executed when a tasks conclude

182 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

Lines 1-4 calculate the average time that was necessary to process the tasks

completed thus far. This value will later be used to determine the number of

necessary hosts, and how many tasks currently running hosts are still capable of

executing while they are running.

In the following lines of code (lines 6-8), each host predicts how many tasks

it will be able to process until the end of its charging unit interval. Both the

remaining time each host still has left, and task average time, are used in this

prediction. Since it is known how much remaining time each host still has left,

using the task average time previously calculated, it is possible to estimate how

many tasks a host is still able to execute till the end of the charging unit.

Lines 9-10 calculate how many additional hosts are needed to execute the re-

maining tasks. Since some tasks can be executed in the currently available hosts

only remainingTasks − possibleTasks tasks are taken into consideration. Here,

instead of using the charging unit, the hostprocessingT ime value that used. This

value is calculated subtracting each host startup time from the charging unit, and

reflects the time actually available for a host to execute tasks. Furthermore, if the

user is willing to attain higher speedups, hostProcessingT ime can be lower than

the charging unit. For instance, if each host is only willing to execute half the

charging unit, twice the number of hosts are needed, doubling the speedup, but

also increasing the total payment.

6.4.2 Task selection criteria

Although not being easily predictable, task execution times can still present some

visible trends. For instance, the first tasks can be executed substantially faster that

the average, or even the opposite.

For the examples previously presented, it is possible to draw the average exe-

cution time (calculated with the execution times of completed tasks) and observe

those trends.

Figure 6.7 shows the average execution times, for the previously presented ex-

6.4. HEURISTIC FOR TASK SCHEDULING 183

amples, if tasks are executed with two predefined orders, exhibiting two different

behaviours.

� �� ��� ��� ��� ���
�

���

���

���

���

���

���
�	
��
�������

��
���

���
�
������

�
	

�
�

�
�
�
��
��

��
�
�

a) Example 1

� �� ��� ��� ��� ���
�

���

���

���

���
��	
��
����
�	

��	���	

����
�
�����

�
�
	

�
�

�
�
��

�
	
��
�
�

b) Example 2

Figure 6.7: Image partitions rendering executing times and average of completed
partitions execution time

In the case of Example 1, the average execution time increases as the tasks ter-

minate, only approaching the final value when the last tasks terminate. If the this

value is used, the number of allowed host in the beginning of the jobs would be

lower than optimal. Furthermore, near the end of the job, new hosts would be

allocated, because the previously allocated hosts were not sufficient. This would

render a number of allocated hosts higher than the necessary, since the last cre-

ated hosts would be idle after the end of the job. Despite the high number of al-

located hosts, the job would take longer than required to conclude, because only

close to the end, when few tasks remained, more computing power was added.

Figure 6.7.b) shows a different behaviour. At a given time, in the middle of

the job, the average task processing time reaches its highest point, decreasing

till the end of the job. In this example, when reaching the highest value, more

machines are created, although not all completely necessary for the remaining of

the tasks. Since remaining tasks are shorter than the calculated average value,

most machines will present a high idle time. In this case, the speedups could be

higher but the payment would also be higher.

To solve the problems resulting from such variability in these trends, it is nec-

essary to guarantee that a good approximation to the average value (only actually

known at the end of the job) is obtained as close as possible to the beginning of

184 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

the job. To contribute for this, the heuristic must ensure that tasks are executed

in a random order. In fact, by randomly selecting tasks, some possible locality

differences in processing time are levelled, guaranteeing that the average task

processing time will converge more rapidly.

Figure 6.8 shows how the average execution time varies, when tasks are se-

lected randomly.

� �� ��� ��� ��� ���
�

���

���

���

���

���

���
�	
��
�������

��
���
�
��

���
�
�����
�
�
�������
�

�
	

�
�

�
�
�
��
��

��
�
�

a) Example 1

� �� ��� ��� ��� ���
�

���

���

���

���
��	
��
����
�	

��	���	��
�	

����
�
����	�	
�
������	�

�
�
	

�
�

�
�
��

�
	
��
�
�

b) Example 2

Figure 6.8: Example of random selection of partitions: executing times and aver-
age of completed partitions execution time

It is evident that after a few tasks conclude (close to 20) the final average val-

ues are attained, or very closely approximated. This fact allows the early defini-

tion of the optimal number of hosts to allocate. When other random task execu-

tion ordering is used, the final average value is attained after a similar number of

tasks.

With a now stable average execution time, due to the random selection of the

tasks to execute, it is possible to predict earlier the optimal number of hosts to

allocate. The code that executes when a task terminates is the one presented in

Listing 6.1. For the previous examples the evolution of the number of execution

machines is presented in 6.9.

The optimal number of machines (16 and 8, for the Examples 1 and 2) are

attained and stabilize after the completion of about 15 tasks. Nonetheless too

many hosts can still be initially allocated. This is due to the fact that some of the

first tasks can have an execution time higher than the average. In the previous

examples, in the beginning of the each job, 23 (Example 1) and 15 (Example 2)

6.4. HEURISTIC FOR TASK SCHEDULING 185

� �� ��� ���
�

��

���

���

���

���

���

�

�

��

��

��

��

������	
��
������

����
�������

�
�����

�
��
�
��
�
�

�
�
�
��

a) Example 1

� �� ��� ���
�

��

���

���

���

�

�

��

��

�������	
��
���
�

����	��

���

�	��
��

�
��
�

�
�
�

�
�
�

�

b) Example 2

Figure 6.9: Example of random selection of partitions: executing times and aver-
age of completed partitions execution time

hosts would have been created, resulting an overallocation of 40% and 100% more

machines.

6.4.3 Overallocation prevention

In order to reduce the effect, on task allocation, of having longer tasks executed

in the beginning of the job, it is necessary to attenuate the calculated average

execution time.

This attenuation is performed by means of a creationRatio factor that is

applied to the calculated value in Listing 6.1. Initially creationRatio is lower

than 1.0, so that the number of initially allocated computers is conservatively

lower than the calculated value.

Since the calculated average time becomes stable and increasingly closer to the

final one (as seen on Section 6.4.2), the attenuation should be mitigated. As new

tasks terminate, and the average time converges to the final value, creationRatio

may also converge to 1.0. The variation of the creationRatio depends on an-

other value (increaseRatio), as shown in Figure 6.10.

In the previous example, the initial value of creationRatio is 0.5, meaning

that after the first tasks terminates, only half of the necessary computers calcu-

lated are indeed created. The value of creationRatio is also updated, tak-

ing into account increaseRatio. The higher the increaseRatio the faster

creationRatio converges to 1.

186 CHAPTER 6. TASK SCHEDULING ON THE CLOUD
�������������

	�
���

 � � � � �
 �� �� ��

��

��

��

��

��

��

�

���

��

���

��

����������������

�
��
�
��
�
�
��
�
��
�

��������������

Figure 6.10: Unit testing executing times

If the user knows in advance that tasks do not have a high variation execution

times, the value of increaseRatio can be high (expressing higher confidence

that the average values calculated initially are close to the actual average), thus

guaranteeing that creationRatio increases rapidly to 1.

The code for the calculation of the number of machines to allocate, and the

update of the value of creationRatio, is presented in Listing 6.2.

1 i f (necessaryComputers > 0) :

2 computersToCreate = c e i l (necessaryComputers∗ c r e a t i o n R a t i o)

3 for i in range (computersToCreate) :

4 allocateNewComputer ()

5 c r e a t i o n R a t i o = c r e a t i o n R a t i o +(1− c r e a t i o n R a t i o)∗ i n c r e a s e R a t i o

Listing 6.2: Heuristic pseudocode executed when a task concludes

If more hosts are necessary (line 1), it is necessary to apply to it the cre-

ation ratio. Next, in lines 3 to 4, the necessary hosts are created. Finally the

creationRatio is updated, taking into account the value of increaseRatio.

The value of creationRatio is used to guarantee that the initially predicted

numbers of hosts are not higher than necessary. As this value converges to 1,

so does the value of the calculated average of task processing time converges

naturally to the final value. This effect is evident in Figure 6.11.

In Figure 6.11, it possible to observe the effect of creationRatio on the

6.4. HEURISTIC FOR TASK SCHEDULING 187

! "! #!! #"!
!

"

#!

#"

$!
%&'()'&*+,-./0*0

1''/(&*+,-./0*0

2&3*4*4/5-67

8
49
+
-:
0
;

a) Example 1

� �� ��� ���
�

�

��

�� �������	
��
��	�

������	
��
��	�

�������

�
��

��
�
�

b) Example 2

Figure 6.11: Result of creationRatio usage: calculated number of hosts and
actually created hosts

number of hosts to allocate. When the first tasks terminate, there is a difference

between the calculated value and the one used to create hosts. When the execu-

tion times average converges, this difference disappears.

The first prediction points to 23 hosts, but after applying a creationRatio

of 0.5, the actual number of hosts allocated is only 11. After about 10 completed

tasks, the creationRatio has the value 1.0. Also from this point forward, the

calculated execution time average is also close to its final value. Since this hap-

pens, the number of allocated hosts is the one calculated.

By varying the initial value of creationRatio and increaseRatio, it is

possible for the user to decide if the heuristic has an aggressive (i.e., speedup

oriented) or more conservative (i.e., savings oriented) behaviour, by allocating,

in the beginning of the job, more or less hosts (launching virtual machines). The

influence of the initial creationRatio and increaseRatio parameters will

be evaluated in the next section.

6.4.4 Periodic update

Since the presented heuristic relies only on information gathered when tasks ter-

minate, if the first processed tasks take too long to terminate, only after a long

time, can new hosts be allocated to the computation. This reduces the speedups,

since at the beginning of the job, not all possible hosts are executing.

To solve this problem, periodically, the code shown in Listing 6.3 is executed.

188 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

It calculates the average processing time of the currently executing tasks and,

if greater than the previously found average time, it preemptively creates new

hosts.

1 for each runningComputer :

2 runningTasksProcessingTime += runningComputer . currentTask . processingTime

3 runningTasksAverageTime = runningTasksProcessingTime/runningComputers

4

5 i f runningTasksAverageTime > tasksAverageTime :

6 currentTasksAverageTime = (to ta lProcess ingTime + runningTasksProcessingTime) /

7 (f in i shedTasks + runningComputers)

Listing 6.3: Heuristic pseudocode executed periodically (partial)

In Listing 6.3, lines 1-3 calculate for how long currently executing tasks have

been running, and their average execution time (up to that moment). If this value

is greater than the average execution time of the previously finished tasks (line

5), the currentTasksAverageTime is calculated (lines 6-7). This new value is

then used to decide how many hosts are necessary, in a similar manner as the

code presented in Listing 6.1 (lines 7-10) and Listing 6.2 (lines 2-4). The values for

tasksAverageTime and finishedTasks were previously calculated (when

tasks terminated), furthermore these values, along with creationRatio, are

not modified here.

All this code is periodically executed locally on the computer responsible for

the coordination of all virtual machines. Since this coordinator machine has all

the information regarding every virtual computer creation times, and all running

tasks, no extra communication is necessary.

6.4.5 Host termination

In order to guarantee that the time each host is running is close to the minimum

charging unit, so that wasted time is reduced, every host must be terminated just

before reaching the minimum charging time, usually one hour. If a running task

is prematurely terminated, it can and will be restarted on another host, with no

side effects but with some processing time waste. This solution only works if all

6.4. HEURISTIC FOR TASK SCHEDULING 189

tasks are smaller than the charging unit, as it is oblivious of the following two

cases: i) the average task processing time is close to or higher than the charging

unit, and ii) a long task starts close to virtual machine shutdown.

The first case is easily tackled by instructing several machines to execute mul-

tiples of the charging unit, delaying their finishing deadline. This way, one vir-

tual machine can solve several lengthy tasks, without wasting idle cycles nor

interrupting running tasks.

From the number of tasks still pending, the number of hosts running and

the average task processing time, the coordinator (the machine where tasks are

launched from) must decide what machines should continue executing after the

charged time unit, and for how long.

This step is performed just before the creation of new hosts. If the additional

number of machines outperforms half the number of still pending tasks, some

hosts are allowed to execute for one more charging unit. The selected hosts

should be those that are closer to termination (with less remaining processing

time) so that the number of prematurely terminated tasks is minimal and to guar-

antee that no machine terminates right after this decision.

When dealing with hosts that are allowed to execute longer, the previously

presented remains the same: the only value dependent on the virtual machine

completion time is the discovery of the number of tasks each host can run (line 8

in Listing 6.1). The method possibleTasks takes into account the new deadline

when calculating how many tasks the host can complete.

When shutting down virtual machines, the problem of knowing if the task

running on that machine should be allowed to terminate or not is more complex.

When dealing with this problem, it should be taken into account the average task

processing time, and for how long that particular task was running.

If the task was running for a short period of time, no harm comes from restart-

ing it later on another computer. If the task’s running time surpassed the average

task running time, probably it should be allowed to terminate normally. In this

190 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

case, the user would pay for more execution time, but will be able to use the

remaining of the virtual machine time to solve other tasks.

6.4.6 Handling of long tasks

Besides the issue of host termination (dealt with in Section 6.4.5), tasks with long

execution also raise additional concerns when deciding how many machines to

allocate.

Independently on the number of allocated hosts, the length of the bigger tasks

limits the maximum speedup. In an extreme case, where one machine is allocated

for each task, the speedup would not be equal to the number of machines, as it

would be limited by the duration of the longest tasks, since most of the hosts

would be idle (because their shorter tasks had already terminated), while that

last task was still executing.

In order to solve this issue, one possibility is to allocate less machines and

have them execute for a longer period. The speedups would not be so high but

the cost would be lower. For instance, if only half of the needed machines were

allocated, but allowed to execute for more than the charging unit, the costs would

still be low but with a slight decrease of the speedup. In one case, the timespan

would be equal to the length of the longest task (with most hosts presenting high

idle times), while with this solution the timespan would be slightly longer (guar-

anteeing however that the payment was close to optimal).

To tackle this issue, in the presented heuristic, before creating the necessary

machines (line 3 in Listing 6.2, and after the code in Listing 6.3), a simple evalua-

tion of the number of machines to create is performed: if the number of necessary

hosts is greater than half the number of remaining tasks to execute, instead of

creating more virtual machines, the running time of those already executing is

increased. This causes that those on-line machines will execute twice the charg-

ing unit.

If, however, the number of hosts is close to the number of remaining tasks, it

6.5. EVALUATION 191

means that there is a high probability that such tasks are long running and thus,

incapable of running on the available processing time. This adaptation preemp-

tively increases the execution time in available hosts, instead of deciding later

whether hosts are allowed to execute (as presented in Section 6.4.5). Further-

more, this adaptation can be continuously applied, increasing the hosts’ running

time, when observing that the running time still available is not enough for task

completion.

6.5 Evaluation

To evaluate the algorithm and the heuristics described in the previous section,

three different representative examples of Bag-of-Tasks jobs were used: i) a syn-

thetic job with a set of tasks whose processing times have a normal distribution,

ii) traces of a real image rendering job (example 1 presented in Section 6.3), and iii)

the OutSystems software testing job (also mentioned in Section 6.3). With these

execution traces, it is possible to study how the heuristic behaves with different

classes of jobs, the attained speedups and the total payment. To study how the

heuristic responds to jobs with very long tasks, a specific synthetic job was also

used.
!"#"

$"%&'(

! " # $ % & ' () *
!

&

"!

"&

#!

#&

$!

$&

%!

+,-./012345/678

9
:
7
;
1
</
=
>/
+
,
-
.
-

a) Example 1 image rendering

� � � � � � � � 	
 �� �� �� �� �� �� �� �� �	 �
 ��
���

�

��

���

����

�
�������������

�
�
�
�
�
��
�
��
�

�
�
�

b) Outsystems software testing

Figure 6.12: Tasks’s execution time distribution

Figure 6.12 shows the tasks execution time distribution for the image render-

ing and Outsystems job. The image rendering job has 256 tasks (illustrated in

Figure 6.12.a), with an average task execution time of 220 seconds and standard

192 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

deviation of 125 seconds. In the task execution times histogram (Figure 6.12.a)),

it is possible to observe that there is a significant number of tasks with short exe-

cution time. The OutSystems job (Figure 6.12.b) is composed of 1480 tasks, where

half of the tasks have an execution time lower than 30 seconds, and the aver-

age execution time is 1 minute. There are few long running tasks with execution

times longer than 15 minutes. Regarding the synthetic job, it has 256 tasks with

execution times following a normal distribution, with an average of 150 seconds

and a standard deviation of 30 seconds.

In this evaluation, the proposed algorithm and heuristics were evaluated against

200 different randomly generated orderings of tasks execution scenarios.

In all experiments, the first 5 minutes of every host are spent on creating the

virtual machine and launching the operating system and the necessary middle-

ware. Since the charging unit used was 60 minutes, this delay renders the usable

initial execution time unit to only 55 minutes (instead of a full 1 hour slice). This

value is used by the heuristic, namely when making the calculation of the optimal

number of hosts.

These tests allow the evaluation of the behaviour of the algorithm and heuris-

tics with different classes of jobs, all comprised of many tasks whose duration

is variable, not known in advance and with multiple distributions. The algo-

rithm and heuristics were coded in Python [Pyt08], and simulated using the

SimPy [Sim09] discrete-event simulator.

6.5.1 Impact of creationRatio and increaseRatio

The following graphs show the effectiveness of the algorithm and heuristics pre-

viously described, for each of the three jobs presented. Each one shows the aver-

age time to complete each of the jobs previously mentioned, and the number of

created hosts, for different values of creationRatio and increaseRatio.

