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Abstract

Energy has emerged as a first class computing resource in modern systems. The trend

has primarily led to the strong focus on reducing energy consumption of data centers,

coupled with the growing awareness of the adverse impact on the environment due to

data centers has led to a strong focus on energy management for server class systems.

The focus on energy management has been cross-cutting across various computing dis-

ciplines including computer architecture (hardware design), hypervisors, operating sys-

tems and system software.

In this work we intend to address the energy aware service provisioning, exerting economics-

inspired mechanisms. Toward this goal, we should tackle the following challenges which

are addressed in this work. To frame an energy aware service provisioning mechanism

in P2P-assisted cloud, first we need to compare the energy consumption of each individ-

ual service in P2P-cloud and data centers. However,in the procedure of decreasing the

energy consumption for cloud services we may be trapped with this pitfall that energy

consumption decreases remarkably, but the performance is violated at the same time.

Users may leave a system if they do not get the desired quality of service (QoS). Indeed,

we need to develop a comprehensive framework to provision QoS for a diverse range

of services and applications using collaborative environments. Therefore, wee need to

formulate a performance aware energy analysis metric, conceptualized across the service

provisioning stack.

Afterwards, we sketch a framework to analyse the energy effectiveness in P2P-assisted

cloud platform to choose the right service platform according to the performance and

energy characteristics mapping from the hardware oblivious, top level to the particular

hardware setting in the bottom layer of the stack. Then, we introduce an economics-

inspired mechanism to increase the energy effectiveness in the P2P-assisted cloud plat-

form as well as moving toward a greener ICT for ICT for green platform.
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Chapter 1

Introduction

Energy and associated environmental costs (cooling, carbon footprint, etc.) of IT ser-
vices constitute a remarkable portion of dynamic cost. Indeed, there is a need for an
energy aware economic model which includes service pricing, resource allocation and
scheduling. Since the energy price is going to predominate for the services, it is required
to device an energy-based pricing mechanism for each service. To this end, we need to
formulate a per job energy consumption estimation technique to schedule resources in
an energy efficient manner.

Although there is a growing body of work centered on the energy aware resource man-
agement, allocation, scheduling and pricing [1–4], they mainly considered the whole
system energy measurement, estimation, improvement and optimization. There is only
limited work focusing on the energy issues per job [3, 5–7]. However, they only aim
at reducing total energy consumption in the infrastructure without taking into account
the energy-related behavior of each individual job, its performance and its price, i.e.,
how expensive and useful is the energy employed for the observed job performance or
progress.

Energy-based job pricing confronts some more challenges further to the system wide
energy efficiency issues. In the system wide energy efficiency, the energy consumption of
the resources are measurable simply by plugging the energy meter devices or exploiting
the embedded sensors of the contemporary devices, e.g. Runtime Average Power Limit
(RAPL) counters in recent Intel CPUs. Nonetheless, it is nontrivial to measure the
energy consumed per job, since we cannot embed a physical sensor in a job or plug a
metering device to it. Therefore, estimation is still the only option in this case. Esti-
mation results in a more complicated model since it has to deal with uncertainty and
error. Moreover, the need for a general approach that assumes an unpredictable work-
load behavior aggravates the problem. Increasingly, non-energy proportional hardware
infrastructure adds excess complexity to the agenda in the multi-tenant ecosystems.

By estimating the energy consumption of each job, we focus on assigning it to the hosts
which incur the lowest energy price. To this end, we need an energy aware resource
manager which is aware of the power sources. The more diverse the energy providers,
the greater the variety of user choices. Smart grids, naturally fulfil this goal. Diverse
energy sources of smart grid improves the availability, sustainability and environment
friendliness of the cloud services. Hence, combing the cloud infrastructure with smart
grid can improve the economic model of both systems.

1



Introduction 2

1.1 Problem Formulation

We notice several requirements for an economic model for the community cloud systems
which are not well developed so far. Energy efficiency of community clouds in comparison
with classic cloud model is still a matter of controversy. Furthermore, energy efficiency
has not been a priority concern in the end-user incentive list.

This will tend to change in the midterm future as domestic prices of electricity rise
and the profiles of energy sources are factored in the prices (e.g. by computing utility
providers/distributors).

The main objective of this work is to come up with an economic model for the community
clouds which is centered on the energy based pricing of the services that embed the energy
efficiency in user incentive list and reduce the carbon footprint to be more environment
friendly.

The distinguishing point of our model is considering the energy from a consumer per-
spective, i.e. per job, in lieu of the coarse grain provider vantage point. Note that We
do not intend to reduce the energy consumption. Our ultimate goal is to increase the
energy efficiency through the pricing mechanism. For this purpose, a P2P assisted cloud,
as studied in [P2, P5, P4], outperforms classic data center oriented cloud architecture
due to the diverse range of processing elements scattered all through the system, which
can accomplish certain sort of tasks with lesser energy dissipation.

By estimating the energy consumption of each job, we focus on assigning it to the
resources which incur the lowest energy price. To this end, we need an energy aware
resource manager which is aware of the power sources. The more diverse the energy
providers, the greater the variety of user choices. Smart grid, naturally fulfils this
goal. Diverse energy sources of smart grid improves the availability, sustainability and
environment friendliness of the cloud services. Hence, combining the cloud infrastructure
with smart grid can improve the economic model of both systems.

1.2 Research Questions

To formulate an economic model for energy aware service provisioning the following
questions should be addressed.

Q1- Is it energy efficient to switch to community cloud?
Studies on [P2, P5] reveal that there is no straight forward answer to this question, since
the answer not only depends on service specification, but also partially depends on the
hardware setting, the service is running on. Therefore, to answer this question we need
a framework to analyse energy consumption of a service in different platforms, as we
discuss in Chapter 3.

We should note that decreasing energy may result in performance plunge. Therefore, a
performance aware energy analysis metric is needed in the introduced framework. This
metric should be able to attribute energy and performance across the service provisioning
stack. The details of this issue are discussed in Chapter 2.

Associated publications forming and addressing this question are [P2, P5, P4].
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Q2- How can we exert cheap, green, distributed energy sources?
Energy and Information and Communication Technology(ICT), as two pillars of the
contemporary life, are reshaping themselves based on ubiquitous society architecture to
improve their service quality. Within the reforming process, integration of two systems
can contribute to a greener ubiquitous society by equipping them with the concept of
energy conservativeness, and leveraging renewable energy sources. We outline the idea
of Cloud of Energy(CoE), Chapter 4, which fosters the adoption of green energy and
green cloud by combining these two systems. CoE introduces an integrated framework
of everything as a service(XaaS) to facilitate the service exchange, not only across the
computing and electricity grid hierarchy, but also among these two systems via an eco-
nomic middleware. This middleware embraces service pricing, resource allocation and
scheduling as we discuss in Section 4.2. Related publications are [P1, P3].

1.3 Background and Hypothesis

In this section, we outline the elaborated cloud model as well as terms and hypothesis
employed all through this document. We initially address the relevant cloud topologies:
i) the classic data center, ii) the peer-to-peer cloud that is a precursor of the community
cloud, and iii) cloud federation. Then, we address virtualization in the context of data
centers as well as in peer-to-peer deployments.

1.3.1 Cloud Platforms

Here, we address initially the relevant cloud topologies: i) the classic data center, ii) the
peer-to-peer cloud that is a precursor of the community cloud, and iii) cloud federation.

1.3.1.1 Classic Data Center

In the classic data center model, from which the idea of cloud computing stems from,
a gigantic data center embraces a number of clusters of hosts constituting a powerful
computing or storage capacity. The internal organization and hierarchy of the data
center can follow a number of variants typically aiming at reducing latency and energy
consumption in processing and internal traffic.

1.3.1.2 P2P-cloud

A P2P-assisted cloud or P2P-cloud comprises a number of vicinities, each one typically
composed of a set of commodity hosts, including Internet of Things boards, laptops and
desktop PCs, connected via a wireless communication platform as depicted in Figure
1.1. The main goal of a P2P-cloud is to take advantage of smaller distributed datacenter
hosts as well as exploiting the commodity hardware of community networks.

As a special case, community networks represent collaborative effort of community mem-
bers, for building ICT infrastructure with commodity devices in a bottom-up approach,
in order to meet demand for Internet access and services [8]. The P2P-clouds we ad-
dress in this paper have the vision of a cloud deployment in community networks: a
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Figure 1.1: P2P-cloud intra-vicinity model

cloud hosted on community-owned computing and communication resources providing
a diverse range of services.

Comparing P2P-cloud with desktop grids [9], we find out that desktop grids are a peer-
to-peer volunteer computing platform. However, P2P-cloud services are not confined to
computing. Moreover, the concept of P2P-cloud may be mixed up with mobile cloud
or cloud offloading. Namely, P2P-cloud is a broad concept that embraces all above
mentioned concepts. To exemplify, P2P-cloud hosts may be mobile or static. P2P-cloud
reinforces the concept of telco-cloud [10], since communication and IT infrastructures
akin to the community network is required to develop a P2P-cloud. In P2P-cloud, energy
is substantially consumed at hosts, switches, routers and network devices. Compared to
the classic clouds, in communities, we encounter much reduced static energy waste, since
the machines which do not serve the community may already be on to serve the users’
individual applications. As an example, a Raspberry Pi device, running light weight
Internet of Things user applications can devote its unused capacity to run community
applications. Moreover, the Idle to Peak power Ratio (IPR) for the current P2P-cloud
hosts is close to the ideal case, and the PC machines consume lesser energy compared
to datacenter servers.

Increasingly, in P2P-cloud, to alleviate the energy consumption, requests can be assigned
to one of the closest available hosts in the community. The closer the client and the server
are, the less energy is consumed in the network. Based on this observation, we define
the P2P-cloud topology as a set of community hosts scattered within dynamic vicinities
and communicating via wireless communication network (intra-vicinity communication)
as depicted in Figure 1.1. Each vicinity can access the others via Internet; this is known
as inter-vicinity communication.

This P2P-cloud model suits the locality of services more than classic clouds. Loosely
paraphrasing, in this model, each host is adaptable to a specific architecture, config-
uration and service according to the most prevalent requests it receives. This idea is
inspired from the Peer-to-Peer content and location aware overlay construction [11–13].

Previous studies have revealed that virtually all the requests a user issue for the service,
in a specific location, are akin to the others due to the locality of requests[14]. The
P2P-cloud can adapt to and leverage this fact by adjusting the service and computing
capabilities of each individual community nodes accordingly; whereas, responding to
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high resource demanding requests via the federation of more powerful machines like core
i7 PCs, or forwarding them to the classic cloud.

On an even more decentralized scale, Fog Computing, as a new paradigm of wireless
data transfer via distributed devices of Internet of Things (IoT), supports the idea of
P2P-cloud. Fog computing introduces a hierarchical distributed architecture extended
from the network edge to the core that provides a geo-distributed platform to improve
location awareness and latency, by pushing the service provisioning to the edge of the
network. This architecture perfectly matches the new data traffic paradigm of IoT,
where data is big in the number of sources rather than the volume and helps in smarter
big data processing.

However, fog computing is not a substitute for the cloud, it is a complement. By
controlling data at various edge points, fog computing integrates core cloud services
with those of a truly distributed data center platform. This infrastructure maintains
the concept of the cloud while incorporating the power of fog Computing at the edge.

1.3.1.3 Cloud Federation

The cloud is mostly about the elasticity and flexibility and the network architecture is a
key component that helps drive these properties. The challenges of supporting business
continuity in a cloud environment are not limited to a physical area or the datacenter
alone. Therefore, the compute, storage, and network components used for cloud com-
puting may not reside in the same physical location. These resources could be spread
over multiple locations and interconnected using a transparent transport mechanism
that maintains security and end-to-end segmentation. Distributed cloud data centers,
alongside with bringing high availability and disaster recovery, provide the opportunity
to have different energy sources.

Federated cloud conforms to the same architecture of a distributed datacenter. The only
difference is in providing the resources through the aggregation of several providers in
the federation, while all the infrastructure remains under the control of a single provider
in the distributed datacenter model. Therefore, power efficiency of federated cloud and
distributed datacenter are expected to be very close.

Federation of P2P-cloud and data centers through the concept of the fog, elevates the
popularity of cloud systems due to the advantages of reduced latency, higher availability
and cheaper services and better quality of service.

Service prices can be reduced by pushing the computing toward the commodity devices at
the edge of the network; however, data centers still support the services in the backbone
in case of failure or if a service demands specific computing requirements which can
be better provided via the data center servers, e.g. parallel data processing in specific
MapReduce scenarios [P2]. In interactive applications, P2P-cloud platform can decrease
the latency compare to the data centers by local service provisioning in a geo-distributed
platform.
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1.3.2 Virtualization

Here, we address virtualization as a driving force of cloud computing, first in the context
of data centers, and then integrated with peer-to-peer deployments.

1.3.2.1 Virtualization in Data Centers

With the advent of server-side computing as a service, provisioning resource guarantees
and isolation in multi-tenant environment became of utmost importance. It became im-
perative that these infrastructures satisfy the goal of application isolation and resource
efficiency. In order to achieve this, the infrastructure economics must allow servers
to be shared among multiple users and at the same time guarantee operational isola-
tion of applications. Virtualization is the most widely adopted solution to guarantee
these goals. Consolidation by using virtualization leads to application isolation, better
resource utilization and lower operational costs.

