
Asynchronous Complete Garbage Collection
for Graph Data Stores

Luís Veiga, Rodrigo Bruno, Paulo Ferreira
INESC-ID / Instituto Superior Técnico, University of Lisbon
luis.veiga,rodrigo.bruno,paulo.ferreira@inesc-id.pt

ABSTRACT
Graph data stores are a popular choice for a number of ap-
plications: social networks, recommendation systems, au-
thorization and control access, and more. Such data stores
typically support both distribution and replication of ver-
texes across physical nodes.

While distribution provides better load balancing of re-
quests, replication is necessary to achieve improved avail-
ability and performance. However, most of these systems
still manage replicated memory by hand, resulting in ex-
pensive efforts to fix dangling references and memory leaks
to ensure referential integrity.

In this paper, we present a novel Garbage Collection
(GC) algorithm that safely eliminates both acyclic and cyclic
garbage with support for replicated data. Our algorithm
provides minimum impact on applications’ performance, is
completely decentralized and has no coordination require-
ments. We evaluate our approach against previous solutions
and show that our solution is efficient while imposing very
little overhead on applications’ performance.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: ProcessorsMemory
management; C.2.4 [Computer Systems Organization]:
Distributed SystemsDistributed Applications

General Terms
Algorithms, Performance, Reliability

Keywords
Graph, Memory Management, Garbage Colleciton, Shared
Memory

1. INTRODUCTION
Graph data stores or object-oriented based systems (e.g.

Java) are used by many companies to solve a variety of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MIDDLEWARE ’15, December 07-11, 2015, Vancouver, BC, Canada
c©2015 ACM. ISBN 978-1-4503-3618-5/15/12 ... $15.00

DOI: http://dx.doi.org/10.1145/2814576.2814813

problems (e.g. Ehcache (ehcache.org), Hazelcast (hazel-
cast.com), Terracotta (terracotta.org), etc.). The ability to
scale while providing responses to complex semantic queries,
the powerful expressiveness, and its simplicity are just some
of the many features offered by most graph data stores im-
plementations.

To accomplish these features, such systems rely on: i)
distribution (to balance requests of multiple clients), and ii)
replication (to improve availability and performance).

However, over time, replicated garbage (i.e., objects repli-
cated (or cached) in several nodes that are no longer acces-
sible) is produced by either deleting some outdated client
information or updating it with new information. In both
cases, objects that could be accessed previously are now
inaccessible (and therefore, are considered garbage). As
the amount of garbage grows, application’s performance de-
creases. This results from two main factors: extreme mem-
ory utilization which could result in swapping objects from
memory, and frequent local garbage collections (where the
local garbage collector tries to free memory for the applica-
tion).

To successfully mitigate this problem, i.e., to allow appli-
cations to run efficiently, a proper garbage collection (with
support for object replication) must be employed. This
poses some important requirements: i) all garbage must
be reclaimed, meaning that both acyclic and cyclic garbage
must be reclaimed; ii) memory contention must be avoided
by timely collecting garbage; iii) the overhead of garbage
collecting on applications’ performance must be minimal.

In order to attain such goals, the garbage collector has
to travel the replicated distributed graph and analyze which
objects (which could be replicas of other objects) are acces-
sible or not by any application root reference1. This opera-
tion must be done with minimal interference so as to avoid
slowing down applications.

Not considering manual memory management, which is
difficult and often results in dangling references (references
to objects prematurely deleted) and memory leaks (refer-
ences to objects that are lost and therefore, the objects are
never freed), most current solutions (e.g. [7, 8, 2, 13, 2, 23,
3]) do not address the issue of distributed garbage collection
with replication. Thus, if applied to a replicated scenario,
such solutions either do not scale (as they consider replicas
to be as any other object) or are not safe reclaiming live
objects erroneously thus breaking referential integrity. In

1A root reference is a special reference held by the run-
time system which points to root objects. Examples of root
objects are variables stored in registers and global variables.

112

addition, often they impose a global centralized consensus.
We propose a solution that, is both scalable, complete,

and supports object replication. As others before, it follows
a hybrid approach: an acyclic GC based on replication-aware
reference-listing, and a distributed cycle detector that com-
plements the first, thus providing a complete solution for the
problem of collecting garbage.

The algorithm for acyclic GC is based on reference-listing
[20] and is adapted to work with replicated objects. There-
fore, this algorithm keeps track of inter-processes references
and object propagations (replication of objects to remote
nodes) and uses a set of safety rules (described in detail in
Section 3) to safely reclaim garbage.

The cycles detection algorithm works on object graph
snapshots taken by each process independently (i.e., with
no synchronization required at all). There is an instance of
the cycle detector for each one of such processes. Thus, each
snapshot is treated by the detector independently; messages
are then exchanged among processes so that certain refer-
ence and propagation paths are followed in order to find
if they form a cycle of garbage. Thus, there is no central
server responsible for detecting and reclaiming garbage cy-
cles. Such detection is done by a set of messages that are
sent and then return to the origin, using an algebra, that
allows to detect if a garbage cycle has been detected; such a
cycle is then broken (by deleting a remote reference) which
allows its reclamation by the local GCs of each concerned
process.

In sum, the main contribution of this work is a novel dis-
tributed garbage collection algorithm which supports dis-
tributed and replicated objects, requires no synchronization,
and is complete (detects both acyclic and ciclic garbage).
Section 5 provides a set of performance results which confirm
that our solution has low network and application overhead
for detecting garbage.

We envision that this work could be used in real-world sys-
tems such as graph databases and distributed shared mem-
ory systems (e.g. those previously mentioned) to improve
garbage collection safety (not relying on manual memory
management), performance, and completeness while ensur-
ing referential integrity. In other words, the algorithms pro-
posed here can be used in a large-scale graph database, for
example, to safely and efficiently delete sub-graphs that got
disconnected from the main graph, and therefore are no
longer accessible from the application logic. This can hap-
pen if the application replaces old information or simply
deletes it.

In the next section, we describe the underlying graph data
model assumed (which is rather general), and the acyclic
solution (which does not consider cycles of garbage) for de-
tecting replicated objects garbage. These are then comple-
mented with the asynchronous algorithm for detecting cycles
of garbage (for replicated objects) described in Section 3.
Section 4 describes the most relevant aspects of the imple-
mentation, and Section 5 shows the evaluation results. The
paper ends with a section on related work (Section 6), and
conclusions (Section 7).

2. BACKGROUND
Before going into the main algorithm, we give some back-

ground on two important topics which are base building
blocks for the rest of this solution. First, we explain the
graph data model, how it operates and most importantly,

which kind of systems are equivalent to it. Second, we
present an acyclic GC with support for replicated objects.
This algorithm is used in our complete GC to collect acyclic
garbage.

2.1 Graph Data Model
We now describe a model for graph data, the environment

for which our GC is conceived. The model assumes the ex-
istence of vertexes and directed edges connecting vertexes.
Vertexes can be distributed and/or replicated across multi-
ple physical nodes.

This model is actually used by a number of real-world
systems, for example: i) graph databases such as Titan or
Neo4J; ii) memory caches/shared memory systems such as
Terracotta BigMemory, Infinispan, and Hazelcast.

It is important to note that the graph data model is
equivalent to Replicated Memory (RM) model. In such
model, edges are mapped to memory objects and vertexes
are mapped to object references (which can be local or re-
mote). Hence, the problem of finding garbage in distributed
and replicated graphs is equivalent to finding garbage in a
RM system. For the rest of this document we refer to our
data model as Replicated Memory (RM).

Each participating process in a RM system encloses the
following entities: memory, mutator (application), and a co-
herence engine. In our RM model, for each one of these
entities, we consider only the operations that are relevant
for GC purposes.

2.1.1 Memory Organization
Applications can have different views of objects and can

see them as language-level class instances, memory pages,
data base records, web pages, graph vertexes etc. The unit
for replication is the object. Any object can be replicated in
any process. Each process can hold a replica of any object
for reading or writing according to the coherence protocol
being used. This does not preclude the possibility of repli-
cating several objects in a single operation; it simply does
not impose it.