Figure 6.13 shows the results when applying the heuristic to the synthetic

workload.

6.5. EVALUATION 193

���� ���� ���� ���� ����
��

��

��

��

��

�

���

��

���

���

	
��

����
���
��
��

�
�
�

�
�
�
�
��

�
�
�

�
��
�

�
�
� ��������

��
��

a) Execution Times

� ���� ��� ���� �

��

��

��

��

��

�	

�

���

��

���

�
�

��
������
������
���

�
��
�
�

��
�
��
�
�
��

�����
���

�
���

b) Allocated hosts

Figure 6.13: Evaluation of the impact of creationRatio and increaseRatio
on the job completion time, and number of hosts created for the synthetic job with
a normal distribution of tasks processing time.

The first possible observation is that the attained execution times are close to

the target: jobs’ execution times range between 60 and 70 minutes, and the num-

ber of allocated computers (and subsequently payment) is close to the minimal

(dashed line in Figure 6.13.b)). Note that the graphs show in detail only a fraction

of the result space (e.g., between 11 and 16).

In this example, it is evident the impact of the values of creationRatio and

increaseRatio. As the initial creationRatio increases, the job timespan is

reduced, but, on the other hand, with an increase on the number of allocated

hosts. A similar trend is noticeable with the variation of increaseRatio.

Figure 6.15 presents the results for the ray tracing example shown in Figure 6.2

and described in Figure 6.12.a).

���� ���� ���� ���� ����
��

��

��

��

��

��

��

�

���

��

���

�	�

��
���
������������

�
�
�
��
�
�
�
��
��
�
�
��
��
�
��
�
� ���
�����

����

a) Execution Times

� ���� ��� ���� �

��

��

��

��

��

�

���

��

���

���

	
��

����
���
��
��

�
��
�
�
�

�
�

�
�
�

�

��������

��
��

b) Allocated hosts

Figure 6.14: Evaluation of the impact of creationRatio and increaseRatio
on the job completion time and number of hosts created for the image rendering
job (Example 1).

The trend observed in the case of the synthetic workload are also presented in

194 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

these graphs with a reduction of the execution time, as both ratios increase along

with a slight increase of the number of allocated computers.

In this example, the difference between the attained times and the charging

unit, and between the allocated hosts and its minimum possible value, is higher

on the synthetic case. This is due to the execution times distributions. Since most

tasks had execution times much lower than the average, it becomes highly prob-

able that the first tasks are short running, affecting the initial number of allocated

hosts.

The same effect but at a higher scale is present in Figure 6.15.

!"!! !"#$!"$! !"%$ &"!!
'!

'$

%!

%$

(!

($

)!

!

"#$

"$

"%$

")$

*+,-+./-0,+123.4,+12

5
2
6
./
2
7
8
90
+1
2
3
.:
17
0
.;
7
< =3>-0,?0.

-,+12

a) Execution Times

� ���� ��� ���� �

��

��

��

	�

	

��

��

�

���

��

���

���

�
��
�����
������
��

�
��
�
�
�

�
�
��
�
�

�

���������

��
��

b) Allocated hosts

Figure 6.15: Evaluation of the impact of creationRatio and increaseRatio
on the job completion time and number of hosts created for the software testing
job from OutSystems.

Since the tasks execution times have a noticeable bias in this example (Fig-

ure 6.12.b)), the difference between the optimal and attained values (time and

hosts) is much higher. Nonetheless the heuristic, without any a priori knowledge

about the job being executed, is still able to limit the expenses to about 135% of

the minimal value.

From these graphics, it is possible to observe that the algorithm and heuristics

previously presented, with a suitable selection of creationRatio and increa-

seRatio parameters, can predict the number of hosts to create (and respective

bill) with a difference between 20% (synthetic and image rendering) and 35%

(OutSystems software testing), with respect to the optimal number of hosts.

Nonetheless, it is important to note that the presented optimal number of al-

6.5. EVALUATION 195

located hosts are indicative lower bound values. In order to attain the expected

execution times with these number of hosts, it would be necessary to schedule all

the tasks of each job in such a way so that no host would ever have any idle time.

From Figures 6.13 and 6.14, it is possible to see that with a creationRatio

of 1, the standard deviation (solid vertical lines) of both the total job execution

time and the number of allocated hosts is higher. As the execution times of the

first tasks are used without any correction, these initial values have great impact

on the number of allocated hosts. The reason for that lies in the fact that during

job execution, any variation on the average task execution time (and consequent

calculated average time) makes the number of created hosts to change rapidly.

In this case, the algorithm and heuristics respond very rapidly to modifications

of the average task execution time. Therefore, a value of creationRatio lower

than 1 is needed to attenuate the influence of such task execution time variations.

However, when choosing a too low initial value for creationRatio, the

heuristic does not yield good results either: only after too many terminated tasks,

enough hosts are effectively created to execute the job’s tasks.

In the case of the OutSystems job (Figure 6.15), as the majority of the tasks

are short termed, it is highly probable that the initial tasks render a low average

execution time. In this case, the creationRatio increases rapidly, not being

possible to observe a distinct difference between the various combinations of both

ratios: creationRatio and increaseRatio.

The influence of increaseRatio can be easily observed if an initial crea-

tionRatio of 0 is used: higher values of increaseRatio reduce the total job

execution time, while increasing the number of created hosts, as well as the stan-

dard deviation of both the total job execution time and number of allocated hosts.

When using a higher initial creationRatio value, these observations are not so

evident but are still present. Thus, the user must decide the values for these two

variables according to a more conservative or aggressive posture, as described in

the next section.

196 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

6.5.2 Speedup and Allocated Hosts

To further evaluate the effectiveness and efficiency of the presented algorithm

and heuristics, it is necessary to compare directly the speedup with the number

of allocated hosts for distinct values of creationRatio and increaseRatio.

Figure 6.16 presents what speedups are obtained when a varying number of hosts

were allocated for the two of jobs already mentioned (image rendering and syn-

thetic).

�� �� �� �� �� �� �� �� ��

�

��

��

��

�		
��
����
�
�

�
�
�
�
�
�
�

�����������
������
������
���

���

��

��

����
�����

�����
�

Figure 6.16: Speedup evolution with the number of created hosts for two scenar-
ios.

Each of the points depicted represents one job execution with different ra-

tios: conservative (the value of both creationRatio and increaseRatio is

0.5) and aggressive (the value of both creationRatio and increaseRatio is

0.75).

In both scenarios, conservative and aggressive, the number of created hosts

and the speedup do not coincide, not yielding an 100% efficiency. The first reason

is the fact that 5 minutes out of one hour were not used to process tasks (virtual

machine setup time), limiting the maximal efficiency to about 90% (more pre-

cisely 91,7%) . Other reasons lie in the fact that only after a few tasks terminate,

it is possible to have an accurate prediction of the average execution time. Fur-

thermore, if multiple hosts are executing tasks, the shortest ones complete first,

6.5. EVALUATION 197

affecting the first calculated averages. Close to the termination of the charging

unit, some hosts are allowed to execute for more than a charging unit. This may

result in some waste, since this decision was taken close to the job completion,

and probably all tasks terminate before these new deadline expires.

One key difference distinguishes the aggressive from the conservative ap-

proach: the aggressive approach offers higher speedups. One of the reasons is

the amount of allocated hosts. It is possible to observe that in the case of the ag-

gressive approach, the range of allocated hosts is broader than when using con-

servative values for both ratios. In the case of the conservative approach, most of

the results have less than 16 hosts (in the case of the synthetic workload), and less

than 24 in the case of the image rendering, while with the aggressive approach

the maximum number of allocated hosts increases to 18 and 28, respectively. With

the increase of the number of hosts, it is possible to observe also an increase on

the speedups.

It is noticeable that, for the same amount of allocated hosts, better speedups

are attained with an aggressive behaviour. This is due to the fact that higher

values are calculated earlier with the aggressive behaviour, and thus those hosts

are recruited sooner to enrol in the computation.

Comparing the number of allocated machines with the speedups attained,

it is possible to conclude the efficiency of the heuristic. As stated earlier, with

a virtual host setup time of 5 minutes, the maximal individual contribution to

the speedup is 90% (almost 10% of the charged time is wasted, not being used

to execute tasks). The proposed heuristics presents efficiency levels higher than

50%, reaching in some executions 75%.

It should be noted again that the 90% efficiency is only attainable if the order

by which tasks are executed, is such that no host presents any idle time. Only

knowing the exact execution time, in advance, of each task would it be possible

to schedule them in a way to guarantee minimal waste.

In conclusion, the user can vary the values of creationRatio and increa

198 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

seRatio between 0.5 and 0.75, obtaining different variations on the number of

created hosts (and charged values), but always with efficiencies higher than 50%.

This difference between the number of allocated hosts and the speedups has

two reasons: some hosts are allocated close to the completion of the job, leading

to an excess of wasted processing time, or the heuristic maintains them running

leading to the charging of an additional charging unit.

6.5.3 Long-Running Tasks

To evaluate how the presented algorithm and heuristics handle jobs with long-

running tasks, another synthetic job was used. This job was composed of 256

tasks with a execution time fitting into a normal distribution with a mean value

of 1.5 hours and a standard deviation of 20 minutes.

The results on trying to decide how many machines to allocate are presented

in Table 6.1. Since these tests were performed with 200 different combinations of

the random values, the table presents the average of the measured values along

with the standard deviation (inside parentheses).

Allocated Wall Time Speedup Payment

hosts (h) (h) (h)

Serial 1 384 (5) 384 (5)

1 host per task 256 2.43 (0.14) 158 (8.5) 512 (5.8)

Heuristic (100 initial hosts) 179 (2.9) 3.70 (0.16) 104 (4.2) 463 (6.3)

Heuristic (50 initial hosts) 154 (0) 3.90 (0.15) 99 (3.7) 452 (6.6)

Heuristic (1 initial host) 129 (5.9) 4.14 (0.17) 93 (3.6) 450 (5.9)

Table 6.1: Evaluation of scheduling with long running tasks

Table 6.1 presents the results for five different settings:

• serial execution in only one host

• allocation of one host per task

• three simulations using the presented heuristic with different initial hosts

6.6. CONCLUSION 199

From the first two experiments, it is possible to retrieve the three important

values that limit any possible results (shown in bold):

• Minimal payment (384 hours) - This value corresponds to the payment if

only one host is allocated.

• Minimal wall time (2.43 hours) - This value is the one measured when exe-

cution one task per host and corresponds to the longest task

• maximal speedup (158) - Attained when executing one task per host.

Independently of the number of initially hosts, the heuristic allows a payment

saving, when compared with the allocation 256 hosts. Related with this reduc-

tion on the payment, it is also evident a decrease on the speedup. If more hosts

are initially allocated, the results are better, the speedups increase more than the

payment: the speedups increases 11% while the payment only increases 3%.

Although for large tasks the allocation of one host per task, may seem a viable

solution, using the proposed heuristic, the number of allocated hosts is lower

(essential if there exists a limit to concurrent hosts), and the total payment is also

lower, while attaining comparable execution time and speedups.

6.6 Conclusion

In a Utility Computing infrastructure, hosts can be easily allocated on-demand

to execute jobs comprised of independent tasks. Only after the computation, the

user will be charged for the time each host ran. The heuristic presented in this

chapter efficiently determines the number of hosts to allocate on such a comput-

ing infrastructure, when used to solve Bag-of-Tasks problems, whose task execu-

tion times are not known before their execution. This removes the burden form

the user to decide how many hosts to allocate.

For jobs with short termed tasks, the results show that the heuristic deter-

mines the number of necessary hosts to guarantee that the charged time is close to

the desired value. The number of allocated hosts is close to the value that would

200 CHAPTER 6. TASK SCHEDULING ON THE CLOUD

be found, if the user knew for how long each task would execute; the speedups

accomplished are close to the number of allocated hosts, therefore achieving cost-

efficiency.

Furthermore, the heuristic can provide distinct behaviours: i) a conservative

one, where the charged values are lower, and ii) a more aggressive one, where

the charged values are higher, with a proportional increase of the speedups. The

user can select within the spectrum of these two behaviours, by varying both

the creationRatio and the increaseRatio parameters. This enables either

reducing the charged time (with longer timespan), or reducing the job timespan

with an increase in payment.

The heuristic is also able to handle jobs with long tasks, tasks taking longer

than the charging unit. The speedups remain high, while guaranteeing a lower

payment than if one host per task was allocated.

If the user has a guess on the task processing times, this information can be

used to launch several computers when the job starts. The number of initially

launched computers should also be corrected with the creationRatio, to avoid

the allocation of too many machines.

77777777777777777
Utility Algebra for Resource Discovery

Previous chapters shown systems to allow the execution of parallel jobs by a new

class of users. These new users not only have different requirements from the

current ones, but are able to use and leverage new sources of computing power.

The new available computing sources range from private clusters, utility or

cloud computing infrastructures, Internet Distributed Computing systems to peer-

to-peer overlay networks. Furthermore, the available resources are becoming

more and more heterogeneous: multiple distinct infrastructures exist, and the

Internet shared computers have multiple configurations and characteristics.

Existing resource discovery protocols have a number of shortcomings for the

current variety of cycle sharing scenarios. They either i) were designed to return

only a binary answer stating whether a remote computer fulfils the requirements,

ii) rely on centralized schedulers (or coherently replicated) that are impractical in

certain environments such as peer-to-peer computing, iii) they are not extensible

as it is impossible to define new resources to be discovered and evaluated, or new

ways to evaluate them.

This chapter presents a novel, extensible, expressive, and flexible requirement

specification algebra and resource discovery middleware. Besides standard re-

sources (memory, network bandwidth,. . .), application developers may define

new resource requirements and new ways to evaluate them. Application pro-

grammers can write complex requirements (that evaluate several resources) us-

ing fuzzy logic operators. Each resource evaluation (either standard or specially

coded) returns a value between 0.0 and 1.0 stating the capacity to (partially) ful-

fil the requirement. This value is calculated considering a client defined utility

201

202 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

depreciation (i.e., partial-utility functions that define a downgraded measure of

how the user assesses the available resources) and policies for combined utility

evaluation. By comparing the values obtained from the various hosts, it is possi-

ble to precisely know which one best fulfils each client’s needs, regarding a set of

required resources.

7.1 Introduction

Currently, there is increasingly greater offer of computing cycles and comput-

ing resources in general, whether paid or free. There is a myriad of alternative

approaches and technologies encompassing: computing clusters (possibly virtu-

alized), idle time of computers in private LANs, academic and scientific insti-

tutional grids creating virtual organizations with coordinated scheduling, utility

and cloud computing infrastructures, distributed computing on opportunistic or

desktop grids, and peer-to-peer (fully decentralized or federated) cycle-sharing

topologies. At the same time, and also motivated by that, there are more and

more users taking advantage of these infrastructures with different applications

capable to take advantage of such available resources.

Regardless of the underlying cycle-providing infrastructure and the applica-

tions, resource discovery (e.g., CPU, memory, bandwidth, specific hardware in-

stalled) is a key enabling mechanism. It serves a double purpose of enabling

suitable resources to be discovered for execution, as well as systems utilization

optimization (on the user and provider sides).

Today, there are many systems supporting the discovery of resources; e.g.,

Grid infrastructure schedulers [CKK+99, RLS99, FTL+02], resource monitoring

systems [ZS05] with possible resource aggregation [SPM+06, CGM+03, CT10],

service discovery protocols [GCLG99, Gut99], and web service discovery [CGMW03].

These protocols and systems have a number of shortcomings for the wide variety

of present cycle sharing scenarios. They either i) were designed to return only a

7.1. INTRODUCTION 203

binary answer stating whether a remote computer fulfils the requirements, ii) rely

on centralized schedulers (or coherently replicated) that are impractical in certain

environments such as peer-to-peer computing, iii) they are not extensible as it is

impossible to define new types of resources to be discovered and evaluated, or

iv) they are inflexible in the sense that users and administrators are unable to set

alternative ways to evaluate and assess available resources.

Therefore, a middleware platform (STARC) was designed in order to make

resource discovery more adaptive via extensibility and with increased flexibility,

highlighting:

• ability to incorporate the evaluation of new resources;

• expressiveness in requirement description;

• ability to evaluate partial resources fulfilment;

• employment of fuzzy-logic to combine multiple requirements

STARC is able to interface with different network topologies e.g., LAN, peer-

to-peer (P2P). STARC extensibility stems not only from allowing the evaluation

of most usual resources (e.g., CPU speed and number of cores, memory) but also

from the dynamic inclusion of new characteristics (presence of specific applica-

tions, services, libraries, licenses or hardware) to be evaluated.

Regarding flexibility, STARC uses XML files to describe application require-

ments stating, with logic operators, the relation between the several resource

characteristics that are relevant, with associated value ranges, and utility depre-

ciations in the case of only partial fulfilment being possible (i.e., sets of resource

availability ranges and associated utility depreciation or partial-utility). Hosts

may return information ranging from no availability (0.0), to requirements fully

met (1.0). If requirements are only partially met, a value between 0.0 and 1.0 is

returned (partial-utility), taking into account the partial fulfilment ranges and as-

sociated utility depreciations functions (not necessarily strict linear mappings), as

well as evaluation policies provided by the client. Utility depreciations are also

applicable to individual resource alternatives not enclosed within ranges (e.g., OS

204 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

family).

Next section presents some available systems that allow the evaluation of re-

mote computer resources, compares their shortcoming. In Section 7.3, the STARC

architecture is presented, along with its components, and resource discovery pro-

tocol. The algebra that aggregates the utility of each individual resource included

in a resource discovery request is also presented in this section. Sections 7.5

and 7.6 describe STARC implementation and evaluation. This chapter closes with

the conclusions.