Typically, there are three types of virualization: Container virtualization, Kernel virtu-
alization and Hypervisor based virtualization. Each have their own hosts of benefits and
demerits. Typically cloud based solutions for virtualization rely on Hypervisor based vir-
tualization such as Xen since it can support different flavours of operating systems such
as linux, windows etc. Additionally, with the proliferation of hardware virtualization
in most modern architectures, this allows guest operating systems to run unmodified.
However, Hypervisor based virtualization can suffer from performance degradation as
they incur an additional overhead of VM management by the Hypervisor. Container
virtualization on the other hand can execute applications at near native speed since
they have no additional layer of routing and share the same kernel. Nonetheless, since
the kernel is shared, they can only run guest operating systems that support the host
kernel. On the other hand, Kernel virtualization is becoming an attractive alternative
since each guest can have its own kernel and the host contains a modified kernel with
extensions to manage and run multiple VMs.

1.3.2.2 Virtualization in P2P context

Although multiple virtualization techniques exist, virutalization in the context of P2P
presents specific challenges that need to be addressed. P2P is typically comprised of
commodity machines that are not server grade and as a result do not have high com-
putational capabilities. They are limited by the available resources and it becomes
imperative to ensure that virtualization does not impose a high overhead on these re-
source limited machines. Hypervisor based virtualization techniques like Xen impose a
high overhead because of an additional level of routing at the expense of running any
operating system. Container virtualization on the other hand has minimal overhead
and executes guest applications at near native speeds. Since they share the kernel with
the host OS, it has limited support in terms of multiple operating systems yet provides
consolidation with resource provisioning guarantees at near native speed. Container
virtualization is thus a better fit for such environments with limited resources. KVM is
also an attractive alternative for resource limited environments since it imposes mini-
mal overhead. However, each guest can have its own kernel and this has a performance



impact when spawning a new VM. LXC has a lesser overhead from this perspective. De-
spite the host of relative advantages and disadvantages, LXC appears to be a reasonable
choice of virtualization technique to adopt in a P2P environment.

Virtual machine density refers to the number of virtual machines a physical host can
maintain, while providing enough compute resources for every virtual machine to per-
form well. It depends on multiple factors such as: server hardware, virtualization soft-
ware, service type and workload diversity. These varying factors make it difficult to come
up with an absolute number for virtual machine density across all scenarios. Driving up
the VM density reduces the cost incurred but at the same time introduces additional
challenges in guaranteeing performance because of contention in shared resources. Typ-
ically the bottleneck manifests at the memory subsystem and the amount of available
memory. Commodity machines are scarce is such resources and as such the system will
benefit from conservative provisioning in order to provide best-effort guarantees.

1.4 Publications

List of the relevant publications is as below:

[P1] Sharifi, Leila, Felix Freitag, and Luis Veiga. ”Combing Smart Grid with community
clouds: Next generation integrated service platform.” In Smart Grid Communications
(SmartGridComm), 2014.

[P2] Sharifi, Leila, Navaneeth Rameshan, Felix Freitag, and Luis Veiga. ”Energy Effi-
ciency Dilemma: P2P-cloud vs. datacenter.” In CloudCom2014, Best Paper Can-
didate.

[P3] Sharifi, Leila, Felix Freitag, and Luis Veiga. ”Envisioning Cloud of Energy.” Sub-
mitted to Smart Grid Communications (SmartGridComm), 2015,Under Review.

[P4] Sharifi, Leila, Jose Simao, Navaneeth Rameshan, Felix Freitag, and Luis Veiga.
”A Framework to Analyse Energy Effectiveness in P2P Assisted Cloud Ecosystems.”
Submitted to IEEE Transactions on Cloud Computing, Under Review.

[P5] Sharifi, Leila, Llorence Cerda-Alabern, Felix Freitag, and Lúıs Veiga. ”Energy Effi-
cient Cloud Service Provisioning: Keeping Data Center Granularity in Perspective.”
Submitted to Journal of Grid Computing, Special Issue on Green Cloud Computing,
Under Review.

1.5 Outline

This document is organised as shown in Figure 1.2. In this chapter, i.e. Chapter 1, we
stated our problem and defined the associated research questions and outlined the system
model that we study our problem in as well as the hypothesis. Next chapter, Chapter 2,
formulates the performance aware energy analysis metric required across the service
provisioning stack and the analysis framework is formed in Chapter 3. Afterwards, we
introduce a possible solution to exert distributed renewable energy sources of smart
grid as well as distributed processing elements of P2P-cloud assisting mass producers to
achieve a greener ecosystem in Chapter 4.

7
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Chapter 2

Energy Analysis Metric

Energy has emerged as a first class computing resource in modern systems. The trend
has primarily led to the strong focus on reducing energy consumption of data centers,
coupled with the growing awareness of the adverse impact on the environment due to
data centers has led to a strong focus on energy management for server class systems.

The focus on energy management has been cross-cutting across various computing dis-
ciplines including computer architecture (hardware design), hypervisors, operating sys-
tems and system software [15]. Figure 2.1 captures the various techniques developed to
reduce energy consumption across the service provisioning stack.

In the procedure of decreasing the energy consumption for cloud services we may end up
with this pitfall that energy consumption decreases remarkably, but the performance is
violated at the same time. Users may leave a system if they do not get the desired quality
of service (QoS). Indeed, we need to develop a comprehensive framework to provision
QoS for a diverse range of services and applications using collaborative environments.

2.1 Background and Related Work

In this section we introduce the service provisioning stack. Moreover, the overview of
previous research on power modelling of all layers of the stack is given in this section.

2.1.1 Service Provisioning Stack

Three main components involved in service provisioning are application, operating sys-
tem and hardware. In virtualized platforms, operating system is replaced by the Virtual
Machine (VM), as demonstrated in Figure 2.1. In each layer of this stack power and
performance may be attributed to the different metrics. Namely, in application layer,
performance is generally translated to latency, whereas in VMs it is mapped to SLA
metrics and throughput is the interpretation of performance in the hardware level.

All the same, across the stack we need a translation to hardware agnostic power model
in application layer, and partly in VM/OS level, which should be mapped to a hardware
aware model at the bottom of the stack in run time. In the following section we review

9
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Figure 2.1: Energy and performance conceptualization across the service provisioning
stack

the state of the art power characterization techniques across the service provisioning
stack.

2.1.2 Power Characterization

Research in power modeling can be broadly classified into (i) Simulator-based, (ii) CPU
Utilization-based (iii) Event or performance counters based and (iv) Coarse-grained.
Early power management research exerted analytic power models based on voltage and
frequency [16], which are fast, but only provide rough estimates. Coarsegrained esti-
mates based on the type and state (active, off) of the processor have been used in [17].
However, with the increase in the dynamic power range of servers, a more accurate power
prediction method is needed.

Power models based on readily available system parameters like CPU utilization [18]
are possibly the simplest to use for algorithm design. A CPU utilization based model
is currently the most popular power estimation model used in practice [19]. CPU uti-
lization can possibly be estimated roughly using the computational complexity of an
algorithm. However, different applications make differing use of various CPU units and
other system resources like memory and a CPU utilization model is not accurate across
wide application categories.

Interestingly, the workload-sensitive nature of CPU-based models has been recently cited
as a reason to go back to using detailed event counters in [7] for predicting processor
and memory power usage under voltage scaling. Application-aware power modeling
has the potential to assist energy aware algorithmic engineering. In [20], the authors
create power profiles for each application and use it to estimate the power drawn by a
consolidated server hosting the applications. WattApp [21] exploits power profiles for
an application and estimates the power consumed with changes in workload as well. A
good comparison of various system-level power models is presented in [22]. However, all
these techniques are measurement-based, whereas algorithmic engineering needs energy
models that are based on first principles. A good comparison of various system-level
power models is presented in [22].
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The first asymptotic energy model for algorithms is presented in [23]. As is the norm with
traditional algorithm design, the energy model is asymptotic. A couple of simulation
results were presented, where it was shown that algorithms designed for the “traditional”
algorithmic model can be transformed into algorithms whose memory accesses are highly
parallelized and thus, consume much less energy than the naive implementation. These
simulations led to design of energy optimal (in the asymptotic sense) algorithms for
certain basic problems such as sorting and matrix transpose. However, implementations
needs to be aware of the exact constants used in the complexity model for practical
implementation. Model in [23] has similarities with the cache oblivious model [24]. In
this model, the goal is to minimize the number of cache misses (equivalent to the number
of I/Os), while ensuring that the algorithm is also work optimal.

2.1.3 Hardware Power Modeling

As current platforms do not provide fine-grained power measurement capabilities, power
models are the first step to enabling dynamic power management for power proportion-
ality on all levels of a system. Currently, the approach closest to hardware-based moni-
toring is the running average power limit (RAPL) feature available for the Intel Sandy
Bridge and Ivy Bridge CPUs [25], which allows for monitoring the power consumption
of the whole CPU package.

As this feature is not available on other CPUs, power models typically rely on a num-
ber of performance counters. For instance work in [26] leverages 5 counters, including
the instructions per cycle (IPC) counter, and rely on a regression model for estimation.
Similar work has been performed by Counters in [27] additionally considers different
CPU frequencies, but not multi-core architectures. Other work starts with all available
counters and then try to reduce their number [28] by analyzing the correlation between
counters of different architectures and power dissipation. Usually the accuracy of the
models is validated by comparing estimates with the measures of a power meter when
running benchmarks in isolation [29]. Power modeling often considers learning tech-
niques such as sampling [30] that assume the proportionality of system events to power
consumption. Measurements of a hardware power meter are gathered and subsequently
used, together with a set of normalized estimated values, in various regression models,
which are so far mostly linear [31]. However, in [32, 33], it is stated that linear power
models depending on the CPU load are not sufficient anymore and that more parame-
ters have to be considered. Study in [31] shows that, especially in multi-core systems,
linear models lead to a much higher mean relative error for CPU power consumption
and cannot easily be improved by applying more complex techniques. Linear models
rely on the independence of the covered features, which is not realistic in current sys-
tems. Polynomial/exponential regression can cover these dependencies and, as shown
in [34], a quadratic solution better fits the power modeling of multi-core systems. The
described systems must however isolate processor features, such as HyperThreading and
TurboBoost, to avoid hidden states. HAPPY [35] introduces a hyperthread-aware power
model that differentiates between the cases where either single or both hardware threads
of a core are in use. The most recent work in this line is BitWatts [36], which introduces
a counter based power model for each individual frequency.
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2.1.4 VM Power Modeling

In data centers, the efficiency of VM consolidation, power dependent cost modeling,
and power provisioning are highly dependent on accurate power models. Such models
are particularly needed because it is not possible to attach a power meter to a virtual
machine. In general, VMs can be monitored as black-box systems for coarse-grained
scheduling decisions. However, for fine-grained scheduling decisions—e.g., with hetero-
geneous hardware— finer-grained estimation at sub-system level is required and might
even need to step inside the VM. So far, fine-grained power estimation of VMs required
profiling each application separately. To exemplify, WattApp [21], which relies on ap-
plication throughput instead of performance counters as a basis for the power model.
PMapper [37] maps resources using a centralized step-wise decision algorithm in lieu of
application power estimation.

To generalize power estimation, some systems like JouleMeter [32] assume that each
VM only hosts a single application and thus treat VMs as black boxes. In a multi-
VM system, they try to compute the resource usage of each VM in isolation and feed
the resulting values in a power model. Bertran et al. [7] propose an approach uses
a sampling phase to gather data related to performance-monitoring counters (PMCs)
and compute energy models from these samples. With the gathered energy models,
it is possible to predict the power consumption of a process, and therefore apply it to
estimate the power consumption of the entire VM. Another example is VMeter [5], which
estimates the consumption of all active VMs on a system. A linear model is used to
compute the VMs’ power consumption with the help of available statistics (processor
utilization and I/O accesses) from each physical node. The total power consumption is
subsequently computed by summing the VMs’ consumption with the power consumed
by the infrastructure. Janacek et al. [38] exploit a linear power model to compute the
server consumption with postmortem analysis. The computed power consumption is
then mapped to VMs depending on their load. This technique is not effective when
runtime information is required.

As afformentioned, energy consumption of the host per job embraces the static power
consumption, independent of the resource utilization, and the dynamic power, which
is degraded not only proportional to the VM’s allocated resources but also on account
of the overhead caused in the hypervisor, and the interference due to collocation. Es-
timating this overhead is complicated since the pattern of the hypervisor overhead is
tightly coupled with the number of VMs, the type of resources each VM asks for, and
the number of times the switching occurs between VMs and hypervisor. Thus, for a
more accurate estimation, further to individual VM’s energy, VM interference energy
overhead should also be estimated. Some estimation methods have been proposed in the
state of the art: e.g. [5, 39, 40]. In [41] the authors argue that, in virtualized environ-
ments, energy monitoring has to be integrated within the VM as well as the hypervisor.
They assume that each device driver is able to expose the power consumption of the
corresponding device as well as an energy-aware guest operating system and is limited
to integer applications.

Work in [42] introduces an interference coefficient, defined to model the energy inter-
ference. The major contribution of this work is to estimate the energy interference
according to the previous knowledge of standalone application running on the same ma-
chine. They model interference as a separate implicit task. Moreover, an energy efficient
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collocation management policy is introduced in this work that is modeled as an opti-
mization problem solvable by data mining techniques. All the VMs running on the same
machine are known as a collection. The energy consumption of a collection is the sum
of idle energy consumed for the longest VM run, dynamic energy consumed by each VM
if they were run in isolated environment, and the energy depleted due to interference
between each VM pair. The interference energy can be positive or negative depending
on the intersection of resources between each VM pair. Interference energy is estimated
as the coefficient of the summation of idle and isolated run for each VM. On the other
hand, performance is measured as the delay, which is measured by modeling the system
as a M/M/1 queue and calculating the imaginary interference tasks response time as
the delay due to interference.