The only operation executed by mutators that is relevant
for GC purposes is reference assignment; this is the only way
for applications to modify the graph of objects. This may
result on some object becoming globally unreachable, i.e.
garbage, given that there are no references pointing to it. In
conclusion, assignment operations (done by mutators) mod-
ify the object graph either creating or deleting references.

2.1.2 Coherence Model
The coherence engine is the entity of the RM system that

is responsible to manage the coherence of replicas. The co-
herence protocol effectively used varies from system to sys-
tem and depends on several factors such as the number of
replicas, distances between processes, and others.

Ideally, the DGC (distributed garbage collector) should be
orthogonal w.r.t. whatever mechanism is used to maintain
replicas coherent. Thus, the only coherence operation, which
is considered relevant for DGC purposes, is the propagation
of an object, i.e. the replication or update (which may carry
new references) of an object from one process to another.

The propagation of an object is performed using a propa-
gate message that carries the actual object content. When
an object is propagated to a process, its enclosed references
are exported from the sending process to the receiving pro-

113

cess. On the receiving process, i.e. the one receiving the
propagated object, the object’s enclosed references are im-
ported.

We assume that any process can propagate a replica from
another process into itself, when the mutator causing the
propagation holds a reference to the object being propa-
gated. Thus, if an object X is unreachable locally in process
P1, the mutator in that process can not force the propa-
gation of X to some other process; however, if some other
process P2 holds a reference to X, it can request X to be
propagated from P1 to P2.

In a RM system mutators may create inter-process refer-
ences very easily and frequently, through a simple reference
assignment operation. Note that when such an assignment
does result in the creation of an inter-process reference, this
can only happen because, in the local process, there was
already an object replica containing that reference to the
remote object. Thus, inter-process references are created as
a result of the propagation of replicas. Such propagation
leads to the export and import of references.

In each process, the coherence engine must hold two data
structures, called inPropList and outPropList; these indi-
cate the process from which each object has been prop-
agated, and the processes to which each object has been
propagated, respectively. Usually, this information already
exists in the coherence engine in order to manage the repli-
cas. Thus, they are not a special requirement imposed by
DGC, though their existence is leveraged by it.

Each entry in these lists indicates the process from which
each object has been propagated, and the processes to which
each object has been propagated, respectively. Thus, each
entry of the inPropList/outPropList contains the following
information:

• propObj - the reference of the object that has been
propagated into/to a process;

• propProc - the process from/to which the object
propObj has been propagated;

• sentUmess/recUmess - bit indicating if a Unreachable
message has been sent or received. Unreachable mes-
sages refer to unreachability from GC local-roots (more
details in Section 2.2).

It is worthy to note that in the RM model, the only way
a process can create inter-process references is through the
execution of two operations: (i) reference assignment, which
is performed explicitly by the mutator and (ii) object propa-
gation, which is performed by the coherence engine in order
to allow the mutator to access some object.

As an example, in some DSM-based systems, when the
mutator tries to access an object that is not yet cached lo-
cally, a page fault is generated; then, this fault is automati-
cally recovered by the coherence engine that obtains a replica
of the faulted object from some other process. objects.

2.2 Acyclic GC for RM
This section describes a solution for detecting RM acyclic

garbage. The overall solution for the problem is consti-
tuted by the following algorithms: i) a local tracing-based
garbage collection (LGC) algorithm running in each pro-
cess and ii) a replication-aware reference-listing acyclic dis-
tributed garbage collector (ADGC) algorithm (based on pre-

Figure 1: Safety problem of current DGC algorithm
which do not handle replicated data: Z is erro-
neously considered unreachable.

vious work [19]). The LGC and ADGC algorithms depend
on each other to perform their job, as explained afterwards.

Four important data structures are used by both algo-
rithms (LGC and ADGC):

• Stub - a stub describes an outgoing inter-process ref-
erence, from a source process to a target process;

• Scion - a scion describes an incoming inter-process ref-
erence, from a source process to a target process;

• inPropList - list of entries specifying a local object and
a remote process from which the object was propa-
gated;

• outPropList - list of entries specifying a local object
and a remote process to which the object was propa-
gated.

2.2.1 Replication Awareness
To safely collect a single object X (in a replicated dis-

tributed object model), one has to guarantee that no appli-
cation root reference (that can be local or remote) is able
to access (directly or indirectly) X. If X or any object found
in any path that leads to X is replicated, then all replicas
must be also checked for reachablility. This is known as the
Union Rule (introduced in Larchant [4]): a target object Z
is considered unreachable only if the union of all the replicas
of the source objects do not refer to it.

Consider Figure 1 in which an object X is replicated in
processes P1 and P2. Now, suppose that XP1 (this notation
is used from here on to refer an object, X in this case, and its
corresponding process, P1 in this case) contains a reference
to an object Z in another process P3, XP1 points to no other
object and is not locally reachable. XP2 is locally reach-
able. Then, the question is: should Z be considered garbage?
Classical DGC algorithms (designed for non-replicated sys-
tems) consider that Z is effectively garbage. However, this
is wrong because, in a replicated system, it is possible for
an application in P2 to acquire a replica of X from some
other process, in particular, XP1 . Thus, the fact that XP1

is not locally reachable in process P1 does not mean that
X is globally unreachable; as a matter of fact, according to
the coherence model, XP1 contents can be accessed by an
application in process P2 by means of a propagate opera-
tion. Therefore in replicated distributed systems, garbage
collection algorithms must enforce the Union Rule.

114

2.2.2 Local Garbage Collector
Each process has a local garbage collector (LGC); it works

as any standard tracing collector with the differences stated
now. The LGC starts the graph tracing from the process’s
root references and set of scions. For each outgoing inter-
process reference it creates a stub in the new set of stubs
(used in next step). Once this tracing is completed, every
object locally reachable by the mutator has been found (e.g.
marked, if a mark-and-sweep algorithm is used); objects not
yet found are locally unreachable; however, they can still be
reachable from some other process holding a replica of, at
least, one of such objects (as is the case of X P1 in Figure 1).
To prevent the erroneous deletion of such objects, the collec-
tor traces the object graph (marking the objects found) from
the lists inPropList and outPropList, and performs as fol-
lows: i) when a locally reachable object (previously discov-
ered by the LGC) is found, the tracing along that reference
path ends, and ii) when an outgoing inter-process reference
is found the corresponding stub is created in the new set of
stubs.

2.2.3 Acyclic DGC
From time to time, possibly after a local collection, the

ADGC sends a message NewSetStubs to the processes hold-
ing the scions corresponding to the stubs in the previous
stub set (i.e., the processes to which it has remote refer-
ences). This message contains the new set of stubs that
resulted from the local collection. In each of the receiving
processes, the ADGC matches the received new set of stubs
with its set of scions; those scions that no longer have the
corresponding stub, are deleted.

As previously stated, the ADGC, to be correct in presence
of replicated objects, must ensure the Union Rule. This
rule, fundamental for the safety of the ADGC, is ensured as
follows:

1. For an object, which is reachable only form the in-
PropList, a message Unreachable is sent to the site from
where that object has been propagated. When a Unreach-
able message reaches a process, this event is registered in
the corresponding outPropList entry.

2. For an object is reachable only from the outPropList,
and the enclosing process has already received a Unreach-
able message from all the processes to which that object has
been previously propagated, a Reclaim message is sent to all
processes to which that object has been propagated and the
outPropList is deleted. When a process receives a Reclaim
message, it forwards it to other processes that propagated
that object from the current process and the corresponding
entries from the outPropList and inPropList are deleted.

In summary, besides the NewSetStubs, two other messages
may be sent by the ADGC: Unreachable and Reclaim. These
messages result in the modification of local data structures
that are checked by the LGC (when it performs local col-
lection). Thus, ultimately, the LGC is the one that collects
objects.

2.2.4 Object Propagation
In a replicated system, mutators may create inter-process

references very easily and frequently, through a simple ref-
erence assignment operation (see Section 2.1.1). Note that
when such an assignment does result in the creation of an
inter-process reference, this can only happen because, in the
local process, there was already an object replica contain-

ing the reference to a remote object. Thus, inter-process
references are created as a result of the propagation of repli-
cas. Such propagation leads to the export and import of
references, as mentioned in Section 2.1.2.