7.2 Related Work

Currently, there are a number of systems that allow the discovery of resources in

network-connected computers. Such systems fall into the following categories:

cycle sharing systems, resource management in Grid infra-structures, service dis-

covery protocols, or utility-based scheduling. This section describes these sys-

tems and present their limitations regarding the intended flexibility, expressive-

ness and extensibility.

7.2.1 Cycle sharing systems

Currently available cycle sharing systems allow the development of parallel ap-

plications that execute in remote computers. Projects like BOINC [AF06] pro-

vide a centralized infrastructure for code distribution and result gathering, while

G2:P2P [MK03a, MK05] and CCOF [ZL04b] provide a truly P2P access to comput-

ing cycles available remotely, employing advertisement propagation, expanding

ring search, and rendezvous supernodes.

In either set of systems, the processing power or other relevant resources are

not taken into consideration. In projects such as BOINC or CCOF, only the pro-

cessor state is relevant when selecting the remote host that will execute the code.

This solution is easy to implement, fair to the owner of the remote computer, but

7.2. RELATED WORK 205

may slow the overall application, while being restrictive by not considering other

resources and partial fulfilment of the requested resources.

7.2.2 P2P based resource discovery

In the area of P2P overlay networks the work more related to resource discovery

has been trying to optimize the number of messages necessary to discovery a host

that has resources that fulfil a complex requirement.

Some systems resource to to specific network topologies to accomplish that.

Mercury [BAS04], for instance, builds multiple logical groups (one for each re-

source), in order to allow the representation of the multitude of available re-

sources. When performing resource discovery, Mercury, first finds the corre-

sponding logical group, and then finds the most suitable host. The evaluation

of multiple requirements requires the simultaneous navigation on multiply logi-

cal groups.

Other group of systems use the available resources as keywords of the data

to be stored in the overlay network. Min Cai [CFCS03, CH07] proposes the

use of a Chord [SMK+01] based P2P overlay network to store the information

about the resources available on each host. When a host enters the overlay, it

registers its available resources on available P2P nodes. For a certain resource

ai with value vi, the selected peer to store its identity and characteristics is is

n = successor(Hash(vi)). Later, range queries (for instance when searching for

a host having a resource in [k, l]), will start verifying the existence of any host

information in the peers between successor(Hash(k)) and successor(Hash(l)).

More recent works try to optimize the number of exchanged messages, nec-

essary in order to acomplish a multiple resource query, by coding all available

resources in bit-arrays. FRDT [KK11] organizes peers in a tree-based structure,

where each node knows if a certain resource is available on its children.

PIRD [She09] represents available resources as vectors in multidimensional

spaces and stores each host information in bit-arrays. These arrays are also used

206 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

to define what peer from a Chord like overlay will store that information (namely,

the name of the hosts, and resources there available). When searching for a host

with a determined set of resources, the returned one is the one with the closes

bit-array, by means of a locality sensitive hashing.

Although these systems allow the discovery of the available resources, none

of the available systems takes care of the actual evaluation of the resources, since

available systems only allow the specification of its capability or existence, and

the simple matching of resources with requirements. Furthermore no distinction

between users is possible, since all these systems ignore any possible user classing

and treat all queries in the same manner.

The management of information about multiple resources is not optimized, in

Mercury, multiple groups are expensive, while the work of Min Cai, may suffer

from uinbalance of information. Although optimizing the search for a resource,

both FRDT and PIRD only allow the storing of boolean information about the

existence of a certain resource, but not its real capability. Furthermore, it is neces-

sary to previously know the what resources can be searched for.

7.2.3 Grid Resource Management

In order to optimize the use of Grid resources it is necessary to choose the hosts

that best answer to the resource requirements of applications. The work de-

scribed in [ZFS07] offers a study on the performance and scalability of most

widely deployed approaches to resource monitoring in existing Grid middleware

(MDS, R-GMA and Hawkeye). They are found to offer similar functionality and

performance with good scalability behaviour w.r.t. the number of clients mak-

ing simultaneous requests to the system. Next, the most important features of

resource discovery in Grid infrastructures are presented along with their limita-

tions.

MDS4 [SPM+06] describes a Resource Aggregator Framework that could al-

low implementations to calculate combined utility of a set of resources. None of

7.2. RELATED WORK 207

them implements the utility algebra proposed in this chapter and described in

Section 7.3.

Both Condor [LLM88], Condor-G [FTL+02] and Legion [GW96] provide mech-

anisms to state what requirements must be met in order to execute efficiently

some code. Legion uses Collections [CKK+99]: repositories of information de-

scribing the resources of the system, that are queried to find the host having the

required resources. Collection queries are built with the usual relational and log-

ical operators. Condor, Condor-G and Hawkeye use Classad [RLS99, FTL+02,

CT10] objects in order to describe computing nodes’ resources (providers) and de-

fine requirements and characteristics of programs (customers). Classads are dic-

tionaries where each attribute has a corresponding expression. These attributes

describe the characteristics of the resource provider (the owner of the Classad).

Matchmaking of requirements and resources is accomplished using customers’

and providers’ Classads. Such systems allow the description of application re-

quirements and the discovery of a computer that supports its efficient execution.

However, if a host does not completely satisfies a requirement, it is simply con-

sidered as not eligible. Although the rank attribute allows ordering customers

and providers with matching attributes, this is only used to order providers that

fully satisfy the requirements. Furthermore, aggregation of several Classad with

configurable weights by users is not available.

Current Globus GRAM[All11] implementations, as described in [CFK+98],

suffer from the same problems: usually, a fixed infrastructure is needed to collect

and monitor resource information. Although this information may be replicated

for higher reliability and throughput, this is often done resorting to additional

institutional servers, frequently co-located. The set of resources to monitor, eval-

uate, and aggregate, although configurable, is pre-determined within a virtual

organization. This renders Grid Resource Management systems inadequate to

dynamic environments, where there is no centralized infrastructure and the re-

sources to evaluate are highly variable.

208 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

In the work described in [HML04], clients are able to select hosts based on

user-provided ranking expressions, in order to evaluate resources considering

peak and off-peak periods, sustained availability over a period of time, time of

day. In [ODDG03], an adaptive resource broker estimates job completion time

based on periodically sampling available resources (CPU) in order to trigger job

migration. However, both systems are designed to speedup execution and trig-

ger job migration, bearing no information on how multiple resource requirements

(besides CPU) and their partial fulfilment could be described and evaluated. Fur-

thermore, in the scenario targeted by STARC (embarrassingly parallel applica-

tions), tasks can be made much smaller, can be easily restarted and job migration

stops being a requirement.

7.2.4 Service Discovery Protocols

Service discovery protocols, such as SSDP [GCLG99] and SLP [Gut99], allow a

client computer to search and discover other computers that are service providers.

These protocols allow a service provider to advertise its presence. In this adver-

tisement the service provider sends a description of the exported service. A client

receiving such a message compares the service description with the desired ser-

vice requirement and, if the requirements match the service description, the client

can start using the service. The discovery of the services can also be initiated by

the client, by broadcasting a message with the requirements the service provider

must comply to. Every service provider that has a service that matches the re-

quirements answers with its identification.

SLP [Gut99] also allows the existence of Directory Agents, central servers that

are contacted by the client when looking for services and by the Service Providers

to publicize its services. Web service discovery [CGMW03] can be employed

in distributed computing scenarios to find locations where remote functional-

ity may be executed. Even if it is possible to find devices and hosts that have a

certain service, it is not possible to easily evaluate the available resources, since

7.2. RELATED WORK 209

these protocols were designed to ease the discovery (i.e., mere presence) of ser-

vices. The requirements are tested against the static characteristics of the service,

not allowing the evaluation of available resources at the computer. Whenever

several versions of the same service could be used by the client, these protocols

still do not allow the association of utility depreciations to outdated versions (i.e.,

accepting some outdated versions while preferring current one), therefore being

inflexible.

7.2.5 Utility-based Scheduling

There are systems that perform scheduling based on utility functions [BAGS02,

ABG02, CL06, LL07] aiming at maximizing overall system utility or usefulness.

However, these solutions suffer from a number of drawbacks. They assume there

is a coordinator or scheduler node that receives and process all resource discov-

ery requests and therefore is able to employ complex pricing models that globally

optimize resource usage as well as maximize user utility. The way these systems

incorporate utility functions is rather inflexible as they either: i) consider only

complete requirement fulfilment and award it an utility (possibly weighted), or

ii) they assume a nearly constant elasticity model where the lack of availability of

one resource can be supplanted by a surplus of others for equal utility (clearly a

system-centric approach and not user-driven), or iii) provide no support for hints

regarding resource or service adaptation in case of partially unfulfilled require-

ments.

7.2.6 Network Management Protocols

Although of a lower level, network management protocols can be used to query

remote computers about its resources, thus allowing the evaluation of the sur-

rounding environment. These protocols may not help locating the computer on

a network, but after the initial communication setup, allow a finer evaluation of

210 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

the available resources. Currently two major standards exist: SNMP and WBE-

M/CIM.

SNMP, Simple Network Management System, is a protocol used in remote

management of computer networks. The original RFC [CFSD90] defines the ar-

chitecture, the representation of the information managed and the operations

supported on the managed information. Subsequent RFCs define the managed

information base (MIB). For instance, the MIB−II [Ros90] specification defines the

data that an agent (i.e., a resource provider) must export to management applica-

tions. Other MIB defines what information related to storage, processes, memory

usage is exported through this protocol.

The Distributed Management Task Force is developing several standards re-

lated to the management of computing resources. These standards range from

the definition of APIs the hardware should comply to, to the development of

protocols of remote network management.

The CIM [Dis10b] specification defines a management information conceptual

model and the set of operations to manage the information. The Web Based En-

terprise Management [Dis10a] (WBEM) has three main components: CIM, that

defines the structure of the managed data, the XML encoding specification for

the representation of CIM classes and instances, and a protocol of CIM opera-

tions over HTTP, enabling the management of remote computers using the CIM

exported information.

All these protocols allow the querying of the resources available in a remote

computer, but all the network communication and resource comparison must be

explicitly coded by the application programmer. Even though, these protocols

may help define what computer resources should be evaluated and provide an

interface to locally access the state of the resources.

Besides the communication primitives used to query a remote host, these pro-

tocols also define the information and characteristics that can be accessed re-

motely. This information, although dynamic in value, is statically defined, de-

7.3. STARC ARCHITECTURE 211

pending on the class of the host.

7.3 STARC architecture

Applications need to discover, evaluate and select the resources present and avail-

able in remote computers as well as services and software provided by them.

This is achieved via a middleware platform (STARC), an assemblage of compo-

nents (STARC daemons), that execute both in clients and in resource providers,

all regarded as peers. Each daemon handles all requirement evaluation requests:

those generated from a local application and remote requests generated by other

remote daemons. The architecture of STARC is presented in Figure 7.1 and is

described next.

����������	

��

���������	�

�����
�����	

���������	�
���������

������
���������

�����	������	

������	�

�������

�
�

������
�����	

���������	�
���������

������
���������

�����	������	

������	�

�������

�

!"

Figure 7.1: STARC Middleware Architecture

To use STARC, an application, must provide to the local STARC daemon an

XML Requirement File containing a logical description of the hardware and soft-

ware requirements and alternatives (Step 1 in Figure 7.1). The STARC daemon

reads the requirement and executes the relevant Environment Probing Classes

(Step 2) in order to know how the resources fulfil the requirements. The logical

212 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

descriptions are evaluated against the values returned by the Environment Prob-

ing Classes according to specified partial-utility functions and combined utility

evaluation policies defined by an utility algebra (more details in Section 7.4.3).

After local resource evaluation, the STARC daemon contacts remote daemons

(Steps 3) by means of the Communication component. Each contacted daemon

evaluates the requirements (Step 4) and returns the resulting value (Step 5). The

contacted hosts are those found by the The Remote Host Discovery module. This

component abstracts the middleware from different network topologies. It inter-

faces with the rest of the middleware uniquely by providing for each request a

list of available hosts. These hosts are later contacted by the Communication

component. Further details on remote host discovery when addressing differ-

ent network topologies (e.g., LAN, coordinator/scheduler-based grids or virtual

organizations, peer-to-peer overlays) are addressed in Section 7.5.

After receiving the evaluation of all contacted hosts, a lists of results is re-

turned, so that the user can choose the most appropriate one.

7.3.1 Probbing Classes

In existing systems, all evaluation code is statically linked to the underlying mid-

dleware, reducing extensibility: the addition of new resources to be evaluated (or

new ways to evaluate existing resources) requires the recompilation and redistri-

bution of the complete system.

STARC proposes the use of dynamically loaded classes to perform evaluation

of all types of resources. These probing classes are dynamically loaded at run-

time depending of the resource to be evaluated: from the name element of the

resource being evaluated, STARC dynamically loads the correct class and exe-

cutes it.

The dynamic loading can be performed from the local disk (step 2 in Fig-

ure 7.1) or from another STARC daemon (step 4). Each class must follow a prede-

termined interface: the constructor (that initializes the evaluation environment)

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 213

and a resource evaluation method.

Each Environment Probing Class evaluates one specific resource, compar-

ing its state with a parameter received from the Requirement Evaluator (a XML

snippet whose contents are to be presented in Section 7.4). The way the STARC

daemon interacts with the Environment Probing Classes is further detailed in

Section 7.5.

7.4 Requirement Specification and Evaluation

In order to use STARC, the user or programmer writes a XML file stating what

are the requirements and feeds it to a locally running STARC daemon. This is

done by a single method invocation, in order to make the evaluation of the XML

requirement files transparent to the programmer. On completion of discovery,

the application will receive a list identifying available hosts and how fit they are

to fulfil those requirements.

The XML requirement file syntax is presented in Listing 7.1.

1 < ! ELEMENT requirement (resource | and | or | not) >

2 < ! ATTLIST requirement pol i cy (p r i o r i t y | s t r i c t | balanced | e l a s t i c) " s t r i c t " >

3 < ! ATTLIST requirement weight CDATA " 1 . 0 " >

4 < ! ELEMENT and (requirement +) >

5 < ! ELEMENT or (requirement +) >

6 < ! ELEMENT not (requirement) >

7 < ! ELEMENT resource (conf ig +) >

8 < ! ATTLIST resource name CDATA #REQUIRED >

9 < ! ELEMENT conf ig (#PCDATA) >

Listing 7.1: XML requirement DTD

These requirements can be physical resources (e.g., available memory, proces-

sor speed, GPU installed), installed software (e.g., certain operating systems, vir-

tual machines, libraries, helping applications) or availability of specific services

(e.g., logging, checkpointing, specific web services).

A simple example requirement is presented in Listing 7.2 and will be used as

a base for the description of the features of the proposed algebra.

214 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

1 <requirement> <and>

2 <requirement> <resource name="CPU" >

3 <conf ig>

4 <processorCores> 16 </processorCores>

5 </conf ig>

6 </resource> </requirement>

7 <requirement> <resource name="CPU" >

8 <conf ig>

9 <processorSpeed> 3000 </processorSpeed>

10 </conf ig>

11 </resource> </requirement>

12 <requirement> <or>

13 <requirement> <resource name="NumPy">

14 <conf ig>

15 <version> 4 </version>

16 </conf ig>

17 </resource> </requirement>

18 <requirement> <resource name="PyGPU">

19 </resource> </requirement>

20 </or> </requirement>

21 </and> </requirement>

Listing 7.2: Prototypical example of XML requirements description

A requirement can refer a simple resource (CPU or the libraries NumPY

or PyGPU in Listing 7.2) or it can be a complex composition of other require-

-ments using logical operators. The composition of requirements is accom-

plished by using usual logical operators (and, or, not) whose evaluation will

be described later in the Section.

In order to precisely define a required resource, it is necessary to state its

name and, if necessary a XML snippet configuring how the resource will be eval-

uated: in the previous example only the minimal required value is stated. This

config element (e.g. processorCores, processorSpeed, version in List-

ing 7.2) will be fed to the adequate Probbing Class during resource evaluation.

The Probbing Class taking into consideration the config XML snippet is able to

evaluate the resource and return an adequate value.

Using the prescribed syntax it is possible to write complex requirements with

the conjunction or disjunction of the characteristics of the resources. For instance,

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 215

it is possible to state that a program needs a certain number of processor cores,

with specified speed, and either one of two libraries, as illustrated in Listing 7.2.

In this example the user wants to know if a certain computer has an ideal config-

uration of at least 16 available processor cores preferably with speed of at least

3000 MHz, and has either the NumPy (at least version 4) or the PyGPU library

installed.

To state this information the user employs the or and the and logical oper-

ators to three different resources. Inside the CPU resource element the user

states the required configuration for processorCores and processorSpeed

(an implicit conjunction). Although the information inside the config XML tag

can follow a predetermined pattern, the information inside it depends on the re-

source, its possible characteristics and the code of the responsible probing class.

In addition to specifying requirements, XML files allow users to employ an

utility algebra, described next, comprised of: i) ranges of resource values with

associated client-specific utility depreciations (partial-utility), ii) alternative re-

source options with associated utility depreciation, and iii) policies for combined

satisfaction evaluation.

7.4.1 Partial utility resource evaluation

All the systems presented in Section 7.2 return only boolean answers to the queries.

If the host fulfils the stated requirements, true is returned, otherwise return false.