In data centers, the efficiency of VM consolidation, power dependent cost modeling,
and power provisioning are highly dependent on accurate power models. Such models
are particularly needed because it is not possible to attach a power meter to a virtual
machine. In general, VMs can be monitored as black-box systems for coarse-grained
scheduling decisions. However, for fine-grained scheduling decisions—e.g., with hetero-
geneous hardware— finer-grained estimation at sub-system level is required and might
even need to step inside the VM. So far, fine-grained power estimation of VMs required
profiling each application separately. To exemplify, WattApp [21], which relies on ap-
plication throughput instead of performance counters as a basis for the power model.
PMapper [37] maps resources using a centralized step-wise decision algorithm in lieu of
application power estimation.

To generalize power estimation, some systems like JouleMeter [32] assume that each
VM only hosts a single application and thus treat VMs as black boxes. In a multi-
VM system, they try to compute the resource usage of each VM in isolation and feed
the resulting values in a power model. Bertran et al. [7] propose an approach uses
a sampling phase to gather data related to performance-monitoring counters (PMCs)
and compute energy models from these samples. With the gathered energy models,
it is possible to predict the power consumption of a process, and therefore apply it to
estimate the power consumption of the entire VM. Another example is VMeter [5], which
estimates the consumption of all active VMs on a system. A linear model is used to
compute the VMs’ power consumption with the help of available statistics (processor
utilization and I/O accesses) from each physical node. The total power consumption is
subsequently computed by summing the VMs’ consumption with the power consumed
by the infrastructure. Janacek et al. [38] exploit a linear power model to compute the
server consumption with postmortem analysis. The computed power consumption is
then mapped to VMs depending on their load. This technique is not effective when
runtime information is required.

As afformentioned, energy consumption of the host per job embraces the static power
consumption, independent of the resource utilization, and the dynamic power, which
is degraded not only proportional to the VM’s allocated resources but also on account
of the overhead caused in the hypervisor, and the interference due to collocation. Es-
timating this overhead is complicated since the pattern of the hypervisor overhead is
tightly coupled with the number of VMs, the type of resources each VM asks for, and
the number of times the switching occurs between VMs and hypervisor. Thus, for a
more accurate estimation, further to individual VM’s energy, VM interference energy
overhead should also be estimated. Some estimation methods have been proposed in the
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state of the art: e.g. [5, 39, 40]. In [41] the authors argue that, in virtualized environ-
ments, energy monitoring has to be integrated within the VM as well as the hypervisor.
They assume that each device driver is able to expose the power consumption of the
corresponding device as well as an energy-aware guest operating system and is limited
to integer applications.

Work in [42] introduces an interference coefficient, defined to model the energy inter-
ference. The major contribution of this work is to estimate the energy interference
according to the previous knowledge of standalone application running on the same ma-
chine. They model interference as a separate implicit task. Moreover, an energy efficient
collocation management policy is introduced in this work that is modeled as an opti-
mization problem solvable by data mining techniques. All the VMs running on the same
machine are known as a collection. The energy consumption of a collection is the sum
of idle energy consumed for the longest VM run, dynamic energy consumed by each VM
if they were run in isolated environment, and the energy depleted due to interference
between each VM pair. The interference energy can be positive or negative depending
on the intersection of resources between each VM pair. Interference energy is estimated
as the coefficient of the summation of idle and isolated run for each VM. On the other
hand, performance is measured as the delay, which is measured by modeling the system
as a M/M/1 queue and calculating the imaginary interference tasks response time as
the delay due to interference.

2.1.5 Application Power Characterization

To the best of our knowledge, so far, there is little effort on application energy char-
acterization. A line of work is toward profiling applications to figure out the energy
consumption pattern of a particular application. In [43], a counter based application
resource usage profiling which is followed by a mechanism to map it to energy consump-
tion is proposed. In [44], a fine grained application energy profiling is proposed to enable
application developers to make energy efficient choices. The most recent work in this
line is [45], which compares two well-known application profiling tools, SLURM1 and
Score-P2 available in Linux.

Tangential to this goal, recently a line of work is attempting to profile the application
energy consumption for mobile devices [46, 47]. They try to characterize the diverse
resources of mobile devices such as GPS, WiFi, CPU, Memory and storage requirements
of individual mobile application. However, all the proposed techniques are measure-
ment based, while we need a model based on the principals for application to fulfill the
hardware agnostic requirement at the application layer of the stack.

In [23] a new complexity model is introduced to account for the energy used by an algo-
rithm. Based on an abstract memory model (which was inspired by the popular DDR3
memory model), they present a simple energy model that is a (weighted) sum of the
time complexity of the algorithm and the number of ’parallel’ I/O accesses made by the
algorithm. They derive this simple model from a more complicated model that better
models the ground truth and present some experimental justification for their model.
The simplicity and applicability of this energy model is the main contribution of the

1https://computing.llnl.gov/linux/slurm/slurm.html
2http://www.vi-hps.org/projects/score-p/

https://computing.llnl.gov/linux/slurm/slurm.html
http://www.vi-hps.org/projects/score-p/
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work. In their next work [48], they experimentally validate the algorithm energy com-
plexity model derived. This energy complexity model is asymptotic which is expected
in a hardware agnostic conceptualization.

2.2 Energy Effectiveness

As afformentioned, if the service is not delivered as expected, it may tarnish provider’s
reputation. Thus, it is required to obtain a service with desirable response time as well
as acceptable throughput, availability and consistency level. Attaining high QoS may
impose more energy consumption. Therefore, we should strive to alleviate the burden of
high service energy. To this end, the energy efficiency is introduced in [49] as Performance

Energy .
However, in this metric, there is no mechanism to guarantee the performance, and
all sensitive and non-sensitive services are treated equally. In this definition, there
is no mechanism to control the performance. For instance if we over provision the
performance, for a particular service, we probably have to spend more energy, while
gaining nothing in exchange of increased performance, since it is not sensible by the
user. However, energy efficiency ratio may increase in this scenario. In the next section,
we introduce energy efficiency metric to surmount the enumerated issues.

Increasingly, the most efficient servers nowadays, consume at least 20-30 percent of
their nominal power in the idle case, and deviate from linear proportionality property
noticeably according to the SPECPower ssj2008. Hence, Idle to Peak Ratio (IPR) and
Linear Deviation Ratio (LDR), for the current power model, are still remarkably higher
than the ideal case. Higher IPR encourages the server consolidation for the sake of power
saving; however, this is not always a solution. Utilizing a server to its 100% capacity may
affect the applications performance tremendously, thus reducing actual energy efficiency
of jobs, and also does not contribute to power saving in cases that LDR is unequal to
one and when the interference overhead exceeds the proportion of static power.

Moreover, collocation of applications has its own challenges. Workload intensity is often
highly dynamic. The power profile of the datacenter hardware is inherently hetero-
geneous; this makes the optimal performance gain problem more complicated. The
nonlinearity and in some cases unpredictability of the energy efficiency profile currently
aggravates the complexity of energy efficient collocation management.

Therefore, a performance aware energy analysis metric is required for a fair analysis
of systems and techniques. The concept of energy effectiveness, as a middleware
metric, seems to suit better to achieve this end of conciliating two goals. Thus, Energy
Effectiveness, as we propose in (2.1), is a speculative metric that quantifies the degree to
which the ecosystem is successful in decreasing energy dissipated while the performance
is not significantly violated.

E = α× E∗

Ê
+ (1− α).min(1,

P̂
P∗

) (2.1)

In (2.1), E introduces the energy effectiveness, Ê and P̂ stand for the estimated or
measured energy consumption and performance of the considered service on the running
platform. E∗ factorizes to the energy consumed to provide the service in an energy
proportional system with a linear power model, representing the equality of utilization
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and associated power dissipation (P (U) = U), this is the minimum reachable energy
consumption. P∗ is quantified based on the Service Level Objectives(SLO) and Service
Level Agreement(SLA) parameters depending on the interpretation of the performance
on each layer of the service stack. Quantifying the SLA metrics is extensively studied
in [50]. In other words, P∗ represents the desirable performance conceptualized in the
associated service stack layer.

Moreover, it is necessary to handle the trade off among these tightly coupled parameters
to achieve an efficient mechanism. Intuitively, an adaptive model, covering the system
and user requirements, is appropriate for this purpose, because the parameters are tun-
able in such model. The model supports more diverse range of cases due to its flexibility.
Therefore, we introduce α as the adaptiveness parameter. Based on the performance
sensitivity of the applications, we can tune the α in the range of 0 to 1 to weight the
energy and performance accordingly.

2.2.1 Vulnerability Factor

Further to energy effectiveness, we define Vulnerability Factor, V, which embodies
to the range of variability in the energy effectiveness as V = ∂E

∂α . Namely, V repre-
sents the slope of the E equation when α varies in range of 0-1. The higher the V, the
more influence adaptiveness factor has in E value, and the mare important is to set
it properly. V can be determined in the SLAs according to the user incentives (previ-
ously addressed for cycle-sharing [51]) and service requirements (previously addressed
for virtual machines [52] and Java applications [53]).

The energy effectiveness metric we define here has a bounded value in the range of 0 to
1 for the sequential processing and interactive applications such as live streaming, while
this value can exceed one in case of parallel processing applications, e.g. MapReduce.
This value tightly couples with the level of parallelism and the energy proportionality of
the host platform. Quantifying the correlation of the parallelism and energy effectiveness
is beyond the scope of this work, but interested readers may refer to [23] to find out
more.

2.3 Hardware Power Model

Power is majorly drawn in communication and processing hardware, during the service
provisioning life-cycle. In this section, we study different approaches toward power
modeling across the service stack.

Linear Power Model Power consumption in a host machine is divided into two parts:
static and dynamic power consumption. Static power is consumed even if the machine is
idle, while the dynamic power is proportional to the resource utilization within the host.
Overall, the power drawn in a host Phost is a combination of the static power Ps and
dynamic power Pd = (PMax−Ps)×U . PMax indicates nominal power as the maximum
power device can dissipate at utilization level U .

Phost = Ps + (PMax − Ps)× U (2.2)
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Figure 2.2: Energy Proportionality

In (2.2), a linear correlation among the utilization level and the power drain is assumed,
which is known as ideal power model with Linear Deviation Ratio (LDR) of one. How-
ever, in real systems, the LDR is not equal to one. LDR is discussed in the next section.
ers in a data center is above 100 watts.

2.3.1 Energy Proportionality

The vision of energy proportional system implies the power model of an ideal system
in which no power is used by idle systems (Ps = 0), and dynamic power dissipation is
linearly proportional to the system load.

LDR indicates the maximum difference of the actual power consumption, P (U), and
linear power model over the linear power model as in (2.3).

LDR = max
P (U)− (Ps + Pd)

Ps + Pd
(2.3)

IPR is the indicator of idle to peak power consumption as illustrated in (2.4).

IPR =
Pidle
PMax

(2.4)

To measure how far a system power model is from the ideal (energy proportional) one,
Proportionality Gap(PG) [54] is defined as the normalized difference of the real power
value and the ideal power value, which is indicated as PMax × U , under a certain uti-
lization level as shown in (2.5). Therefore, having proportionality gap values for a given
device, we can reconstruct the power model of the device.

PG(U) =
P (U)− (PMax × U)

PMax
(2.5)

Given the state of the art hardware, designing hardware which is fully energy propor-
tional remains an open challenge, power model of a non-energy proportional system is
illustrated in Figure 2.2. However, even in the absence of redesigned hardware, we can
approximate the behavior of energy proportional systems by leveraging combined power
saving mechanisms [55] and engaging heterogeneous commodity devices combined with
powerful server machines in lieu of homogeneous server hardware platform [54].
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Figure 2.3: Hierarchical three-tier data center topolgy

2.3.2 Communication Power Model

Data center communication power: In the switch centric communication within a
data center, switches that connect the hosts are the major power consumption sources.
In the pure server-centric data center networks, servers are in charge of forwarding
the data; thus, communication energy is added to server energy profile further to the
processing energy. For the hybrid network topologies, communication energy is partly
dissipated in the switch and partly in the servers. Moreover, the network topology
impacts the power usage profile.

Here we study the power consumption of a three-tire, hierarchical topology. The moti-
vation behind formulating hierarchical model is that it can be easily generalized to nu-
merous intra-data center topologies, e.g. Fat-Tree[56] , VL2[57], BCube[58], PCube[59],
etc. The tree depth is defined based on the path messages should traverse within the
data center in each layer. For the topologies which deviate from this property, e.g.
CamCube[60], we analyse the energy model separately. We assume an l level tree in
which hosts are in the leaves and are connected to an edge switch as their predecessor
via Gigabit Ethernet links. The edge switches are connected via an aggregate switch;
this process proceeds in two or more levels to create the root of the tree as shown in
Figure 2.3.

To assign a task to a host, the root aggregate switch transmits the task data to the
selected host through the tree. Assuming the homogeneous switches in each level of the
tree, the power consumed for this purpose is calculated as in (2.6). Pswitch stands for
power drawn by the switch. Additionally, we added Phost to each level consumption to
generalize our model.

P intraDC comm =

l−1∑
i=1

(Pswitch(i) + Phost(i)) (2.6)

Therefore, in a switch centric model, Phost = 0, while in a pure server centric model
Pswitch = 0 and in a hybrid model, power is drawn both in switches and servers.

Referring to (2.6), the depth of the tree, l, directly influences the power efficiency of the
data center. The tree depth is determined by the number of hosts and network topology.
The larger the data center is, the more the number of switches and links required to
connect the hosts and the deeper the tree is. Furthermore, flatter data center topologies,
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such as flattened butterfly [61] and FlatNet [62], obtain shorter path via less switches.
Topologies providing smaller network diameter are also more energy efficient due to
shorter average path should be traversed among the servers.