Thus, whatever the coherence protocol, there is only one
interaction of the mutator with the ADGC algorithm. This
interaction is twofold: (i) immediately before a propagate
message is sent, the references being exported (contained
in the propagated object) must be found in order to cre-
ate the corresponding scions, and (ii) immediately before a
propagate message is delivered, the outgoing inter-process
references being imported must be found in order to create
the corresponding local stubs, if they do not exist yet. Note
that this may result in the creation of chains of stub-scion
pairs, as it happens in the SSP Chains algorithm [36]. To
summarize, the following rules are enforced by the ADGC:

Clean before send propagate: before sending a prop-
agate message, enclosing an object Y, from a process P2, Y
must be scanned for references and the corresponding scions
created in P2;

Clean before deliver propagate: before delivering a
propagate message, enclosing an object Y, in a process P1,
Y must be scanned for outgoing inter-process references and
the corresponding stubs created in P1, if they do not exit
yet.

It is worthy to note that the mutator does not have to
be blocked while the ADGC specific operations mentioned
above are executed (scanning the object being propagated
and creating the corresponding scion and stub); such oper-
ations can be executed in the background (in parallel with
the mutator).

From these rules, results the fact that scions are always
created before the corresponding stubs; and OutProps are
always created before their corresponding InProps. This is
due to a causality relationship (their creation is causally
ordered) between them.

3. ASYNCHRONOUS COMPLETE GC
FOR RM

We now describe our cycle collector for RM which, in con-
junction with the acyclic presented in Section 2.2, provides
a complete DGC for RM.

As explained before (in Section 2.2.1), in order to safely
reclaim garbage in RM, one has to ensure that an object can
not be accessed neither locally nor remotely from any root.
This includes normal object references and object replicas
(Union Rule).

The problem gets harder when garbage objects reference
each other, creating a garbage cycle. In such scenario, ob-
jects are remotely reachable (since the LGC sees an incoming
reference the the object) but are not globally reachable, i.e.,
no local or remote root can access the object.

Figure 2 shows a cycle of garbage in RM (solid lines rep-
resent object references while dashed lines represent object
propagations). Note that X’P2 is a replica of XP1 and Y’P3

is a replica of YP4. If the GC is not replication-aware, X’P2

and YP4 would automatically be considered garbage. How-
ever, only if none of the replicas of an object are reachable,
it is safe to collect the object. The acyclic DGC described
before would not be able to detect garbage because objects
have dependencies, either an object reference (scion) or ob-
ject propagation (inProp or outProp).

115

Figure 2: Cycle of garbage in RM. Solid lines rep-
resent object references. Dashed lines represent ob-
ject propagations.

In a complete replication-aware GC, the DGC tracks refer-
ences and propagations until i) an object is locally reachable
(and therefore, there is no garbage cycle) or ii) all references
and propagations have been followed and no globally reach-
able object was found (a cycle is detected). In Figure 2,
propagations from XP1 and YP4 would be tracked and a
cycle would be detected comprising all four objects.

3.1 Overview
We now give an overview of our cycle detector for RM

garbage. Consider that object XP1 (Figure 2) is suspected
to be garbage (efficient selection of cycle candidates is out
of the scope of this paper; heuristics found in literature [14]
may be used). The cycle detector analyzes four aspects: i)
if the object is accessible through another remote object (it
will find that XP1 is accessible through Y’P3); ii) if the object
references other remote objects; iii) if the object is propa-
gated to another process (it will find that XP1 is propagated
to P2); iv) if the object is propagated from another process.

With this information, the cycle detector concludes that
XP1 can not be garbage if Y’P3 is not garbage and that XP1

was propagated to P2. In order to continue the cycle detec-
tion, a cycle detection message (from here on called CDM)
is sent to process P2 containing the information already dis-
covered in P1.

The cycle detector in P2 finds a reference from X’P2 to
YP4 and a new CDM (containing the information discovered
so far) is sent to P4. From P4, a new CDM is sent to P3,
where y was propagated to. In P3, a remote reference to
XP1 is found. A new CDM is sent to P1. Then, the cycle
detector realizes that XP1 is globally unreachable because:
i) all replicas of XP1 are only accessible from Y’P3; ii) all
replicas of YP4 are only accessible from X’P2; iii) no object
is locally accessible or has other incoming remote references.

3.2 Data Structures
The structures manipulated by the cycle detector are reg-

ular acyclic GC structures, extended with the following in-
formation (invocation counters and update counters are ad-
dressed in Section 3.5):

• Scion

- Invocation Counter (IC): counter for concurrency
purposes;

- StubsFrom: list of stubs, in the same process, tran-
sitively reachable from the scion;

- ReplicasFrom: list of replicated objects, in the same
process, transitively reachable from the scion.

• Stub

- Invocation Counter (IC): counter for concurrency
purposes;

- ScionsTo: list of scions, in the same process, that
transitively lead to the stub;

- ReplicasTo: list of replicated objects, in the same
process, that transitively lead to the stub.

- LocalReach: flag-bit accounting for local reachability
(i.e., from the local root of the enclosing process) of the
stub;

• inProp and outProp (entries of inPropList and outPro-
pList respectively):

- Update Counter (UC): counter for concurrency pur-
poses;

- ScionsTo: list of scions, in the same process, that
transitively lead to the replcated object;

- ReplicasTo: list of replicated objects, in the same
process, that lead to the replicated object;

- StubsFrom: list of stubs, in the same process, tran-
sitively reachable from the replicated object;

- ReplicasFrom: list of replicated objects, in the same
process, transitively reachable from the replicated ob-
ject;

- LocalReach: flag-bit accounting for local reachability
(i.e., from the local root of the enclosing process) of the
replicated object.

Each of these data structures is essential for the correct
identification of garbage in a RM system as explained in the
next section.

3.3 Algorithm
We now describe how our algorithm actually works. For

this section, we assume that all mutators are stopped and
therefore, while the GC is running, no new references or
propagations are created. In Section 3.5 we relax this re-
quirement.

Cycle detections use an algebraic representation encoded
in the CDM. The CDM content is comprised of two sets
(separated by →): i) a source-set holding compiled depen-
dencies, and ii) a target-set holding target objects that the
message has been forwarded to. The first set (source-set) is
subdivided into two dependency sets: propagation and ref-
erence dependencies. This algebraic representation is built
using the data structures previously presented.

Our algorithm uses CDMs to travel the graph searching
for garbage cycles. To guide the search, we take advan-
tage of the fact that replicated objects evolve into a tree
of replicas (parent replicas are replicated into child repli-
cas). Similarly to the acyclic algorithm, we try to select
references or child replicas available from the current replica
before sending CDMs to parent replicas. This way, child
replicas are traversed before their parents. Only when a
child replica believes that it belongs to a distributed cycle
of garbage, it forwards its CDM to its parent replica. After
receiving the CDM from all child replicas the parent replica
either launches a local cycle detection (if there are reference
dependencies left) or instructs the acyclic detector that a
cycle has been found.

116

Consider again the example of Figure 2. Let us assume
that a detection is initiated with object XP1 as candidate
(efficient selection of cycle candidates is an issue out of the
scope of this paper; heuristics found in the literature [14]
may be used).

The steps performed and relevant state are the following
(the notation AlgN ⇒ is used to present the contents of the
Nth CDM):

1. P1: Alg0 ⇒ {{}, {XP1}} → {}, (XP1 chosen as candi-
date for cycle detection; it is the first reference dependency).

2. P1: outPropList(XP1) ⇒ {X’P2}, (X’P2 found as a
propagation of x in P1.

3. P1: Alg1 ⇒ { { X’P2 }, { XP1 } } → { }, resulting
algebra from node P1.

4. P1: Send Alg1 to P2, (send CDM message).
5. P2: Deliver Alg1.
6. P2: Matching (Alg1) ⇒ {{X’P2}, {XP1}} → {}.
7. P2: Cycle Found? ⇒ false
For each CDM delivered to a process, the cycle detector

performs an algebraic matching (determining whether a dis-
tributed garbage cycle was detected): a cycle is found if all
elements in the source set (including both sub-sets) appear
in the target set. According to our example, in step #7, no
cycle is found since there are at least two unresolved depen-
dencies.