If a host can completely fulfil the requirement, it returns the highest possible

value, meaning, it is among those that best fit the requirement. However, this

kind of binary answer to the evaluation of requirements is rather inflexible, since

a host that cannot fulfil a requirement completely, it should not necessarily be

considered as having utility 0.0. Although not the optimal resource, nonetheless

the user may be willing to use it to solve his tasks.

STARC solves this issue by allowing any requirement to be evaluated to a

Fuzzy value. The returned value fits into the [0.0, 1.0] interval: if the host ful-

216 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

fils the requirement, 1.0 is returned; otherwise, a value between 0.0 and 1.0 is

returned.

This behaviour can be observed in Figure 7.2 for the number of processors and

the NumPy library.

� � � � � �
�

���

���

���

��	

�

��
�
����
����

�
�
�
�
�

�
�
��
�
�
��
�
��
�
�

a) NumPy library evaluation

� � � �� ��
�

���

���

���

���

�

�	
��
�����
������
�

�
�
�
�
	

�
�
��
�
�
�	
�
��
�
�

b) CPU evaluation

Figure 7.2: Resource evaluation (examples from from Listing 7.2)

If the host being evaluated exceeds the minimum required value the Probing

Class returns 1, while if (in the case of the NumPy library) no resource exists, the

returned value is 0.0.

In the intermediate cases, the returned value (between 0.0 and 1.0) is pro-

portional to the existing resources: in this example, if the host only contains 8

processors (half the required) its evaluation returns 0.5.

Since this resource evaluation returns a numerical value stating the partial ca-

pacity to meet the requirement, the user can use a collection of values (produced

in multiple hosts) to decide which hosts to use and what is the threshold for ac-

ceptance.

On a different perspective, the same host configuration (processor cores and

speed) and the same CPU evaluation code will render different partial fulfilment

values, according to the specifics of each client’s request. Thus, when receiving

requests with different configurations, a host can also select the tasks that more

efficiently use the provided resources. Moreover, XML requirement files issued

by clients contain additional information specifying alternatives that can also be

used to drive resource and service adaptation at contributing hosts. This way, the

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 217

overall system is rendered more flexible and assurance of requirement satisfac-

tion is improved.

7.4.2 Non-linear Partial-Utility Criteria

Although offering higher flexibility and expressiveness than existing systems,

simple stating one limit value for the intended resource characteristics is not flex-

ible enough. Users may not want to have resources to "depreciate" in a linear

fashion. For instance in the example of Listing 7.2, a host offering less than four

processor cores should be excluded, its evaluation yielding a value of 0.0.

In such cases, the configuration of the resource evaluation should be more

expressive, allowing the user to define ranges of resource characteristics with its

limiting partial-utility evaluation. These partial utility ranges must follow the for-

mat defined in Listing 7.3 and appear inside the resource characteristics elements

(processorCores, processorSpeed, and version in Listing 7.2).

1 < !ELEMENT range ((minnumber | maxnumber) , u t i l) >

2 < !ELEMENT maxnumber (#CDATA) >

3 < !ELEMENT minnumber (#CDATA) >

4 < !ELEMENT option (value , u t i l) >

5 < !ELEMENT value (#CDATA) >

6 < !ELEMENT u t i l (#CDATA) >

Listing 7.3: XML requirement DTD

The range element is used to define utility values for well known characteris-

tics of the resource: inside the maxnumber (or minnumber) the limit of the range

and inside the util element appears the well known utility value.

The minnumber elements should be used to create a monotonically increasing

utility function (such as the example in Figure 7.3): the util element contains the

utility of the lower limit of the range and should increase when the minnumber

increases.

The user only needs to define three points (2, 0.5), (3, 0.5) and (5, 1.0) using

the minnumber and range elements. From these points STARC interpolates the

218 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

<range>
<minnumber> 2 </minnumber> <util> 0.5 </util>

</range>
<range>

<minnumber> 3 </minnumber> <util> 0.5 </util>
</range>
<range>

<minnumber> 5 </minnumber> <util> 1.0 </util>
</range> � � � � � � �

�

���

���

���

��	

�

��
����

�
�

�
��
�
��
�
�
��
�
��

�

Figure 7.3: Increasing Utility Function definition

remaining of the function. Resources with values lower that 2 will fit into the

line between (0, 0.0) and (2, 0.5), while resource values higher than 5 will yield an

evaluation of 1.0.

In a similar manner maxnumber should be used to create a monotonically de-

creasing utility function (Figure 7.4), e.g., referring to price, queue length, waiting

time, concurrent jobs being executed.

<range>
<maxnumber> 2 </maxnumber> <util> 1 </util>

</range>
<range>

<maxnumber> 4 </maxnumber> <util> 0.3 </util>
</range>
<range>

<maxnumber> 10 </maxnumber> <util> 0.0 </util>
</range> � � � � � �� ��

�

���

���

���

���

�

�	
��
�	

�
	

�
�

�
	
�	
�
�
��
�
��
�
�

Figure 7.4: Decreasing Utility Function definition

Using the range elements, the example from Listing 7.2 can be further de-

tailed, as show in Listing 7.4

Furthermore, as illustrated in the example in Listing 7.4 (lines 19-20), users

can also assign the utility depreciation (partial-utility) of the individual alterna-

tives available. In this example the user requires the version 4 of the the NumPy

library, but is partially satisfied with version 3. In hosts with any other installed

version the evaluation of this resource will yield 0.0.

This individual assignment is made by means of the value element defined in

Listing 7.3, lines 5-6, and is particularly useful for resources whose characteristics

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 219

can not be represented numerically (for instance, operating systems).

1 <requirement pol i cy=" s t r i c t "> <and>

2 <requirement> <resource name="CPU" >

3 <conf ig> <processorCores>

4 <range> <minnumber> 16 </minnumber> < u t i l > 1 . 0 </ u t i l > </range>

5 <range> <minnumber> 10 </minnumber> < u t i l > 0 . 5 </ u t i l > </range>

6 <range> <minnumber> 4 </minnumber> < u t i l > 0 </ u t i l > </range>

7 </processorCores> </conf ig>

8 </resource> </requirement>

9 <requirement> <resource name="CPU" >

10 <conf ig> <processorSpeed>

11 <range> <minnumber> 3000 </minnumber> < u t i l > 1 . 0 </ u t i l > </range>

12 <range> <minnumber> 2600 </minnumber> < u t i l > 0 . 5 </ u t i l > </range>

13 <range> <minnumber> 2400 </minnumber> < u t i l > 0 </ u t i l > </range>

14 </processorSpeed> </conf ig>

15 </resource> </requirement>

16 <requirement> <or>

17 <requirement> <resource name="NumPy">

18 <conf ig> <version>

19 <range> <value> 4 </value> < u t i l > 1 . 0 </ u t i l > </range>

20 <range> <value> 3 </value> < u t i l > 0 . 5 </ u t i l > </range>

21 </version> </conf ig>

22 </resource> </requirement>

23 <requirement> <resource name="PyGPU">

24 </resource> </requirement>

25 </or> </requirement>

26 </and> </requirement>

Listing 7.4: XML requirements description

7.4.3 Policies for Combined Satisfaction Evaluation

Given a XML requirement file with a set of resources and service requirements, it

is necessary to select the host best fit for it. This selection must take into account

not only the partial utility of each requirement (the evaluation of each individ-

ual resource) but also an evaluation of the combined satisfaction of requirements

as a whole. This is accomplished applying the presented operators (lines 4-6 in

Listing 7.1), following a pre-determined algebra.

As discussed earlier in Section 7.2, current resource management and job schedul-

220 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

ing in grids do not consider partial requirement satisfaction, employing the sim-

ple Boolean logic operators to the evaluation of complex requirements.

On the other hand, since STARC allows and represents the partial fulfilment

of a requirement (resorting to fuzzy logic values) the operators should take that

into consideration. In the same manner as the Environment Probing Classes

return values between 0.0 and 1.0, these logical operators should return values

in the same range, indicating how capable a host is to satisfy the requirements.

Using these operators and comparing the value returned from the evaluation of a

requirement on different computers, it is possible to find the one(s) more capable:

the one(s) with the highest requirement evaluation value(s).

and (A, B) = min{A, B}
or(A, B) = max{A, B}

not(A) = (1 - A)

Figure 7.5: Zadeh Logical operators

The use of Zadeh logical operators (Figure 7.5) is a possible solution to the

evaluation of the complex requirements.

These operators closely match the usual gradation mechanisms:

• The or operator always returns the largest operand. The combined utility

is equivalent to the one of the resource providing the highest utility.

• With the and operator, the user wants all requirements to be met, so the

result of this operator corresponds to the minimum value.

• The operator not allows a user to rate a resource negatively. This may

happen when a user wants to specify an undesired resource, one that con-

tributes negatively to the final utility.

When compared with ordinary boolean logic operators, the use of fuzzy logic

operators allows more information to be coded in the requirement evaluation

answer, it is possible to infer the requirement fulfilment level. Nonetheless, it still

becomes limitative to use one single set of operators.

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 221

STARC proposes an utility algebra that takes user-perceived values of partial-

utility into account in a flexible and expressive way. To accomplish that, STARC

allows users to select how combined requirements (operator and), alternatives

(operator or), and disapproval (operator not) are evaluated. These evaluation

rules are coded in different policies (priority, strict, balanced, and elas-

tic) described next. Each policy is inspired by a specific scenario and targets a

class of intended users (summarized in Table 7.1).

Policy Intended Calculation AND OR NOT

users (aggregation) (adaptation) (disapproval)

priority administrators boolean logic all at least one fail if

fully met fully met partial fulfilment

strict SLA Zadeh min max complement

users fuzzy logic (1-x)

balanced registered geometric sqrt(product) max complement

members average-based (1-x)

elastic best-effort arithmetic average max complement

average (1-x)

Table 7.1: STARC aggregate utility evaluation policies

A policy embodies a specific aim or goal on how to combine available re-

sources to fulfil resource discovery requirements. This goal is implemented in the

way aggregate utilities are calculated in order to evaluate how a set of available

resources satisfies a given request (i.e., a numeric measure of combined satisfac-

tion).

The greatest difference between policies resides in the way conjunction of re-

quirements is calculated. This difference in the and operator rises from the fact

that the same requirement applied to the same combination of resources has dif-

ferent evaluations depending on the Policy and user class. This stems from the

fact that different users are satisfied in different levels from the same resources

(even if they only partially fulfil the requirements). This is illustrated in Fig-

ure 7.6.

222 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY
������

����	

� ��
 ��� ��� ���

�

��

��

���

���

���

���

���

���

���

�������

��������

������

��������

���� ���	!	�"�� �����

#
�
�
$
�
�
��
�
�
	�
"
�
�
�
��
�
�

Figure 7.6: Evaluation of a conjunction of two resources (A and B) using multiple
Policies (Resource B evaluated with 0.5)

What should be noted in this figure, is the fact that for a certain combination

of resources, the evaluation made by an elastic policy is higher than by any other

stricter policy. In the other end, in this case, the Priority policy renders 0.0 (the

lowest possible value).

The description of the rational behind each policy is in the following para-

graphs:

• Priority: This policy enforces the complete fulfilment by the resources of

the user-supplied requirements. It aims at satisfying requirements that can

not be not representable by utility functions, and when a user is not will-

ing to accept hosts where one or more of the required resources are only

partially fulfilled.

In this case the and operator has the semantic of its boolean counterpart:

The answer is 1.0 only if all operands are fully met (evaluated with the value

1.0). Requirements combined with operator or will be tried in sequence by

order of appearance (priority) in the XML file, and will return 1.0 when at

least one of the operands is fully met. Operator not results in the rejection

of any host where the resource is available, even partially.

This is the most rigid of evaluation policies and should only be used in

service-critical scenarios, and is equivalent to the policies available in other

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 223

systems.

• Strict: This policy aims at minimizing dissatisfaction on every resource

requirement, but still representing the utility resources composing the re-

quirement. Thus for a given set of resources, when complete fulfilment is

not possible, the resulting utility will use directly the partial utility of the

resource by means of the fuzzy logic Zadeh [Zad65] operators depicted in

Figure 7.5 . In the case of the conjunction of requirements, the combined

evaluation will result in the lowest of the combined operands, meaning that

all other resources have a partial utility higher than the returned value. The

operator or returns the maximal partial utility in a set of requirements, and

the operator not returns the complementary utility (1-x), in a way to invert

a combined utility.

The use of these operators allows not only a precise representation of partial

fulfilment. Also, from the complex requirement and the results, the user can

infer the levels of fulfilment of the resources, and easily compare multiple

hosts.

A common scenario for this policy would be the case of users with service-

level agreements that, when a single requirement is partially unmet, impose

penalties in the aggregate utility (once again due to and returning the min-

imum).

• Balanced: This policy aims at giving higher requirement evaluations to

the most balanced hosts, that is, those whose combination of available re-

sources satisfies user requests in a more favourable and balanced manner.

Although the or and not operator follow the Zadeh definition (Figure 7.5),

in order to calculate the conjunction, this policy is based on geometric av-

erages: the operator and will return the square root of the product of all

involved partial utilities.

This way, the more a resource requirement is far from 1.0 (complete ful-

filment) the higher is (proportionally) the decrease on the result combined

224 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

utility. With this policy, hosts that can fully satisfy certain requirements but

can only produce a very poor alternative in others, will not be so highly con-

sidered. Hosts that partially satisfy all requirement at a good value will be

preferred instead. Of course, hosts with well balanced yet low availability

in most/all resources should still be awarded lower utility.

A common scenario for this policy would be the case of registered users

that, when a resource is partially unmet, are imposed a penalty in to the ag-

gregate utility, but taking into account that the returned value is higher than

if evaluated using the strict policy. Typical users will be regular members of

a virtual organization such as in a Grid.

• Elastic: This policy aims at maximizing engagement of resources by the

system, employing an eager-like approach assuming full elasticity or re-

sources: any non-satisfied resource can be compensated by a good utility in

another resource. This is usually not the case since resources are not inter-

changeable (e.g., CPU for memory and vice-versa). Thus, this policy simply

offers a best-effort approach to requirement fulfilling, that may be suitable

for non-registered users in a peer-to-peer cycle sharing scenario.

Combined evaluation is based on simple arithmetic averages. Operator and

will return the averaged sum of all partial utilities and operator not its op-

posite (additive inverse). With this approach, the system can take advan-

tage of any resource because unfulfillment of a requirement can never bring

down the utility value resulting from a combined requirement evaluation.

Nonetheless, hosts with better resources will always render better require-

ment evaluation.

Policy Calculation 0.5 and 1.0 0.5 and 0.5 0.9 and 0.2

Table 7.2 (Continues on next page)

7.4. REQUIREMENT SPECIFICATION AND EVALUATION 225

Policy Calculation 0.5 and 1.0 0.5 and 0.5 0.9 and 0.2

Priority Boolean logic 0 0 0

Strict Zadeh logic 0.5 0.5 0.2

Balanced Geometric 0.70 0.5 0.42

Elastic Arithmetic 0.75 0.5 0.55

Table 7.2: STARC evaluation policies for distinct resources

Table 7.2 show how different resources are evaluated by the different policies.

As expected, with respect to the priority policy, none of the examples returns a

positive value, since in none of the examples all the requirements are completely

met. When using a Strict policy, it is possible to observe that the first two ex-

amples return the same evaluation value. This comes from the fact that, of the

required resources, the lowest one has the same value (0.5). Using this policy,

while evaluating a conjunction, the highest partial requirement is not taken into

consideration. This is evident in the last example: the utility of the conjunction

of a good and a bad resource is low. In the case of the Balanced policy it is pos-

sible to observe that the host with the more balanced resources (0.5 and 0.5) is

better evaluated than the one with low quality resources (third example). The

Elastic policy, as described earlier, evaluates resources as interchangeable, thus

evaluating better a host from the last column than the one from the fourth.

It is also possible to observe that the ordering of the evaluations remains. For

each example, the evaluation by different policies is sorted as follow:

Evaluation(request, Priority) ≤ Evaluation(request, Strict) ≤

Evaluation(request, Balanced) ≤ Evaluation(request, Elastic)

This is backed by the intuitive notion that, for users with lower or less rights,

the evaluation of a resource renders a higher value meaning that that resource,

even of low quality, is perceived as of more value to this less privileged user

(i.e., he is less demanding). In a similar manner, a resource that, evaluated with

different requirement, renders the same evaluation is of more use to the user with

the more strict requirements.

226 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

When writing requirements, the user can use the optional policy attribute

shown in line 2 from Listing 7.1. Nonetheless, a daemon running at a host may

override the selected policies offering different quality-of-service considering user

information (e.g., user class, rank, reputation) while notifying the requesting user.

Any requirement can also be weighted to denote a user preference. Using

the attribute weight (line 3 from Listing 7.1), the user can assign a weight (in

]0.0, 1.0]). After the evaluation of such requirement, the attained utility value is

multiplied by the provided weight.

7.5 Implementation

A prototypical implementation of STARC was developed in Python, using its

standard XML processing library to parse the requirement files and generate

an internal representation of the logical expressions. All communication is per-

formed by means of the Pyro [Jon11] remote object invocation library. To sim-

plify current implementation, any interaction between an application and its lo-

cal STARC daemon is also made by means of a Pyro invocation. Although Python

was used, any other language that supports dynamic code loading, remote method

invocation, and remote code loading could have been used.

In order to ease STARC extensibility, the reflective mechanisms and class load-

ing provided by the Python runtime were used. The reflective mechanisms not

only allow the run-time loading of classes but also ease its implementation, since

Probing Classes do not require any complex inheritance to be dynamically loaded

and executed. This allows any programmer to define new proprietary, user-

specific, or compound resources to be evaluated, and software or services to be

discovered simply by developing a new Environment Probing Class.