Therefore, smaller distributed data centers, serving the users independently, are more
power efficient than a single mega-data center model, following a tree intra-data center
topology. Loosely paraphrasing, in small data centers, the network diameter is smaller,
since the number of switches and links required to connect the hosts within a data center
is directly related to the number of hosts. Hence, the path should be traversed to reach
a host

P2P-cloud communication power modeling: We assume a P2P-cloud deployed in
a community network. Inexpensive WiFi devices have fostered the deployment of such
communities in recent years. Some significant examples are Guifi.net3, with more than
20, 000 active nodes, Athens Wireless Metropolitan Network4, FunkFeuer5, Freifunk6,
etc.

In these networks, hosts within a vicinity are usually connected via wireless links that
form a wireless network. Thus, the power consumed for communication within a vicinity
predominantly embraces the wireless network power consumed to transmit data [63].

Community networks are rather diverse in terms of size, topology and organization.
This is a consequence of their unplanned deployment, based on the cooperation of their
own customers. The characterization of the power consumption of these networks is
therefore challenging, and, as far as we know, has not been done before.

We characterize the power consumption in the P2P-cloud by means of experimental
measurements in a production wireless community network. The network consists of
around 50 802.11an-based nodes. It is deployed as part of the Quick Mesh Project
(QMP)7 and EU CONFINE project8. We shall refer to this network as QMPSU, which
is part of a larger Community Network having more than 20.000 operative nodes called
Guifi.net9. An experimental evaluation of QMPSU can be found in [64], and a monitoring
page is available in Interne10.

Typically, QMPSU users have an outdoor router with a wifi interface on the roof, which
establishes wireless links with other users in the neighborhood. Additionally, the outdoor
router has an Ethernet interface connected to an indoor AP as premises network as
depicted in Figure 2.4.

From the QMPSU graph formed by the outdoor routers we have obtained an average
path length of 3.78 hops, thus, crossing 4.78 outdoor routers. Therefore, the average
power consumption of a transmission between a pair of nodes in the network is:

PWN = 2PAP + 4.78Prouter, (2.7)

3http://guifi.net/en
4http://www.awmn.net
5http://www.funkfeuer.at
6http://freifunk.net
7http://qmp.cat
8http://confine-project.eu/
9http://guifi.net/en

10http://dsg.ac.upc.edu/qmpsu

http://guifi.net/en
http://www.awmn.net
http://www.funkfeuer.at
http://freifunk.net
http://qmp.cat
 http://confine-project.eu/
http://guifi.net/en
http://dsg.ac.upc.edu/qmpsu
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Figure 2.4: QMPSU connectivity

where PAP and Prouter are the power consumption of the AP and outdoor routers, re-
spectively.

The most common outdoor router used in QMPSU is the Ubiquiti NanoStation M5
(NS)11. As indoor AP we have considered the TP-LINK WDR4300 12.

Internet Power consumption: P2P-clouds for inter-vicinity communication and clas-
sic data centers for communication with users rely on Internet. Thus, to analyze the
energy consumption of these systems, we should be aware of Internet energy consump-
tion as well. Power drawn in Internet is subject to the hardware and distances ex-
ploited. Internet infrastructures are classified as core, distribution and access. Core
layer includes Internet backbone infrastructures such as fiber-optic channels, high speed
switch/routers, etc. Distribution infrastructure plays role as an intermediary to connect
the ISPs to the core network. The access layer constitutes the user to ISP communication
infrastructure.

Since there is a diverse range of hardware in each layer, it is not trivial to form a
comprehensive analysis on energy consumption of the Internet. However, Baliga, et al.
[65] conducted a study on the prevalent Internet hardware energy consumption. We rely
on this study for the Internet power consumption part of our analysis by driving the
model in (2.8). In this model, PInternet stands for Internet power consumption which
is a combination of power drawn in each level L = {core, distribution, access}. P router∗
denotes router power consumption in layer *, and nhops∗ indicates the number of hops
should be traversed at * layer.

PInternet =
1

ϕ
×
∑
∗∈L

P∗ × nhops∗ (2.8)

The concept of oversubscription, ϕ, exist in Internet communication, where Internet
service providers (ISPs) exert it as a strategy to utilize the resources by overbooking
the shared infrastructure among users. The more the resources are shared temporally,
the less the energy consumption is due to the shared static power dissipated. Oversub-
scription for the home users is 40:1 and for the business connection is around 20:1 in the
current Internet.

2.4 VM Power Estimation

As afformentioned, direct VM power measurement is not possible, therefore, VM power
modeling is essential to estimate VM power consumption. Models for power estimation

11http://www.ubnt.com/downloads/datasheets/nanostationm/nsm_ds_web.pdf
12http://www.tp-link.com/lk/products/details/?model=TL-WDR4300

http://www.ubnt.com/downloads/datasheets/nanostationm/nsm_ds_web.pdf
http://www.tp-link.com/lk/products/details/?model=TL-WDR4300
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Figure 2.5: VM power modeling issues in non-energy proportional systems

have been majorly studied at the level of processors, and less extensively in the context
of virtualization.

Besides the hypervisor and interference overhead in multi-tenant systems, the non-energy
proportional hardware adds more complexity to the VM power modeling agenda. In non-
energy proportional hardware platform, since the hardware power model is non-linear,
two identical VMs, sharing the same hardware, may end up with different dynamic
power usage estimation during the runtime, which may lead to unfair energy based
service charging, and planning. Figure 2.5, visualizes such a case. In this scenario, there
are two identical VMs, i.e. VM1 and VM2, collocated on a host with the power model
demonstrated in the Figure. If we only run VM1, the dynamic power estimated for this
VM will be P1, whereas running the second identical VM on the same machine predicted
as P2 < P1. Therefore, in case of collocation, there should be a strategy to divide the
dynamic power fairly among the running VMs.

Proposed Solution: To address the fairness issue introduced in the previous section
we propose the weighted division VM power model. In this model as illustrated in (2.9),
a particular VM’s power consumption, PVM (i) is calculated according to the relative
utilization, i.e. ui

U , contributed by that particular VM. In this equation, ui represents
the utilization incurred by VM i, and U denotes the overall machine utilization.

PVM (i) =
uiP (U)

U
(2.9)

2.5 Application Power Modelling

Application energy characterization faces more challenges compare to the VM and hard-
ware challenges. Application Energy model should be accurate enough in a course
grained view toward energy characterization and increasingly needs to be hardware
oblivious. Fulfilling these requirements needs to sketch a model that attributes the
application requirements to a set of parameters that represent the tentative resource
utilization in run time.

Typical state of the art approach as mentioned in related work, is application profiling
which fails to meet hardware agnosticness.

The closest work to the approach to our proposal, i.e. analytical model for application
power characterization is [23]. However, this study is centered on the algorithms and is
only studied for a limited set of algorithms. Therefore, a generalized model derived from
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Figure 2.6: Energy effectiveness of typical cloud applications

the proposed model is required to build up a framework for algorithm energy complexity.
Besides, application energy analysis in a hardware oblivious setting needs to take into
account data flow among the algorithms as the basic components of an application. Note
that in distributed application settings such as MapReduce, flow complexity broadens
its extends to network communication.

2.6 Evaluation

In this section we study the energy effectiveness introduced in this chapter for a set
of typical cloud applications, i.e. storage, streaming and MapReduce. However, this
experiment is done in a particular hardware setting, and cannot be generalized in the
higher layers of the stack, i.e. application and virtualization layer. Note that in this
study we set α = 0.5, since the aim of this experiment is not addressing the adaptiveness.
Effect of α and vulnerability factor are elaborated in the next chapter.

Figure 2.6 illustrates the energy effectiveness of different application in P2P-cloud and
classic data center systems. As shown in the figure, identical hardware setting results
in different values for energy effectiveness of each application, due to the particular
characteristics of each application, which includes the minimum amount of energy it
uses as well as the performance requirements of the application. More interestingly, we
see the difference in energy effectiveness of the same application in different hardware
settings. As shown in Figure 2.6, storage service has higher energy effectiveness when is
run on P2P-cloud, while streaming and Mapreduce perform better on data centers, since
they are more process intensive, and P2P platform cannot provide powerful processing
capability.
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2.7 Summary

In this chapter we addressed the formulation of a performance aware energy analy-
sis metric by introducing energy effectiveness, which can be specified in each layer of
service provisioning stack, i.e. application, virtual machine/OS and hardware, from a
course-grained, asymptotic, hardware agnostic conceptualization on top of the stack to
an accurate, fine-grained, hardware dependent formulation on the bottom layer. We in-
troduced power modeling in communication and process elements of different cloud plat-
forms, and discussed the added complexity in power modeling rooted in multi-tenancy as
the cornerstone of cloud service provisioning. Besides, we characterized the performance
metric in each layer of the stack to enable energy effectiveness calculation with different
granularity across the stack.

In the next section we form a service analysis framework, leveraging the energy effec-
tiveness metric we introduced here, to improve energy effectiveness by efficient service
platform selection.



Chapter 3

Analysis Framework

P2P-clouds embrace vast sums of ubiquitous commodity ICT resources, which introduce
an opportunity to scale the cloud service provisioning beyond the borders of giant cloud
service providers such as Amazon that rely on gigantic data centers. However, since
energy consumption is becoming crucial in industrial world including IT sector, emerging
technologies should be energy efficient enough to be able to survive in the new economics
paradigm. To understand if P2P-cloud as an emerging cloud paradigm meets the above
condition, in this chapter , we compare the energy dissipation of P2P-cloud and data
centers through an analytical model and assess it in a particular setting.

Thus, to sketch a comprehensive view of energy consumption within a service life cycle,
we need a hardware agnostic framework to cope with the hardware diversity. This frame-
work can be customized to any hardware platform to outline the energy consumption
in that particular setting. Leveraging such a framework assists the resource manage-
ment module and broker to make energy aware decisions for resource allocation in the
federated environment of P2P-clouds and data centers.

3.1 Related Work

Previous work [66, P2, P5] reveals that, in the contest between classic data centers
and P2P-clouds, the latter can compete with the classic datacenter model in terms
of energy efficiency for specific services, as long as the jobs are served mostly locally.
Nonetheless, there is no straightforward global answer for this question, since energy
consumption depends on a diverse range of factors on service provisioning stack, from
hardware specifications to the service characteristics and execution platform.

To the best of our knowledge, there is limited work addresses the energy consumption
analysis in P2P platforms. In [66] a high level model of P2P and data center energy
consumption is introduced, and [67] compared streaming service in nano-data centers
with gigantic ones in terms of energy consumption. In this chapter we introduce an
analytical framework to characterize service energy consumption in a P2P assisted cloud
platform.

24
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3.2 Service Energy Analysis

In this section we analyse the energy effectiveness across a range of cloud services falling
in different categories of communication, process and storage intensive services.

3.2.1 Storage as a Service

Hadoop File System(HDFS) [68], as the most prevalent distributed file system leveraged
in data centers, is a block based file system that divides a file by default into blocks of
64MB. These blocks are stored across the cluster of one or several machines which are
referred to as DataNodes. To store the file blocks, HDFS chooses the target DataNodes
randomly for each block. Thus, retrieving a file may require cooperation of multiple
machines. NameNode is the machine that facilitates this coordination by storing all
metadata for the file system. To open a file, a client contacts the NameNode and retrieves
a list of locations for the blocks that comprise the file to identify the DataNodes holding
each block. Client then directly reads the files from the DataNodes, possibly in parallel.
To make the data robust to failure and increase the HDFS reliability, data is replicated
in different DataNodes, by default with replication factor of 3. However, NameNode is
still a single point of failure in HDFS.

On the other hand, in P2P-cloud instance we have, i.e. cloud on top of the CONFINE
community network [69], storage service is provided via Tahoe-LAFS decentralized stor-
age system. Akin to HDFS, Tahoe-LAFS cluster is embodied to client nodes, storage
nodes and an introducer as the single coordinator node which plays the same role as the
NameNode in HDFS. Storage nodes announce their presence to the introducer; there-
fore, when a client node intends to store data, it connects to the introducer to get the
list of present storage nodes. When the client uploads a file to the storage cluster, a
unique public/private key pair is generated for that file, and the file is encrypted, era-
sure coded and distributed across storage nodes (with enough storage space) [69]. The
erasure coding parameters determine how many servers are used to store each file which
is denoted as N, and how many of them are necessary for the files to be available, K .
The default parameters in Tahoe-LAFS are K=3 and N=10 (3-of-10). The location of
erasure coded shares is decided by a server selection algorithm that hashes the private
key of the file in order to generate a distinct server permutation. To download a file, the
client asks all known storage nodes to list the pieces of that particular file if they hold
any, then client chooses which nodes to request for each piece based on various metrics
such as latency, node load, etc.

Therefore, generally, to offer storage service on a distributed system we need a decen-
tralized storage system installed on top of the infrastructure. A decentralized storage
system embodies to a set of storage nodes, client nodes and coordinators. Storage nodes
are coordinated by the coordinator nodes which are aware of each individual node, e.g.
NameNode and Introducer in HDFS and Tahoe-LAFS.

Energy consumption of storage service factorizes to the communication, coordination
and storage nodes energy dissipation.

ESaaS = r × (Ecommunication + Ecoordinator + Estorage) (3.1)
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Figure 3.1: Mapreduce data flow

Communication energy,Ecommunication is modeled in Chapter 2, and Ecoordination denotes
the energy consumed in the coordinator host, following the host power model formulated
in the previous chapter. r represents the replication factor which is by default set to 3
in HDFS.

Estorage depends on the drive technology, for the SSD drives this value is only propor-
tional to the data size and is trivial compare to the other parts energy, while for the
HDD drives based on rapidly rotating technology, this energy not only depends on the
data size but also data and disk head location. In HDD, power drawn for retrieving
the data is not negligible. There is some effort to model disk power usage on HDD
technology [70] as Estorage = PHDD

τHDD
.