8. P2: Alg1 ⇒ { { X’P2 }, { XP1 } } → { }
9. P2: StubsFrom(X’P2) ⇒ {YP4}
10. P2: Alg2 ⇒ { { X’P2 }, { XP1 } } → { X’P2 }
11. P2: Send Alg2 to P4
12. P4: Deliver Alg2
13. Matching(Alg2) ⇒ {{}, {XP1}} → {}
14. P4: Cycle Found? ⇒ false
Again, no cycle is found since there are still references to

account for.
15. P4: outPropList(YP4) ⇒ {Y’P3}
16. P4: Alg3 ⇒ { { X’P2, Y’P3 }, { XP1, X’P2 } } → {

X’P2, YP4 }
17. P4: Send Alg3 to P3
18. P3: Deliver Alg3
19. P3: Matching(Alg2) ⇒ {{Y’P3}, {XP1}} → {}
20. P3: Cycle Found? ⇒ false
21. P3: StubsFrom(Y’P3) ⇒ {XP1}
22. P3: Alg4 ⇒ { { X’P2, Y’P3, YP4 }, { XP1, XP2 } } →
{ X’P2, YP4, Y’P3 }

23. P3: Send Alg4 to P1
24. Deliver Alg4
25. P1: outPropList(XP1) ⇒ {X’P2}
26. P1: Alg5 ⇒ { { X’P2, Y’P3, YP4 }, { XP1, YP4, Y’P3

} } → { X’P2, YP4, Y’P3, XP1 }
27. Matching(Alg5) ⇒ {{}, {}} → {}
28. P4: Cycle Found? ⇒ true
At this moment, it is safe to assume that a cycle has been

found and that object XP1 belongs to it. Therefore, it is
safe to instruct the acyclic GC at P1 to delete the scion
accounting for the remote reference to XP1. After deleting
the incoming reference, there is no longer a cycle of garbage
and therefore the acyclic GC will, with the help of the LGC,
target the other objects as garbage.

3.4 Multiple Detection Paths
In the previous example, only one object (XP1) was lead-

ing the cycle detection and therefore, as soon as that object
was found, the cycle was detected. However, in many situ-

Figure 3: Graph of Garbage with Multiple Possible
Detection Paths

ations, multiple cycle detection directions can be pursued.
In this section, we describe one such example, where two
different paths can be traversed for cycle detection.

Consider Figure 3 which comprises six processes (P1 to
P6). No object in the graph is globally reachable meaning
that all objects are candidates for collection. Obvious steps,
similar to those in the previous example, are omitted for
simplicity. Let us assume that detection starts at object
CP1 . Then we have:

1. P1: Alg0 ⇒ { { }, { CP1 } } → { }
2. P1: ReplicasFrom(CP1) ⇒ {BP1}
3. P1: outPropList(BP1) ⇒ {B’P2}
4. P1: Alg1 ⇒ { { B’P2 }, { CP1 } } → { BP1 }, Send to

P2
5. P2: StubsFrom(B’P2) ⇒ {EP3, IP5}
Two possible detection paths are discovered in step #5,

one leading to EP3, and other to IP5. At this point, there
is no way to decide which path is the best. Therefore, two
CDMs are sent from P2, one for P3 and another for P5. Each
of these messages will either: i) resolve all dependencies and
find a garbage cycle; ii) reach nodes that can not resolve the
remaining dependencies and abort the detection track.

6. P2: Alg2a ⇒ { { B’P2, BP1 }, { CP1 } } → { BP1, B’P2

}, Send to P3
7. P2: Alg2b ⇒ { { B’P2, BP1 }, { CP1 } } → { BP1, B’P2

}, Send to P5
Following the CDM sent to P5 we have:
8. P5: ReplicasTo(IP5) ⇒ {F”P5}
9. P5: outPropList(IP5) ⇒ {I’P4}
10. P5: Alg3b ⇒ { { B’P2, BB1, I’P4 }, { CP1, F”P5, B’P2

} } → { BP1, B’P2, IP5 }, Send to P4
Note that, although F”P5 is a replicated object, it is not

included in the replica dependency set, but instead, it goes
to the reference dependency set. This is because we did
not traverse this object, we only know that it references an
object (IP5) being checked for garbage.

11. P4: StubsFrom(I’P4) ⇒ {CP1}
12. P4: Alg4b ⇒ { { B’P2, BP1, I’P4, IP5 }, { CP1, F”P5,

B’P2 } } → { BP1, B’P2, IP5, I’P4 }, Send to P1
13. P1: ReplicasFrom(CP1) ⇒ {BP1}
14. P1: Alg5b ⇒ { { B’P2, BP1, I’P4, IP5 }, { CP1, F”P5,

B’P2 } } → { BP1, B’P2, IP5, I’P4, CP1 }
15. P1: Matching(Alg5b) ⇒ {{}, {F”P5}} → {}
16. P1: Cycle Found? ⇒ false
Since B’P2 is already in the target set of Alg5b and the

matching returns unresolved dependencies (F”P5), this cy-
cle detection track is stopped. This mechanism forces mes-
sages that cannot resolve more dependencies to stop looping

117

through the graph.
Now, we follow the other cycle detection track from step

#6. Note that the step count is individual for each CDM so
we now go for step #7:

7. P3: ReplicasFrom(EP3) ⇒ {F’P3}
8. P3: inPropList(F’P3) ⇒ {FP6}
9. P3: Alg3a ⇒ { { B’P2, BP1, FP6 }, { CP1, EP3 } } →
{ BP1, B’P2, EP3, F’P3 }, Send to P6

The CDM reaches a point (in step # 9) where there are
no other out-going references to follow. However, there is an
unresolved replica dependency (FP6) which could still close
the cycle. Therefore, Alg3a is forwarded to process P6.

10. P6: outPropList(FP6) ⇒ {F”P5}
11. P6: Alg4a ⇒ { { B’P2, FP6, F”P5, F’P3 }, { CP1, EP3

} } → { BP1, B’P2, EP3, F’P3, FP6 }, Send to P5
12. P5: ReplicasFrom(F”P5) ⇒ {IP5}
13. P5: ScionsTo(IP5) ⇒ {B’P2}
14. P5: outPropList(IP5) ⇒ {I’P4}
14. P5: Alg5a ⇒ { { B’P2, FP6, F”P5, F’P3, I’P4 }, { CP1,

EP3, B’P2 } } → { BP1, B’P2, EP3, F’P3, FP6, F”P5, IP5 },
Send to P4

15. P4: StubsFrom(I’P4) ⇒ {CP1}
16. Alg6a ⇒ { { B’P2, FP6, F”P5, F’P3, I’P4, IP5 }, { CP1,

EP3, B’P2 } } → { BP1, B’P2, EP3, F’P3, FP6, F”P5, IP5 I’P4

}, Send to P1
Note that Alg6a has the same exact dependencies infor-

mation as Alg5a. This happens because CP1 was already
included as a dependence for the cycle detection.

17. P1: ReplicasFrom(CP1) ⇒ {BP1}
18. Alg7a ⇒ { { B’P2, FP6, F”P5, F’P3, I’P4, IP5 }, { CP1,

EP3, B’P2 } } → { BP1, B’P2, EP3, F’P3, FP6, F”P5, IP5,
I’P4, CP1 }

19. P1: Matching(Alg7a) ⇒ {{}, {}} → {}
15. P1: Cycle Found? ⇒ true
After matching algebra Alg7a, the cycle detector can now

conclude that all dependencies are solved and therefore, a
cycle has been found. As before, it is enough for the cycle
detector to instruct the acyclic GC to delete the scion of CP1

which will result in the safe collection of the whole cycle of
garbage.

While many other graphs can be created, the fundamental
operations to detect any other cycle using our algorithm
were expressed in this example.

3.5 Dealing With Concurrency
We now detail our approach to allow mutators concur-

rently modify the distributed graph. Our approach is based
on previous work [23] which is only safe for non-Replicated
Memory systems. Therefore, we now provide a full solution
that supports our RM data model.

Obviously, assuming that all mutators are suspended is
not reasonable. So, periodically, each process stores a snap-
shot of its internal object graph on disk. This snapshot is
performed by each process with no coordination w.r.t. other
processes; thus, each process is completely independent.