All Environment Probing Classes implement a predefined interface composed

of a constructor with no arguments and a method called evalResource. This

method is invoked by the Requirement Evaluator and receives as a parameter the

7.5. IMPLEMENTATION 227

config XML snippet described in Section 7.4.

The name of Environment Probing Classes is obtained from the name element

present in the XML (Listing 7.1). This name is used to dynamically find the corre-

sponding module from disk, load it and create the Probbing Class. If not present

in the remote host, the Resource Probing Classes can be transferred from the local

computer that initiated the requirement evaluation and executed in a restricted

safe environment, allowing the evaluation of specific user requirements. This

code transfer is backed by the dynamic code service for Pyro. If for some reason

the Environment Probing Class associated to a resource can not be executed, the

evaluation of that resource requirement will return 0.0, meaning the computer

does not have the resources to meet that requirement.

A set of standard Environment Probing Classes were developed. These should

be present in every host running STARC allowing the evaluation of a number of

most used resources: CPU family, cores and frequency, cache size, memory size,

available memory, network link speed available. In the implementation of these

classes, as a low level layer, WBEM [Dis10a] (in Windows) and the /proc file sys-

tem [FG91] (in Linux) were used.

7.5.1 Remote Host Discovery

The discovery and maintenance of a set of working hosts is out of the scope of

this work, nonetheless it is possible to identify three main network topologies

of increasing scale and membership flexibility/variation: i) clusters and LAN;

ii) Grid-based virtual organizations, and iii) peer-to-peer cycle-sharing desktop

grids.

Cluster/LAN Scenarios In the LAN implementation, the Remote Host Discov-

ery module finds remote computers in the same sub-network, by means of UDP

broadcasts. Any other computer discovery protocols could have been used (e.g.,

Jini, UPnP). When performing a requirement evaluation, the local computer con-

228 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

tacts all known remote computers, sends them the requirements and waits for an

answer. Each host evaluates the requirements against its resources and returns

the resulting partial-utility value. These are combined with host identification in

an ordered list by the local STARC daemon. The application requesting the query

needs only pick the first in list or iterate it for parallel scheduling.

Grid Infrastructures STARC can be easily modified to become a module within

the framework of MDS4 [SPM+06], along with a set of Resource Providers (namely

resorting to Hawkeye [CT10] for monitoring node resources and availability).

The proposed utility algebra can be integrated into the MDS4 Aggregator Frame-

work (including partial-utility evaluation and policy enforcement).

As mentioned in the related work section, this approach and architecture

have been previously evaluated and determined scalable [ZFS07]. Therefore,

it is only necessary to ensure that the algebra evaluation does not impose ex-

cessive overhead. A similar approach could be pursued for integration with R-

GMA [CGM+03] or other meta-schedulers, such as Condor-G [FTL+02].

P2P Cycle Sharing Regarding cycle sharing peer-to-peer infrastructures [TT03],

the set of hosts made available to STARC to evaluate should be reduced and not

the entire P2P population as this would preclude scalability.

Therefore, STARC can be integrated as an additional service on a peer-to-peer

cycle sharing system [VRF07a], in order to evaluate only two sets of hosts: di-

rect neighbours in routing tables, and those returned by a lower-level resource

discovery mechanism seeking CPU, memory and bandwidth.

7.5.2 Security

The dynamic loading of probing classes has two different usage scenarios. One

where the probing classes are stored in a central repository, but managed and cre-

ated by one trusted entity. This case is no worst that the use of locally installed

probing classes. In the second scenario, middleware users create probing classes

7.6. EVALUATION 229

to be uploaded. In this case, it is necessary to execute them in a restricted envi-

ronment, such as a virtual machine, similar to where the scheduled jobs would

be deployed.

STARC middleware has a small code footprint (below 500 KB) and can be exe-

cuted at host nodes within the boundaries of a virtual machine. Therefore, its ac-

cess to local resources (such as file system or communication) can be limited and

configured. This extends to the vast majority of Environment Probing Classes.

If one needs to access the native system directly, it can be subject to individual

configuration and will not be executed without user’s authorization. In order to

guarantee a timely response from the probing classes and to prevent denial of

service attacks, timeouts are enforced on probing class execution (returning 0.0).

7.6 Evaluation

This section describes the evaluation of STARC, resorting to a qualitative analysis

and micro-benchmark performance results.

In qualitative terms, STARC provides a number of advantages when com-

pared to the related work. It allows a more expressive, flexible description of

resource requirements for jobs, since it implements a series of new ideas:

• the notion of partial-utility;

• user-specified ranges for non-linear partial-utility;

• multiple requirement evaluation policies (selected by the user or enforced

by the middleware)

Existing systems either rely on binary decision on requirement fulfilment (as

service-level agreements) not considering partial utility, or adopt solely a system-

centric approach by employing complex, pre-defined (not user-specified) utility

functions in order to optimize request scheduling based on budget, deadlines,

230 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

and a binary requirement fulfilment that are not adequate for the intended sce-

narios.

Regarding performance, a micro-benchmark was designed to evaluate the in-

curred overhead brought when evaluating a XML requirement file. The measure-

ments consider a LAN setting as a worst-case scenario where the relative over-

head of requirement evaluation w.r.t. communication is the highest. In order to

measure the requirement evaluation times, a 3.2 GHz Pentium 4 personal com-

puter with 1 Gb of memory was used as a resource provider where all resource

evaluation were made. The client computers, where all remote evaluations were

initiated is an Apple Ibook with a 800MHz PowerPC processor, 640Mb of mem-

ory and the Linux operating system. All computers were connected by a 100Mb

switched Ethernet network.

In order to measure a requirement evaluation time, a simple requirement (pre-

sented in Listing 7.5) stating a minimum necessary amount of memory. A com-

plex requirement (a conjunction of 20 simple requirements) was also used in this

evaluation.

1 <requirement> <resource name="Memory" >

2 <conf ig> <physicalMemory>

3 <range> <minnumber> 4096 </minnumber> < u t i l > 1 . 0 </ u t i l > </range>

4 </physicalMemory> </conf ig>

5 </resource> </requirement>

Listing 7.5: STARC micro-benchmark XML requirements description

The probing class for this resource was developed resorting to the WBEM for

access to the characteristics of the memory.

The first micro-benchmark measurements comprised the evaluation of the

simple XML requirement file (Listing 7.5), locally using STARC and a similar

evaluation using WBEM [Dis10a] and SNMP [CFSD90]. These results are pre-

sented in Table 7.3

7.6. EVALUATION 231

Evaluation time (ms)

Bootstrap 38.2

STARC (loopback) 40.1

WBEM 36.3

SNMP (loopback) 110.0

Table 7.3: STARC local resource evaluation comparison (ms)

From this table it is possible to infer the time to bootstrap and process the

requirement XML, as well as the time to actually retrieve the resource informa-

tion. The value in the first line (Bootstrap) corresponds the bootstrap time before

an evaluation: parsing of the XML, creation of the evaluation tree and loading

of the necessary probing classes. This time is only about 38.2ms and remains in

the same order of magnitude when increasing the complexity of the requirement.

Since WBEM was used to retrieve the hardware information, it is necessary to

compare the time to evaluate the available memory using STARC and WBEM.

The incurred overhead is only about 4ms, an order of magnitude lower that the

actual time to retrieve the resource information. STARC is noticeable better that

SNMP.

Table 7.4 shows how STARC behaves when executing evaluations on remote

computers and how it scales with the complexity of the requirements.

Local Remote Remote

loopback no upload upload

STARC (simple) 40.1 41.0 110.0

STARC (complex) 795.3 799.0 878.8

SNMP (simple) 110.1 320.7

SNMP(complex) 165.5 610.7

Table 7.4: STARC performance comparison (ms)

The results allow to conclude that STARC scales w.r.t the size of the require-

ment files (simple versus. complex) and regarding local and remote evaluation.

The difference between a local and remote evaluation is only evident when

code upload is necessary (last column), nonetheless the time to upload a complete

232 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

probing class is only about 70ms. Naturally, other Environment Probing Classes

will take different time to upload.

Since in a requirement evaluation, the majority of the time is spent accessing

the hardware information, it is natural that the time to evaluate a complex request

is proportional to the number of resources evaluated. In this case a complex re-

quirement takes close to 800ms, 20 times more than the simple requirement.

In the case of complex requirements, STARC is noticeable slower than SNMP

when performing local evaluations, but this difference disappears if a remote

evaluation is required. The difference between the last two columns derives from

the necessity to transmit the probing class code to the remote host. In this case, it

only takes about 70ms.

To evaluate how STARC behaves under load, the time to evaluate series of

complex requirements concurrently was measured. These results are shown on

Figure 7.7.

� �� ��� ��� ���

���

���

���

���

���

��	
���
	��
��������	�

�
�
��

�
�

�
�
��
�
��
�
	
��
��

��
�
�
�

Figure 7.7: Concurrent requirements evaluation overload

The graph clearly shows that until about 100 concurrent evaluations there is

no performance degradation. Furthermore, the interleaving of the various pro-

cesses evaluating requirement policies leads to a reduction of the average pro-

cessing time. This is naturally due to the operating system being able to better

utilize the CPU, by executing some threads while others wait for I/O due to vir-

7.7. CONCLUSIONS 233

tual memory.

From that point onwards (about 100 concurrent evaluations) the scheduling

and process swapping costs are greater than the gains from the interleaving of the

parallel execution. Nonetheless, the middleware maintains scalable behaviour

since with 200 concurrent processes performing complex policy evaluations, there

is only an increase of about 10% on the average requirement evaluation time. To

access the WBEM service, a Pyro RPC server was implemented, which has a limit

of 200 active network connections, hence the maximum value concurrent policies

tested. It is possible to conclude that requirement evaluation in STARC scales well

to large numbers of concurrent clients based on the same conclusions of previous

studies [ZFS07].

Since the actual point-to-point communication overhead is low, STARC can

also scale to large numbers of participating nodes, when used a P2P infrastruc-

ture [VRF07a].

7.7 Conclusions

STARC is capable of evaluating and comparing different resource providers with

respect to client specific resource requirements, considering ranges of partial ful-

filment and utility depreciation. It is able to evaluate a set of standard resources

in different computer architectures: number and speed of CPU cores, available

memory, available disk space, network speed, among others.

All these evaluations can be parameterized according to different user profiles

and needs. With the proposed utility algebra and corresponding XML DTD, it is

possible to define any kind of requirement a module or a complete application

may have, and that a resource provider must satisfy.

All resources are evaluated to a satisfiability level between 0.0 and 1.0, in con-

trast to the usual boolean answers: completely satisfies the requirement or not.

By using these numerical results the information about the partial fulfilment of a

234 CHAPTER 7. UTILITY ALGEBRA FOR RESOURCE DISCOVERY

requirement (partial-utility) can be used in complex requirement definitions.

Although the complex requirements are written using the usual logical oper-

ators, their evaluation is not limited to the usual boolean logic. Each user class

(Administrator, SLA users, registered members, or best-effort) employs a differ-

ent complex requirement (conjunction, disjunction and negation) evaluation rule.

By using these operators, the result of the evaluation returns a numeric value

that clearly states how the requirements are totally or partially fulfilled, useful in

the comparison of multiple hosts.

The architecture of this system allows its extensibility by allowing the defi-

nition of new types of resources to be discovered and evaluated. The code to

evaluate a resource can be dynamically installed, without system compilation,

and reused on behalf of many clients.

88888888888888888
Conclusion

This document presents a series of contributions to ease the use of parallel pro-

gramming to commoners. These are users that either have some limited program-

ming knowledge (development of modular sequential code), or use and know

how to parameterize some sort of data processing tools (such as image process-

ing, image rendering, statistical packages).

Independently of the computing proficiency, this class of users normally re-

quires the execution of lengthy jobs, but do not have access to existing computa-

tional infrastructures. Nonetheless, there are plentiful sources of computational

resources to these users. The developed work aims at bridging the existing gap

between common users and the flexible and seamless use of available computing

sources: personal clusters, the cloud and the whole Internet.

One of the existing sources of computing power is the Internet, and all idle

computers that could be used to process data, by means of cycle sharing or Dis-

tributed Computing systems. Many systems were developed (most of them pre-

sented in Chapter 2), but only one currently exists successfully (BOINC).

From the taxonomy specially developed (described in Chapter 2), and its ap-

plication to developed and existing systems, it was possible to infer two of the

reasons for the failure of most of the systems, and the success of only one: ex-

plicit selection of projects and user rankings. In BOINC, users explicitly select the

jobs they are willing to donate cycles to, furthermore, users are rewarded sym-

bolic points for the execution of tasks. These two characteristics leverage both

the altruistic and competitive nature of human feelings. Users donate cycles to

projects they think are worthy and at the same time publicize its donors.

235

236 CHAPTER 8. CONCLUSION

The problem with the definition of tasks by less knowledgeable users was

tackled and described in Chapter 3. The work presented in this chapter takes

as an assumption, the use of off-the self applications as task execution environ-

ment. A simple user interface was developed to help the parametrization of the

different tasks using simple mechanisms. In a declarative way, the user is capa-

ble to define what files are to be processed by each task, along with the tasks’

parameters. The developed user interface allows the definition of the usual data

partitioning schemes existing in Bag-of-Tasks problems: different file per task,

different arguments per task (parameter sweeping), partition of a numerical data

set (uni or bidimensional).

These task definition mechanisms were integrated with SPADE, a simple sched-

uler of bag-of-tasks to LANs. SPADE allows the execution of tasks whose execu-

tion engine is a previously installed application in remote computers scattered

in a LAN. With respect to configuration needs, SPADE is lightweight, since it is

to be executed in a restricted environment. Remote computer announcements

are accomplished by means of periodic broadcast, eliminating any directory ser-

vice. The processing software are off-the-shelf applications that were previously

installed, and no security mechanisms are required, since all the infrastructure is

controlled by the owner of the LAN.

Another form of bag-of-tasks creation, is to programmatically define the code

to be executed by each of the tasks. As seen in Chapter 2, some programming

models are presented, none of which is suitable to users only capable of writing

simple sequential code. In Chapter 4, a transparent parallelization mechanism is

presented. Users develop sequential applications, with lengthy processing loops,

and the developed middleware parallelizes them, and executes each independent

tasks in a thread or remote computer. The system just requires a simple configu-

ration file stating what methods are to be executed concurrently.

This bag-of-tasks definition mechanism requires users to have some program-

ming knowledge, but reduces the burden of developing the parallel version. Fur-

237

thermore, the user only writes one version of the applications, independently of

the execution environment: uniprocessor, shared memory processor (with tasks

executed in different threads), or cluster (with tasks executed on different remote

computers). The idea of transparently transforming sequential applications can

also be applied to other interpreted/managed languages (such as Java, R, Matlab)

to help users take advantage of available resources.

One good source for computing power is the Internet, and its characteristics

make BOINC a good a starting point for a truly universal Distributed Comput-

ing infrastructure, where users donate cycles (already possible) but also create

work that is to be executed by others. To achieve that, nuBOINC was developed

(Chapter 5).

nuBOINC extends BOINC to allow any user to create jobs that are later ex-

ecuted in remote computers. The main contribution of this work is the use of

off-the-shelf applications as execution environments for the tasks. Users are only

required to define the input files, and configuration parameters of those off-the-

shelf applications. Later, nuBOINC transfers those input files to the donor com-

puters, executes those existing applications, and returns the results.

The use of off-the shelf applications as processing engines has a series of ad-

vantages. These are the tools users already use, therefore knowing how to con-

figure them, exist in most areas of knowledge, and allow donors to know for

what they are donating cycles to. In nuBOINC, donors are required to have the

off-the-shelf application previously installed. Most probably, users already had it

installed, use it frequently, and explicitly have chosen to donate cycles to projects

using it. This goes in line with the altruistic feeling, since users are tempted to

donate cycles to those that have similar problems.

Up until this moment only solutions to the use of LAN clusters and Internet

scattered resources were presented. Another available source for computational

resources is the cloud, by means of utility computing infrastructures. Currently,

several providers offer scalable "pay-as-you go" compute capacity (virtual ma-

238 CHAPTER 8. CONCLUSION

chine instances). The use of these infrastructures requires only their setup (out

of the scope of this work), and any cluster-based job creator and scheduler (such

as those presented in Chapters 3 and 4). One relevant distinction of this new

resource lies in the fact that all allocated processing time in a utility computing

infrastructure is required to be payed, in contrast to the obviously free nature of

locally owned clusters or processing power donated in Internet based Distributed

Computing systems. Added to this is the fact that the payment units are usually

one hour, and that any idle time will also be charged.

In order to use a utility computing infrastructure more efficiently, it is neces-

sary to ensure that the idle time is minimum (so that the charged time is close

to the actual processing time) but attaining good speedups. This is possible if

users know for how long their jobs will execute, which is improbable. To address

this issue, a new heuristic was developed (Chapter 6), that during job execution,

decides the optimal number of virtual machines to allocate on the cloud, always

without any user intervention.

The existing mechanisms for resource discovery and evaluation (a require-

ment for the optimal execution of jobs and optimal resource management) have

become unfit due to the new user classes, and execution environments. Multi-

ple classes of users may try to use the same resource, the offered resources are

more diverse in terms of characteristics, and users are requesting more, and more

diverse resources.