3.2.2 MapReduce as a Service

To scrutinize the energy consumed in the clouds, we analyze the energy consumed per
MapReduce job, both in the datacenter and P2P-clouds, as visualized in Figure 3.1.
When a MapReduce request is sent to a data center, the scheduler decides which host
should perform the job. Being assigned to hosts, the input is split into nt inputs of
Sizet in the map phase. Each individual task with specified input is allocated to a host
in the datacenter; note that more than one task may be assigned to a single host. To
complete a task, a host acquires not only the task input data, but also the appropriate
VM containing the execution code. Therefore, the data transmitted within the data
center communication infrastructure includes VM and input data with size, Sizeinput.
In the second phase of a MapReduce job, i.e. the reduce phase, output is aggregated
in the output file of Sizeoutput and delivered as the job result. Moreover, the output
of the first phase, named intermediate output may be exchanged among hosts due to
the shuffle-exchange phase. Overall, the size of the transmitted data in this phase is
Sizeintermediate output. Therefore, the size of data to be transmitted is following (3.2).

SizeMR
data = Sizeinput+nhosts×SizeVM+

nt∑
i=1

Sizet(i)+r×Sizeintermediate output+Sizeoutput

(3.2)
SizeVM and nhost denote the VM size and the number of hosts assigned to the job
respectively. The output data size and intermediate output size may vary according to
the MapReduce application type and the input file.
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The energy consumed to transmit the required data for a job, as shown in (3.3) is the
multiplication of power drawn for the communication, the amount of data should be
transmitted, as depicted in (3.2), over the network throughput, τDC .

EMR
intra DC comm = P intra DCDC comm ×

SizeMR
data

τDC
(3.3)

Network throughput is a factor of network infrastructure and communication proto-
col. Exploiting Gigabit Ethernet, data center network performance is more than 90%;
therefore, τDC is above 967 Mbps.

The energy drained within each host is
∑

nt
Phost × ttask for each phase. Here we char-

acterize the Hadoop implementation of MapReduce with five phases of Map, collect,
split, merge, shuffle and Reduce in which Map, collect, split, and Reduce are basically
accomplished in hosts, while merge and shuffle are network and storage hungry phases.
ttask is the time to process the assigned task in the host which is directly proportional
to the CPU clock frequency. Considering lognormal distribution for the task time [71],
the host energy is approximated as E[ttask] ×

∑
nt
Phost; where E[ttask] represents the

expected value of Lognormal distribution. The last element of the energy consumed
per job is the transmission over Internet as illustrated in (2.8). The only data to be
exchanged over Internet in this case is the input and output data. The overall energy
consumption for the MapReduce over a data center is following (3.4). Here, PUE defines
Power Usage Efficiency of the data center.

EMR
intra DC = PUE × [EMR

intra DC comm +

numberofphases∑
i=1

(E[ttask]×
∑
nt

Phost)] (3.4)

To analyze the energy consumed in the P2P-cloud per MapReduce job, we should con-
sider two different scenarios. A case where jobs are assigned to the hosts within a vicinity,
i.e. intra-vicinity scenario, and the second case for inter-vicinity responses. In case of
inter-vicinity responses, a job may be assigned to hosts in another vicinity. The input
data, intermediate output and VM should be sent to the distant host through Inter-
net. On the other hand, in case of intra-vicinity responses, VM, input and intermediate
output data are needed only to be sent to a host via wireless network. To exemplify,
considering IEEE 802.11n wireless infrastructure and IPv4 packets, the transmission
rate, τintra P2P , is 10.9 Mbps as explained in QMPSU. In this case the amount of data
to transmit over the community network follows (3.2). Overall, the energy required to
accomplish a MapReduce job on community for the intra-vicinity mode is given in (3.5).
tP2P implies the response time of the hosts in P2P-cloud.

EMR
intra P2P = P commWN

SizeMR
data

τintra P2P
+

numberofphases∑
i=1

(E[ttask]×
∑
nt

Phost) (3.5)

Note that in Phost, static power is divided by the number of VMs collocated in the host,
while the dynamic power is the amount that dissipated due to the utilization of resources
induced by the task.
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3.2.3 Streaming as a Service

Video streaming service can provide either online streaming, i.e. content being encoded
on the fly, or offline streaming, i.e. serving previously encoded and stored content. Thus,
if we consider offline video streaming, no video rendering and encoding in the cloud side
is required. Video frames are stored in the cloud storage and retrieved on demand.
In this case communication is the key element in distinguishing energy consumption
of P2P-cloud and data center models, since the data should be retrieved from network
accessible storage. Video decoding, on the other hand, is always done in the end user
side. Hence, applying power aware video decoding mechanisms [72] contributes to a
more energy efficient service provisioning at end user level.

Nonetheless, in cloud assisted live video streaming, e.g. Amazon CloudFront live video
streaming1, video rendering is done in the data center servers. For instance, CloudFront
uses the Adobe Flash Media live encoder.

For offline video streaming, as in (3.6), the energy is dissipated in three parts, retrieving
the frames form the NAS, Estorage + Eintra−DCtransmit ,and transmitting them over Internet,
EInternettransmit. On the user side, this frames should be buffered and decoded to play on the
screen. Since in all scenarios we target the same end user, we presume that the end user
energy consumption is a constant amount for all given scenarios, Eu.

EODstreaming = Estorage + Eintra−DCtransmit + EInternettransmit + Eu (3.6)

In (3.6), Estorage refers to energy dissipated for reads and writes from/to disk, which is
explained in Section 3.2.1.

Apart from the streaming mode, i.e. live or on demand, transmission power over the
data center intranet as introduced on the above section, depends on the data size and
the transmission protocol throughput. In this case we assume that the transmission
protocol for both intra data center, Internet communication and P2P transmission are
the same as the MapReduce case as discussed in the previous section, i.e. we assume
streaming over HTTP, as provided in Amazon Cloud Front.

For live streaming, however, we should model the video encoding energy consumption
Eencoding and replace it with the Estorage in (3.6). For the rest of the processes we can
follow the offline streaming model. Video coding tightly couples with the video format;
nevertheless, we can assume that encoding energy is larger or equal to decoding energy
in a particular hardware platform due to the exhaustive, extra stage of complicated
motion compensation recognition process should be traversed in encoding process. Here
we consider H264 video format. H264 video is formed as a set of consecutive frames
of three different types: I,P, and B frames. I frames are independent images while P
frames are generated based on their previous I frames and B frames are coded based
on the frames before and after them. Typically, the I frame coding follows the JPEG
coding. B frame coding draws more power compare to the I and P frame on the same
machine, since B frame relies on bi-directional differential coding of the values through
the JPEG coding process, EIencoding ≤ EPencoding ≤ EBencoding.

1http://docs.aws.amazon.com/AmazonCloudFront/

http://docs.aws.amazon.com/AmazonCloudFront/
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Figure 3.2: Host Power Model

3.3 Evaluation

We aim to analyse the energy consumption on different cloud models under the video
streaming, storage and MapReduce workload with the following configuration.

3.3.1 Experiment Setup

Processing power: For data center, host power model is derived through loading
as Sandy bridge server machine with different loads, collecting performance counters
and applying regression, the corresponding power to utilization values are depicted in
Figure 3.2.a.

For the P2P-cloud nodes we employ the Jetway JBC362F36W with Intel Atom N2600
CPU with the maximum power of 20W, whereas there are Dell Optiplex 7010 machines
with Core i7 CPU, 4 cores supporting up to 8 parallel threads. We derive a power model
for these devices, as shown in Figure 3.2.b,c by utilizing the machines in different levels,
using Stress2. The portion of Dell machines are 20% in the testbed while we have 80%
of Jetway devices.

Data center Switch Power Model: Different topologies covering switch centric
and server centric have been studied and simulated using power consumption values
of switches available in the market. For the core switch, we opt Cisco Nexus 5596T,
which has 32 ports of 10 Gbit Ethernet, and supports optical networking owing to SPF+
ports. It typically dissipate 900 watts, while the maximum power is 1100 watts.

For the distribution and access layer switches we rely on Cisco Nexus 2232TM switch
which has 32 ports of 1 and 10 Gbit Ethernet with the over subscription of 4:1. Its
maximum power consumption is 386 watts; nonetheless, it draws 280-350 watts, typi-
cally. For commodity switches, we employ Cisco Catalyst 37590-48TS which consumes
the maximum of 75 watts and provides 48 ports. For all the switches, since they include
the recent technology of green switches, the power drawn for each port, in idle case is
almost zero.

N.B:All the above values are derived from the devices datasheet.

2http://linux.die.net/man/1/stress

http://linux.die.net/man/1/stress
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Table 3.1: Wireless Infrastructure Power Consumption

Power(watts) NS TP-LINK

Static 3.7 3.9
UDP-Max 5.0 5.4
TCP-Max 5.2 6.1

Figure 3.3: Service energy consumption in different platforms

The power consumption of a server’s port is set to be 3W [73]. Internet energy con-
sumption values are derived from [65], which characterizes the metro power of around
10.25 watts and core power of less than 0.15 watts per connection through fast Ethernet
link with the over subscription of 40:1.

For MapReduce scenarios, we assume a typical workload of input data size of 3 GB,
overall intermediate output size is 30% and the final output size is 20% of the original
input.

P2P Communication Power Modeling: We elaborated the power consumption of
the P2P communication infrastructure described in 2.3. We have observed a similar
power consumption in the TP-LINK and NS, which falls in the range of around 4 W
(static power) to 6 W (maximum throughput), the measured values are given in Ta-
ble 3.1. However, all devices are far from transmitting at the maximum throughput
during a typical transmission, experimental measurements show an average throughput
between nodes and their gateway of 10.9 Mbps (see [64]), which be estimated as the
average throughput between any pair of nodes. Thus, we conclude that 5 W is a good
rule of thumb as power consumption for all networking devices in QMPSU. Substituting
in (2.7) we have that the average consumption in QMPSU is 33.9 watts.

Regarding the round trip time (RTT), experimental measurements in QMPSU give an
average RTT of each node to the gateway of 18.3 ms, with standard deviation σ =
50.6 ms. We shall use these values as estimation for end-to-end RTT delays in the
network.

3.3.2 Results and Discussion

Figure 3.3 compares the energy consumption of different services provided in the same
hardware setting. As shown in this figure, different services perform better in different
platforms, in terms of energy consumption. This result confirms that there is no straight
forward answer for the most energy efficient service platform, P2P-cloud vs. data center.

Figure 3.4 certifies that if we focus on energy effectiveness, i.e. performance aware
energy analysis metric, rather than pure energy consumption analysis, more complexity
is added to the agenda by putting different values on performance.
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Figure 3.4: Energy effectiveness

Table 3.2: VM Specifications

Type Cores Memory(GB) Storage(GB) number of number of
(GB) (GB) mappers reducers

Small 1 1 1 1 1
Medium 1 3.75 4 1 1
Large1 2 7.5 32 1 1
Large2 2 7.5 32 2 2

Moreover, moving from hardware agnostic toward hardware aware analysis, particular
hardware setting may result in opposite results in the comparison. In the next section,
we study the MapReduce in different hardware setting and show that P2P-cloud can
save more energy for this service, in contrast to what is shown in Figure 3.3.

3.3.3 MapReduce Case Study

In this section we study MapReduce service provisioning in clouds in more details in
particular circumstances.

3.3.3.1 Experiment Setup and Scenarios

We analyse the energy consumption on different cloud models under the MapReduce
workload with the following configuration. For the P2P-cloud nodes we rely on the
Clommunity [74] which employs the Jetway JBC362F36W with Intel Atom N2600 CPU
with the maximum power of 20W, as well as the Dell OPtiplex 7010 desktop machines.
Datacenter hosts are set to be HP Pro Liant Ml110G3 Pentium D930. For the HP
machines power model is derived from the SPECpower ssj2008 benchmark3. The com-
munity cloud infrastructure is modelled as wireless network which employs flooding as
routing strategy, i.e. the worst case energy consumption scenario. Each wireless antenna
consumes the maximum of 5.5 watts. For the switches in the LAN, we apply the power
model introduced in [75]; Internet energy consumption values are derived from [65]. Four
VM types as shown in Table 3.2 are exerted. For most scenarios, we assumed a typical
workload of input data size of 15 GB, overall intermediate output size is 30% and the
final output size is 20% of the original input. For the sake of comparison through this
evaluation, we take small VMs to execute the tasks, unless it is explicitly mentioned.
We study our main metric, i.e. energy consumption in the following scenarios:

3https://www.spec.org/benchmarks.html

https://www.spec.org/benchmarks.html
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A. P2P-cloud without cache: the base P2P-cloud scenario, assuming that the
entire contents of workloads have to be downloaded via wireless, but are always
available within the vicinity.

B. P2P-cloud with cache: same as above scenario, but enhanced with caching
locally to nodes the most popular VMs and data files within the vicinity, thus
reducing the amount of repeatedly downloaded information. Note that in this
scenario and the scenario above we assume that resource scarcity never occurs.

C. P2P-cloud with inter-vicinity responses: the worst case P2P-cloud scenario,
the base one but the content is not available within vicinities, thus accounting for
inter-vicinity communication and extra costs.

D. P2P-cloud with cache and inter-vicinity responses: same as above, ex-
tended with local caching of VMs and data files, thus reducing the amount of
repeatedly downloaded information.

E. Classic datacenter: For comparison against the classic datacenter scenario,
where users access the datacenter exclusively through wired networks, we exploit
the datacenter model with 4 rows of 32 clusters each with 32 hosts for the data-
center model.