If we assume that a set of such snapshots, taken indepen-
dently by each process, provides a consistent view of the
global distributed object graph, the cycle detector may pro-
ceed exactly as described previously. However, for obvious
reasons, such an assumption is not correct; so, the cycle
detector has to ensure that the set of snapshots visited by
CDMs is, in fact, a consistent view for the purpose of finding
distributed cycles of garbage.

Therefore, it is only required that the sub-graph being
independently traced, to determine if it is a distributed
garbage cycle, is observed consistently. This a weaker re-
quirement than that of a consistent-cut in a distributed sys-
tem due to: i) distributed cyclic garbage (as all garbage) is
stable, i.e., after it becomes garbage it will not be touched
again by the mutator, and ii) replicated cyclic garbage is
always preserved by the acyclic GC (that is why we need a
special detector), i.e., if the cycle detector does nothing, it
still is safe.

Thus, we define CDM-Graph(x) as a consistent view re-
stricted to the distributed sub-graph, headed by object x,
enclosed in the correct combination of N process snapshots
with N-1 CDMs. Cycle detection proceeds as the CDM-
Graph is being constructed, i.e., with each CDM sent to a
process, combined with its snapshot and, after update, sent
to another process. Thus, a CDM carries a consistent view
of the fraction of the CDM-Graph already traversed by it,
i.e., the processes the CDM has been sent from. When a
CDM-Graph is safely and completely constructed, with all
dependencies resolved, a distributed garbage cycle has been
detected.

3.5.1 Graph Summarization
Object graphs in application processes may be very large.

Consequently, the size of the corresponding snapshot may
contribute to increase detector complexity and occupy a
large amount of disk space. In addition, such a large amount
of data could turn cycle detection into a CPU-consuming op-
eration requiring access to a large amount of data.

This problem is solved by summarizing the object graph
(a snapshot) of each application process in such a way that,
from the point of view of the cycle detector, there is no loss
of relevant information. This summarization transforms a
snapshot of an application graph into a set of scions, stubs,
inProps, and outProps, with their corresponding associa-
tions.

This summarization is performed on every snapshot; then
it is made available to the cycle detector. Thus, while pro-
cesses can take snapshots by serializing local graphs, the cy-
cle detector only uses them in their summarized form, i.e.,
after graph summarization.

3.5.2 Race Condition Invariants
For cycle detection purposes, a CDM-Graph must re-

spect the following invariant: there can be no invocations
or replica updates/propagations along the distributed sub-
path to be included in the CDM-Graph. If we allow this to
happen, it means that the mutator or the coherence engine
is modifying the distributed graph in the back of the cycle
detector. Consequently, the cycle detector may erroneously
conclude that it found a garbage cycle. Figure 4-a illustrates
such a case. The initial situation is that of a cycle formed by
objects XP1, X’P2, YP3, and Y’P4. This cycle is not garbage
because XP1 is referenced from the local root in P1.

Now consider the sequence of events depicted in the time-
line in Figure 5 (S1, S2, S3, and S4 are the moments when
the corresponding processes make their snapshots). The cy-
cle detector starts in P2 by sending a CDM to P3. Con-
currently, the coherence engine (which manages replica up-
dates) issues an update from P3 to P1. This update results
in a new remote reference from XP1 to YP4. Right after the
update operation, there is a remote invocation (from XP1 to

118

YP4), which creates a local root pointing to YP4. When the
invoke returns, the local root at P1 (XP1) is deleted. After
deleting the local root, P1 makes a snapshot of its graph
(S1).

Given that S2, S3, and S4 were previously taken, the view
of the distributed graph that is perceived by the cycle de-
tector instances (i.e., the CDM-Graph) is, in fact, the one
represented in Figure 4-b, instead of the correct one repre-
sented in Figure 4-c. This would lead to the erroneous de-
tection of a distributed cycle of garbage comprising objects
XP1, X’P2, YP3 and Y’P4. This erroneous conclusion would
be reached by the cycle detector if the invariant mentioned
before is not respected.

In this case, a replica update and an invocation took place
along the reference path P1 → P2 → P3 that had been
previously stored in the snapshot and will be included in
the CDM-Graph when the CDM arrives to P1.

The invariant dictating the construction of a CDM-Graph
is implemented using the following conservative safety rules
(Situation→ Action), when process snapshots are pairwise-
combined through CDMs:

1. Stub/outProp without corresponding Scion/inProp
(snapshot of the process holding the Scion/inProp is not
current enough for the CDM-Graph) → Ignore CDM;

2. Scion/inProp without corresponding Stub/outProp
(reference creation message in transit, acyclic garbage, or
snapshot of the process holding the stub not current enough)
→ The CDM is never sent since there is no stub in CDM-
Graph;

3. Stub/outProp with matching Scion/inProp but there
have been remote invocations/replica updates, and possibly
reference copying, along the CDM-Graph after one of the
snapshots was taken; it is not consistently accounted for in
the snapshot and the CDM)→ Terminate CDM-Graph con-
struction, i.e., terminate detection avoiding mutator-cycle
detector race;

4. Stub/outProp with corresponding Scion/inProp and
there were no invocations or replica updates after snapshot
(safe to continue CDM-Graph creation and detection) →
Proceed CDM-Graph construction, combine CDM with pro-
cess snapshot and continue detection.

There are two straightforward ways to uphold CDM-
Graph invariant w.r.t. the last two rules: i) pessimistic:
to freeze the mutator and the coherence engine in, or deny
it access to, the path already traversed while detection is in
course, or ii) optimistic: to detect, at a later stage, that this
invocation has indeed occurred. The first option is clearly
undesirable as it disrupts applications with no justification
(if the mutator wants to access objects, they are clearly not
garbage). The second option allows the application to run at
full-speed at the expense of possibly wasting some detection
work (an hypothetical distributed cycle may be partially or
completely traversed by the detector, only to find out that
meanwhile, a distributed invocation on that cycle has taken
place). The algorithm needs only to ensure safety in these
cases (and it does) since they must be infrequent when ef-
ficient heuristics are used to select cycle candidates. Thus,
the solution conceived consists on a barrier that detects in-
vocations and replica updates being performed in the back
of the cycle detector.

3.5.3 Mutator-Cycle Detector Race
Following the example in Figure 4 and the timeline in

Figure 4: Possible Graph States in a Race Condition

Figure 5: Possible Cycle Detection Timeline in a
Race Condition

Figure 5, we now describe how the cycle detector is able to
detect mutator activity and stop the cycle detection preserv-
ing the safety of the algorithm.

Table 1 contains the invocation and update counters for
all GC data structures involved in the process. Three phases
are presented: i) initial, which corresponds to the beginning
of the timeline in Figure 5; ii) snapshot, corresponding, in
each process, to the moment when the snapshot is taken; iii)
real, the final graph state, which corresponds, to the end of
the timeline.

For simplicity, assume that, in the initial state, all coun-
ters have the same value α. Note that both α and β can take
any value. We only assure that α causally precedes α + 1.
Cells filled with a dash represent a data structure counter
that did not exist in the corresponding graph phase.

According to the timeline in Figure 5, the cycle detection
starts in process P2. We now follow the algebra in each of
the messages:

1. P2: StubsFrom(X’P2) ⇒ {YP4}
2. P2: CDM 1 ⇒ {{X’P2},{}} → {}, Send to P4
3. P4: outPropList(YP4) ⇒ {Y’P3}
4. P4: CDM 2⇒ {{X’P2, Y’P3}, {X’P2}} → {YP4}, Send

to P3
5. P3: StubsFrom(Y’P3) ⇒ {XP1}
6. P3: CDM 3 ⇒ {{X’P2, Y’P3, YP4}, {X’P2}} → {YP4,

Y’P3}, Send to P1
7. P1: outPropList(XP1) ⇒ {X’P2}
8. P1: outProp(X’P2) � inProp(XP1)
9. P1: Cycle Found? ⇒ false, abort detection
As it is possible to confirm from Table 1, outProp(X’P2),

from snapshot S1, succeeds inProp(P1), from snapshot S2.
This invalidates the invariant presented before and therefore,
the cycle detection is aborted.

4. IMPLEMENTATION
The algorithms (replication-aware reference-listing and

cycle detector) were implemented combining C++ and C#.