In order to allow a more flexible and precise resource and requirement evalu-

ation, a new resource evaluation algebra and middleware was developed (Chap-

ter 7), offering some benefits not currently available, as presented next. The de-

veloped middleware (STARC) dynamically loads the resource evaluation code

(coded in classes following a predetermined format), thus allowing its extensi-

bility and evaluation of any type of resource. This resource evaluation code re-

turns, not a boolean answer (that only states if the requirement is fulfilled by

the resource), but a value between 0.0 and 1.0. This value states the utility of

8.1. FUTURE WORK 239

the resource with respect to a requirement: 1.0 completely fulfils,]0.0, 1.0[par-

tially fulfils, 0.0 does not provide the resource (not even partially). Since any

particular resource evaluation returns a value in [0.0, 1.0], so should any complex

requirement evaluation (expressed in terms of and, or and not operators). This is

accomplished using operators distinct from the usual boolean ones.

Furthermore, four different user classes were defined (administrator, SLA user,

registered user, best-effort user), and assigned each one a different complex re-

quirement evaluation expression policy, thus allowing for higher expressiveness,

since the same resource is evaluated in different manners depending of the user

class.

8.1 Future Work

Although each part is per se a valid contribution to the parallel and distributed

computing research area, they can be further developed, integrated with existing

technologies or even more thoroughly evaluated.

8.1.1 Complementary evaluation

The work presented in Sections 3 and 6 can be further evaluated, in order to

perceive more usages.

The developed user interfaces presented in Chapter 3, although empirically

evaluated, should be submitted to a more formal evaluation, in order to study

its real potential, and proposed changes. The nature of the presented work (user

interaction) is affected by various factors that only usability tests are capable of

detecting and exhaustively demonstrate.

Although the developed heuristic (Chapter 6) presented good results for the

selected workloads, it is desirable to evaluate the heuristic with other workloads

from different areas. Not only can the heuristic be further validated, but also tasks

execution time patterns can be discovered. By evaluating different workloads,

240 CHAPTER 8. CONCLUSION

with such patterns, it can help to increase of the heuristic efficiency.

8.1.2 Complementary development

Although nuBOINC is capable of hosting parallel jobs, it is still far from full pro-

duction level. It is still necessary to develop client software to other architectures

(MAC OS X and Windows) and add to it a new job definition interface. The work

of SPADE can be easily integrated with nuBOINC, in order to create a fully func-

tional truly public Distributed Computing infrastructure. nuBOINC should also

be deployed in the Internet to allow users to create their own jobs. This way

a real infrastructure can be used to validate and help develop new scheduling

algorithms. nuBOINC can also be integrated with the automatic parallelization

framework presented in Chapter 4, in order to allow the easy creation of BOINC

tasks from Python code.

8.1.3 New research topics

The work presented in Chapter 4 used as inspiration a mobile code infrastruc-

ture [SF04]. This previous work can be extended with the help of the utility alge-

bra described in the Chapter 7. A more expressive resource evaluation will allow

a more precise evaluation of the resources existent in different hosts, allowing a

more efficient code execution. The Utility algebra can be used to select the host

where to execute a piece of code, but also to select the class or object more fit to

execute on a host.

Bibliography

[A+08] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron

Collider. JINST, 3:S08003, 2008.

[AAB98a] Yair Amir, Baruch Awerbuch, and Ryan S. Borgstrom. A cost-benefit

framework for online management of a metacomputing system. In

ICE ’98: Proceedings of the first international conference on Information

and computation economies, pages 140–147, New York, NY, USA, Oc-

tober 1998. ACM.

[AAB98b] Yair Amir, Baruch Awerbuch, and Ryan S. Borgstrom. The java mar-

ket: Transforming the internet into a metacomputer. Technical re-

port, Johns Hopkins University, 1998.

[AB08] Joel C. Adams and Tim H. Brom. Microwulf: a beowulf cluster for

every desk. SIGCSE Bull., 40:121–125, March 2008.

[ABG02] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A com-

putational economy for grid computing and its implementation in

the Nimrod-G resource broker. Future Generation Computer Systems,

18(8):1061–1074, 2002.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. Seti@home: an experiment in public-resource comput-

ing. Commun. ACM, 45(11):56–61, 2002.

[AF06] David P. Anderson and Gilles Fedak. The computational and storage

potential of volunteer computing. In IEEE/ACM International Sympo-

sium on Cluster Computing and the Grid, May 2006.

241

242 BIBLIOGRAPHY

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,

Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A

berkeley view of cloud computing. Technical Report UCB/EECS-

2009-28, EECS Department, University of California, Berkeley, Feb

2009.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.

Commun. ACM, 53:50–58, April 2010.

[AFT99] Y. Aridor, M. Factor, and A. Teperman. cJVM: a Single System Image

of a JVM on a Cluster. In International Conference on Parallel Processing,

volume 411, 1999.

[AFT+00] Yariv Aridor, Michael Factor, Avi Teperman, Tamar Eilam, and Assaf

Schuster. Transparently obtaining scalability for java applications on

a cluster. J. of Parallel and Distributed Computing, 60(10), 2000.

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-

tency models: A tutorial. Computer, 29:66–76, December 1996.

[AG03] Martin Alt and Sergei Gorlatch. Future-based RMI: Optimizing com-

positions of remote method calls on the grid. Lecture notes in computer

science, pages 427–430, 2003.

[AKW05] David P. Anderson, Eric Korpela, and Rom Walton. High-

performance task distribution for volunteer computing. In E-

SCIENCE ’05: Proceedings of the First International Conference on e-

Science and Grid Computing, pages 196–203. IEEE Computer Society,

2005.

BIBLIOGRAPHY 243

[All11] The Globus Alliance. Resource management (gram).

http://www.globus.org/toolkit/docs/2.4/gram/, 2011.

[Ama11] Amazon Web Services LLC. Amazon elastic compute cloud (amazon

ec2). http://aws.amazon.com/ec2, January 2011.

[And04] David P. Anderson. Boinc: A system for public-resource comput-

ing and storage. In GRID ’04: Proceedings of the 5th IEEE/ACM Inter-

national Workshop on Grid Computing, pages 4–10, Washington, DC,

USA, 2004. IEEE Computer Society.

[And07] David P. Anderson. Local scheduling for volunteer computing. Par-

allel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE In-

ternational, pages 1–8, 26-30 March 2007.

[App05] Apple Computer, Inc. Xgrid - the simple solution for distributed

computing. http://apple.com/macosx/features/xgrid/, 2005.

[App07] Apple Inc. Xgrid programming guide. http://developer.apple.com/

library/mac/documentation/MacOSXServer/Conceptual/X-

grid_Programming_Guide/Xgrid_Programming_Guide.pdf, October

2007.

[ASGH95] David Abramson, Roc Sosic, Jon Giddy, and B. Hall. Nimrod: A

tool for performing parametised simulations using distributed work-

stations. In The 4th IEEE Symposium on High Performance Distributed

Computing, August 1995.

[Ass10] InfiniBand Trade Association. Intro-

duction to infinibandTM for end users.

http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf,

2010.

244 BIBLIOGRAPHY

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz

Stockinger. Economic models for resource management and schedul-

ing in Grid computing. Concurrency and Computation: Practice and

Experience, 14(13-15):1507–1542, 2002.

[Bar10] Blaise Barney. Introduction to parallel computing.

https://computing.llnl.gov/tutorials/parallel_comp/, December 2010.

[BAS04] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan.

Mercury: supporting scalable multi-attribute range queries. SIG-

COMM Comput. Commun. Rev., 34:353–366, August 2004.

[BAV05] Rajkumar Buyya, David Abramson, and Srikumar Venugopal. The

Grid Economy. Proceedings of the IEEE, 93(3):698–714, 2005.

[BB99] Mark Baker and Rajkumar Buyya. Cluster computing: the commod-

ity supercomputer. Softw. Pract. Exper., 29:551–576, May 1999.

[BBB96] J. Eric Baldeschwieler, Robert D. Blumofe, and Eric A. Brewer. Atlas:

an infrastructure for global computing. In EW 7: Proceedings of the 7th

workshop on ACM SIGOPS European workshop, pages 165–172, New

York, NY, USA, 1996. ACM.

[BBC02] L. Baduel, F. Baude, and D. Caromel. Efficient, flexible, and typed

group communications in java. In Proc. of the ACM-ISCOPE conf. on

Java Grande, pages 28–36. ACM, 2002.

[BBC+06] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes,

Fabrice Huet, Matthieu Morel, and Romain Quilici. Grid Computing:

Software Environments and Tools, chapter Programming, Deploying,

Composing, for the Grid. Springer-Verlag, January 2006.

[BBH+06] Aurelien Bouteiller, Hinde Lilia Bouziane, Thomas Hérault, Pierre

Lemarinier, and Franck Cappello. Hybrid preemptive scheduling

BIBLIOGRAPHY 245

of mpi applications on the grids. In Int. Journal of High Performance

Computing Special issue, 20:77–90, 2006.

[BCD+97] GS Blair, G. Coulson, N. Davies, P. Robin, and T. Fitzpatrick. Adap-

tive middleware for mobile multimedia applications. In Network and

Operating System Support for Digital Audio and Video, 1997., Proceedings

of the IEEE 7th International Workshop on, pages 245–254, 1997.

[BCHM07] F. Baude, D. Caromel, L. Henrio, and M. Morel. Collective interfaces

for distributed components. In CCGRID 2007, IEEE Int. Symposium

on Cluster Computing and the Grid,, 2007.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L.

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.

Xen and the art of virtualization. In Michael L. Scott and Larry L.

Peterson, editors, SOSP, pages 164–177. ACM, 2003.

[Ber05] Johan Berntsson. G2dga: an adaptive framework for internet-based

distributed genetic algorithms. In GECCO ’05: Proceedings of the

2005 workshops on Genetic and evolutionary computation, pages 346–

349. ACM, 2005.

[BFM05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource

Identifier (URI): Generic Syntax. Network Working Group, 2005.

[BG02] Gordon Bell and Jim Gray. What’s next in high-performance com-

puting? Commun. ACM, 45:91–95, February 2002.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an ef-

ficient multithreaded runtime system. SIGPLAN Not., 30(8):207–216,

1995.

246 BIBLIOGRAPHY

[BK88] D.G. Bobrow and G. Kiczales. The common Lisp object system

metaobject kernel: a status report. In Proceedings of the 1988 ACM

conference on LISP and functional programming, pages 309–315. ACM

New York, NY, USA, 1988.

[BKKK97] Arash Baratloo, Mehmet Karaul, Holger Karl, and Zvi M. Kedem.

Knittingfactory: An infrastructure for distributedweb applications.

Technical Report TR 1997ñ748, Courant Institute of Mathematical

Sciences - New York University, November 1997.

[BKKK98] Arash Baratloo, Mehmet Karaul, Holger Karl, and Zvi M. Kedem.

An infrastructure for network computing with Java applets. Concur-

rency: Practice and Experience, 10(11–13):1029–1041, 1998.

[BKKW99] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff. Charlotte:

metacomputing on the web. Future Gener. Comput. Syst., 15(5-6):559–

570, 1999.

[Boa08] OpenMP Architecture Review Board. Openmp application program

interface. http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

[BOI09] Running apps in virtual machines.

http://boinc.berkeley.edu/trac/wiki/VmApps, 2009.

[BOI11] Boincstats. http://boincstats.com/stats/project_graph.php, 2011.

[BPK+99] Henri E. Bal, Aske Plaat, Thilo Kielmann, Jason Maassen, Rob van

Nieuwpoort, and Ronald Veldema. Parallel computing on wide-area

clusters: the albatross project. In In Extreme Linux Workshop, pages

20–24, 1999.

[BSST96] Tim Brecht, Harjinder Sandhu, Meijuan Shan, and Jimmy Talbot.

Paraweb: towards world-wide supercomputing. In EW 7: Proceed-

BIBLIOGRAPHY 247

ings of the 7th workshop on ACM SIGOPS European workshop, pages

181–188. ACM, 1996.

[C+08] The LHCb Collaboration et al. The LHCb detector at the LHC. Jour-

nal of Instrumentation, 3(08):S08005, 2008.

[CA06] Javier Celaya and Unai Arronategui. Ya: Fast and scalable discovery

of idle cpus in a p2p network. In GRID ’06: Proceedings of the 7th

IEEE/ACM International Conference on Grid Computing, pages 49–55.

IEEE Computer Society, September 2006.

[CBK+08] Sungjin Choi, Rajkumar Buyya, Hongsoo Kim, Eunjoung Byun,

Maengsoon Baik, Joonmin Gil, and Chanyeol Park. A taxonomy of

desktop grids and its mapping to state-of-the-art systems. Technical

Report GRIDS-TR-2008-3, Grid Computing and Distributed Systems

Laboratory, The University of Melbourne, Australia, February 2008.

[CBS+03] Walfredo Cirne, Francisco Brasileiro, Jacques Sauvé, Nazareno An-

drade, Daniel Paranhos, Elizeu Santos-neto, Raissa Medeiros, and

Federal Campina Gr. Grid computing for bag of tasks applications.

In In Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and

EGovernment, 2003.

[CCEB03] Andrew Chien, Brad Calder, Stephen Elbert, and Karan Bhatia. En-

tropia: architecture and performance of an enterprise desktop grid

system. J. Parallel Distrib. Comput., 63:597–610, May 2003.

[CCI+97] Bernd O. Christiansen, Peter Cappello, Mihai F. Ionescu, Michael O.

Neary, Klaus E. Schauser, and Daniel Wu. Javelin: Internet-based

parallel computing using java. Concurrency: Practice and Experience,

9:1139–1160, 1997.

248 BIBLIOGRAPHY

[CCNS97] P. Cappello, B. Christiansen, M. Neary, and K. Schauser. Market-

based massively parallel internet computing. In Third Working Conf.

on Massively Parallel Programming Models, pages 118–129, Nov 1997.

[CFCS03] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. Maan: A

multi-attribute addressable network for grid information services. In

Proceedings of the 4th International Workshop on Grid Computing, GRID

’03, pages 184–, Washington, DC, USA, 2003. IEEE Computer Society.

[CFK+98] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,

W. Smith, and S. Tuecke. A resource management architecture for

metacomputing systems. Lecture Notes in Computer Science, 1459:62–

82, 1998.

[CFSD90] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC 1157: The Simple

Network Management Protocol. Internet Activities Board, 1990.

[CGM+03] A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers,

P. Taylor, R. Byrom, L. Field, S. Hicks, et al. R-GMA: An information

integration system for grid monitoring. Lecture Notes in Computer

Science, pages 462–481, 2003.

[CGMW03] R. Chinnici, M. Gudgin, J.J. Moreau, and S. Weerawarana. Web

services description language (WSDL) version 1.2 part 1: Core lan-

guage. World Wide Web Consortium, Working Draft WD-wsdl12-

20030611, 2003.

[CH07] M. Cai and K. Hwang. Distributed aggregation algorithms with

load-balancing for scalable grid resource monitoring. In Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-

tional, pages 1 –10, march 2007.

BIBLIOGRAPHY 249

[CJGJ78] EG Coffman Jr, MR Garey, and DS Johnson. An application of bin-

packing to multiprocessor scheduling. SIAM Journal on Computing,

7:1, 1978.

[CK89] William W. Cotterman and Kuldeep Kumar. User cube: a taxonomy

of end users. Commun. ACM, 32:1313–1320, November 1989.

[CKB+07] SungJin Choi, HongSoo Kim, EunJoung Byun, MaengSoon Baik,

SungSuk Kim, ChanYeol Park, and ChongSun Hwang. Character-

izing and classifying desktop grid. Cluster Computing and the Grid,

2007. CCGRID 2007. Seventh IEEE International Symposium on, pages

743–748, May 2007.

[CKBH06] Sungjin Choi, Hongsoo Kim, Eunjung Byun, and Chongsun Hwang.

A taxonomy of desktop grid systems focusing on scheduling. Techni-

cal Report KU-CSE-2006-1120-01, Department of Computer Science

and Engeering , Korea University, November 2006.

[CKK+99] Steve J. Chapin, Dimitrios Katramatos, John Karpovich, An-

drew Grimshaw Karpovich, and Andrew Grimshaw. Resource man-

agement in Legion. Future Generation Computer Systems, 15(5-6):583–

594, 1999.

[CL06] L. Chunlin and L. Layuan. QoS based resource scheduling by com-

putational economy in computational grid. Information Processing

Letters, 98(3):119–126, 2006.

[CLM05] Xing Cai, Hans Petter Langtangen, and Halvard Moe. On the perfor-

mance of the python programming language for serial and parallel

scientific computations. Sci. Program., 13:31–56, January 2005.

[CLZB00] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuris-

tics for scheduling parameter sweep applications in grid environ-

250 BIBLIOGRAPHY

ments. Heterogeneous Computing Workshop, 2000. (HCW 2000) Pro-

ceedings. 9th, pages 349–363, 2000.

[CM02] Peter Cappello and Dimitrios Mourloukos. Cx: A scalable, robust

network for parallel computing. Scientific Programming, 10(2):159–

171, 2002.

[cor08] ARM11 MPCoreTM Processor Technical Reference Manual. ARM Ltd.,

2008.

[CS07] C. A. Cunha and J. L. Sobral. An annotation-based framework for

parallel computing. In Proceedings of the 15th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing, PDP

’07, pages 113–120, Washington, DC, USA, 2007. IEEE Computer So-

ciety.

[CT10] University of Wisconsin-Madison Condor Team, Computer Sci-

ences Department. Hawkeye a monitoring and management tool

for distributed systems. http://www.cs.wisc.edu/condor/hawkeye, 2010.

[Daw83] John M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys.,

55(2):403–447, Apr 1983.