3.3.3.2 P2P-cloud Energy Consumption
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Figure 3.5: Energy consumption for various inputs across scenarios

In Figure 3.5, we show the energy consumption for each of the defined scenarios as the
workloads vary across two parameters, VM size and input data size. Naturally, energy
consumption increases for workloads executing larger VMs and when processing larger
input data files. Comparing to the classic cloud, P2P-cloud consumes quite less energy
as long as the jobs are performed locally. Generally, the energy required to accomplish
jobs in datacenter model exceeds that of the P2P-cloud in any cases if the input size is
big enough or the VM is large. However, we should bare in mind, this energy saving
occurs by sacrificing the performance.

As shown in Figure 3.5, the energy consumption in P2P-cloud in case of providing the
service within the vicinity is much less than the case of inter-vicinity scenario, since in
the inter-vicinity service provisioning we should transmit the input, output data and
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Figure 3.6: Compute vs. communication energy consumption

in some cases the VMs through Internet, which is the most energy hungry element of
the P2P-cloud system. In general, the communication energy is fluctuating more P2P-
clouds, while the processing energy is more varying in classic datacenters.

Figure 3.6 outlines the energy consumption in computing and communication part for
small VMs with the input size of 20GB. This Figure proves that the energy consumption
of P2P-cloud in communication part is varying more, since we can see different values
for different scenarios.
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Figure 3.7: Energy consumption of applications with different input-output sizes
running on small VMs

3.3.3.3 VM size effect

As shown in Table 3.2 we consider three different types of VMs with different capabilities
of processing MapReduce tasks. Figure 3.5 highlights the effect of VM size in MapReduce
task processing in three scenarios. As depicted, the energy consumption in P2P-cloud
intra-vicinity processing is neutral to VM size, but is dependent of the MapReduce task
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Figure 3.8: Energy consumption of a 5GB input application running on different VMs
across scenarios

processing slots available in the VM. Including more slots in a VM, we save more energy,
since less communication overhead is induced. The energy consumption of communica-
tion in P2P-cloud constitutes an enormous portion of the consumption and even more
than computation cost. Although increasing the level of parallelism within a VM can
improve the energy saving, it should be bared in mind that in P2P-cloud the processing
power of the nodes are very limited and we cannot create large VMs there. Neverthe-
less, increasing the task collocation in classic datacenter hosts can be a more practical
solution for energy saving purposes. As shown, energy consumption of inter-vicinity
scenario is independent of the VM size as long as the VM images are available in the
serving vicinities, since the input and output data transmission energy dominates the
process energy consumption.

Increasingly, Figure 3.5 reveals the importance of choosing the right VM according to
the input size besides choosing the appropriate platform. To exemplify, in a classic
datacenter for the input size of less than 10 GByte, processing on small VMs is the most
energy efficient choice due to the process power saving of small VMs.

3.3.3.4 Input-(intermediate) output Proportionality

Here we study the relation of intermediate output and output size of the MapReduce
applications on the energy consumption to get an insight into the appropriate VM as well
as system to run different MapReduce applications. Figure 3.7 illustrates the importance
of VM selection for applications with smaller input and output sizes. As shown in Figure
3.7 in cases that input size is small, i.e. 5GB and the output is less than 40% of input
data, datacenter model outperforms the inter-vicinity scenario.

Figure 3.7 focuses on small VM. To be more precise, we draw the energy consumption
for small inputs across different scenarios including different VMs in Figure 3.8 because
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Figure 3.9: Impact of number of neighbours in vicinity diameter on average hops
between two nodes.
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b) Vicinity size = 500

Figure 3.10: Vicinity Density effect in community networks

the intermeidate-output has to be exchanged among vicinities in this case. As depicted
in Figure 3.8, in small and medium VMs there is a cross point among datacenter energy
consumption and inter-vicinity responding in P2P-cloud, Figure 3.8.a , Figure 3.8.b
. However, for the large VMs, energy consumption of datacenter always exceeds the
P2P-cloud scenarios even for the small input size, Figure 3.8.c , Figure 3.8.d.

3.3.3.5 Vicinity Density

Here we exert the logarithmic vicinity diameter model which implies the average dis-
tance of two nodes in the vicinity as O(lognneighbourCount) where n denotes the scale
of the system. Figure 3.9 shows that with the number of neighbors of at least 10,
P2P-cloud scenarios can keep the average number of hops between two nodes in the
vicinity, where there are 100 nodes overall in the vicinity. Convergence to three hops
for a vicinity of 500 nodes occurs in around 30 neighbours. Although three hops is very
effective, increasing the number of neighbours not only leads to higher energy consump-
tion due to multiple unaddressed recipients, but also does not provide additional gains
in message latency. Nonetheless, adding more nodes increases the resource availability
in each vicinity. Therefore, there is a trade-off between energy efficiency and resource
availability.

In Figure 3.10, we depict energy consumption for typical workload presented earlier for
all the scenarios described, with two different vicinity sizes: 100 and 500. P2P-cloud
with caching, our proposal, is clearly the winner, with orders of magnitude less energy
consumed, in both scenarios. Figure 3.10 also reveals the influence of the vicinity density,
i.e., the number of neighbors accessible to each node. The P2P-cloud with caching
is always the winner regardless of the vicinity density. The fluctuation in the graph
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Figure 3.11: P2P-assisted Cloud Architecture

for small number of neighbors is because of the estimation and round up error in the
logarithmic vicinity diameter model, but by reaching the efficient average hop count, i.e.
three for aforementioned scenarios, energy consumption rises gradually as the vicinity
becomes denser.

3.4 Energy Aware Platform Selection

Generally, each service consumes energy on hosts and communication infrastructure.
Host energy factors to CPU, memory, storage and other I/O devices. Hence, being
able to analyse each service to understand the hot spots in resource consumption for a
particular service, we can derive a conclusion about which platform suits better to that
service.

Afterwards, defining local brokers equipped with an insight into the energy consumption
pattern of each individual service, it can decide in an energy-aware service platform
selection and resource allocation in the federated cloud architecture explained, as shown
in Figure 3.11.

In algorithm 1, we outline how a broker can take into account the energy awareness
in resource allocation process for each service. In this algorithm, the computing and
communication energy effectiveness difference of the service in P2P and data center
platforms are calculated, and service is allocated to the appropriate platform accordingly
if enough resources are available.

Algorithm 1 service assignment policy

1: function Service management(service, α) . α represents the effectiveness factor
2: ∆Ecompute ← NP2P

host × EP2P
host (U)−NDC

host × EDChost(U)
3: ∆Ecommunic ← NP2P

hops × EP2P
communic −NDC

hops × EDCcommunic
4: if (∆Ecompute + ∆Ecommunic ≤ 0) then
5: if (P2P resource available and energy effectiveness(α)) then
6: return Direct to P2P
7: end if
8: end if
9: return Direct to data center

10: end function
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3.5 Summary

In this chapter we introduced a hardware agnostic framework to analyse energy effective-
ness both from hardware and service vantage point. Characterizing the energy model for
a particular setting and exerting this framework, a broker can decide for a more energy
effective service allocation, which considers energy conservativeness while still meets the
quality of service requirements.

Moreover, we compared the energy consumption in classic datacenter model with P2P-
clouds. We scrutinized the main sources of energy consumption in both systems and
assessed their energy effectiveness.

We extended the P2P-cloud in intra-vicinity, previously presented in [P2], as a response
to a more energy efficient solution to assist cloud ecosystems. The effect of exerting P2P-
cloud on quality of service was studied on services for file transfer, video streaming, and
MapReduce jobs. Our MapReduce case study indicates that the hardware specifications
may completely turn the table in favor of a specific platform which revokes the possibility
of finding an straight forward answer to our major question in this research, i.e. ”Is it
energy efficient to switch to community cloud?”, and highlights the necessity of a general
framework to eork as a middleware between the service stack layers. This middleware
framework maps the hardware-agnostic, corse-grained service level model to a particular
hardware setting, to refine the model and come up with an answer for our major question,
afformentioned.



Chapter 4

Combining P2P Assisted Cloud
and Smart Grid

As carbon footprint rate rises in recent years, and is predicted that the global carbon
emission will reach 1430 megatonnes by 2020 [76]. being energy efficient and moving
toward green energy sources are essential for environmental sustainability. Information
and Communication Technology (ICT) plays a leading role in this context by its po-
tential for providing a large scale real time controller to improve decision making and
developing environmental information systems [77]. Moreover, investments in energy
saving technologies are compensated financially, particularly when carbon tax is applied
to energy price. However, this ICT infrastructure itself is a source of energy consump-
tion. For instance, cloud computing energy consumption will increase to 1,963 billion
kWh by 2020 and the associated CO2 equivalent emissions of 1,034 megatonnes will be
expected [76].

Therefore, green ICT and ICT for green are not mutually exclusive, both are important
and they complement each other [78]. Hence, the challenge for the future lies in synthe-
sising, not only ICT for green, but also green ICT, to achieve a more sustainable service
platform.

The electricity industry attempts to transform itself from a centralized, producer con-
trolled network to a more consumer interactive and decentralized one via smart grid.
Smart grid intends to achieve grid’s full potential and prepares a cleaner and more effi-
cient, reliable, resilient and responsive electric system. A smart grid system needs a large
scale infrastructure for collecting and communicating data; likewise, it must have access
to flexible, network-scattered computational power, network bandwidth, and storage
capacity, due to distributed nature of data sources.

Akin to smart grid, ubiquitous P2P society is a collaborative effort in which infrastruc-
ture and services are shared among several individuals and/or organizations forming
a specific community with common concerns. Ubiquitous society envisions a world in
which services are accessible from anywhere, anytime, by anyone and anything1. These
goals are partially intersected with the cloud vision, which introduces pervasive service
provisioning. Therefore, we name the ubiquitous P2P society as P2P-cloud.

1http://www.itu.int/WORLD2006/forum/ubiquitous_network_society.html
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Since Energy and ICT are two pillars of modern life that advance hand in hand, in line
with the goals of ubiquitous society, in this chapter, we propose Cloud of Energy(CoE)
system, which considers everything as a service (XaaS), as introduced in the idea of
clouds [79], e.g. Infrastructure as a Service, Platform as a Service, Software as a Service.
In tandem with this trend, Energy as a Service is added to the agenda in CoE. Smart grid
and P2P-cloud are both large scale distributed systems involving vast sums of common
specifications: self service, metered, elastic resources, multi-tenant, and access via the
network are cases in point. Thus, CoE combines P2P-cloud, including sensors, commod-
ity desktop machines and IoT boards, with the smart grid, to provide energy efficient
services and also contributes to smart energy system’s computing and communication
platform.

There is a growing body of work centered on exploiting the cloud and peer to peer
platforms for the smart grid computing [82, 84? , 85]. In a cloud computing environ-
ment, flexible data centers offer scalable computing, storage and network resources to
any Internet-enabled device on demand. Moreover, P2P-cloud can manage the mas-
sive amount of data from distributed sources of consumption, generation and network
nodes. On the other hand, diverse energy sources of smart grid improves the availability,
sustainability and environment friendliness of the ubiquitous network society services.

The main contribution of this part is introducing CoE architecture as an integrated
energy and computing platform, Section 4.2. CoE aims to design a service framework
that incentivies all range of service producers, offering services from computing to energy,
in range of small prosumers to giant providers, to serve in a greener marketplace, through
an economic middleware, outlined in Section 4.2.3. We analyse the feasibility of the
proposed architecture in Section 4.3.

4.1 Background and Related Work

The electricity industry attempts to transform itself from a centralized, producer con-
trolled network to a more consumer interactive and decentralized one via smart grid.
Smart grid enables the industry’s best ideas for grid modernization to achieve their full
potential and prepares a cleaner and more efficient, reliable, resilient and responsive
electric system.

A smart grid system requires a monitoring capability suitable for wide area deployments.
It needs a large scale infrastructure for collecting and communicating data; likewise, it
must have access to flexible (possibly network-scattered) computational power, network
bandwidth, and storage capacity. The distributed nature of data sources, the possibility
that data may need to be collected from multiple (competitive) power producing and
transport enterprises, and this need for timely state estimation, all make the system
more complicated.

Akin to smart grid, P2P-cloud is a collaborative effort in which infrastructure and ser-
vices are shared among several organizations form a specific community with common
concerns. Smart grid and P2P-cloud are both large scale distributed systems involving
vast sums of common specifications: self service, metered resources, multi-tenant, elastic
resources, and access via the network are cases in common.
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The economic models invented for smart grid and P2P-cloud systems are inspiring for
each other, on account of the similarities of these two systems. Primarily, because in
both P2P-cloud and smart grid, consumers can be providers as well. Moreover, they
both follow the pay-as-you-go mechanism and the computational tasks are not batched;
hence, there is no waiting time. This enables a time-critical model of computation.

We can leverage the ad hoc and elastic nature of clouds to benefit the smart grid at
the economy of scale expected from cloud computing, while efficiently utilizing power
as we scale up. On the other hand, combining smart grid and community clouds in a
symbiotic relationship can be mutually beneficial in fostering adoption of both.

Some previous work [80–85] sketches a smart grid communication and information plat-
form that relies on a cloud system. To employ such solutions, the smart grid should
establish its own cloud system or must use public cloud infrastructure. In both cases,
the smart grid should spend enormous amount of money for communication and data
provisioning. Since the P2P-cloud is a community of the available end user resources,
employing commodity hardware, no extra resource investment is necessary to manage a
smart grid by exerting the P2P-cloud.

To this aim, we can integrate the pricing mechanism of both systems. The users supply
the P2P-cloud resources for the smart grid, charge it according to their contribution and
energy consumption and the community users have the opportunity to choose the plat-
form with least energy cost to execute their services. This synergetic solution encourages
the user to share as much resources as possible in the P2P-cloud, and eventuates to end
user utility expense reduction, as well. Furthermore, the P2P-cloud facilitates the en-
ergy efficiency issues by employing the efficient energy provisioning capabilities of the
smart grid.