119

Figure 6: Tota LGC Overhead due to Enforcement of the Union Rule

Figure 7: LGC Object Unitary Cost to Enforcement of the Union Rule

GC Structure Initial Snapshot Real
P2:inProp(XP1) α α α + 1
P2:stub(YP4) α α α
P4:scion(X’P2) α α α
P4:outProp(Y’P3) α α α
P4:scion(XP1) - - β
P3:inProp(YP3) α α α
P3:stub(XP1) α α α
P1:scion(XP1) α α α
P1:outProp(X’P2) α α + 1 α + 1
P1:stub(YP4) - β β

Table 1: GC Data Structures Counters

The implementation includes SSCLI2 virtual machine mod-
ification (for LGC and DGC integration), remoting code in-
strumentation (to detect export and import of references
and replicas), and distributed cycle detection.

The reference-listing algorithm must cooperate with the
LGC, essentially, in two ways: i) the LGC must provide, in
some way, the reference-listing algorithm with information
about every remote object referenced or propagated to/from
local objects; ii) the reference-listing algorithm must prevent
the LGC from reclaiming objects that are no longer locally
reachable but are target of incoming remote references or
are propagated to/from other processes.

The approach consists simply on a running thread that

2Shared Source Common Language Infrastructure (SSCLI),
previously codenamed Rotor, is an open-source implementa-
tion of Microsoft’s Common Language Infrastructure, part
of .NET.

monitors existing stubs, scions, inProps, and outProps, ver-
ifying that they are still valid. This is achieved using weak-
references. This approach has several advantages: i) it does
not impose relevant modifications on the CLR (Common
Language Runtime) implementation, ii) it can be imple-
mented using a high-level language such as C#, iii) modifi-
cations are mainly restricted to the Remoting package, and
iv) it does not interfere with the LGC used.

Remoting services code instrumentation intercepts mes-
sages sent and received by processes in the context of re-
mote invocation and object propagation so that all GC data
structures are managed properly.

Graph summarization is coded in C#. It is performed,
lazily and incrementally, in each process, after a new object
graph has been serialized, by a separate thread or, alter-
natively, by an off-line process. It transverses the graph,
breadth-first, in order to minimize overhead (i.e., re-tracing
of objects). Once summarized, graph information becomes
atomically available to the cycle detector. CDM algebra
matching is implemented in C# both in SSCLI.

We also implemented a RM simulator to run scalability
tests of our algorithm. The simulator is implemented in
CLOS and it simulates a real network of nodes. Each node
contains objects which can reference and be referenced by
local and remote objects. The simulator also supports ob-
ject propagation, i.e., objects can be replicated in remote
nodes. Asynchronous messages are used to simulate remote
invocations between objects and object propagations.

Two algorithms are implemented on top of the simulator:
i) a previous algorithm [23], which does not support RM; ii)
the algorithm presented in Section 3. We modified the pre-
vious algorithm to support replicas in a trivial way: object

120

propagations are transformed into two remote references,
one from the original object to the new object and other
from the new object to the original object. In other words,
inPros are transformed into scions and outProps are trans-
formed into stubs. This modified version of the algorithm
supports RM and is both complete and safe.

It is interesting to note that both algorithms take the same
amount of time to identify the cycle. This happens because
both algorithms need to traverse at least once each node in-
side the cycle. The main difference between both algorithms
is in how they conduct their graph traversal. Since our solu-
tion is replication-aware, we take advantage of such knowl-
edge to perform smarter decisions regarding which paths to
take. As shown in the next section, this results in substantial
less network overhead in our approach.

5. EVALUATION
We evaluate our algorithms using both our prototype and

a simulator and tackle two issues: i) local GC overhead, and
ii) network overhead. These are the most relevant perfor-
mance aspects given their relation to the (lack of) intrusive-
ness w.r.t. applications, and scalability, respectively.

5.1 Local GC Overhead
To assess the cost of enforcing the Union Rule in our sys-

tem, we injected user code object finalizer methods (meth-
ods that are called when the object is no longer reachable
from a local root). We did a series of experiments, with vary-
ing parameters. We used an Intel(R) Core(TM) i5 CPU 760
@ 2.80GHz with 8GB RAM, equipped with .Net Framework
4.5 and OpenJDK 1.7.

The experiments portray a worst-case scenario that pro-
vides an upper-bound to the penalties imposed. It is as-
sumed that all objects in memory have been replicated from
another process, and that they are continuously: i) being
detected as unreachable locally (thus, their finalizer is exe-
cuted), and ii) immediately made reachable to the mutator
again (by means of a reference being imported).

When this happens, the object must be handled in order
that, in the future, local un-reachability will be detectable
again. This is achieved using the techniques : i) object re-
construction, and ii) re-registering objects for finalization.
Thus, the experiments depict a worst-case scenario. In nor-
mal operation, this overhead is not imposed to all objects,
nor for every execution of the LGC or object invocation. An
object that is reachable locally imposes no additional over-
head to LGC, attributable to the Union Rule. Similarly,
an object already detected as unreachable locally, imposes
no additional LGC overhead. The overhead occurs during
the transitions between local reachability and unreachabil-
ity. When an object replica becomes unreachable locally, its
finalizer must be executed to resurrect the object and pre-
serve it. When an object replica, that is unreachable locally,
becomes reachable again (due to reference import), one of
the two techniques described must be used. In real scenar-
ios, these transitions happen to each object, only in a very
small fraction of LGC executions. Moreover, this penalty
would be completely masked if the content of the object
replica is also being refreshed from another process across
the network.

The results of the experiments are presented in Fig-
ures 6 and 7. Each value is expressed in milliseconds
and is averaged over three separate runs. In each run,

Figure 8: Number of CDMs per Simulation Step

Figure 9: Number of issued CDMs

the LGC of the virtual machine was explicitly executed,
in loop, 100 times. This is achieved by invoking Sys-
tem.gc(); System.runFinalization() in Java, and in C#, Sys-
tem.GC.Collect(); System.GC.WaitForPendingFinalizers().
The graphs depict total execution times and unitary cost
per object, for increasing number of objects (1000,10000,
and 100000), and references contained in each of them (1,10,
and 25). All graphs are in logarithmic scale and contain five
data series:

Empty Java LGC: Times regarding plain execution of
Java LGC. In the first execution, the totality of objects are
reclaimed. The remaining executions are thus empty. It
provides a lower-bound on LGC execution-time in Java;

Java Reconstruction: Times regarding Java LGC and,
after each LGC execution, finalizer code that performs re-
construction of all objects, and replacement of all internal
references, with proxies;

Empty .Net LGC: Times regarding plain execution of
LGC in .Net. It serves a purpose analogous to Empty Java
LGC;

.Net Reconstruction: Times regarding .Net LGC com-
bined with object reconstruction in finalizer code;

.Net ReRegisterFinalize: Times regarding .Net LGC
and, after each LGC execution, finalizer code that simply
re-registers the object for finalization, thus allowing the fi-
nalizer to be continuously executed, avoid additional object
and proxy creation.

The results presented show that, although there is no sup-
port in existing LGC, in Java and .Net, to provide differenti-
ated information regarding object reachability, it is feasible
to enforce the Union Rule resorting to user-level code. The
experiments evaluate the combined cost of the two opera-
tions required: i) detecting local un-reachability to preserve
objects, and ii) ensure that when an object becomes reach-
able to the local mutator, again, it will be possible to detect
local un-reachability again in the future (using object re-
construction and re-registration for finalization). Even in
the worst-case scenario portrayed (both in frequency of the

121

operation and absence of network communication), unitary
costs are in the order of microseconds. Maximum values are
of 25.4 in Java, and 14.5 for .Net, while the minimum are
6.32 for Java and 0.67 for .Net, which is actually lower than
the unitary cost of Java in cases identified already.

5.2 Network Overhead
We now explore the network overhead of our RM cycle

detector by simulating a real deployment of our algorithm
in a distributed graph store. Hence, we use synthetic graphs
replicated across multiple nodes (using our simulator). Each
synthetic graph consists on a triangle mesh in which each
triangle forms a cycle. This is, in fact, a worst case scenario,
where the number of interconnected cycles is very high. Note
that, however, for cycle detection purposes, only the number
of remote references and object propagations will impact the
number of CDMs needed to detect a cycle. Local references
will be hidden by graph summarization as described before.