[Dev10] Advanced Micro Devices. Family 10h amd

phenomTM ii processor product data sheet.

http://support.amd.com/us/Processor_TechDocs/46878.pdf, April 2010.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In OSDI, pages 137–150, 2004.

[DH00] M. Dharsee and C.W.V. Hogue. Mobidick: a tool for distributed

computing on the internet. Heterogeneous Computing Workshop, 2000.

(HCW 2000) Proceedings. 9th, pages 323–335, 2000.

BIBLIOGRAPHY 251

[Dis10a] Distributed Management Task Force, Inc. DMTF CIM operations

over http. http://www.dmtf.org/standards/wbem, 2010.

[Dis10b] Distributed Management Task Force, Inc. DMTF CIM specification.

Phttp://www.dmtf.org/standards/cim, 2010.

[EH08] Constantinos Evangelinos and Chris N. Hill. Cloud computing for

parallel scientific hpc applications: Feasibility of running coupled

atmosphere-ocean climate models on amazon’s ec2. In Proceedings of

Cloud Computing and its Applications, http://www.cca08.org, October

2008.

[EKJ+05] U. Egede, K.Harrison, R.W.L. Jones, A. Maier, J.T. Moscicki, G.N.

Patrick, A. Soroko, and C.L. Tan. Ganga user interface for job def-

inition and management. In Proc. Fourth International Workshop on

Frontier Science: New Frontiers in Subnuclear Physics, Italy, September

2005. Laboratori Nazionali di Frascati.

[Eno08] Enomaly Inc. Enomaly : Elastic computing. http://enomalism.com,

2008.

[EVF10] S. Esteves, L. Veiga, and P. Ferreira. Gridp2p: Resource usage in grids

and peer-to-peer systems. In Parallel Distributed Processing, Work-

shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium

on, April 2010.

[FC00] Salvatore Filippone and Michele Colajanni. Psblas: a library for par-

allel linear algebra computation on sparse matrices. ACM Trans.

Math. Softw., 26(4):527–550, 2000.

[FDF03] R.J. Figueiredo, P.A. Dinda, and J.A.B. Fortes. A case for grid com-

puting on virtual machines. Distributed Computing Systems, 2003. Pro-

ceedings. 23rd International Conference on, pages 550–559, May 2003.

252 BIBLIOGRAPHY

[FFK+06] Ian T. Foster, Timothy Freeman, Katarzyna Keahey, Doug Scheftner,

Borja Sotomayor, and Xuehai Zhang. Virtual clusters for grid com-

munities. In CCGRID, pages 513–520. IEEE Computer Society, 2006.

[FG91] R. Faulkner and R. Gomes. The process file system and process

model in unix system v. In USENIX Winter, pages 243–252, 1991.

[FGNC01] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: a generic

global computing system2001. Cluster Computing and the Grid, 2001.

Proceedings. First IEEE/ACM International Symposium on, pages 582–

587, 2001.

[FK99] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Com-

puting Infrastructure, chapter 2 - Computational Grids. Morgan-

Kaufman, 1999.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the

grid: Enabling scalable virtual organizations. The International Jour-

nal of Supercomputer Applications, 15(3), 2001.

[Fly72] Michael J. Flynn. Some computer organizations and their effective-

ness. IEEE Transactions on Computers, 21(9):948–960, September 1972.

[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1995.

[Fos02] Ian Foster. What is the grid? a three point checklist. GRID today,

1(6):32–36, 2002.

[Fos05] I. Foster. Globus toolkit version 4: Software for service-oriented sys-

tems. In IFIP International Conference on Network and Parallel Comput-

ing, pages 2–13. Springer-Verlag, 2005.

BIBLIOGRAPHY 253

[FR95] Dror G. Feitelson and Larry Rudolph. Parallel job scheduling: Is-

sues and approaches. In Proceedings of the Workshop on Job Schedul-

ing Strategies for Parallel Processing, pages 1–18, London, UK, 1995.

Springer-Verlag.

[FTL+02] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-

G: A computation management agent for multi-institutional grids.

Cluster Computing, 5(3):237–246, 2002.

[FWP87] Charbel Farhat, Edward Wilson, and Graham Powell. Solution of

finite element systems on concurrent processing computers. Engi-

neering with Computers, 2:157–165, 1987. 10.1007/BF01201263.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S.

Sunderam. Pvm: Parallel virtual machine. a users’ guide and tutorial

for networked parallel computing. Cambridge, MA, USA, 1994. MIT

Press.

[GCLG99] Yaron Goland, Ting Cai, Paul Leach, and Ye Gu. Simple Service Dis-

covery Protocol/1.0 Operating without an Arbiter. Internet Engineering

Task Force, 1999.

[Gha96] Kourosh Gharachorloo. Memory consistency models for shared-memory

multiprocessors. PhD thesis, Stanford, CA, USA, 1996. UMI Order No.

GAX96-20480.

[GL95] W.W. Gropp and E.L. Lusk. A taxonomy of programming models for

symmetric multiprocessors and smp clusters. In Programming Models

for Massively Parallel Computers, 1995, pages 2 –7, October 1995.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-

bons, Anoop Gupta, and John Hennessy. Memory consistency

and event ordering in scalable shared-memory multiprocessors.

SIGARCH Comput. Archit. News, 18:15–26, May 1990.

254 BIBLIOGRAPHY

[GNFC00] Cécile Germain, Vincent Néri, Gilles Fedak, and Franck Cappello.

Xtremweb: Building an experimental platform for global computing.

In GRID ’00: Proceedings of the First IEEE/ACM International Workshop

on Grid Computing, pages 91–101. Springer-Verlag, 2000.

[Gov03] Chittibabu Govindarajulu. End users: who are they? Commun. ACM,

46:152–159, September 2003.

[GS97] Paul A. Gray and Vaidy S. Sunderam. Icet: Distributed computing

and java. Concurrency - Practice and Experience, 9(11):1161–1167, 1997.

[GS06] Rohit Gupta and Varun Sekhri. Compup2p: An architecture for in-

ternet computing using peer-to-peer networks. IEEE Trans. Parallel

Distrib. Syst., 17(11):1306–1320, 2006.

[GTLJ07] Paul Grace, Eddy Truyen, Bert Lagaisse, and Wouter Joosen. The case

for aspect-oriented reflective middleware. In ARM ’07: Proceedings

of the 6th international workshop on Adaptive and reflective middleware,

pages 1–6, New York, NY, USA, 2007. ACM.

[Gut99] Erik Guttman. Service location protocol: Automatic discovery of ip

network services. IEEE Internet Computing, 3(4):71–80, July 1999.

[GW96] Andrew S. Grimshaw and William A. Wulf. Legion - A view from 50,

000 feet. In HPDC ’96: Proceedings of the High Performance Distributed

Computing (HPDC ’96). IEEE Computer Society, 1996.

[HMF+08] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate

Keahey, Bruce Berriman, and John Good. On the use of cloud com-

puting for scientific workflows. eScience, IEEE International Conference

on, 0:640–645, 2008.

[HML04] E. Huedo, R.S. Montero, and I.M. Llorente. Experiences on adaptive

grid scheduling of parameter sweep applications. Parallel, Distributed

BIBLIOGRAPHY 255

and Network-Based Processing, 2004. Proceedings. 12th Euromicro Con-

ference on, pages 28–33, Feb. 2004.

[HMRT03] B. Haumacher, T. Moschny, J. Reuter, and WF Tichy. Transparent dis-

tributed threads for java. In Parallel and Distributed Processing Sympo-

sium, 2003. Proceedings. International, page 7, 2003.

[IEE11] IEEE-SA Standards Board. 802.3: Csma/cd (ethernet) access method.

http://standards.ieee.org/about/get/802/802.3.html, January 2011.

[Ima11] ImageMagick Studio LLC. Imagemagick.

http://www.imagemagick.org/, 2011.

[Int11] Intel R© 64 and IA-32 Architectures Software Developer’s Manual - Volume

1: Basic Architecture. Intel Corporation, 2011.

[Jon11] Irmen de Jong. Pyro - python remote objects. http://xs4all.nl/ ir-

men/pyro3, 2011.

[JS05] Mick Jordan and Christopher Stewart. Adaptive middleware for dy-

namic component-level deployment. In ARM ’05: Proceedings of the

4th workshop on Reflective and adaptive middleware systems, New York,

NY, USA, 2005. ACM.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms

for allocating directed task graphs to multiprocessors. ACM Comput.

Surv., 31(4):406–471, 1999.

[Kam07] A. Kaminsky. Parallel Java: A Unified API for Shared Memory and

Cluster Parallel Programming in 100% Java. In IEEE International Par-

allel and Distributed Processing Symposium, 2007. IPDPS 2007, pages

1–8, 2007.

[Kar98] Mehmet Karaul. Metacomputing and Resource Allocation on the World

Wide Web. PhD thesis, New York University, May 1998.

256 BIBLIOGRAPHY

[KBM+00] Thilo Kielmann, Henri E. Bal, Jason Maassen, Rob van Nieuwpoort,

Ronald Veldema, Rutger Hofman, Ceriel Jacobs, and Kees Verstoep.

The albatross project: Parallel application support for computational

grids. In In Proceedingof the 1st European GRID Forum Workshop, pages

341–348, 2000.

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The

case for reflective middleware. Commun. ACM, 45(6):33–38, 2002.

[KCZ92] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release con-

sistency for software distributed shared memory. SIGARCH Comput.

Archit. News, 20:13–21, April 1992.

[KG06] Giannis Kouretis and Fotis Georgatos. Livewn, cpu scavenging in

the grid era. http://arxiv.org/abs/cs/0608045, arXiv.org„ August 2006.

[KK11] Leyli Mohammad Khanli and Saeed Kargar. Frdt: Footprint resource

discovery tree for grids. Future Gener. Comput. Syst., 27:148–156,

February 2011.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. In Mehmet Aksit and Satoshi Matsuoka,

editors, ECOOP’97 — Object-Oriented Programming, volume 1241 of

Lecture Notes in Computer Science, pages 220–242. Springer Berlin /

Heidelberg, 1997. 10.1007/BFb0053381.

[LBRV05a] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venu-

gopal. Alchemi: A .net-based enterprise grid computing system.

In Proceedings of the 6th International Conference on Internet Computing

(ICOMP’05). CSREA Press, Las Vegas, USA, June 2005.

[LBRV05b] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venu-

gopal. High Performance Computing: Paradigm and Infrastructure,

BIBLIOGRAPHY 257

chapter Peer-to-Peer Grid Computing and a .NET-based Alchemi

Framework. Wiley Press, USA, June 2005.

[LD07] Piotr Luszczek and Jack Dongarra. High performance development

for high end computing with python language wrapper (plw). Int. J.

High Perform. Comput. Appl., 21:360–369, August 2007.

[LdAL02] Marcelo Lobosco, Claudio Luis de Amorim, and Orlando Loques.

Java for high-performance network-based computing: a survey. Con-

currency and Computation: Practice and Experience, 14(1):1–31, 2002.

[Lei] University of Leiden. Leiden classical. http://boinc.gorlaeus.net/.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual mem-

ory systems. ACM Trans. Comput. Syst., 7:321–359, November 1989.

[LL07] C. Li and L. Li. Utility-based QoS optimisation strategy for multi-

criteria scheduling on the grid. Journal of Parallel and Distributed Com-

puting, 67(2):142–153, 2007.

[LLM88] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a

hunter of idle workstations. In Proceedings of the 8th Intl.Conf. of Dis-

tributed Computing Systems. IEEE Computer Society, June 1988.

[Lon11] J.D. Long. Segue for r: Parallel r in the cloud two lines of code!

http://code.google.com/p/segue/, January 2011.

[LR00] David Lucking-Reiley. Vickrey auctions in practice: From

nineteenth-century philately to twenty-first-century e-commerce.

Journal of Economic Perspectives, 14(3):183–192, Summer 2000.

[LS07] Sven De Labey and Eric Steegmans. A type system extension

for middleware interactions. In Proceedings of the 1st workshop on

Middleware-application interaction: in conjunction with Euro-Sys 2007,

pages 37–42. ACM New York, NY, USA, 2007.

258 BIBLIOGRAPHY

[LSHS05] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan

Snavely. Are user runtime estimates inherently inaccurate? In Job

Scheduling Strategies for Parallel Processing, 10th International Work-

shop, JSSPP 2004. Springer, 2005.

[MB11] Stefano Masini and Paolo Bientinesi. High-performance parallel

computations using python as high-level language. In Mario Guar-

racino, Frédéric Vivien, Jesper Träff, Mario Cannatoro, Marco Dane-

lutto, Anders Hast, Francesca Perla, Andreas Knüpfer, Beniamino

Di Martino, and Michael Alexander, editors, Euro-Par 2010 Parallel

Processing Workshops, volume 6586 of Lecture Notes in Computer Sci-

ence, pages 541–548. Springer Berlin / Heidelberg, 2011.

[MBE+09] J.T. Moscicki, F. Brochu, J. Ebke, U. Egede, J. Elmsheuser, K. Harrison,

R.W.L. Jones, H.C. Lee, D. Liko, A. Maier, A. Muraru, G.N. Patrick,

K. Pajchel, W. Reece, B.H. Samset, M.W. Slater, A. Soroko, C.L. Tan,

D.C. van der Ster, and M. Williams. Ganga: A tool for computational-

task management and easy access to grid resources. Computer Physics

Communications, 180(11):2303 – 2316, 2009.

[McL74] E.R McLean. End users as application developers. In Guide/Share

Application Development Symposium, October 1974.

[Mes94] Message Passing Interface Forum. MPI: A message-passing interface

standard. Technical report, University of Tennessee, Knoxville, TN,

USA, 1994.

[MF01] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictabil-

ity, workloads, and user runtime estimates in scheduling the ibm

sp2 with backfilling. IEEE Trans. Parallel Distrib. Syst., 12(6):529–543,

2001.

BIBLIOGRAPHY 259

[Mik05] Henri Mikkonen. Enabling computational grids using jxta-

technology. In Peer-to-peer technologies, networks and systems - Seminar

on Internetworking. Helsinki University of Technology, 2005.

[MK03a] Richard Mason and Wayne Kelly. Peer-to-peer cycle sharing via .net

remoting. In AusWeb 2003. The Ninth Australian World Wide Web Con-

ference, 2003.

[MK03b] Tanya McGill and Chris Klisc. End user development and the world

wide web. Research working paper series IT/03/01, Murdoch Uni-

versity. School of Information Technology, 2003.

[MK05] Richard Mason and Wayne Kelly. G2-p2p: a fully decentralised fault-

tolerant cycle-stealing framework. In ACSW Frontiers ’05: Proceedings

of the 2005 Australasian workshop on Grid computing and e-research. Aus-

tralian Computer Society, Inc., 2005.

[MSDS10] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. Top

500 supercomputers sites. http://www.top500.org/, November 2010.

[MSFV11] João Morais, João Silva, Paulo Ferreira, and Luís Veiga. Transparent

adaptation of e-science applications for parallel and cycle-sharing

infrastructures. In Pascal Felber and Romain Rouvoy, editors, Dis-

tributed Applications and Interoperable Systems, volume 6723 of Lecture

Notes in Computer Science, pages 292–300. Springer Berlin / Heidel-

berg, 2011.

[MW82] Paul R Milgrom and Robert J Weber. A theory of auctions and com-

petitive bidding. Econometrica, 50(5):1089–1122, September 1982.

[Myr09] Myricom. Myrinet overview. http://www.myricom.com/myrinet/overview/,

October 2009.

260 BIBLIOGRAPHY

[NBK+99] Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, and

Peter Cappello. Javelin++: scalability issues in global computing. In

JAVA ’99: Proceedings of the ACM 1999 conference on Java Grande, pages

171–180. ACM, 1999.

[NCHL10] Jon K Nilsen, Xing Cai, Bjørn Høyland, and Hans Petter Langtan-

gen. Simplifying the parallelization of scientific codes by a function-

centric approach in python. Computational Science & Discovery,

3(1):015003, 2010.

[NCS+05] M.A.S. Netto, R.N. Calheiros, R.K.S. Silva, C.A.R. De Rose, C. North-

fleet, and W. Cirne. Transparent resource allocation to exploit idle

cluster nodes in computational grids. e-Science and Grid Computing,

2005. First International Conference on, December 2005.

[Nie11] Ole Nielsen. pypar parallel - programming for python.

http://code.google.com/p/pypar/, 2011.

[NIM00] High performance parametric modeling with nimrod/g: Killer ap-

plication for the global grid? In Proceedings of the 14th International

Symposium on Parallel and Distributed Processing, pages 520–, Wash-

ington, DC, USA, 2000. IEEE Computer Society.

[NLRC98] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed

computation over the internet - the popcorn project. In ICDCS ’98:

Proceedings of the The 18th International Conference on Distributed Com-

puting Systems, page 592. IEEE Computer Society, 1998.

[NPRC00] Michael O. Neary, Alan Phipps, Steven Richman, and Peter R. Cap-

pello. Javelin 2.0: Java-based parallel computing on the internet.

In Euro-Par 2000, Parallel Processing, 6th International Euro-Par Con-

ference, Munich, Germany, August 29 - September 1, 2000, Proceedings,

2000.

BIBLIOGRAPHY 261

[NWG+08] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,

Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. The euca-

lyptus open-source cloud-computing system. In Proceedings of Cloud

Computing and Its Applications, http://www.cca08.org, October 2008.

[oC07] University of California. BOINC WarapperApp – legacy applica-

tions. http://boinc.berkeley.edu/trac/wiki/WrapperApp, 2007.