At the same time and increasingly so, the need to reduce carbon footprint has greatly
raised investment in heterogeneous renewable sources of energy such as water, waves,
wind and sun for energy efficient smart grid. As stated in [86] the smart grid infras-
tructure is a combination of smart energy, information and communication subsystems.
Utilizing both information and communication systems, the smart grid accomplishes
precise matching of supply to demand and offers incentives to appropriate consumer
behavior. These changes affect the energy waste and the carbon footprint of the grid,
making it smarter and greener.

Analogously, in the context of computing, replacing expensive, gigantic, cloud data-
centers by inexpensive nano-datacenters of the P2P-cloud, constructed of commodity
hardware, would be a huge step towards energy efficient systems. Previously, some
studies, e.g. [87], compared the smart grid to the Internet. In the next section we
survey the smart grid and P2P-cloud potential conjunction points.

4.1.1 Smart Grid and P2P-cloud collaboration potential

There is a growing body of work centered on exploiting the cloud and peer to peer
platforms for the smart grid computing [82, 84, 85]. In a cloud computing environ-
ment, flexible datacenters offer scalable computing, storage and network resources to
any Internet-enabled device on demand. Moreover, P2P communication platforms can
manage the massive amount of data from distributed sources of consumption, generation
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and network nodes. On the other hand, diverse energy sources of smart grid improves
the availability, sustainability and environment friendliness of the cloud services.

In [88], Niyato, et al. proposed a cooperative game based approach to manage the
virtual machines of a cloud in a more energy efficient way by being aware of smart grid
resources. In [89], analysing the power flow of datacenters, authors formulated a service
request routing mechanism that considers the load balancing of distributed datacenters,
which leads to energy consumption balance in datacenters and helps to grid energy
management.

Moreover, there are some studies[90] on how to leverage a Peer-to-Peer platform as
the ICT infrastructure of Smart grid. For instance, the CoSSMic project[91] aims to
develop the ICT tools needed to facilitate the sharing of renewable energy within a
neighbourhood. Cisco also proposed the combined platform of fog and cloud computing
for smart grid data processing[92]. P2P clouds[93] and ClouT[94] approached this issue
in a more general view by targeting the Internet of things enabled smart homes and
cities.

A Community cloud-enabled smart grid can benefit from the following advantages:

• Facilitating the development: It is easier to develop community cloud espe-
cially in the urban areas which facilitates the development of smart grid as well.

• Providing communication and computing platform: P2P-cloud provides
both communication and computing platform while classic cloud relies on Internet
for communication.

• P2P-cloud offers user-enabled control mechanism: a user can control the
applications whereas they are open source or each user can develop her own appli-
cations employing APIs such as REST.

• Hierarchical data processing: Smart grid data analysis on time series data
perfectly matches the parallel data analysis. Data analysis algorithms can run
on subsets of data, i.e. a subset of users’ data chosen according to the locality
property, stored on different machines, and aggregate them into the final result set
through hierarchical, multi-level processing. As with the distributed storage, the
distributed parallel processing is harnessing the network of commodity hardware
to its fullest, in which the amount of available memory and computing power is
abundant. Moreover, aggregation gives the possibility to anonymize data, which
is a safe and secure way to retrieve business intelligence information to personalize
the services without jeopardizing the end user privacy.

Nonetheless, smart grid can provide various energy sources for the community services.
Charging according to the energy price, users are more concerned about the energy
sources and prices, therefore, we make a broad range of choices for the users via providing
the users with smart grid resource availability data. In the next section we introduce an
economic model that facilitates the mutual collaboration of these systems.
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4.2 Cloud of Energy

Smart grid aware ICT service provisioning can foster the idea of green ICT by better
employment of energy sources. On the other hand, there are some endeavors to leverage
ICT platform for smart grid communication and information subsystems. Besides, with
the idea of Internet of Energy, Internet not only can serve as the communication infras-
tructure for the smart grid, but also the distributed mechanisms designed to manage
the Internet and tackle the administration issues can inspire the solution space of smart
grid challenges, which is called Internet thinking of smart grid [95]. All the same, the
cloud is already proposed as the information subsystem for the smart grid, in the state
of the art studies [82, 84, 85, 96]. Previous work suggests also how P2P-cloud can be
leveraged as the information subsystem at the smart micro-grid level [P1].

Partly inspired by Internet of Things (IoT), Internet of Energy (IoE) [97] is about
providing energy as a service in a more efficient way by dynamically adjusting resources
to deliver energy at the lower cost and the higher quality possible in the context of smart
grid.

In line with the idea of Internet of Energy, we define Cloud of Energy (CoE). CoE outlines
how involving customers in future ubiquitous society-driven energy conservation efforts
can both foster the adoption of green energy, as well as green cloud due to the increasing
energy awareness of society. The rationale is to get users into the loop, not only to guide
them how to use the services, but also to involve them directly in the whole cycle of
control, production and provisioning of energy. Ubiquitous society makes it possible to
combine informational support with fostering intrinsic motivation of users, all over the
generation, provisioning and control stack by acquiring immediate feedback on society
state.

Moreover, a large-scale distributed management system is required that can process huge
amounts of event data and operate in real time. It should be able to manage the interface
with infrastructures such as service market platforms that support the cooperation of
various players. It, thus, helps to automatically balance highly fluctuating supply and
demand, in a reliable and cost-effective manner. Relying on crowd sourcing [98] in a
ubiquitous society, we can obtain needed services by soliciting contributions from the
society rather than from traditional suppliers.

4.2.1 Challenges

There are some differences in cloud and smart grid services that should be taken into
account in CoE planning. To design a comprehensive model for integration, we need to
face the following challenges which stem from the natural differences of computing and
energy systems.

• Flow Management: data flow management is way more flexible than energy
flow management. In other words, we can encapsulate and label data easily, while
it is not easy to route the electrons in the same way. Thus, implementing VPC is
easier than developing a VPP.
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Figure 4.1: CoE Architecture

• Storable Services: in smart grid, batteries can save energy. Therefore, energy
service can be stored instead of instantaneously offered to the demands, while it
is not possible to store the computing service.

• Stochastic behavior: both systems are conforming to a stochastic behavior due
to resource fluctuation and highly evolving topology, regarding origin of requests
and availability of resources. In other words, due to the unpredictable collaboration
paradigm of end users in the cloud, the system depicts a stochastic behavior.
Likewise, in the smart grid energy provisioning system, we observe a stochastic
behavior of renewable energy resources participating in the system, which is tightly
coupled with the weather condition of each geographical region. However, the
demand paradigm in the smart grid is more predictable than the cloud (more
remarkable difference between peak and low usage). The electricity consumption
pattern is almost fully determined in advance in the smart grid. The peak demand
time is almost predictable in the grid system, while it is not as easy to foresee the
demand pattern in a distributed computing environment.

• Service Diversity: the diversity of provided services in the computing platform
is vaster than in the smart grid. This leads to the more complicated QoS and
management mechanisms in the clouds.

4.2.2 CoE Architecture

CoE is inspired by the idea of federating ubiquitous P2P network platform and the
classic distributed data centers to form a multi-layer interactive architecture. CoE fulfils
hierarchical control system goals in the integrated system of XaaS that supports both
computing and energy service provisioning.

CoE offers establishing Virtual Power Plant (VPP) and Virtual Private Cloud (VPC)
for each vicinity through the local broker. VPP leverages existing grid networks to tailor
electricity supply and demand services for a customer. VPP maximizes value for both
the end user and the distribution utility using a set of software-based dynamic systems
to deliver value in real time, and can react quickly to changing customer load conditions.

All the same, Virtual Private Cloud (VPC) is a cost-effective solution to expand the
presence into the public cloud instead of expanding private infrastructure. With its pool
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Figure 4.2: Economic Middleware Architecture

of highly available compute, storage, and networking resources, VPC fits well in scenarios
involving variable or bursting workloads, test and development, and next generation
mobile applications.

In CoE, there is a pool of providers, i.e. energy and computing service providers, includ-
ing prosumers in the edge layer, and mass producers in the higher layer. CoE layered
architecture assures quality of service via improving resource availability in edge-layer by
the support from the mass production layer. A layered architecture of CoE is illustrated
in Figure 4.1. Horizontal layers represent a hierarchical division of the service providers.
Prosumers, i.e. consumers and retail service producers, at the bottom layer constitute
the edge layer locally under the concept of vicinity, as illustrated in Figure 4.2. Classic
cloud service providers and mass energy providers are categorized as the mass service
providers in the highest level. The lower layers promote energy efficiency in resources
usage and the employment of greener sources of energy. Meanwhile, the higher levels can
ensure resource availability and cope with power variations in edge-layer power output.

In the CoE architecture, hierarchical brokers are responsible for managing the market in
different layers. These brokers are cross layer agents that are in charge of hosting auctions
and providing feedback to the layers below and above, in the economic middleware, as
demonstrated in Figure 4.2. In this architecture, there is a bidirectional information
flow. While wholesale brokers are statically placed, local controller/broker agents can
be dynamically placed in any prosumer location providing that the prosumer can obtain
the computing and energy requirements for the broker. In broker placement the priority
is with the source which has excess energy generated. To reinforce the fault tolerance
of the distributed system, we store the data in distributed data storage accessible to
all the prosumer agents in the vicinity if they have access to the token. Dynamic local
controller placement contributes to the energy efficient data processing and movement,
which is the key for a sustainable system.

4.2.3 Economic Middleware

An Economic Middleware acts as an interface to facilitate smart electricity and ubiqui-
tous computing service trading. This middleware, as shown in Figure 4.2 includes the
following components:

Energy Controller(EC) module exists in each prosumer side, which is able to predict
and measure the energy consumption of each individual appliance at home. All EC units
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are connected to the energy provider through a communication infrastructure such as a
community network [99].

Computing Controller(C2) in each prosumer of ubiquitous society plays the same
role of EC for the computing services.

Local broker, further to hosting auctions is responsible for defining tax rate based on
the bids it receives.
If the demand and supply do not match and the vicinity encounters resource scarcity,
the broker decreases tax rate, through tax controller, to make the external resources
more affordable for end users. Moreover, the broker should submit the bids for the
higher level broker, to obtain the resources for excess demand of the vicinity. A bitcoin
repository component is responsible to keep the bitcoin balance of the vicinity which is
necessary for trading with mass production broker, in the outside world. Bitcoin [100]
is an online payment system, in which trade parties can transact directly without the
interference of any intermediary, through bitcoin.

Mass production broker is in charge of setting up auctions among different service
providers for the demands submitted by the local brokers.

4.2.4 Agent Based CoE Service Composition

The CoE platform, as illustrated in Figure 4.1, can be modeled with the concept of
multi agents. Multi agent systems are the most suitable platform to model distributed
collaborative systems requirements based on their properties and functionality, allowing
them to implement intelligence in the smart grid control due to their social ability,
flexibility, self-healing features and economic agent support [101].

Environment: In the CoE agent based model, we have nested environments through
the horizontal hierarchy of the architecture, which amount to a set of producers and
consumers, and brokers. Looking closer, prosumers make a rich, heterogeneous environ-
ment which is controlled by coordinators, in order to drive the prosumers behavior and
represent the interest of a group of prosumers on the market.

Agents: In CoE, agents include prosumers, brokers in different levels, service providers
and mass producers of electricity and cloud services. Prosumer agents produce services
in the retail level and are the end users of the services, at the same time. Each prosumer
is equipped with a cloud and electricity controller, to regulate and control its demand
and supply.

Broker agents in different layers can decide what strategies to employ both on the market
and prosumers. For that we can apply a Stackelberg game, which is a hierarchical game
where players of this game are leaders and followers across the hierarchy. The Stackelberg
leader is the wholesale market broker and the local brokers should follow its strategy
in the market. However, each broker can run its own double auction mechanism to
supply the demands locally. This property gives the authority to the autonomous local
brokers to run their own strategy as long as it does not violate the wholesale market’s
framework. This promotes decentralization, better scalability and speed of adjustment
to varying local conditions, while bounding global imbalances.

Utility and cloud service providers can trade the mass provider services on their behalf
via the mass production broker.
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Market Rules: Since energy and computer systems provide two different services, to
integrate these two systems, in our market model, we need a metric that can measure
the contribution of each service in an understandable scale for the other. Moreover, a
universal metric facilitates the collaboration of the two systems. Virtual money seems
to be an appropriate metric for this end. Defining local currency in the micro-grid-
community level, we can incentivise the users to collaborate in the system by sharing
the resources, i.e. energy and computing by earning credits. The idea behind defining a
local currency is to drive and improve the coordination of users within a community, to
promote the community among the others by elevating the value of their local currency
against the other communities. Moreover, this mechanism helps in load balancing by
changing the value of local currency, by allowing arbitration.

When local supply exceeds the local demand, the local broker can assign bitcoin [100]
generation tasks to the prosumeres offering resources, in exchange of certain amount of
local currency based credit in their account. Therefore, the available resources are not
effectively lost and can be re-acquired later from mass producers, if supply is scarce, in
the vicinity. This is specially useful when the energy powering the idle resources is green
energy that is being under-utilized. Thus, we can in a novel way, effectively attempt at
preserving resources and energy for later demand.

Thus, local brokers, to provide resources from outside the vicinity, can only rely on
some outside currency, i.e. the bitcoin generated in the vicinity when there are excess
resources of electricity and computing in the vicinity (as an ideal universal replacement
to any legal tender or precious metal). Afterwards, to deliver the service to the end user,
local broker charges the users based on the community currency value equivalent to the
amount of bitcoin and the associated conversion taxes.