Therefore, we consider two variables: i) the number of
replicated nodes and ii) the number of dependencies (re-
mote references and object propagations) between each node
which compose the distributed cycle. For example, with four
replicated nodes and 100 dependencies, we have 4 physical
nodes with 100 links to any of the other three physical nodes.
All these links are connected in a large cycle of garbage
which spans all 4 nodes. We compare our solution with a
modified version of a previous algorithm [23] (described in
Section 4).

Figure 8 presents the number of CDMs issued through
the execution of a cycle detection on a graph with repli-
cation factor of 4 and 10 dependencies between each replica
node. The solid line represents our solution while the dashed
line represents the modified algorithm. Each simulation step
represents a virtual time interval when processes can read
incoming messages and compute outgoing messages.

Both algorithms identify the cycle after 51 simulation
steps. However, our approach uses less CDMs through the
cycle detection process. This happens because we distin-
guish between reference and propagation dependencies, al-
lowing us to limit the amount of CDM flooding. Moreover,
we forward CDMs when we are left with only propagation
references. When forwarding CMDs, nodes do not have to
compute a new CDM.

Figure 8 also shows that our solution stops traversing the
network sooner (in a smaller number of steps). This has
two important advantages: i) less CDMs means less over-
head network traffic, and ii) less local application overhead
(since each CDM involves some computation for integrating
snapshots).

The performance of both algorithms if further assessed in
Figure 9 which presents the number of CDMs using in a cycle
detection when the amount of dependencies and the number
of replicated servers increases from 2 to 4 and from 10 to
100, respectively. The number of simulation steps needed
to identify the garbage cycle, in each graph, is presented in
Table 2.

From Figure 9 we conclude: i) as the amount of depen-
dencies increases, the network overhead also increases; ii) as
the number of replicated nodes increases, the difference in
network overhead between both solutions increases, i.e., the
benefits from using our solution are more significant when we
increase the number of replication nodes. This results from
the fact that adding more replication to the graph increases

Repl Factor / # Deps 10 25 50 100
2 25 55 105 205
3 38 83 158 308
4 51 111 221 411

Table 2: Number of Steps until Cycle Detection

the number of possible paths to search the graph. Since our
solution limits the way the cycle detector selects new paths,
our solution imposes much less network overhead.

6. RELATED WORK
The DGC algorithms presented in this article provide a

complete approach to the problem of DGC for replicated
object systems; thus, the solutions can be related to a large
number of work performed in the area of garbage collection.
As a matter of fact, DGC has been a mature field of study
for many years and there is extensive literature [1, 15, 21]
about it.

Given that our main contribution addresses the issue of
detecting and reclaiming cycles of garbage for replicated ob-
ject systems, we focus on previous work dealing with the
collection of distributed cycles of garbage. Note that most
previous work addresses the detection and reclamation of
garbage cycles in non-replicated system. Thus, we address
existing decentralized solutions that may have some aspect
that can be compared to our cycles reclamation algorithm.

Global propagation of time-stamps until a global mini-
mum can be computed was first proposed in [7] to detect
distributed cycles of garbage. Distributed garbage collec-
tion based in cycles detection within groups of processes
was first introduced in [8]. These algorithms do not scale
since they require a distributed consensus by the participat-
ing processes on the termination of the global trace. This is
also impossible in the presence of faults [5].

Migrating objects to a single process in order to convert a
distributed cycle into a local one, that is traceable by a basic
LGC, was suggested by several others [2, 12]. Object migra-
tion, for the sole purpose of GC, is a heavy requirement for
a system, needs extra and possible lengthy messages (bear-
ing the actual objects) among participating processes. It
is very difficult to accurately select the appropriate process
that will contain the entire cycle. Cycles that span many ob-
jects, copied into a single process in charge of tracing may
cause overload.

The work presented by Vestal [25] proposes trial deletion
to detect distributed cyclic garbage. It uses a separate set of
reference count fields for trial deletion in each object. These
count fields are used to propagate the effect of trial (simu-
lated) deletions. Trial deletion starts on an object suspect
of belonging to a distributed cycle. The algorithm simulates
the recursive deletion of the candidate object and all its ref-
erents. When, and if the trial counts of every object of the
sub-graph drop to zero, a distributed cycle has been suc-
cessfully found. It imposes the use of reference counting for
LGC (which is seldom chosen); this is an important limita-
tion. The recursive freeing process is unbounded. Further-
more, it has problems with mutually referencing distributed
cycles of garbage.

In Maheshwari [13], distributed backtracing starts from
suspected objects (of belonging to a distributed cycle of
garbage), and stops until it finds local roots or when all

122

objects leading to the suspect have been backtraced. There
are two mutually recursive procedures: one to perform local
backtracing and another is in charge of remote backtracing.
Distributed backtracing results in a direct acyclic chaining
of recursive remote procedure calls, which is clearly unscal-
able. To ensure termination and avoid looping during back-
tracing, each ioref (representing remote references) must be
marked with a list of trace-id’s to remember which back-
traces have already visited it. This requires processes to
keep state about detections on course which raises questions
of fault-tolerance. Local back-tracking is performed with
resort to optimized structures similar to our graph summa-
rization mechanism. To ensure safety, reference copies (local
and remote) must be subject to a transfer-barrier that up-
dates iorefs. The distributed transfer barrier may need to
send extra messages that are guarded against delayed deliv-
ery.

Distributed backtracking is also used in [18] for cycle de-
tection in CORBA. As in our work, it addresses detailed
issues about implementation of this concept in a real envi-
ronment/system with off-the-shelf software.

In Rodrigues [16], groups of processes are created to be
scanned as a whole and detect cycles exclusively comprised
within them. Groups of processes can also be merged and
synchronized so that ongoing detections can be re-used and
combined. It has fewer synchronization requirements w.r.t.
others [8, 17]. When a candidate is selected, two strictly
ordered distributed phases must be performed to trace ob-
jects. Mark-red phase paints the distributed transitive clo-
sure of the suspect objects with the color red. This must
be performed for every cycle candidate. Termination of this
phase creates a group. Afterwards, the scan-phase is started
independently in each of the participating processes. The
scan-phase ensures un-reachability of suspected objects. Ob-
jects also reachable from other clients (outside the group) are
marked green. This consists of alternating local and remote
steps. The cycle detector must inspect objects individually.
This demands strong integration and cross-dependency with
the execution environment and the local garbage collector.
Mutator requests on objects are asynchronous w.r.t. GC;
when this happens during scan-phase, to ensure safety, all
of an object descendants may need to atomically be marked
green, which blocks application when it is actually mutating
objects. As in [13], GC structures need to store state about
all ongoing detections passing through them.

In Fessant [9], marks associated both with stubs and
scions are propagated between sites until cycles are de-
tected. Marks are complex holding three fields (distance,
range and generator identifier) and an additional color field.
Local roots first, and then scions, are sorted according to
these marks. Stubs require two marks. Objects are traced
twice every time the LGC runs (with important performance
penalty to applications) starting from local roots and scions:
first in decreasing, and then in increasing order of marks, to-
wards stubs. Mark propagation through objects to the stubs
is decided by min-max marking (this is heavier than sim-
ply reach-bit propagation). One message propagates marks
from stubs to scions. The resulting global approach to cycle
detection is achieved at the expense of additional complex-
ity and performance penalties. It imposes a specific, longer,
heavier LGC that must collaborate with the cycle detector.
There is a tight connection and dependency among LGC,
acyclic DGC and cycles detection. This is inflexible since

each of these aspects is subject to optimization in very dif-
ferent ways, and should not be limited by decisions about the
others. The mark propagation consists of a global task being
continuously performed; it has a permanent cost. Instead it
should be deferred in time, and executed less frequently.

The work by Veiga [23], although providing a complete
distributed garbage collection, is also centralized, thus re-
lying on a central server that periodically receives (summa-
rized) graph snapshots from each site and performs a global
mark-and-sweep. This solution raises scalability and relia-
bility issues.

The work by Caromel [3] addresses the Grid and collects
active objects (i.e. activities) with a complete DGC. Once
again, replication is not considered. Cycles are collected
by: i) considering the recursive closure of all the referencers
of an active object, and ii) finding cycles of active objects
waiting for requests. As in other solutions, this requires
active objects to reach a consensus.