[ODDG03] A. Othman, P. Dew, K. Djemamem, and I. Gourlay. Adaptive grid

resource brokering. Cluster Computing, 2003. Proceedings. 2003 IEEE

International Conference on, pages 172–179, Dec. 2003.

[OFV11] Pedro Oliveira, Paulo Ferreira, and Luís Veiga. Gridlet economics:

resource management models and policies for cycle-sharing systems.

In Proceedings of the 6th international conference on Advances in grid and

pervasive computing, GPC’11, pages 72–83, Berlin, Heidelberg, 2011.

Springer-Verlag.

[OLS02] Licínio Oliveira, Luís Lopes, and Fernando Silva. P3: Parallel peer to

peer - an internet parallel programming environment. Lecture Notes

in Computer Science, 2376, 2002.

[Ous82] John Ousterhout. Scheduling techniques for concurrent systems. In

Proc. 3rd International Conference on Distributed Computing Systems,

pages 22–30, June 1982.

[Pan88] Raymond R. Panko. End user computing: management, applications, &

technology. John Wiley & Sons, Inc., New York, NY, USA, 1988.

[Pea11] Kirk Pearson. Distributed computing.

http://www.distributedcomputing.info/, January 2011.

[Per08] Persistence of Vision Raytracer Pty. Ltd. Persistence of vision ray-

tracer. http://www.povray.org/, 2008.

262 BIBLIOGRAPHY

[PiC10] PiCloud, Inc. Picloud | cloud computing. simplified.

http://www.picloud.com/, 2010.

[PMNP06] Simon Parsons, Marek Marcinkiewicz, Jinzhong Niu, and Steve

Phelps. Everything you wanted to know about double auctions but

were afraid to (bid or) ask. Technical report, Department of Com-

puter Science, Graduate School and University Center, City Univer-

sity of New York, 2006.

[PSS97] Hernâni Pedroso, Luis M. Silva, and João Gabriel Silva. Web-

based metacomputing with JET. Concurrency: Practice and Experience,

9(11):1169–1173, 1997.

[Pyt08] Python Software Foundation. Python programming language.

http://python.org/, 2008.

[R F11] R Foundation. The r project for statistical computing. http://www.r-

project.org/, 2011.

[Rey10] Christopher J. Reynolds. Distributed video rendering using blender,

virtualbox, and boinc. In The 6th BOINC Workshop, 2010.

[RF83] John F. Rockart and Lauren S. Flannery. The management of end user

computing. Commun. ACM, 26:776–784, October 1983.

[RFC+08] César A. F. De Rose, Tiago Ferreto, Rodrigo N. Calheiros, Walfredo

Cirne, Lauro B. Costa, and Daniel Fireman. Allocation strategies for

utilization of space-shared resources in bag of tasks grids. Future

Gener. Comput. Syst., 24(5):331–341, 2008.

[RH88] Suzanne Rivard and Sid L. Huff. Factors of success for end-user com-

puting. Commun. ACM, 31:552–561, May 1988.

BIBLIOGRAPHY 263

[RLS99] Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmak-

ing: An extensible framework for distributed resource management.

Cluster Computing, 2(2):129–138, June 1999.

[Ros90] J. Rose. RFC 1158: Management Information Base for network manage-

ment of TCP/IP-based internets: MIB-II. Internet Activities Board, 1990.

[RR99] Radu Rugina and Martin Rinard. Automatic parallelization of divide

and conquer algorithms. SIGPLAN Not., 34:72–83, May 1999.

[RRV10] P.D. Rodrigues, C. Ribeiro, and L Veiga. Incentive mechanisms

in peer-to-peer networks. In Parallel Distributed Processing, Work-

shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium

on, pages 1–8, April 2010.

[Sar01] Luis F. G. Sarmenta. Volunteer Computing. PhD thesis, Massachusetts

Institute of Technology, June 2001.

[Sch07] Bertil Schmidt. A survey of desktop grid applications for e-science.

International Journal of Web and Grid Services, 3(3):354–368, 2007.

[SCI11] Python for scientific computing conference.

http://conference.scipy.org/scipy2011/talks.php, Austin, texas,

USA, July 2011.

[SCM07] João Sobral, Carlos Cunha, and Miguel Monteiro. Aspect oriented

pluggable support for parallel computing. In Michel Daydé, José

Palma, Álvaro Coutinho, Esther Pacitti, and João Lopes, editors, High

Performance Computing for Computational Science - VECPAR 2006, vol-

ume 4395 of Lecture Notes in Computer Science, pages 93–106. Springer

Berlin / Heidelberg, 2007. 10.1007/978-3-540-71351-7_8.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael

Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sug-

264 BIBLIOGRAPHY

erman, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and

Pat Hanrahan. Larrabee: a many-core x86 architecture for visual

computing. ACM Trans. Graph., 27:18:1–18:15, August 2008.

[Seg10] Ben Segal. Boinc-vm and volunteer cloud computing. In The 6th

BOINC Workshop, 2010.

[Sek05] Varun Sekhri. Compup2p: A light-weight architecture for internet

computing. Master’s thesis, Iowa State University, Ames, Iowa, 2005.

[SF04] João Nuno Silva and Paulo Ferreira. Remote code execution on ubiq-

uitous mobile applications. In Ambient Intelligence: Second European

Symposium, EUSAI 2004, Eindhoven, The Netherlands, November 8-11,

2004. Proceedings, pages 172–183. Springer-verlag, 2004.

[SFV10] João Nuno Silva, Paulo Ferreira, and Luís Veiga. Service and resource

discovery in cycle-sharing environments with a utility algebra. In

Parallel Distributed Processing (IPDPS), 2010 IEEE International Sym-

posium on, pages 1 –11, 2010.

[SFV11] João Nuno Silva, Paulo Ferreira, and Luís Veiga. A2ha - automatic

and adaptive host allocation in utility computing for bag-of-tasks.

Accepted for publication on JISA - Journal of Internet Services and

Applications, Springer, 2011.

[SG00] João Nuno Silva and Paulo Guedes. Ship hull hydrodynamic anal-

ysis using distributed shared memory. In Applied Parallel Comput-

ing, New Paradigms for HPC in Industry and Academia, 5th Interna-

tional Workshop, PARA 2000 Bergen, Norway, June 18-20, 2000 Proceed-

ings, volume 1947 of Lecture Notes in Computer Science, pages 366–372.

Springer, 2000.

BIBLIOGRAPHY 265

[SH99] Luis F. G. Sarmenta and Satoshi Hirano. Bayanihan: building and

studying Web-based volunteer computing systems using Java. Fu-

ture Generation Computer Systems, 15(5–6):675–686, 1999.

[She09] Haiying Shen. A p2p-based intelligent resource discovery mecha-

nism in internet-based distributed systems. J. Parallel Distrib. Com-

put., 69:197–209, February 2009.

[Sil03] João Nuno Silva. Optimização e avaliação de aplicações de simu-

lações em sistemas paralelos. Master’s thesis, Instituto Superior Téc-

nico, 2003.

[Sim09] SimPy Developer Team. Simpy homepage.

http://simpy.sourceforge.net/, 2009.

[SK86] Mary Sumner and Robert Klepper. End-user application develop-

ment: practices, policies, and organizational impacts. In Proceed-

ings of the twenty-second annual computer personnel research conference

on Computer personnel research conference, SIGCPR ’86, pages 102–116,

New York, NY, USA, 1986. ACM.

[SKF08] Borja Sotomayor, Kate Keahey, and Ian T. Foster. Combining batch

execution and leasing using virtual machines. In Manish Parashar,

Karsten Schwan, Jon B. Weissman, and Domenico Laforenza, editors,

HPDC, pages 87–96. ACM, 2008.

[Ski88] David B. Skillicorn. A taxonomy for computer architectures. Com-

puter, 21:46–57, November 1988.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and

Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proceedings of the 2001 conference on Ap-

plications, technologies, architectures, and protocols for computer commu-

266 BIBLIOGRAPHY

nications, SIGCOMM ’01, pages 149–160, New York, NY, USA, 2001.

ACM.

[Som07] M.F. Somers. Leiden grid infrastructure.

http://fwnc7003.leidenuniv.nl/LGI/docs/, 2007.

[SPM+06] J.M. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster,

M. DíArcy, and A. Chervenak. Monitoring the grid with the Globus

Toolkit MDS4. In Journal of Physics: Conference Series, volume 46,

pages 521–525. Institute of Physics Publishing, 2006.

[SPS97] Luis M. Silva, Hernâni Pedroso, and João Gabriel Silva. The design

of jet: A java library for embarrassingly parallel applications. In

A. Bakkers, editor, Parallel programming and Java: WoTUG-20, pages

210–228. IOS Press, 1997.

[SSBS99] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F.

Savarese. How to build a Beowulf: a guide to the implementation and

application of PC clusters. MIT Press, Cambridge, MA, USA, 1999.

[SSP+97] Klaus E. Schauser, Chris J. Scheiman, Gyung-Leen Park, Behrooz Shi-

razi, and Jeff Marquis. Superweb: Towards a global web-based par-

allel computing infrastructure. In IPPS ’97: Proceedings of the 11th

International Symposium on Parallel Processing, pages 100–106. IEEE

Computer Society, 1997.

[SSRP09] William R. Scullin, James B. Snyder, Nick Romero, and Massimo Di

Pierro. Python for scientific and high python for scientific and high

performance computing. Tutorial at 2009 International Conference

on High Performance Computing, Networking, Storage and Analy-

sis - SC09, 2009.

BIBLIOGRAPHY 267

[Ste99] W. Richard Stevens. UNIX network programming, volume 2 (2nd ed.):

interprocess communications, chapter Part 4. Shared Memory. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1999.

[Ste09] Aad J. van der Steen. Overview of recent supercomputers. Dutch Na-

tional Computer facilities Foundation, 2009.

[STS05] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2p-based middleware

enabling transfer and aggregation of computational resources. Clus-

ter Computing and the Grid, 2005. CCGrid 2005. IEEE International Sym-

posium on, 1:259–266, May 2005.

[SV96] Sartaj Sahni and George Vairaktarakis. The master-slave paradigm

in parallel computer and industrial settings. Journal of Global Opti-

mization, 9:357–377, 1996. 10.1007/BF00121679.

[SVF08a] João Nuno Silva, Luís Veiga, and Paulo Ferreira. Heuristic for re-

sources allocation on utility computing infrastructures. In Proceed-

ings of the 6th international workshop on Middleware for grid comput-

ing, held at the ACM/IFIP/USENIX International Middleware Conference,

MGC ’08, pages 9:1–9:6, New York, NY, USA, 2008. ACM.

[SVF08b] João Nuno Silva, Luís Veiga, and Paulo Ferreira. nuboinc: Boinc

extensions for community cycle sharing. IEEE International Confer-

ence on Self-Adaptive and Self-Organizing Systems Workshops, 0:248–

253, 2008.

[SVF08c] João Nuno Silva, Luís Veiga, and Paulo Ferreira. Spade: scheduler

for parallel and distributed execution from mobile devices. In Pro-

ceedings of the 6th international workshop on Middleware for pervasive and

ad-hoc computing, held at the ACM/IFIP/USENIX International Middle-

ware Conference, MPAC ’08, pages 25–30, New York, NY, USA, 2008.

ACM.

268 BIBLIOGRAPHY

[SVF09] João Nuno Silva, Luís Veiga, and Paulo Ferreira. Mercury: a reflec-

tive middleware for automatic parallelization of bags-of-tasks. In

Proceedings of the 8th International Workshop on Adaptive and Reflec-

tive MIddleware, held at the ACM/IFIP/USENIX International Middle-

ware Conference, ARM ’09, pages 1:1–1:6, New York, NY, USA, 2009.

ACM.

[SYAD05] K Seymour, A YarKhan, S Agrawal, and J Dongarra. Netsolve: Grid

enabling scientific computing environments. In Grid Computing and

New Frontiers of High Performance Processing. Elsevier, 2005.

[TS02] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java applica-

tion partitioning. In ECOOP 2002-Object-Oriented Programming, 16th

European Conference, Malaga, Spain, June 10-14, 2002, Proceedings, vol-

ume 2374, pages 178–204, 2002.

[TT03] D. Talia and P. Trunfio. Toward a Synergy Between P2P and Grids.

Internet Computing, 7(4):51–62, 2003.

[VDB05] Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A tax-

onomy for resource discovery. Personal Ubiquitous Comput., 9(2):81–

89, 2005.

[VNRS02] Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch, and Ilya Shara-

pov. Framework for peer-to-peer distributed computing in a hetero-

geneous, decentralized environment. In GRID ’02: Proceedings of the

Third International Workshop on Grid Computing, pages 1–12. Springer-

Verlag, 2002.

[VRF07a] L. Veiga, R. Rodrigues, and P. Ferreira. Gigi: An ocean of gridlets on a

"grid-for-the-masses". Cluster Computing and the Grid, 2007. CCGRID

2007. Seventh IEEE International Symposium on, pages 783–788, May

2007.

BIBLIOGRAPHY 269

[VRF07b] Luís Veigas Veiga, Rodrigo Rodrigues, and Paulo Ferreira. Gigi: An

ocean of gridlets on a "grid-for-the-masses". In 7th IEEE International

Symposium on Cluster Computing and the Grid (CCGrid07), May 2007.

[VSG11] Luís Veiga, João Nuno Silva, and João Coelho Garcia. Peer4Peer: E-

science Communities for Overlay Network and Grid Computing Research.

Springer, 2011.

[Wei07] Aaron Weiss. Computing in the clouds. netWorker, 11:16–25, Decem-

ber 2007.

[WvLY+10] Lizhe Wang, Gregor von Laszewski, Andrew Younge, Xi He, Mar-

cel Kunze, Jie Tao, and Cheng Fu. Cloud computing: a perspective

study. New Generation Computing, 28:137–146, 2010. 10.1007/s00354-

008-0081-5.

[WWW98] Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexi-

ble double auctions for electronic commerce: theory and implemen-

tation. Decision Support Systems, 24(1):17 – 27, 1998.

[wxp] wxpython. http://www.wxpython.org/.

[Zad65] Lotfi Zadeh. Fuzzy sets. Information and Control, (8):338–353, 1965.

[ZFS07] X. Zhang, J.L. Freschl, and J.M. Schopf. Scalability analysis of three

monitoring and information systems: MDS2, R-GMA, and Hawk-

eye. Journal of Parallel and Distributed Computing, 67(8):883–902, 2007.

[ZL04a] D. Zhou and V. Lo. Cluster computing on the fly: resource discovery

in a cycle sharing peer-to-peer system. Cluster Computing and the

Grid, 2004. CCGrid 2004. IEEE International Symposium on, pages 66–

73, April 2004.

270 BIBLIOGRAPHY

[ZL04b] Dayi Zhou and Virginia Lo. Cluster computing on the fly: Resource

discovery in a cycle sharing peer-to-peer system. In IEEE Interna-

tional Symposium on Cluster Computing and the Grid, 2004.

[ZS05] S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring sys-

tems. Future Generation Computer Systems, 21(1):163–188, 2005.

[ZWL02] Wenzhang Zhu, Cho-Li Wang, and F.C.M. Lau. Jessica2: a dis-

tributed java virtual machine with transparent thread migration sup-

port. In Cluster Computing, 2002. Proceedings. 2002 IEEE International

Conference on, pages 381–388, 2002.

	Introduction
	User classes
	Current tasks execution environments
	Current parallel programming paradigms
	Work organization
	Programming model

	Target population characterization
	Objectives
	Contributions
	Scientific Publications

	Document Roadmap

	Distributed Computing Systems
	Introduction
	A Taxonomy for Cycle-Sharing Systems
	Architecture
	Security and reliability
	User interaction

	Related Work
	Evaluation
	Conclusions

	Graphical Bag-of-Tasks Definition
	Introduction
	Related Work
	Task launching mechanisms

	Requirements
	Applications
	Input Data Definition
	Architecture

	Architecture
	Implementation

	Job Submission
	Job Execution

	Evaluation
	Conclusions

	Bag-of-Tasks Automatic Parallelization
	Introduction
	Objectives

	Related work
	Architecture
	Code loading and transformation

	Implementation
	Class loading interception
	Class transformation
	Object creation
	Adapter implementation
	Execution environment

	Evaluation
	Conclusion

	Off the Shelf Distributed Computing
	Introduction
	Related work
	Usage
	Cycles Donation
	Job Creation

	BOINC Extensions
	Application registrar
	Job submission user interface
	Database Tables
	nuBOINC Client
	Scheduler and Feeder
	nuBOINC Project application
	Commodity applications

	Evaluation
	Conclusions

	Task Scheduling on the Cloud
	Introduction
	Related Work
	Resource / Application Model
	Heuristic for task scheduling
	Virtual machine allocation
	Task selection criteria
	Overallocation prevention
	Periodic update
	Host termination
	Handling of long tasks

	Evaluation
	Impact of creationRatio and increaseRatio
	Speedup and Allocated Hosts
	Long-Running Tasks

	Conclusion

	Utility Algebra for Resource Discovery
	Introduction
	Related Work
	Cycle sharing systems
	P2P based resource discovery
	Grid Resource Management
	Service Discovery Protocols
	Utility-based Scheduling
	Network Management Protocols

	STARC architecture
	Probbing Classes

	Requirement Specification and Evaluation
	Partial utility resource evaluation
	Non-linear Partial-Utility Criteria
	Policies for Combined Satisfaction Evaluation

	Implementation
	Remote Host Discovery
	Security

	Evaluation
	Conclusions

	Conclusion
	Future Work
	Complementary evaluation
	Complementary development
	New research topics

	Bibliography