Furthermore, to keep the system constraints, we define the exchange tax, which is an ex-
tra amount that should be drawn from the requesters’ credit due to service provisioning.
To exemplify, communities geographically far will set higher exchange rates to assure the
quality of service, i.e. reduced latency, lower transmission loss and more energy efficient
service provisioning. Note that the Virtual money defined here deviates from the state
of the art concept in terms that it does not necessarily follow the conservation property.

In the next section we assess the feasibility of the proposed CoE system.

4.3 Evaluation

We study the challenges of rolling out the CoE and elaborate the feasibility of the
proposed architecture by answering several questions across this section.

4.3.1 A Comparison on Smart Micro Grid and P2P-cloud

As discussed so far, the design goals of the P2P-cloud appear to be nearly identical to
those of the smart grid; the similarities and differences of smart grid and P2P-cloud are
listed on Table 4.1. Both of them attain the basic requirements of a modern society in a
large scale and distributed manner, namely electricity, communication and computing.
Both infrastructures are conforming to a stochastic behavior due to resource fluctuation
and highly evolving topology, regarding origin of requests and availability of resources.
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Table 4.1: Smart Grid and P2P-cloud similarities and differences

Features and Properties P2P-cloud Smart Grid

Scale large

Evolution rate high

Time Dependency Time critical

Billing mechanism pay-as-you-go

Resource behavior Fluctuating resources

Suppliers Distributed

Market behavior non monopolistic

Transparency Consumers are unaware of the underlying complexity

demand Distributed and unpredictable

Service Cost Cost Effective

Resource management Distributed

Hardware Costs Cheap Expensive

Range of services Diverse Limited

Storage Support Full support some degree

Availability Important Critical

(Byzantine) Fault Tolerance Yes

Scalability Critical

Reliability Critical

Consistency Critical

Data Security Critical

Loosely paraphrasing, due to the unpredictable collaboration paradigm of end users in
the P2P-cloud, the system depicts a stochastic behavior.

Likewise, in the smart grid energy provisioning system we observe a stochastic behavior
of renewable energy resources participating in the system, which is tightly coupled with
the weather condition of each geographical region. To exemplify, in a windy day, wind
farms generate a lot of energy, while the solar panels reach their extreme productivity on
a perfect sunny day. Both smart grid and P2P-cloud follow the bidirectional flow prop-
erty, since most of the nodes collaborating in the distributed set of users and suppliers,
serve as prosumers, i.e. PROducers and conSUMERs concurrently, to respond to the
distributed demand for energy and information. Although the collaborative distributed
systems supply the demands in a distributed manner, consumers are unaware of the
underlying network complexity.

The most remarkable property of the both systems is ”pay-as-you-go” mechanism em-
ployed in these systems, that eradicates the heavy investment for the centralized infras-
tructure and revokes the supplier monopolies thanks to the decentralized, collaborative
structure.

For both systems the fundamental goal is to effectively integrate a number of separately
administered existing networks into a common utility network. The common secondary
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Figure 4.3: Collaboration

design goals are: 1) to tolerate loss of individual components, 2) to support different
underlying infrastructure types, 3) to allow distributed resource management, 4) to
be cost effective, 5) to allow easy endpoint attachment and 5) to be accountable for
resource usage. To thrive a collaborative distributed network, we should consider a
cost effective design as the most striking issue, while bearing in mind the fundamental
design principles of a distributed system including scalability, reliability, availability,
consistency, fault tolerance, distributed resource management and data security.

Moreover, some of the problems in the P2P-cloud, that of aggregation of stochastic
sources, distributed resource management, multiple time scales of control, and user
incentivization, are similar to that faced in the smart grid.

Nonetheless, it is not all about the similarities, there are some differences as well. The
demand paradigm in the smart grid is more predictable than the P2P-cloud (more
remarkable difference between peak and low usage); the electricity consumption pattern
is almost fully determined beforehand in the smart grid. The peak demand time is almost
predictable in the grid system, while it is not as easy to foresee the demand pattern
in a distributed computing environment. Even so, many global services experience
predictable peak and low periods for each time zone.

Furthermore, the diversity of provided services in the P2P-cloud is much higher than in
the smart grid. This leads to the more complicated QoS and management mechanisms
in the P2P-cloud. Additionally, the computing hardware costs follow a downward trend,
while the hardware expenses of the smart grid rises day to day.

4.3.2 Is bi-level architecture incentivize the collaboration?

Defining cost as the main incentive, CoE can improve the collaboration among the
prosumers, through the credit earning mechanism. Figure 4.3 illustrates that more
resources are provided within the vicinity in CoE compared to the random resource
allocation mechanism.

Here, we only consider flexible service provisioning in the edge to assure the quality
of service due to the uncertainty of renewable retail generators. Both electricity and
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Figure 4.4: Energy, Carbon and Price of different services

computing services can be classified as rigid and flexible. While rigid service needs real
time resource provisioning, flexible services can be scheduled for a later time, and is
more flexible.

As illustrated in Figure 4.3, local resource provisioning depends on service flexibility and
resource availability in the vicinity. Here we studied two service models, with 30% and
70% flexibility. The results show that the more resources available in the vicinity, the
higher collaboration of prosumers occur in CoE compare to the random collaboration
case. The collaboration in non-CoE case, however, is weekly correlated to the resource
availability in the vicinity. Note that in CoE we do not consider the possibility of the
inter-vicinity collaboration, since there is a significant transmission loss and quality of
service degradation in this case.

Implication 1: Increasing the resource availability at the edge layer of the CoE should be
considered as a priority to attain the smart grid objectives.

4.3.3 How much energy can be saved in CoE?

Figure 4.4.a depicts how much energy can be saved by smart service provisioning in
CoE2. We see that some cloud services such as storage as a service in the P2P-cloud,
i.e. edge layer, is more energy efficient compare to the data center case, while two other
services are better to obtain via data centers in the higher layer. Therefore, combination
of edge devices and data centers result in a more energy efficient services providing that
resources are allocated in an energy efficient manner. For this end, a framework is
required to characterize the energy efficacy of each individual service in both platforms.
A decision support system can help afterwards according to the analysis results.

Increasingly, in Figure 4.4.b, the carbon emission of different services are compared. We
assume that the prosumers are equipped with the solar roof tops, which emit 41 g/kWh
and data centers equipped with 50% of renewable solar energy produced by solar PV
at utility level and generate 48 g/kWh of CO2 in average and 50% of brown energy
inducing 802 g/kWh of carbon footprint in an average case, according to [102]. This
figure reveals the fact that, carbon emission as an incentive, besides energy consumption
may turn the table in more cases in favor of P2P-cloud, due to the lower emission rate
of prosumer level renewable energy generators.

2Experiment setup is the same as what we described in the previous chapter.
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Implication 2: carbon emission rate is a better metric than energy consumption to quan-
tify the efficacy of the system in fulfilling smart grid objectives.

4.3.4 How much cost will be saved?

In the state-of-the-art mechanisms, computer services are priced regardless of the energy
consumption cost. However, energy aware service provisioning can save remarkably in
the provider costs, since energy is a major part of dynamic price in the cloud service pro-
visioning. Exerting CoE, we have a better chance of directing services to the appropriate
layer of provisioning, and saving energy cost as a consequence.

Besides, CoE provides an opportunity to share the infrastructure and data required in
smart grid and cloud instead of duplicating the resources. Namely, in case of carbon
based charging, finding a cheap energy source will be significantly important. In such
a case, being renewable energy sources aware can help saving in dynamic cost. CoE
as an integrated architecture will obtain the smart grid data to the brokers across the
hierarchy, instead of duplicating this data in two separate systems of cloud and smart
grid.

Figure 4.4.c illustrates the cost of energy in a carbon based energy pricing, which assigns
the same price to all the energy sources and applies carbon taxes according to the
carbon-footprint portion attributed to the electricity source. As shown in this figure, in
all cases, P2P-cloud service provisioning leads to cost saving. Nevertheless, we should
bare in mind that there is limited resource availability for local resource provisioning
and the quality of service may not be obtained in local service providing.

4.3.5 Is implementation complexity warranted?

CoE reveals that integration facilitates a diverse range of service exchange. However,
integration may incur more complexity to the economic layer in the system due to the
different nature of each system such as uncertainty level, storablity, flow management
complexity, etc. This added complexity should be warranted with the advantages of
integration, e.g. more effective marketplace. To attain CoE goals, we need a robust eco-
nomic model which can manage the demand and supply in a multi-variable marketplace.

Nonetheless, if we aim at greening the ICT while exerting ICT for green, CoE can be
a good candidate to reduce carbon emission, save energy and cost as a consequence of
smart service provisioning.

4.4 Summary

In this chapter we introduced Cloud of Energy (CoE). CoE envisions the service provi-
sioning framework of the future that provides everything as a service via an integrated
cloud and smart electricity grid platform in horizontal and vertical dimensions. CoE
facilitates the resource management in each of smart grid and cloud through their hier-
archy. It also expedites the horizontal integration of different services via their shared
economic incentives. The economic layer acts as a middleware to translate a service
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in every concept, e.g. energy and computing, to the common incentive scale of money.
Integration elevates the collaboration of diverse range of providers and consumers, re-
questing for different services. Moreover, an integrated system is more efficient and
greener, since it avoids unnecessary redundancy in the common sub-systems, such as
shared data, computing and communication infrastructure, etc. Also the integration
leads to greener system since it provides increased energy awareness. However, this is
just the very first step in introducing the idea and still there are several open questions
that should be investigated more profoundly. For instance, a mechanism should be de-
signed for energy aware pervasive resource trading in the hierarchical broker system of
introduced middleware.



Chapter 5

Work Plan and Conclusion

5.1 Work Plan

Tentative outcomes of the work and the research questions are listed below. The corre-
lation of each question and the tentative contributions are illustrated in Figure 5.1.

5.1.1 Research Questions

Question1: Is it energy efficient to switch to community cloud?

Question2: Which metric should be applied for the analysis?

Question3: What are the requirements of the energy consumption analysis framework?

Question4: How can we exert cheap, green, distributed energy sources?

Q3

Q2

Q1

Q4

C1

C6

C5

C4

C3

C2

C7

0%

100%

Progress

Figure 5.1: Correlation of the questions and milestones

52



Work Plan and Conclusion 53

5.1.2 Milestones

Contribution1: Analysing the energy efficiency of P2P-cloud.

Contribution2: Comparing the energy consumption of P2P-cloud and classic cloud
models.

Contribution3: A framework to analyse energy consumption in P2P-assisted cloud
ecosystems.

Contribution4: A metric for performance-aware energy analysis across the service
provisioning stack.

Contribution5: Study the viability of smart micro-grid and P2P-cloud integration.

Contribution6: A framework to integrate smart grid and cloud service provisioning.

Contribution7: Dynamic energy-based pricing.

To accomplish this work, we have been relying on the schedule in Table 5.1.2.

Milestone Outcome Deadline Status

C1 CloudComm 2014 December 2014 Published

C2 Journal of Grid Computing December 2014 Under Review

C3 IEEE Transactions on Cloud Computing April 2015 Under Review

C4 CCGrid October 2015 In progress

C5 SmartgridComm2014 November 2014 Published

C6 SmartgridComm2015 November 2015 Under Review

C7 ACM e-energy January 2016 Initial Stage

PhD Thesis Thesis March 2016 In progress

5.2 Conclusion

In this proposal, we explained the work plan to devise an economics inspired energy
aware service provisioning in P2P assisted cloud ecosystems. Work plan is designed
to address two major questions enumerated as following. First we need to find out if
it is energy efficient to move toward P2P-clouds. Addressing this question requires a
framework to compare energy consumption for each service, as sketched in Chapter 3.

Nonetheless, this analysis framework may be trapped with tremendous performance
degradation. Therefore, a performance aware energy analytic metric is needed to tackle
with this issue. We introduced energy effectiveness metric conceptualized to the energy
and performance requirements of each layer across the service provisioning stack, i.e.
application, VM/OS, hardware. Energy effectiveness can assess how successful is the
ecosystem from a particular perspective based on different granularity of information.

Moreover, we introduced the idea of Cloud of Energy to make the ecosystem greener.
Since energy and Information and Communication Technology (ICT), as two driving
forces of the contemporary life, are reshaping themselves based on ubiquitous society
architecture to improve their service quality. Within the reforming process, integration
of two systems can contribute to a greener ubiquitous society by equipping them with
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the concept of energy conservativeness, and leveraging renewable energy sources. In
this work we outlined the idea of Cloud of Energy (CoE) which fosters the adoption
of green energy and green cloud by integrating these two systems. CoE introduces an
integrated framework of everything as a service to facilitate the service exchange, not
only across the computing and electricity grid hierarchy, but also among them via an
economic middleware.
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energy consumption for short code paths using rapl. ACM SIGMETRICS
Performance Evaluation Review, 40(3):13–17, 2012.

[26] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating
system power consumption. ACM SIGMETRICS Performance Evaluation
Review, 31(1):160–171, 2003.

[27] Gilberto Contreras and Margaret Martonosi. Power prediction for intel xscale R©
processors using performance monitoring unit events. In Low Power Electronics
and Design, 2005. ISLPED’05. Proceedings of the 2005 International Symposium
on, pages 221–226. IEEE, 2005.

[28] Michael D Powell, Arijit Biswas, Joel S Emer, Shubhendu S Mukherjee, Basit R
Sheikh, and Shrirang Yardi. Camp: A technique to estimate per-structure power
at run-time using a few simple parameters. In High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on, pages
289–300. IEEE, 2009.

[29] Shinan Wang, Hui Chen, and Weisong Shi. Span: A software power analyzer for
multicore computer systems. Sustainable Computing: Informatics and Systems, 1
(1):23–34, 2011.

[30] Ramon Bertran, Yolanda Becerra, David Carrera, Vicenç Beltran, Marc
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