The pseudo root approach [26] addresses garbage collec-
tion for an actor system on the grid and requires a consistent
global view of the system to collect distributed cycles. This
solution is based on a centralized global garbage collector.
The authors say that this is a concurrent, asynchronous, and
non-FIFO solution. Such cycle collection is triggered peri-
odically, and include some computing nodes from which it
obtains a local snapshot; these are then merged to identify
the garbage cycles, and the concerned nodes are informed.

In summary, detection of distributed cycles has been ad-
dressed with several solutions: (i) object migration, ex-
plicit [2] and via indirection [6] (train algorithm), (ii) trial
deletion [25], (iii) propagation of marks or time-stamps,
global [7, 11, 9], within groups [8, 16], (iv) distributed
back-tracing [13, 18], (v) centralised detection, loosely-
synchronised [10], asynchronous [24, 22], requiring a con-
sensus [26], and (vi) cycle detection algebra [23].

Thus, in short, none of the above solutions addresses the
issue of DGC with replication. If applied to a replicated
scenario, such solutions either do not scale (as they consider
replicas to be as any other object) or are not safe reclaiming
live objects erroneously thus breaking referential integrity.
As a matter of fact, our current approach described in this
paper is the first to address memory management for repli-
cated object systems, in a comprehensive and decentralized
manner. It presents the first decentralized DGC algorithm
for these systems, that is complete, i.e., that can detect and
reclaim distributed cycles of garbage comprised of replicated
objects spanning several processes. It has few requirements
on synchronization avoiding disruption to mutator and in-
trusion to LGC, and is decentralized, thus not relying on
any central service.

7. CONCLUSIONS
In this paper we present a comprehensive solution to col-

lect garbage in a generic RM system. Our solution is dis-
tibuted, does not require synchronization, and is complete.
The evaluation results confirm that our algorithm does not
hinder application performance (i.e., the LGC do not suffer
significant overhead) and the amount of network messages
is reduced compared to other approaches.

We envision that this work can improve current systems
such as distributed caches, graph databases, or distributed
shared memory systems (e.g. Ehcache, Hazelcast, Terra-
cotta, etc.) by improving their support for automatically

123

reclaim garbage.

Acknowledgments. This work was supported by national
funds through Fundação para a Ciência e a Tecnologia with
reference UID/CEC/50021/2013.

8. REFERENCES
[1] S. E. Abdullahi and G. A. Ringwood. Garbage

collecting the internet: A survey of distributed
garbage collection. ACM Comput. Surv.,
30(3):330–373, Sept. 1998.

[2] P. B. Bishop. Computer systems with a very large
address space and garbage collection. MIT Report
LCS/TR–178, Laboratory for Computer Science, MIT,
Cambridge, MA., May 1977.

[3] D. Caromel, G. Chazarain, and L. Henrio. Garbage
collecting the grid: A complete dgc for activities. In
R. Cerqueira and R. Campbell, editors, Middleware
2007, volume 4834 of Lecture Notes in Computer
Science, pages 164–183. Springer Berlin Heidelberg,
2007.

[4] P. Ferreira and M. Shapiro. Larchant: Persistence by
reachability in distributed shared memory through
garbage collection. In Distributed Computing Systems,
1996., Proceedings of the 16th International
Conference on, pages 394–401. IEEE, 1996.

[5] M. Fisher, N. Lynch, and M. Patterson. Impossibility
of distributed consensus with one faulty process.
J. ACM, 32(2):274–382, Apr. 1985.

[6] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S.
Munro. Garbage collecting the world: One car at a
time. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’97, pages
162–175, New York, NY, USA, 1997. ACM.

[7] J. Hughes. A distributed garbage collection algorithm.
In J.-P. Jouannaud, editor, Functional Languages and
Computer Architectures, number 201 in Lecture Notes
in Computer Science, pages 256–272, Nancy (France),
Sept. 1985. Springer-Verlag.

[8] B. Lang, C. Queinnec, and J. Piquer. Garbage
collecting the world. In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’92, pages 39–50, New
York, NY, USA, 1992. ACM.

[9] F. Le Fessant. Detecting distributed cycles of garbage
in large-scale systems. In Proceedings of the Twentieth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’01, pages 200–209, New York,
NY, USA, 2001. ACM.

[10] B. Liskov and R. Ladin. Highly available distributed
services and fault-tolerant distributed garbage
collection. In Proceedings of the Fifth Annual ACM
Symposium on Principles of Distributed Computing,
PODC ’86, pages 29–39, New York, NY, USA, 1986.
ACM.

[11] S. Louboutin and V. Cahill. Comprehensive
distributed garbage collection by tracking causal
dependencies of relevant mutator events. In
Distributed Computing Systems, 1997., Proceedings of
the 17th International Conference on, pages 516–525,
May 1997.

[12] U. Maheshwari and B. Liskov. Collecting cyclic dist.
garbage by controlled migration. In Proc. of PODC’95
Principles of Dist. Computing, 1995. Later appeared
in Dist. Computing, Springer Verlag, 1996.

[13] U. Maheshwari and B. Liskov. Collecting cyclic dist.
garbage by back tracing. In Proc. of PODC’97
Principles of Dist. Computing, 1997.

[14] U. Maheshwari and B. Liskov. Collecting cyclic
distributed garbage by controlled migration.
Distributed Computing, 10(2):79–86, 1997.

[15] D. Plainfossé and M. Shapiro. A survey of distributed
garbage collection techniques. In Proceedings of the
International Workshop on Memory Management,
IWMM ’95, pages 211–249, London, UK, UK, 1995.
Springer-Verlag.

[16] H. Rodrigues and R. Jones. Cyclic distributed garbage
collection with group merger. Lecture Notes in
Computer Science, 1445, 1998.

[17] H. C. C. D. Rodrigues and R. E. Jones. A cyclic dist.
garbage collector for Network Objects. In O. Babaoglu
and K. Marzullo, editors, Tenth Int’l W’shop on Dist.
Algorithms WDAG’96, volume 1151 of LNCS,
Bologna, Oct. 1996. SV.

[18] G. Rodriguez-Riviera and V. Russo. Cyclic dist.
garbage collection without global synchronization in
CORBA. In P. Dickman and P. R. Wilson, editors,
OOPSLA ’97 W’shop on Garbage Collection and
Memory Management, Oct. 1997.

[19] A. Sánchez, L. Veiga, and P. Ferreira. Distributed
garbage collection for wide area replicated memory. In
Proceedings of the 6th Conference on USENIX
Conference on Object-Oriented Technologies and
Systems - Volume 6, COOTS’01, pages 61–76,
Berkeley, CA, USA, 2001. USENIX Association.

[20] M. Shapiro, P. Dickman, and D. Plainfossé. Ssp
chains: Robust, distributed references supporting
acyclic garbage collection. 1992.

[21] M. Shapiro, F. L. Fessant, and P. Ferreira. Recent
advances in distributed garbage collection. In
Advances in Distributed Systems, Advanced Distributed
Computing: From Algorithms to Systems, pages
104–126, London, UK, UK, 1999. Springer-Verlag.

[22] L. Veiga and P. Ferreira. Complete distributed
garbage collection: an experience with rotor. Software,
IEE Proceedings -, 150(5):283–290, Oct 2003.

[23] L. Veiga and P. Ferreira. Asynchronous complete
distributed garbage collection. In Parallel and
Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 24a–24a. IEEE, 2005.

[24] L. Veiga, P. Pereira, and P. Ferreira. Complete
distributed garbage collection using DGC-Consistent
cuts and .NET AOP-support. IET Software,
1(6):263–279, Dec. 2007.

[25] S. C. Vestal. Garbage Collection: An Exercise in Dist.,
Fault-Tolerant Programming. PhD thesis, University of
Washington, Seattle, WA, 1987.

[26] W.-J. Wang and C. Varela. Distributed garbage
collection for mobile actor systems: The pseudo root
approach. In Y.-C. Chung and J. Moreira, editors,
Advances in Grid and Pervasive Computing, volume
3947 of Lecture Notes in Computer Science, pages
360–372. Springer Berlin Heidelberg, 2006.

124

